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On the Measure of the Information in a

Statistical Experiment

Josep Ginebra∗

Abstract. Setting aside experimental costs, the choice of an experiment is usu-
ally formulated in terms of the maximization of a measure of information, often
presented as an optimality design criterion. However, there does not seem to be
a universal agreement on what objects can qualify as a valid measure of the in-
formation in an experiment. In this article we explicitly state a minimal set of
requirements that must be satisfied by all such measures. Under that framework,
the measure of the information in an experiment is equivalent to the measure of
the variability of its likelihood ratio statistics or which is the same, it is equivalent
to the measure of the variability of its posterior to prior ratio statistics and to the
measure of the variability of the distribution of the posterior distributions yielded
by it. The larger that variability, the more peaked the likelihood functions and
posterior distributions that tend to be yielded by the experiment, and the more
informative the experiment is. By going through various measures of variability,
this paper uncovers the unifying link underlying well known information measures
as well as information measures that are not yet recognized as such.

The measure of the information in an experiment is then related to the measure
of the information in a given observation from it. In this framework, the choice of
experiment based on statistical merit only, is posed as a decision problem where the
reward is a likelihood ratio or posterior distribution, the utility function is convex,
the utility of the reward is the information observed, and the expected utility is the
information in an experiment. Finally, the information in an experiment is linked
to the information and to the uncertainty in a probability distribution, and we find
that the measure of the information in an experiment is not always interpretable
as the uncertainty in the prior minus the expected uncertainty in the posterior.

Keywords: Convex ordering, design of experiments, divergence measure, Hellinger
transform, likelihood ratio, measure of association, measure of diversity, measure
of surprise, mutual information, optimal design, posterior to prior ratio, reference
prior, stochastic ordering, sufficiency, uncertainty, utility, value of information.

1 Introduction

In the statistical science community there is a pervading feeling that the concept of

“information carried by an experiment” is something intangible that can not be charac-

terized. Review articles often list various measures, each addressing a particular aspect

of what information means, but they do not identify any commonality among these mea-

sures. Papaioannou (2001) describes the current understanding by stating that “While
information is a basic and fundamental concept in statistics, there is no universal agree-
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ment on how to define and measure it in a unique way”. Clearly, there exists a need

for an agreement on what qualifies as an information measure and of the features that

make an experiment more informative than another.

Let E = (X ;Pθ) denote a statistical experiment observing a random variable X with

an unknown distribution Pθ, where the parameter θ ∈ Ω is an index for the list of possible

distributions of X . When experimenting, the goal is to learn about the unknown θ that

explains X . Since many aspects of the association between X and θ help in identifying

the Pθ responsible for producing an observation X = x, the information about θ in

E is typically a highly multidimensional concept that can not be possibly captured

completely by any single real valued quantity.

Nevertheless, to rank experiments in terms of the information “they carry”, one has

to do it through real valued measures that capture the one aspect of the information

in E that one cares the most. It follows the need for a framework that encompasses

all valid measures of the information in E that can be used as scales to induce a total

information ordering on the space of available experiments, and maybe choose one of

them. This paper makes that framework explicit by building on the sufficiency ordering

of experiments considered in Blackwell (1951, 1953) and Le Cam (1964, 1986).

Section 2 introduces the background and notation on statistical experiments. Section

3 reviews the sufficiency ordering of experiments, which is also called the ‘always at least

as informative’ ordering. That section also presents the Blackwell-Sherman-Stein and

Le Cam theorem, establishing that the sufficiency ordering of experiments is equivalent

to the convex ordering of their likelihood ratio statistics and to the convex ordering of

the distribution of the posterior distributions attained under a given prior.

Definition 4.1 in Section 4 identifies a minimum set of requirements that must be

satisfied by every measure of the information in E, making the sufficiency ordering into

the only essential ingredient in the characterization of these measures. That character-

ization does neither assume that θ is a random variable nor that the experiment will

be used in a statistical decision problem, even though it can be given decision theoretic

and/or Bayesian interpretations.

Section 5 then explains how, as a consequence of this characterization, measuring

the information about θ in E is essentially the same as measuring the variability of

its likelihood ratio statistics, as in Definition 5.1-5.2. It follows that measuring the

information in E is also the same as measuring the variability of its posterior to prior

ratio statistics, and it is the same as measuring the variability of the distribution of the

posterior distributions yielded by it. The larger that variability, the more peaked the

likelihood functions and the posterior distributions that tend to be yielded by E, and

the more informative E is. By considering various measures of the variability of these

statistics, we present a broad spectrum of features associated to the informativity of

E, and we uncover the framework underlying all the measures of the information being

used by the design of experiments literature (DoE from now on), as well as measures of

the information not yet recognized as such by them.

In this manuscript the comparison of experiments is always made based on statistical
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merit only, irrespective of experimental costs. In practice, choosing among experiments

requires compromising between the information they carry and their cost, but when

comparing experiments just in terms of the information in them, no apologies are to be

made for doing as if their cost was the same.

A source of confusion is that the term information about θ is used to denote differing

concepts. A secondary contribution of the paper is to help distinguish and relate

• the measure of the information about θ in experiment E = (X ;Pθ), also recognized

as the statistical information or the expected information in E, which is relevant

for comparing experiments in terms of statistical merit, it is our main object of

interest, and which is dealt with in Sections 3 to 5 and 7,

• the measure of the information about θ in an observation X = x, also recognized

as the observed information in X = x, which is relevant after the experiment is

selected and carried out as a Bