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Abstract: A set of curves or images of similar shape is an increasingly
common functional data set collected in the sciences. Principal Component
Analysis (PCA) is the most widely used technique to decompose varia-
tion in functional data. However, the linear modes of variation found by
PCA are not always interpretable by the experimenters. In addition, the
modes of variation of interest to the experimenter are not always linear.
We present in this paper a new analysis of variance for Functional Data.
Our method was motivated by decomposing the variation in the data into
predetermined and interpretable directions (i.e. modes) of interest. Since
some of these modes could be nonlinear, we develop a new defined ratio
of sums of squares which takes into account the curvature of the space of
variation. We discuss, in the general case, consistency of our estimates of
variation, using mathematical tools from differential geometry and shape
statistics. We successfully applied our method to a motivating example of
biological data. This decomposition allows biologists to compare the preva-
lence of different genetic tradeoffs in a population and to quantify the effect
of selection on evolution.
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1. Introduction

Researchers in an increasing number of fields, including biology, medicine, and
engineering, collect samples of curves, images or objects of common shape.
Growth curves of plants and animals, gene expression signals, medical images,
and human speech are all real life examples of high dimensional multivari-
ate or functional data, see Dryden and Mardia (1998); Fletcher et al. (2004);
Ramsay and Silverman (2005). Understanding the variation in this type of data
set is usually of primary interest. Principal Component Analysis (PCA) is the
most widely used method to decompose variation in functional data. However,
the directions of variation found by PCA are data driven and linear. So, prin-
cipal directions are not always easily interpretable by the experimenters and the
decomposition fails in the presence of nonlinear variation. The analysis presented
in this paper decomposes the variation in terms of modes that are predetermined
by the experimenters. Since some of these modes could be nonlinear, we develop
a new method, Template Mode of Variation or TMV, to decompose variation
along nonlinear modes. This decomposition problem is particularly challenging
because of the complexity of non-Euclidean geometry. Our method was applied
successfully to several sets of reaction norm curves in evolutionary biology, ther-
mal performance curves of caterpillars in Izem (2004) and Izem and Kingsolver
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Fig 1. Thermal Performance Curves of Caterpillars. Each curve represents the family growth
rate z at six temperatures t (in Celsius). The between curve variation represents the genetic
variation in the population.

(2005), flies in Izem (2004) and viruses in Knies et al. (2006). The matlab code
for this decomposition is available at http://www.fas.harvard.edu/˜rizem. The
method that we present here could be generalized to decompose predetermined
modes in any set of curves or images and along directions of interest that satisfy
our assumptions.

The data and problem which motivated our analysis is presented in Subsec-
tion 1.1. We discuss the main assumptions of our analysis in Subsection 1.2.
We contrast our approach to other approaches in the literature for analysis
of nonlinear variation in Functional Data Analysis (FDA), Shape Analysis, or
Manifold Learning in Subsection 1.3. Finally, we summarize the content of the
paper in Subsection 1.4.

1.1. Motivating data and problem

The data which motivated the analysis in this paper comes from evolutionary
biology and is shown in Fig. 1. Each curve shows the growth rate as a function
of temperature for a given family of caterpillars, where a family is a set of
offsprings of same parents. This data is an example of reaction norm curves,
a widely collected data set in biology, where each curve shows the change of a
trait as a function of the environment for some genotype, see Scheiner (1993).
Thus, in our example, the growth rate is the trait of interest, the temperature
is the environmental condition of interest, and each family represents a different
genotype in the population. Other examples of reaction norm curves are growth
of a virus as a function of temperature in Knies et al. (2006) and photosynthesis
of a plant as a function of light intensity or nutrients in the soil.

The curves’ variation represents the genetic variation in the population for
different environmental conditions. Three gene-environment interactions were
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identified by biologists as being of particular interest: horizontal shift, vertical
shift and generalist-specialist, see Kingsolver et al. (2001). These three varia-
tions are shown in Fig. 2. The first mode of variation, the vertical shift, corre-
sponds to a population where some genes clearly dominate other genes in all
environments. The two other modes of variation, the horizontal shift and the
generalist-specialist, show two different gene-environment trade-offs where all
genes are better in some environments and worse in others. In Kingsolver et al.
(2001), the given hypothesis is that all these directions exist simultaneously,
and there is a need for decomposing the genetic variation in the data into these
modes of interest to see which directions are more important.

PCA is one of the most commonly used method to decompose variation in
functional data. PCA was applied to the data set in Kingsolver et al. (2004)
but it failed to answer the biological questions of interest. In particular, the
paper found that the first linear principal directions were difficult to interpret
biologically and could not distinguish the horizontal shift from the generalist-
specialist. PCA failed to give biologically meaningful results in this data set
because: first, PCA decomposition is data-driven rather than hypothesis driven;
second, PCA can only find linear directions of interest and some of the directions
of interest above are nonlinear.

The method described in this paper was successfully applied to decompose
the variation in the data shown in Fig. 1 onto the three modes of variation of
interest to biologists represented in Fig. 2. Our results are presented in Section 7
and show that the model fits 84% of the variation in the data, most of the
variation (73%) is explained by the two nonlinear modes and the remaining
11% is explained by the, linear, vertical shift.

1.2. Common shape and predetermined directions

Our analysis assumes that functional data sets have common shape and that
the modes of variation of interest are predetermined and parameterizable.

In the caterpillar example shown in Fig. 1, we see that each curve has a
common shape. Each curve increases slowly, tends to reach a maximum and
finally decreases rapidly. This common shape assumption is meaningful for sev-
eral examples in functional data. Because functional data represent different
realizations of the same underlying process, growth rate in our example, it is of-
ten considered that the variation is around a common template shape reflecting
that process, see Wang and Gasser (1997, 1999); Ramsay and Silverman (2005);
Dryden and Mardia (1998). In practise, it is often easy to determine the common
shape from simply looking at the data. For example: a template gene expression
signal could be periodic in time with each period corresponding to a cell cycle,
and a template growth curve over time of a plant could be a logistic function.
However, the term common shape is not easily formally defined. In this paper,
the term of common shape or template shape will mean the shape in the center
of the variation in the data.

There are often some directions of interest identified by the experimenters
around this common template shape which we call modes of variation. This



R. Izem and J.S. Marron/FDA of nonlinear modes of variation 645

Fig 2. Three modes of variation of biological interest. Top: Vertical shift of curves: zi(t) =
z(t) + hi, where z(t) is the common shape curve and hi is the height of family i. Middle:
Horizontal shift of curves: zi(t) = z(t − mi), where z(t) is the common shape curve and
mi is the location of maximum of family i. Bottom: Generalist-Specialist variation: zi(t) =
wiz(wit), where z is the common shape curve and wi is the width of the curve of family i.

term was used early on, as in Castro et al. (1986). When these directions are
predetermined, the variation in the data is then fully described by the template
shape and the modes of variation around the template shape. In our exam-
ple, we constructed the following 3-parameter Shape Invariant Model (SIM)
Lawton et al. (1972) to model the three modes of variation of interest

zi(tj) = wiz(wi(tj − mi)) + hi + ǫi,j, (1.1)
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where zi(tj) is the growth rate of family i at temperature tj . The function
z represents the common shape. Parameters (hi, mi, wi) represent the vertical,
horizontal and generalist-specialist variation of family i from the template shape.
The vertical shift is a linear mode of variation, however since z is not a linear
function, the modes of variation parameterized by m and w are nonlinear. Note
that the three parameters are on different scales, h is on the growth rate scale,
m on the temperature scale and w is unit-less. Thus, it is difficult to compare
the magnitude of the variance of different parameters. In addition, it is difficult
to quantify the contribution of the variation of each parameter to the between
growth curve variation. Our method is a nonlinear ANOVA type decomposition
of the variation in growth rate induced by the variation of the parameters. Be-
cause our decomposition is done in the same scale as the data, the contributions
of the parameters to the total variation in the data are comparable.

The 3-parameter SIM is a particular case of a general Self Modeling Nonlinear
Regression (SEMOR) model Kneip and Gasser (1988)

zi(tj) = R(θi, tj) + ǫi,j, 1 ≤ i ≤ n; 1 ≤ j ≤ d (1.2)

where the response zi varies nonlinearly as a function of t ∈ R, where θi ∈ Rd′

is the vector of parameters of variation, and where R is the common regression
function. In the caterpillar example, θi is the vector (wi, mi, hi), and R(θi, t) =
wiz(wi(t − mi)) + hi. When R is linear in θi the modes of variation are all
linear. Other examples of modes are: variation in frequency and duration of
speech signals, or variation in asymptotic height and growth rate of a logistic
growth curve of plants. Definitions and results in this paper will be formulated
in terms of the general model (1.2). Theoretical results will also assume that
the common shape R is known. We discuss how to estimate R from the data
using a procrustes type method in Section 6.

1.3. Our method and nonlinear variation in the literature

The importance of nonlinear variation of curves around a common shape, such
as registration, or horizontal shift, has been recognized for some time in the
FDA literature, see Chapter 5 in Ramsay and Silverman (2002, 2005). SIM or
SEMOR models are also a common way to account for nonlinearity in FDA,
some examples of the extensive literature in the topic are Lawton et al. (1972);
Kneip and Gasser (1988); Härdle and Marron (1990); Kneip and Engel (1995);
Lindstrom (1995); Ladd and Lindstrom (2000); Brumback and Lindstrom (2004).
However, most registration methods which account for nonlinearity of the data
have treated nonlinearity as a nuisance. These methods remove nonlinear modes
to better estimate the common curve as in Wang and Gasser (1997, 1999), and
then to apply conventional linear techniques such as PCA in Silverman (1995).
In contrast, motivated by the goals of our collaborators, our premise is that
nonlinear variation should be part of the decomposition. We believe that when
nonlinear variation is itself of main interest, as is the case in some of the examples
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cited above, these modes should be properly accounted for in the decomposi-
tion. In SIM models, the focus has been on estimating the parameters and the
common shape curve in an optimal way, such as in Kneip and Gasser (1988);
Härdle and Marron (1990); Kneip and Engel (1995) and quantifying the vari-
ability by assuming random parameters and estimating their variance Lindstrom
(1995); Brumback and Lindstrom (2004). The variance of each parameter in the
SIM model can be used to quantify the variation in the data along a mode. How-
ever, as noted in Subsection 1.2, the parameters are on different scales which
makes it difficult to compare the contribution of each parameter to the total
variation in the data. In addition, the parametrization might not be unique and
different parametric scales would have different variance values. In this paper,
instead of using the variance of the parameters to quantify variability, we de-
compose the variation in the natural or intrinsic scale of the data in a nonlinear
ANOVA type decomposition. The results of our decomposition are not tied to
the parametrization we chose since an equivalent parametrization would produce
the same space of variation. Thus, an equivalent parametrization of the modes
of variation will produce the same decomposition. Our decomposition is also
invariant to a linear transformation of the data, since a linear transformation of
the data will be absorbed by the common shape function.

In Shape Analysis, the notion of mean and variance in a metric manifold were
defined in Fréchet (1948) as the Fréchet mean and Fréchet variance. These no-
tions are widely studied in the field of robust statistics and have more recently
been used by probabilists for characterizing distributions of shape data, see
Kume and Le (2000); Le (2001); Bhattacharya and Patrangenaru (2003, 2005).
These authors showed fundamental results for the Fréchet mean, conditions of
its existence, consistency of its estimates from the sample, and a central limit
theorem for the Fréchet mean on a Riemannian manifold. Our focus in this pa-
per is not in estimating the Fréchet mean, but in decomposing variability. One
drawback of the Fréchet variance is that it is a number regardless of the dimen-
sionality of the manifold. It represents the total variation in the data, but it does
not offer the full understanding of the variation that the variance-covariance ma-
trix offers in the Euclidean case. In our approach, we decompose the Fréchet

variance S̃SM into meaningful quantities, each representing variation along a
mode of interest. i.e.

S̃SM =

d′∑

i=1

S̃SM i

where S̃SM i quantifies the variation along mode i. This goal is reached by
defining new metrics which allow for the decomposition of the variation. More
precisely, we define a new dV in the manifold such that,

S̃SM =

n∑

i=1

d2
V (R(θi, t), R̃)

where R̃ is a Fréchet mean. In the one dimensional case, the metric is sim-
ply the arcdistance or shortest distance between two points along the curved
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one dimensional differentiable manifold. In the two dimensional case we use a
Pythagorean like formula to define a path metric in the manifold as a function
of the arcdistances along each mode. Contrary to the Euclidean case, the path
metric between two points along one-dimensional geodesics are not unique. So,
our final distance accounts for this multiplicity by assigning weights for each
path metric.

Manifold learning methods as in Hastie and Stuetzle (1989); Tenenbaum et al.
(2000); Donoho and Grimes (2003); de Silva and Tenenbaum (2003a);
de Silva and Tenenbaum (2003b); Fletcher et al. (2004) extend the dimension-
ality reduction aspect of PCA to multivariate data lying in a nonlinear manifold.
They are data-driven and exploratory, so the results they find are not always
interpretable. Moreover, these methods do not attempt to quantify the vari-
ation along given nonlinear principal directions. In contrast, in our approach,
we decompose the variation into pre-identified, and interpretable, modes given
by the experimenter. Lastly, our decomposition exploits the fact that the data
of interest to us are not arbitrary multivariate data but instead are functional
data, with approximately common shape.

1.4. Structure of this paper

We illustrate the geometry of nonlinear spaces of variation with four toy exam-
ples in Section 2. Two toy examples illustrate one dimensional spaces of varia-
tion, and two other toy examples illustrate two dimensional spaces of variation.
In Section 3 we define the Fréchet mean and variance for functional random
variables varying in a manifold. We also propose a ratio measuring the variation
along nonlinear modes. Section 4 discusses our choice of metrics in the manifold
and the proposed quantification of one, two or multiple simultaneous modes of
variation. In the one-dimensional case, the metric is simply the arcdistance. In
the two-dimensional case and higher, the choice of metric is key to decomposing
variability. The metric in higher dimensions is defined by a Pythagorean like
formula using all the one dimensional arcdistances. The consistency of our esti-
mates is shown in Section 5. We discuss the implementation of this method as
well as present results of our method on the motivating example in Section 6.
We finally discuss the result of the decomposition to the motivating data set in
Section 7.

2. Geometry of the space of variation

Before considering the space of variation in the most general case in model (1.2),
we explore four particular examples with a given common shape. The first two
examples are one mode cases, the two other examples are two-mode cases. The
one mode cases illustrate what the geometry of the space of variation is for a
linear and a nonlinear mode, they are:

(a) Linear mode example: vertical shift of curves around a common shape. In
this example, θi = hi, and R(θi, t) = z(t) + hi in model (1.2).
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(b) Nonlinear mode example: horizontal shift of curves around a common
shape. In this example, θi = mi, and R(θi, t) = z(t − mi) in model (1.2).

The two modes examples are:

(c) Linearly separable model example: simultaneous variation of curves along
the vertical shift and horizontal shift. In this example θi = (hi, mi), and
R(θi, t) = z(t − mi) + hi in model (1.2). We call this model linearly sep-
arable because we can write the function R((mi, hi), t) as the sum of two
different functions, each depending on only one parameter. More precisely,
R((mi, hi), t) = R1(mi, t) + R2(hi, t) where R1(mi, t) = z(t − mi) and
R2(hi, t) = hi. As we will see in Section 4, the geometry of the space of
variation and the decomposition will be simpler to describe in this case
because of this property.

(d) General case example: simultaneous variation of curves along the hori-
zontal shift and generalist-specialist. In this example, θi = (mi, wi), and
R(θi, t) = wiz(wi(t−mi)) in model (1.2). As we will see in Section 4 defin-
ing a distance that allows the decomposition will be less trivial in this case,
but will rely on similar ideas defined for one-mode and two-mode linearly
separable examples.

For illustration, the curve variation as well as the space of variation is shown for
each of these four examples with a parabola common shape in Fig. 3 and Fig. 4.
These four examples and their illustrations are discussed in details in Subsection
2.1. In Subsection 2.2, we present the general result on the dimensionality and
geometry of the space of variation for a set of curves of common shape.

2.1. Examples in one and two dimensions

To visualize the variation in the curve space and in the point cloud space, we
sample z at three distinct points (t1, t2, t3). As illustrated in Fig.s 3 and 4,
sampling at three points allows for a representation of an infinite dimensional
curve as a point in three dimensions. So, a set of parabolic curves in the curve
space appears as a set of points in the point cloud space and the variation in
the curves corresponds to variation of the points.

The linear mode example, the vertical shift, is presented in the two left panels
of Fig. 3. We see that when there is one mode of variation of the curves and
it is linear, here vertical shift, the points in the point cloud space fall along a
line. We call the line in this example the space of variation of the data. Note
that when the mode of variation is linear, the arithmetic average falls within
the space of variation. Note also that deviation of each data point from the
mean could be measured by the Euclidean metric. The nonlinear mode example
is presented in the two right panels of Fig. 3. We see that when there is one
mode of variation of the curves and it is nonlinear, here the horizontal shift,
the points in the point cloud space fall along a curve. We call this curve in
this example the space of variation of the data. Note that when the mode of
variation is nonlinear, the arithmetic mean will not fall in the space of variation.
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Fig 3. Illustration of the vertical shift and horizontal shift modes in the curve space and the
point cloud space. Two examples of one dimensional mode of variation, one linear and one
nonlinear. From left to right, Panel 1: Parabolas vertically shifted. Panel 2: Visualization of
the variation in 3d. Since the mode of variation is linear, the space of variation is a line and
the mean (x) lies in the space of variation. Panel 3: Parabolas horizontally shifted. Panel 4:
Visualization of the variation in 3d. Since the mode of variation is not linear, the space of
variation is a 1-dim manifold or curve.

Fig 4. Curve space, and space of variation in the two dimensional case. From left to right,
Panel 1: Toy parabola curves varying simultaneously along the vertical shift (parameterized
by h) and the horizontal shift (parameterized by m). Panel 2: The space of variation cor-
responding to Panel 1. It is a surface. Panel 3: Toy parabola curves varying simultaneously
along the generalist-specialist (parameterized by w) and horizontal shift (parameterized by
m). Panel 4: The space of variation corresponding to Panel 3. It is a surface. Each curve in
the curve spaces in Panel 1 and Panel 3 corresponds to a point in the space of variation in
Panel 2 and Panel 4.
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Similarly, using the Euclidean distance will not be the best characterization of
deviation along the space of variation. For the one mode case, we will propose in
Section 3 and Section 4 to use the arcdistance, or distance along the manifold,
instead of the Euclidean distance as measure of proximity. We also propose to
use the Fréchet mean and variance, or mean and variance along the manifold,
as a measure of center and spread in the manifold.

Fig. 4 illustrates the case of simultaneous variation along two modes, vertical
shift and horizontal shift in the left two panels, horizontal shift and generalist-
specialist in the right two panels. We see in both examples that when there
are two modes of variation, the points in the point cloud space fall in a plane
or a surface. We call the surface in each example the space of variation of the
data. When the space of variation is curved, the mean does not fall in the
space of variation and the Euclidean metric is not appropriate for proximity. As
in the one-dimensional case, we propose in Section 3 to use the Fréchet mean
set for a center in the manifold of variation. However, in contrast to the one-
dimensional case, we do not use the arcdistance or shortest distance along the
manifold as measure of proximity. Instead, we define in Section 4 new metrics
by a Pythagorean like formula using the one-dimensional arcdistances along
each mode. The advantage of these new metrics is that, by construction, we can
decompose variation in the manifold in an ANOVA type decomposition along
the modes of interest. As discussed in Section 4, the construction of this metric
is simpler in the linearly separable case than in the general case.

2.2. General dimension

For a variation or a set of variation around a common shape, the space sup-
porting the points in the point cloud space is called the space of variation. In
the one-mode examples, the line or the curve were the space of variation. In the
two-modes examples, the surface is the space of variation. In general, given data
as in model (1.2) with a common shape R(θ, t) and parameter space Θ ⊂ Rd′

,
we define the the space of variation V as the subspace of Rd such that,

V = {(x1, . . . , xd) ∈ Rd; ∃θ ∈ Θ such that xj = R(θ, tj)∀j = 1, . . . , d.}

Theorem 2.1 states that under certain conditions on the common shape and the
parameter space, the space of variation is a manifold of the same dimension d′

as the parameter space

Theorem 2.1. For a fixed sampling vector t ∈ Rd, let the function R(., t) be
such that

R(., t) : Rd′

→ V

θ 7→ R(θ, t)

If R(., t) is an homeomorphism from Rd′

to V , then V is a manifold of dimension
d′.
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See proof in Appendix. For the caterpillar data, this condition is satisfied for
any polynomial common shape z of degree higher than 2 and the three modes
of variation parameterized by (w, m, h) in model (1). The metrics dV which we
define in the manifold of variation V in Section 4 using the arcdistances along
each mode will additionally require that R(., t) be differentiable.

3. Variation in a manifold

In the previous section, we visualized the space of variation in the case of a
one-dimensional mode or a two-dimensional simultaneous modes. The geometry
of the space is non-euclidean in the presence of nonlinear variation, so the usual
notions of mean and variance are not representative of the center and spread
of the distribution. We first define in this section an appropriate mean, as a
measure of center of variation, and variance, as a measure of spread along the
manifold. The goal is to use these new mean and variance to define a ratio to
quantify nonlinear modes.

3.1. Fréchet mean and Fréchet variance

It is well known that given a set of data in a nonlinear manifold, the arithmetic
mean will not necessarily fall in the manifold. Similarly using the Euclidean
distance as a measure of variation around the mean shape is not appropriate
in the manifold because this distance is not a good measure of proximity in
a nonlinear space. These facts have been discussed extensively in the shape
analysis literature, and illustrated with a toy example in functional data in
Izem et al. (2003). Because the usual definitions of mean and variance in a linear
space are not meaningful measures of center and spread in a nonlinear space,
Fréchet generalized the notions of mean and variance to manifolds in Fréchet
(1948). The generalization proceeds as follows, for a real random variables X in
a Euclidean space with measure µ, the expected value E(X) is the point in the
space which minimizes the variance, i.e. let F (y) =

∫
||X − y||2dµ(x), then

E(X) = argminy∈R
(F (y)) and V ar(X) = F (E(X)).

For a metric manifold (M, d) with measure µ, let the Fréchet function be,

F (y) =

∫

M

d2(x, y)dµ(x).

This function is well defined if
∫
M

d2(x, y)dµ(x) < ∞, ∀y ∈ M
In a metric manifold (M, d), the Fréchet mean set EF (X) of a random variable
X, in the manifold M , with probability measure µ, is the set of points on the
manifold which minimize the function F (y). The Fréchet variance Ṽ arF (X)is
the value F (X̃F ) for any X̃F in the Fréchet mean set EF (X). i.e.

X̃F ∈ EF (X) iff F (X̃F ) = infy∈MF (y).

Ṽ arF (X) = F (X̃F )
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Note that although we can have more than one Fréchet mean, we can define
a unique Fréchet variance. Note also that the Fréchet variance is a scalar, and
not a matrix, even for manifolds of dimension d′ ≥ 2. In this paper, we are
concerned with functional data X, so the Fréchet mean set is a set of functional
data.

3.2. Quantifying the variation

In our context, let z1, . . . , zn be a functional data set of common shape as in
model (1.2), where each zi is associated to the regression functions Ri and
parameter θi in a closed set Θ. Thus, Ri = R(θi, t) is in the metric manifold
(V, dV ) and an intuitive estimate of the Fréchet function is

Fn(R) =

n∑

i=1

d2
V (Ri, R).

We can also derive an estimate of the Fréchet mean set EF,n(R) and an estimate

of the Fréchet variance 1
n
S̃SM , where

R̃ ∈ EF,n(R) ⇔ Fn(R̃) = minR∈V Fn(R)

S̃SM =

n∑

i=1

d2
V (Ri, R̃)

We propose to quantify the variation in the manifold by the following ratio,

R̃SS =
S̃SM

S̃SM + SSE
(3.1)

where

SSE =

n∑

i=1

||zi − Ri||
2

Note that for linear modes, if we take dV to be the Euclidean metric, this ratio
corresponds to the usual ratio of sums of squares used in PCA. Note also that
the choice of the distance dV is critical, it is the main building block to the
decomposition we show in this paper. In one dimension, we choose dV to be
the arcdistance, or the distance along the curved one dimensional manifold. For
a differentiable one-dimensional manifold with parametrization γ : θ ∈ R 7→
γ(θ) ∈ Rd, we have that

Arcd(γ(θ1), γ(θ2)) =

∫ θ2

θ1

||
∂

∂θ
γ(θ)||dθ; ∀θ1, θ2. (3.2)
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In higher dimensional spaces of variation, our choice of dV is motivated by our
decomposition goal, i.e. we define dV such that

by definition, S̃SM =

n∑

i=1

d2
V (Ri, R), (3.3)

by construction

n∑

i=1

d2
V (Ri, R) =

d′∑

k=1

S̃SM k (3.4)

and R̃SSk =
S̃SM k

S̃SM + SSE
(3.5)

where R̃SSk quantifies the variation along mode k. Constructing the distance
dV is challenging in manifolds since the notion of orthogonality is local whereas
it is global in linear spaces. We reach this goal by incorporating in dV the
arcdistances along each mode in a Pythagorean like formula. We first define
these distances more formally in Section 4. We show in Section 5 that in each
case, with our choice of distance, the estimates above are consistent estimates of
the Fréchet mean and variance. Moreover, we find that in the one dimensional
and linearly separable cases the Fréchet mean and its estimate (for a given n) are
unique. Finally, we show in the general case, consistency. Using these estimates

of Fréchet mean and variance, we use the proposed the above ratios R̃SSk’s to
quantify nonlinear modes in a manifold.

4. Distance and decomposition of variation in the manifold

In the one dimensional case, the metric dV is simply the arcdistance and the
quantification is easy to do as seen in Subsection 4.1. In the two-dimensional
case and higher, the geodesic distance does not allow for a straightforward de-
composition. So we define the metric as a function of the arcdistances along each
mode. As seen in Subsection 4.2, the expression of this metric is easy in the lin-
early separable case. The distance is not trivial to generalize to the general, non
linearly separable, case. We first see how to generalize it in the two-dimensional
case in Subsection 4.3. Finally, Subsection 4.4 discusses the generalization of
this metric to higher dimensional spaces of variation.

4.1. One mode

A natural choice of distance dV (x, y) between two points x and y in the one-
dimensional manifold of variation is the arcdistance, Arcd(x, y). We show in

Section 5 that in the one dimensional case, the ratio R̃SS defined in Equation
(3.1) is well defined, the Fréchet mean is unique, its estimate for a sample of
points of size n is also unique, and this estimate is consistent.
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Fig 5. Example of a space satisfying the equality of path condition and a representation of the
transformation of the space into R

2. Left: Representation of the space of variation when the
two modes are vertical shift (parameterized by h) and horizontal shift (parameterized by m).
Right: Representation of the transformation of the space of variation. The distances along
the curves (dashed line type) and the distance along the lines (solid line type) are the same
as in the original space of variation in the left panel.

4.2. Multiple simultaneous modes, linearly separable case

We described in Section 2 an example of a 2-dimensional linearly separable space
of variation. It is shown in the two left panels of Fig. 4, the two modes of variation
are the vertical shift and the horizontal shift. We first review the equality of path
property in Subsection 4.2.1 and define it in the general case. In Subsection 4.2.2,
we use the property to construct the metric and the decomposition of variation.

4.2.1. Linear separability and equality of path

We illustrate the geometry of the space of variation in the two dimensional,
linearly separable case, in Fig. 5. We see in the left panel of Fig. 5 four points
{R((mi, hj), t)i,j=1,2, m1 < m2; h1 < h2} in the space of variation. The two
parallel solid lines correspond to the vertical shift variation for two different
fixed values of location parameters m1 and m2. Similarly, the two parallel dashed
curves correspond to the horizontal shift variation for two different fixed values of
the height parameter h1 and h2. To go from one point R((m1, h1), t) to another
R((m2 , h2), t), by two steps, along the curves of variation, we have two possible
paths. The first path goes first along the top dashed curve m ∈ (m1, m2) 7→
R((m, h1), t), then along the left solid line h ∈ (h1, h2) 7→ R((m2 , h), t). The
second path goes first along right solid line h ∈ (h1, h2) 7→ R((m1, h), t), then
along the bottom dashed curve m ∈ (m1 , m2) 7→ R((m, h2), t). For this special
case, the two solid line segments and the two dashed curve segments from the two
different paths are of equal length. This equality of path property is satisfied by
any manifold generated by a linearly separable model. Namely, the arcdistance
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between two points along the space of variation if we fix one of the parameters,
depends only on the other parameter. For our example, we have that

|R(m, h1)−R(m, h2)|
2 = (z(t−m)+h1−z(t−m)−h2)

2 = (h1−h2)
2; ∀h1, h2, m

so this distance along the surface of variation between the points (m, h1) and
(m, h2) depends only on h1 and h2 and not on m. In addition, we have as in
Equation 3.2 that

Arcd(R(m1, h), R(m2, h)) =

∫ m2

m1

||
∂

∂m
z(t − m)||dm; ∀m1, m2, h

Since the derivative ∂
∂m

z does not depend on h, the distance along the surface
of variation between the points (m1, h) and (m2, h) depends only on m1 and m2

and not on h. In general, we define a linearly separable model as follows.

Definition 4.1. A regression function R(θ, t) in model (1.2) for parameter θ =
(θ1 , . . . , θd′ ) in Rd′

is linearly separable if there exists d′ differentiable functions
R1, . . . , Rd′ such that

R(θ, t) =

d′∑

i=1

Ri(θi, t)

The linearly separable model satisfies the property of equality of paths. We
say that we have equality of paths in a d′ dimensional manifold of variation V
with parameter space Θ if the distance between two points, which share the
same values in d′ − 1 parameters and differ on one parameter, depend only on
the varying parameter. i.e. for all (θj,1)1≤j≤d′ , (θj,2)1≤j≤d′ in Θ and for all j

Arcd (R(θ1,1, . . . , θj,1, . . . , θd′,1; t), R(θ1,1, . . . , θj,2, . . . , θd′,1; t)) = Cθj,1,θj,2
,

where Cθj,1,θj,2
is a function depending only on the values of θj,1 and θj,2 of the

jth parameter, and not on the values of other parameters (θi,1)1≤i≤d′;i 6=j .

4.2.2. Distance and decomposition

Using this property, it is straightforward to define a metric in the manifold
which will decompose the total variation in the data onto the modes of interest
using the following metric

Theorem 4.1. For a d′ (d′ ≥ 2) differentiable manifold of variation V generated
by a linearly separable model the non-negative function dV defined below is a
distance in V

dV : V × V → R+

(R((θ1,1, . . . , θd′,1), t), R((θ1,2, . . . , θd′,2), t)) 7→

√√√√
d′∑

i=1

C2
θi,1,θi,2
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We show that dV satisfies the conditions of a distance in the Appendix.
The proof shows that the space of variation for a linearly separable model is
homeomorphic to a subspace of Rd′

. Furthermore, the function dV we defined
above corresponds to the Euclidean metric in this subspace of Rd′

. The right
panel of Fig. 5 illustrates this mapping in the case of d′ = 2. This mapping
preserves the arcdistances along the curves of the modes of variation, and dV

corresponds to the Euclidean distance in this mapping.
Finally, we have a simple decomposition in the linearly separable case. Recall

that by definition S̃SM =
∑n

i=1 d2
V (Ri, R̃). By construction from the above

theorem, we have that

d2
V (Ri, R̃) =

d′∑

k=1

C2
i,k

where C2
i,k is a function of the kth mode. So, finally we have the decomposition

S̃SM =

d′∑

k=1

S̃SM k, where S̃SM k =

n∑

i=1

C2
i,k and R̃SSk =

S̃SM k

S̃SM + SSE

By construction, R̃SSk quantifies the variability around the Fréchet mean along
mode k.

4.3. Two modes, general case

We described in Section 2 an example of a 2-dimensional general case space of
variation. We saw in the two right panels of Fig. 4 that when the two modes of
variation are horizontal shift and generalist-specialist, the space of variation is
a two-dimensional manifold. The right panel of Fig. 6 is a representation of the
same space. In this figure, the three parabolic curves correspond to the hori-
zontal shift variation for three different fixed values of the width parameter and
the three lines correspond to portions of the curve representing the generalist-
specialist mode for three different fixed values of the horizontal shift variation.
As illustrated in Fig. 6, in the general case we do not have the equality of path
property. More precisely, the paths for going in two steps from one point to
another in the manifold will not be equal. We define in Subsection 4.3.1 and
Subsection 4.3.2 two different metrics d1,O and d2,O by considering two different
mappings L1,O and L2,O of the space of variation into a subspace of R2. Each
metric is homeomorphic to the Euclidean distance in the transformed subspace
of R2. We finally combine the two distances in Subsection 4.3.3 to define a metric
dV in the manifold indexed by the weight γ as

dV (x, y) =
√

γd1,O(x, y)2 + (1 − γ)d2,O(x, y)2.

As discussed in Remark 4.1, we chose γ to be 1/2 in our analysis. We see in
Subsection 4.3.4 how we can use this distance for the decomposition of interest.
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Because each mapping is a different transformation of the manifold into a plane,
we need to define each transformation with respect to an origin O = R0,0 =
R((α0, β0), t) in the space. We defer the discussion on the choice of origin to
Section 5.

4.3.1. First transformation

The first transformation L1,O maps the space of variation V into R2 by pre-
serving the arcdistances along the two curves which cross the origin O. The two
curves which cross at the origin are the dotted curves in Fig. 6, and the image of
the transformation L1,O is shown in the bottom right panel of Fig. 6. We define
the distance d1,O in V as the Euclidean distance in L1,O(V ). More formally, let
Ri,k = R((αi, βk), t) for i, k = 0, 1, 2, then

L1,O : V → R2

R1,1 7→ (η, ζ) such that

η = sign(α1 − α0)Arcd(R1,0, R0,0)

ζ = sign(β1 − β0)Arcd(R0,1, R0,0)

After transformation, we define the metric d1,O between two points in the man-
ifold as equivalent to the Euclidean distance in the space L1,O(V ) such that

d1,O : V × V → R+

(R1,1, R2,2) 7→ d1,O(R1,1, R2,2)

d1,O(R1,1, R2,2) = ||L1,O(R1,1) − L1,O(R2,2)||

The following Proposition states that this function defines a metric,

Proposition 4.1. For all origins O, and for a differentiable manifold V , the
function d1,O defines a metric on V .

This Proposition is equivalent to showing that L1,0 is isometric. By using
simple algebra, we can further simplify the expression of d1,O as a function of
the parameters of variation rather than the linearizing function as,

Corollary 4.1.

d2
1,O(R1,1, R2,2) = Arcd2(R1,0, R2,0) + Arcd2(R0,1, R0,2)

4.3.2. Second transformation

The second transformation L2,O maps V into R2 by preserving the arcdistances
along the curves which cross the points of interest. For example, the curves
which cross at point 1 in Fig. 6 are the two dashed curves. Similarly, the two
curves which cross at point 2 in Fig. 6 are the two dotted and dashed curves.
The image of the space of variation by this transformation L2,O is shown in the
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top right panel of Fig. 6. As for the first transformation, we define a metric in V
as the Euclidean distance in L2,O(V ). More formally, the second transformation
L2,O is defined as follows,

L2,O : V → R2

R1,1 7→ (η, ζ) such that

η = sign(α1 − α0)Arcd(R1,1, R0,1)

ζ = sign(β1 − β0)Arcd(R1,1, R1,0)

We can then define a function d2,O which corresponds to the Euclidean distance
in the linearized space.

d2,O : V × V → R+

d2,O(R1,1, R2,2) = ||L2,O(R1,1) − L2,O(R2,2)||

We can rewrite d2,O as a function of the parametrization as follows

d2,O(R1,1, R2,2) =
√

A2 + B2, where

A = sign(α1 − α0)Arcd(R1,1, R0,1)

− sign(α2 − α0)Arcd(R2,2, R0,2)

B = sign(β1 − β0)Arcd(R1,1, R1,0)

− sign(β2 − β0)Arcd(R2,2, R2,0)

Proposition 4.2. The function d2,O satisfies the following conditions: (i) d2,O

is non-negative, (ii) d2,O is symmetric. (iii) d2,O satisfies the triangular in-
equality. Moreover, if the mapping L2,O is one-to-one, then d2,O satisfies the
condition

d2,O(R1,1, R2,2) = 0 ⇔ R1,1 = R2,2

which, in addition to the above conditions, makes d2,O a distance.

Note that if the space V is linearly separable, then the two functions d1,O

and d2,O are the same, and they are equal to the distance defined in the linearly
separable case. This result is stated in the following proposition and proved in
the Appendix

Proposition 4.3. When V is linearly separable, dV is the distance defined in
Subsection 4.2.2, and d1,O and d2,O are as defined above, we have that d1,O =
d2,O = dV for all origins O in the manifold.

4.3.3. Distance in the manifold

The fact that d2,O is not always a distance in the general case is not an issue
since we can combine it with d1,O to define a distance in the space of variation
as stated in Proposition 4.4 proved in the Appendix.
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Proposition 4.4. The non-negative function dV,O,γ defined as

dV,O,γ : V × V → R+

(R1,1, R2,2) 7→ dV,O,γ(R1,1, R2,2) such that

dV,O,γ(R1,1, R2,2) =
√

γd2
1,O(R1,1, R2,2) + (1 − γ)d2

2,O(R1,1, R2,2)

is a metric for all γ ∈ [0, 1) in a differentiable manifold V . The parameter γ is
a weight of each distance.

Remark 4.1. When analyzing the caterpillar data (see results in Section 7),
the distance in the manifold generated by the generalist-specialist and horizontal
shift corresponded to the equal weights case (i.e.γ = 1

2
)

dV,O(R1,1, R2,2) =

√
1

2
d2
1,O(R1,1, R2,2) +

1

2
d2
2,O(R1,1, R2,2)

We chose equal weights because there was no a-priori reason why one path should
be weighted more than the other path. We repeated the decomposition by changing
the distance from full weight on one distance (γ = 0) to full weight on the other
distance (γ = 1) and the results of the decomposition were similar.

4.3.4. Decomposition

We have finally defined all the tools for our proposed decomposition. Let R̃O =
RÕ1,Õ2

be an estimate of a Fréchet mean (i.e. in the Fréchet mean set) then we
can see how to decompose the variation with the distance dV,O

S̃SM O =

n∑

i=1

d2
V,O(Ri,i, R̃O)

d2
V,O(Ri,i, R̃O) =

1

2
d2
1,O(Ri,i, R̃O) +

1

2
d2
2,O(Ri,i, R̃O)

d2
1,O(Ri,i, R̃O) = Arcd2(Ri,0, RÕ1,0) + Arcd2(R0,i, R0,Õ2

)

d2
2,0(Ri,i, R̃O) =

(
sign(αi − α0)Arcd(Ri,i, R0,i)

− sign(Õ1 − α0)Arcd(R̃O, R0,Õ2
)
)2

+
(
sign(βi − β0)Arcd(Ri,i, Ri,0)

− sign(Õ2 − β0)Arcd(R̃O, RÕ1,0)
)2

The advantage of defining the distance dV,O by d1,O and d2,O is that we can

reorganize the terms of S̃SM O such that
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Fig 6. Example of a 2 dimensional space of variation in the general case and representation of
the corresponding two transformations.Left: Representation of the space of variation when the
two modes are the horizontal shift and the generalist-specialist. The three points in the space of
variation correspond to three different location and width parameters. For illustration, one of
the points is taken to be the origin in the manifold. Top right: Representation of the second
mapping of the space of variation into R

2. This transformation preserves the arcdistances
of curves which cross at the points of interest. Bottom right: Representation of the second
mapping of the space of variation into R2. This transformation preserves the arcdistances of
curves crossing at the origin.

S̃SMO = S̃SM 1,O + S̃SM 2,O

where

S̃SM 1,O =
1

2

n∑

i=1

Arcd2(Ri,0, RÕ1,0) +
1

2

n∑

i=1

(
sign(αi − α0)Arcd(Ri,i, R0,i)

− sign(Õ1 − α0)Arcd(R̃O, R0,Õ2
)
)2

and

S̃SM 2,O =
1

2
Arcd2(R0,i, R0,Õ2

) +
1

2

(
sign(βi − β0)Arcd(Ri,i, Ri,0)

− sign(Õ2 − β0)Arcd(R̃O, RÕ1,0)
)2

For a given origin O, the term S̃SM 1,O quantifies the variation along the mode

parameterized by α and the term S̃SM 2,O quantifies the variation along the
mode parameterized by β.

4.4. Multiple simultaneous modes, general case

We constructed in Subsection 4.2 a metric and a decomposition for multiple
dimensional case satisfying the linearly separable case. More generally, when
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have d′ simultaneous modes of variation, we might have the linearly separable
property satisfied for a subset of parameters but not for all parameters. For
example, in model (1.1), we can write R((w, m, h), t) = R1((w, m), t) + R2(h, t)
where R1((w, m), t) = w × z(w(t − m)) and R2(h, t) = h. We can define a
distance in this three dimensional manifold as

dV (R((w1, m1, h1), t), R((w2, m2, h2), t))

=
√

d2
V (R1((w1, m1), t), R1((w2, m2), t) + ||h1 − h2||2

where dV (R1((w1, m1), t), R1((w2, m2), t) is the metric defined for a two-dimen-
sional space of variation in Subsection 4.3.

Using the same tools we developed in Subsection 4.3 we can generalize the
above metric and decomposition to a d′ dimensional space where the equality
of path property is not necessarily satisfied by any subset of parameters. In a
2-dimensional manifold, we found two possible mappings of V , each preserving
one (out of two) possible 2-steps paths between two points along the curves of
variation. In the general d′-dimensional manifold, the number of mappings is
the number of possible d′-step paths between two points along the curves of
variation which is (d′!). For each possible path i, we can define a mapping Li,O,
which allows us to define a function di,O. We define the metric in the manifold
to be dO with weights γi associated to each path metric. More precisely, for any
two points R1 and R2 in the manifold

d2
O(R1, R2) =

1

d′!

d′!∑

i=1

γid
2
i,O(R1, R2);

∑

i

γi = 1.

Each d2
i,O is the sum of d′ terms, each depending on one parameter. Thus, we

can reorganize the sums of square in the previous formula to be the sum of d′

terms, each depending on one parameter.

5. Consistency and choice of origin

We state in this section the main theorems proving the consistency of our es-
timates with the distances defined in the previous section. We also discuss our
choice of origin in the space of variation used in the non-separable case.

5.1. Consistency

Theorem 5.1 states the uniqueness of the Fréchet mean in the one dimensional
case and the d′-dimensional case linearly separable case. We use Theorem 2.3
from Bhattacharya and Patrangenaru (2003) to prove consistency of our esti-
mates in the general case in Proposition 5.1.

Theorem 5.1. For i.i.d random variables R1, . . . , Rn of measure µ in (V, dV ) of
finite Fréchet mean and Fréchet variance. For V a one dimensional differentiable
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manifold or a d′ dimensional differentiable manifold linearly separable. We have
that the Fréchet mean R̃F is unique, for all n its estimate R̃ from the data is
unique and

dV (R̃, R̃F ) → 0 (a.s)∣∣∣∣
1

n
S̃SM − ṼarF

∣∣∣∣ → 0 (a.s)

See proof in the Appendix. Showing consistency in the general case is not
trivial. We use Theorem 2.3 from Bhattacharya and Patrangenaru (2003) which
establishes consistency of the Fréchet mean estimates for a complete manifold,
to prove the following corollary

Proposition 5.1. For all fixed origins O in a metric manifold (V, dV,O)

1

n
S̃SMO −→ ṼarF,Oa.s

5.2. Choice of an origin

We propose to use an origin Õ = R((α0, β0), t) in a compact set K in V which
is a minimizer of the Fréchet Variance, i.e.

ṼarF,Õ = minO∈KṼarF,O, where ṼarF,O =

∫
d2

V,O(R, R̃F,O)dµ(R),

and R̃F,O is an element of the Fréchet mean set. This choice of origin is conser-
vative, it will guarantee that the estimate of the variance in the manifold will
not be inflated. A question of interest is, can this variance be estimated from
the data when this origin is not set in advance? Let Fn(O) be the estimate of
the Fréchet variance from the data, i.e.

Fn(O) =
1

n
S̃SMF,O =

1

n

n∑

i=1

d2
O(Ri,i, R̃n,O)

where R̃n,O is the estimate of the Fréchet mean associated to the origin O and
the data R1,1, . . . , Rn,n. An estimate of Fn(O) from the sample is the minimum
of Fn(O) over a compact set, i.e. the estimate is

Fn(On) = minO∈KFn(O)

The following proposition states that the sequence Fn(On) converges to the

desired variance function ṼarF,Õ.

Proposition 5.2. The Fréchet sample estimate at the sample minimizing origin
On converges to the Fréchet variance at the minimizing origin Õ, i.e. Fn(On) →

ṼarF,Õ.

See proof in Appendix.
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6. Implementation and extensions

We have discussed in this paper a useful decomposition of the variation in the
manifold of variation. In the motivated model, the data does not lie in the
manifold but is projected onto the manifold. More specifically, the data zi ∈ Rd

is such that zi = Ri + ǫi where Ri is the projection of zi onto the manifold and
ǫi is additive error. The projection is the point in the manifold which is closest
to the data in Rd, i.e. which minimizes SSE such that

||zi − Ri|| = minx∈V ||zi − x||

This projection might not be unique but we can use diagnostic plots shown
in Fig. 7 to detect multiplicity of fits. We can also use local information to
choose between multiple projections, so that for data which are close together
in Rd, their projections onto V should be close together. We also suppose in this
paper that the common shape function is known or could be estimated from the
data. For the caterpillar example, the common shape function is estimated by a
polynomial in an iterative procedure. Each iteration includes two steps, in each
step parameters are fit to minimize SSE. Given initial parameters of variation,
the first step finds the optimal values of the parameters of the polynomial. These
polynomial coefficients are then used in the second step to find the optimal
values of the parameters of variation. The parameters found in this iteration
are used as initial parameters of the following iteration and this procedure is
repeated until the algorithm converges to an optimal solution. This iterative
procedure could be easily generalized for a common shape in any parametric
family satisfying the condition of Theorem 2.1. This iterative procedure could
also be generalized to estimate non-parameterically the common shape as well
as the parameters of variation using algorithms described in Wang and Gasser
(1997, 1999).

Finding the geodesic distance along one-dimensional manifolds is central to
our method. This distance could be computed analytically using Equation 3.2.
Another approach based on approximation is to consider the path length be-
tween two points in a one-dimensional manifold as the sum of lengths of small
segments along the curve. The length of each small segment is approximated by
the corresponding Euclidean distances.

7. Results

Our TMV analysis has been implemented and used by biologists to decompose
variation along modes of interest in thermal performance curves of caterpillars
in Izem and Kingsolver (2005), and viruses in Knies et al. (2006). The fitted pa-
rameters and fitted template polynomial optimized the weighted sums of squared
error, weighted by the sample sizes of each family. The results of the decompo-
sition on the motivating caterpillar data are presented in Table 1. Fig. 7 shows
a visual diagnostic of the fits.
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The data have only six measurements per curve, as shown in Fig. 1. Thus, we
assumed for simplicity that the template shape is a polynomial of degree 4 in the
results shown in Table 1 and the top two panels of Fig. 7. For identifiability, we
assumed further that the fitted height parameters sum to zero. The polynomial
fit to each curve as well as the template shape diagnostic fit are shown in the top
two panels of Fig. 7. We see in the top left panel of Fig. 7 that the variation of
the fitted polynomials closely matches the variation in the original data shown
in Fig. 1. The top right panel of Fig. 7 shows the warped data compared to the
fitted template shape polynomial of degree 4. Each curve i was warped by its
fitted parameters (ŵi, m̂i, ĥi) so that all curves could be compared on the same
scale to the fitted template shape. More precisely, a warped curve i represents the
warped growth rate (zi − ĥi)/ŵi plotted at the warped temperature (t− m̂i)ŵi,
where zi and t represent the observed growth rate and temperature vectors of
curve i. We found that this representation is an excellent graphic diagnostic of
the model fit. Under the assumptions of our model, after warping, we expect
that the global maxima of all curves is at 0, that the warped curves are aligned
and that the template shape is lying in the middle of the warped curves. We
see in the top right panel of Fig. 7 that these expectations are mostly met. One
of the curves appear to be an outlier, it corresponds to a family with small
sample size. Although the fitted polynomial lies in the middle of the warped
curves, the template curve seem to slightly overestimate the growth rate at low
temperatures, which is due to the limitation of an oversmooth polynomial fit.
In contrast to this good fit, the two bottom panels of Fig. 7 show the warped
data compared to two fitted template shapes of a polynomial of degree 6 in the
left panel and of a polynomial of degree 3 in the right panel. These fits are not
as good as the polynomial of degree 4 fit because we see that in both panels the
fitted maxima (at zero for warped data) is outside of the measurement range
for many curves and the warped curves are not aligned. Because the curves
are not aligned, a small set of curves contribute to fitting a large range of the
polynomial of degree 6 (colder temperatures) and different groups of curves fit
different regions of the template polynomial of degree 3.

We see in Table 1 that our model explains about 5/6 of the variation in the
data, which is surprisingly good since all the modes have biological meaning.
Very little variation is occurring along the vertical shift which suggests that
selection of caterpillars with high growth rate at a particular temperature in
one generation, will not result in individuals with high growth rate overall tem-
peratures in other generations. Our decomposition separates the contribution of
the generalist-specialist variation (27.11%) from the contribution of the horizon-
tal shift variation (45.76%), which was not possible using Euclidean methods
such as PCA and conventional ANOVA. We tested the robustness of our re-
sults using 500 bootstrap samples, where each bootstrap sample was obtained
by sampling with replacement the family curves. We fitted the parameters and
derived the decomposition for each bootstrap sample and we see in Table 1
that our decomposition of the variation hold.
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Fig 7. Top left: Fitted curves to caterpillar data. Fitted curves are transformations of a
common template by model 1.1. Top right: Fitted template shape of degree 4, z(t) = −4.92×

10−5
− 2.41 × 10−3

× t − 0.032 × t2 + 2.19 × t4, and warped data. The template lies in the
middle of the rescaled data, it fits the data fairly well. Bottom left: Fitted template shape of
degree 6 and warped data. Bottom right: Fitted template shape of degree 3 and warped data.

Table 1

Decomposition of the Variation and Bootstrap Intervals. Percentages of variation are
computed according to Equation 5.1

vertical shift horizontal shift gen-spec Total-Model

Result 11.24 45.76 27.11 84.11

Bootstrap (mean,sd) 10.41,5.46 41.71,7.48 29.16,8.01 81.28,7.74
Bootstrap (median, 10.64 27.86 29.57 82.89
5th,95th percentiles) 2.87,19.88 27.86,52.81 11.8,40.60 67.47,83.38
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Appendix A: Appendix

Theorem 2.1. For a fixed sampling vector t ∈ Rd, let the function R(., t) be
such that

R(., t) : Rd′

→ V

θ 7→ R(θ, t)



R. Izem and J.S. Marron/FDA of nonlinear modes of variation 667

If R(., t) is an homeomorphism from Rd′

to V , then V is a manifold of dimension
d′.

Proof. To show that V is a manifold of dimension d′ we need to show that it is a
separable topological space and that every neighborhood Ω in V is homeomor-
phic to a neighborhood in Rd′

. V is a topological subspace of Rd with topology
induced by the topology in (Rd, ||.||). Since Rd′

is separable, and R(., t) is an
homeomorphism then V is also separable. Since R(., t) is an homeomorphism
from (Rd′

, ||.||) to (V, ||.||), then every neighborhoods Ω in V is homeomorphic
to a neighborhood in Rd′

.

Theorem 4.1. For a d′ (d′ ≥ 2) differentiable manifold of variation V generated
by a linearly separable model the non-negative function defined as

dV : V × V → R+

(R((θ1,1, . . . , θd′,1), t), R((θ1,2, . . . , θd′,2), t)) 7→

√√√√
d′∑

i=1

C2
θi,1,θi,2

is a distance in V

Proof. We will show this result in the two dimensional case. In dimension d′,
the result would follow by induction using the same inequalities as for the two
dimensional case. In two dimensions, dV is defined as

dV : V × V → R+

(R((α1, β1), t), R((α2, β2), t)) 7→
√

C2
α1,α2

+ C2
β1,β2

where

Cα1,α2
= Arcd (R((α1, β), t), R((α2, β), t))∀β, and

Cβ1,β2
= Arcd (R((α, β1), t), R((α, β2), t))∀α

We need to show that (i) dV is non-negative and symmetric, (ii) dV (x, y) = 0
iff x = y, and (iii) dV satisfies the triangular inequality. Property (i) is satisfied
by definition. Let us show property (ii): if dV (R((α1, β1), t), R((α2, β2), t)) = 0,
then

Cα1,α2
= Cβ1,β2

= 0, So, .

Arcd (R((α1, β), t), R((α2, β), t)) = 0, and

Arcd (R((α, β1), t), R((α, β2), t)) = 0, ∀α, ∀β

Since Arcd is a distance, this implies that R((α1, β), t) = R((α2, β), t) for all
β, and R((α, β1), t) = R((α, β2), t) for all α. Since R is an homeomorphism,
these two equalities imply that α1 = α2, and β1 = β2. So, R((α1, β1), t) =
R((α2, β2), t). Let us show property (iii), the triangular inequality. Let Ri =
R((αi, βi), t), we can show that

dV (R1, R3) ≤ dV (R1, R2) + dV (R2, R3)



R. Izem and J.S. Marron/FDA of nonlinear modes of variation 668

is equivalent to

d2
V (R1, R3) ≤ d2

V (R1, R2) + d2
V (R2, R3) + 2 × dV (R1, R2)dV (R2, R3). (A.1)

We have that,

L.H.S of (A.1) = C2
α1,α3

+ C2
β1,β3

(by definition)

≤ C2
α1,α2

+ C2
α2,α3

+ 2 × Cα1,α2
Cα2,α3

+ C2
β1,β2

+ C2
β2,β3

+ 2 × Cβ1,β2
Cβ2,β3

(b/c Arcd is a metric)

≤ d2
V (R1, R2)+ d2

V (R2, R3)+2×Cα1,α2
Cα2,α3

+2×Cβ1,β2
Cβ2,β3

Then, to show (A.1), it is sufficient to show that

Cα1,α2
Cα2,α3

+ Cβ1,β2
Cβ2,β3

≤ dV (R1, R2)dV (R2, R3)

which is equivalent to

C2
α1,α2

C2
α2,α3

+ C2
β1,β2

C2
β2,β3

+ 2 × Cα1,α2
Cα2,α3

Cβ1,β2
Cβ2,β3

≤ d2
V (R1, R2)d

2
V (R2, R3)

which is equivalent to

2 × Cα1,α2
Cα2,α3

Cβ1,β2
Cβ2,β3

≤ C2
α1,α2

C2
β2,β3

+ C2
α2,α3

C2
β1,β2

which is equivalent to

0 ≤ (Cα1,α2
Cβ2,β3

− Cα2,α3
Cβ1,β2

)2

Since the last inequality is always true, dV satisfies the triangular inequality.
From (i), (ii), and (iii) we have that dV is a metric in V .

Proposition 4.2. When V is linearly separable, dV is the distance defined in
Subsection 4.2.2, and d1,O and d2,O are as defined in Section 4, we have that
d1,O = d2,O = dV for all origins O in the manifold.

Proof. We first show the equality for d1,O, then for d2,O. When V is linearly
separable, we have by Corollary 4.1 that

d2
1,O(R1,1, R2,2) = Arcd2(R1,O, R2,O) + Arcd2(RO,1, RO,2)

By definition of the linearly separable space, the first term Arcd2(R1,O, R2,O) is
equal to C2

α1,α2
using the notation of Subsection 4.2 and the distance does not

depend on the origin O. Similarly, the second term Arcd2(RO,1, RO,2) is equal
to C2

β1,β2
using the notation of Subsection 4.2 and the distance does not depend

on the origin O. Thus, d1,O is equal to the distance dV defined in Theorem
4.1. The formula for d2,O(R1,1, R2,2) given in Subsection 4.3.2 simplifies in the
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linearly separable case to

d2,O(R1,1, R2,2) =
√

A2 + B2 , where

A = sign(α1 − α0)Cα1,α0
− sign(α2 − α0)Cα2,α0

= Cα1,α2
; and

B = sign(β1 − β0)Cβ1,β0
− sign(β2 − β0)Cβ2,β0

= Cβ1,β2
;

Thus, d2,O is equal to the distance dV defined in Theorem 4.1.

Proposition 4.4. The non-negative function dV,O,γ defined as

dV,O,γ : V × V → R+

(R1,1, R2,2) 7→ dV,O,γ(R1,1, R2,2)

such that

dV,O,γ(R1,1, R2,2) =
√

γd2
1,O(R1,1, R2,2) + (1 − γ)d2

2,O(R1,1, R2,2)

is a metric for all γ ∈ [0, 1) in a differentiable manifold V

Proof. We prove this proposition in the general case that d is a distance where
d =

√
γd2

1 + (1 − γ)d2
2, d1 is a distance and d2 satisfies properties (i) to (iii)

in Proposition 4.2. We need to show that d is (i) positive and symmetric, (ii)
d(x, y) = 0 iff x = y, and (iii) d satisfies the triangular inequality. (i) is satisfied
by definition. Let us show (ii), if d(x, y) = 0, then d1(x, y) = 0 and d2(x, y) = 0
which implies that x = y since d1 is a distance. Let us show (iii), the triangular
inequality. We need to prove that

d(x, y) ≤ d(x, z) + d(z, y)

or equivalently that

d2(x, y) ≤ d2(x, z) + d2(z, y) + 2d(x, z)d(z, y) (A.2)

Let us consider the left hand side of the inequality

d2(x, y) = γd2
1(x, y) + (1 − γ)d2

2(x, y)

≤ γd2
1(x, z) + γd2

1(z, y)

+2γd1(x, z)d1(z, y) + (1 − γ)d2
2(x, z)

+(1 − γ)d2
2(z, y) + 2(1 − γ)d2(x, z)d2(z, y)

d2(x, y) ≤ d2(x, z) + d2(z, y)

+2γd1(x, z)d1(z, y) + 2(1 − γ)d2(x, z)d2(z, y)

To prove the inequality (A.2), it is sufficient to prove that

γd1(x, z)d1(z, y) + (1 − γ)d2(x, z)d2(z, y) ≤ d(x, z)d(z, y) (A.3)
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We will reason by equivalence, inequality (A.2) is equivalent to

(γd1(x, z)d1(z, y) + (1 − γ)d2(x, z)d2(z, y))
2
≤ d2(x, z)d2(z, y) (A.4)

On one hand,

L.H.S of inequality (A.4) = γ2d2
1(x, z)d2

1(z, y) + (1 − γ)2d2
2(x, z)d2

2(z, y)

+2γ(1 − γ)d1(x, z)d1(z, y)d2(x, z)d2(z, y)

On the other hand,

R.H.S of inequality (A.4) =
(
γd2

1(x, z) + (1 − γ)d2
2(x, z)

)

×
(
γd2

1(z, y) + (1 − γ)d2
2(z, y)

)

= γ2d2
1(x, z)d2

1(z, y) + (1 − γ)2d2
2(x, z)d2

2(z, y)

+γ(1 − γ)
(
d2
1(x, z)d2

2(z, y) + d2
1(z, y)d2

2(x, z)
)

After canceling the common terms from the left and the right hand side of
inequality (A.4), we have the inequality

0 ≤ γ(1 − γ) (d1(x, z)d2(z, y) + d1(x, z)d2(z, y))
2

Since this last inequality is always true, then the triangular inequality is always
true. Since the function d satisfies (i), (ii), and (iii) then it is a metric in M .

Theorem 5.1. For i.i.d random variables R1, . . . , Rn of measure µ in (V, dV ) of
finite Fréchet mean and Fréchet variance, and V one dimensional differentiable
manifold or d′ dimensional differentiable linearly separable manifold. We have
that the Fréchet mean R̃F is unique, its estimate from the data R̃ is unique for
all n and

dV (R̃, R̃F ) → 0 (a.s)∣∣∣∣
1

n
S̃SM − ṼarF

∣∣∣∣ → 0 (a.s)

Proof. To show the uniqueness and convergence in the one dimensional case,
we first map the manifold into R using an isometry L and then we use known
consistency of the mean results in R to prove consistency in M . Let L be the
class of functions, L = {Lθ, θ ∈ Θ} such that for all θ0 in Θ

Lθ0
: V → R

x = R(θ, t) 7→ Lθ0
(x)

such that Lθ0
(x) = sign(θ − θ0)Arcd(R(θ, t), R(θ0, t))

For a given parameter θ0, we can consider R(θ0, t) as the origin in the manifold
V by the transformation Lθ0

because by definition Lθ0
(R(θ0, t)) = 0. For all θ0,

Lθ0
satisfies the isometry property, i.e.

|Lθ0
(R1) − Lθ0

(R2)| = Arcd(R1, R2),
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and the distance between two points Lθ0
(R1) and Lθ0

(R2) does not depend on
the origin. By definition of the space of variation and by construction of the
transforming function Lθ, this function is a homeomorphism. i.e.

(i) Continuity of Lθ0
: If Arcd(xn, x) converges to 0, then by isometry |Lθ0

(xn)−
L(x)| converges to 0. So, Lθ0

is continuous.
(ii) Invertibility of Lθ0

: We need to show that Lθ0
(x1) = Lθ0

(x2) ⇒ x1 = x2.
By isometry the left hand side implies that Arcd(x1, x2) = 0, which implies
that x1 = x2 (because Arcd is a metric in V ).

(ii) Continuity of the inverse of Lθ0
: We need to show that

|Lθ0
(xn) − Lθ0

(x)| → 0 ⇒ Arcd(xn, x) → 0.

This property follows directly from the isometry.

Moreover, L is such that Lθ1
(x) = Lθ0

(x)+ sign(θ1 − θ0)Lθ1
(θ0) Using L, let us

show that the Fréchet mean is unique. We have that

E(Lθ0
(R)) = Argminx∈R

∫
(Lθ0

(R) − x)2dµ

Let R0 = L−1
θ0

(E(Lθ0
(Ri))), we can show that R0 is the Fréchet mean. Let F (R)

be the Fréchet function, then

∀R 6= R0, F (R) >

∫
(Lθ0

(Ri) − E(Lθ0
(R)))2dµ, and by isometry,

>

∫
Arcd2(Ri, R0)dµ

So, RO is the only element in the Fréchet mean set. We can repeat the same
argument to show uniqueness of the Fréchet sample mean R̃ and the empirical
measure.

Since by the law of large numbers,

Lθ0
→ E(Lθ0

(R))(a.s) (A.5)

then by isometry of Lθ0
, we have that

dV (R̃, R̃F ) → 0 (a.s)

Similarly, since (Lθ0
(Ri)−E(Lθ0

(Ri)))
2 are i.i.d and of finite mean V arF , then

by law of large numbers
∣∣∣∣
1

n

∑
(Lθ0

(Ri) − E(Lθ0
(Ri)))

2 − VarF

∣∣∣∣ → 0 (a.s) (A.6)

On the other hand,

1

n
S̃SM−VarF =

(
1

n

∑
(Lθ0

(Ri) − E(Lθ0
(Ri)))

2
− VarF

)
+(Lθ0

−E(Lθ0
(R)))2

(A.7)
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From equality (A.7), and using the two convergence results in (A.6) and (A.5),
we have that ∣∣∣∣

1

n
S̃SM − VarF

∣∣∣∣ → 0 (a.s)

In the d′ linearly separable case, as in the one-dimensional case, we define a map-
pings L(θ1,0,...,θd′,0)

∈ L (associated with origins parameterized by (θ1,0, . . . , θd′,0)),
which transform the nonlinear space to a Euclidean space. i.e.

L(θ1,0,...,θd′,0)
: V → Rd′

x = R((θ1, . . . , θd′), t) 7→ L(θ1,0,...,θd′,0)
(x)

L(θ1,0,...,θd′,0)
(x) =

(
sign(θ1,0 − θ1) × Cθ1,θ1,0

, . . . ,

sign(θd′ ,0 − θd′ ) × Cθd′,0,θd′

)

For all (θ1,0, . . . , θd′,0), L(θ1,0,...,θd′,0)
is an homeomorphism from (V, dV ) to Rd′

.
The proof in this case is equivalent to the proof in the one-dimensional case.
Since dV is a metric and L(θ1,0,...,θd′,0)

satisfies the isometry property, then we
can show that it is continuous, invertible and the inverse is continuous. Similarly,
the proof of uniqueness of Fréchet mean estimate and Fréchet mean is equivalent
to the one dimensional case.

Corollary 5.1. For all fixed origins O in a metric manifold (V, dV,O)

1

n
S̃SMO −→ ṼarF,Oa.s

Proof. Let Fn(x) be the estimate of the Fréchet function from the sample, i.e.

Fn(x) =
1

n

n∑

i=1

d2
V (Ri, x)

Let xn be a minimizer of Fn, i.e.

Fn(xn) = minx∈V Fn(x)

To use Theorem 2.3 of (Bhattacharya & Patrangenaru (2003)), we need to show
that (V, dV ) is a complete metric space and all bounded closed set is compact.

1. Completeness: Let xn, and xm two points in V , then by definition of dV

dV (xn, xm) =
√

γd2
1(xn, xm) + (1 − γ)d2

2(xn, xm)

So, if (xn) is a cauchy sequence in (V, dV ), it is cauchy in (V, d1) and
(V, d2). We know by construction of d1 and d2, (V, d1) and (V, d2) are
both homeomorphic to (R2, ||.||) (where ||.|| denotes the norm derived
from the Euclidean metric). By this homeomorphism, a cauchy sequence
(xn) in (V, d1) converges to a1 in V . Similarly, a cauchy sequence (xn) in
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(V, d2) converges to a2 in V . Let us finally show that a1 = a2. Since V is
a subspace of Rd′

, we have that

||xn − a1|| ≤ d1(xn, a1) (A.8)

(b/c the Euclidean distance is the shortest distance), so (xn) converges to
a1 in Rd′

. Similarly, we have that

||xn − a2|| ≤ d2(xn, a2) (A.9)

(b/c the Euclidean distance is the shortest distance), so (xn) converges to
a2 in Rd′

. By equations (A.8) and (A.9), and using the triangular inequal-
ity of the Euclidean distance, we have that

||a1 − a2|| = 0

So, a1 = a2. Then, dV (xn, a1) converges, so (xn) converges.
2. Compact sets in (V, dV ). Similarly, using the homeomorphism, a closed

and bounded set A in (V, dV ) is closed and bounded in (V, d1) and (V, d2).
By the homeomorphisms to (R2, ||.||), the space A is compact in (V, d1)
and (V, d2), so it is compact in (V, dV ).

So, using Theorem 2.3 of (Bhattacharya and Patrangenaru (2003)), we have
that

(xn) → RF (a.s)

where RF is a Fréchet mean. On the other hand, we have that

Fn(RF ) → V arF

Since
|Fn(xn) − V arF | ≤ |Fn(xn) − Fn(RF )| + |Fn(RF ) − V arF |

We have that
Fn(xn) → VarF (a.s)

Proposition 5.1. The Fréchet sample estimate at the sample minimizing origin
On converges to the Fréchet variance at the minimizing origin Õ, i.e. Fn(On) →

ṼarF,Õ.

Proof. Let F (O) = ṼarF,O . Then, by the property of minimums Fn(On) and

F (Õ) and continuity of Fn and F we have that,

First, ∀ǫ, ∃(α, β) s.t.

Fn(α) − ǫ/2 < Fn(On), and

F (β) − ǫ/2 < f(Õ).

Second,

Fn(On) ≤ Fn(β) because On is a minimizer of Fn, and

F (Õ) ≤ F (α) because Õ is a minimizer of F .
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In addition, from Proposition 5.1, we know that Fn converges to F a.s. Thus,

∃N s.t. ∀n ≥ N, Fn(α) − F (α) > −ǫ/2, and

Fn(β) − F (β) < ǫ/2.

Finally, by combining all the inequalities we have that

∀ǫ, ∃N, s.t. ∀n ≥ N,−ǫ < Fn(On) − F (Õ) < ǫ.

which proves the convergence.
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Le, H. (2001). Locating Fréchet means with application to shape spaces. Adv.
in Appl. Probab. 33 (2), 324–338. MR1842295

Lindstrom, M. J. (1995). Self-modelling with random shift and scale parameters
and a free-knot spline shape function. Statistics in Medicine 14, 2009–2021.

Ramsay, J. O. and B. W. Silverman (2002). Functional data analysis: methods
and case studies. Springer Series in Statistics. Springer. MR1910407

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis, 2nd edition
(Second ed.). Springer Series in Statistics. New York: Springer. MR2168993

Scheiner, S. (1993). Genetics and evolution of phenotypic plasticity. Annual
Review of Ecology and Systematics 24, 35–68.

Silverman, B. W. (1995). Incorporating parametric effects into functional prin-
cipal components analysis. J. Roy. Statist. Soc. Ser. B 57 (4), 673–689.
MR1354074

Tenenbaum, J. B., V. d. Silva, and J. C. Langford (2000). A Global Geomet-
ric Framework for Nonlinear Dimensionality Reduction. Science 290 (5500),
2319–2323.

http://www.ams.org/mathscinet-getitem?mr=1010339
http://www.ams.org/mathscinet-getitem?mr=1332581
http://www.ams.org/mathscinet-getitem?mr=0924858
http://www.ams.org/mathscinet-getitem?mr=1788088
http://www.ams.org/mathscinet-getitem?mr=1842295
http://www.ams.org/mathscinet-getitem?mr=1910407
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=1354074


R. Izem and J.S. Marron/FDA of nonlinear modes of variation 676

Wang, K. and T. Gasser (1997). Alignment of curves by dynamic time warping.
Ann. Statist. 25 (3), 1251–1276. MR1447750

Wang, K. and T. Gasser (1999). Synchronizing sample curves nonparametrically.
Ann. Statist. 27 (2), 439–460. MR1714722

http://www.ams.org/mathscinet-getitem?mr=1447750
http://www.ams.org/mathscinet-getitem?mr=1714722

	Introduction
	Motivating data and problem
	Common shape and predetermined directions
	Our method and nonlinear variation in the literature
	Structure of this paper

	Geometry of the space of variation
	Examples in one and two dimensions
	General dimension

	Variation in a manifold
	Fréchet mean and Fréchet variance
	Quantifying the variation

	Distance and decomposition of variation in the manifold
	One mode
	Multiple simultaneous modes, linearly separable case
	Linear separability and equality of path
	Distance and decomposition

	Two modes, general case
	First transformation
	Second transformation
	Distance in the manifold
	Decomposition

	Multiple simultaneous modes, general case

	Consistency and choice of origin
	Consistency
	Choice of an origin

	Implementation and extensions
	Results
	Acknowledgements
	Appendix
	References

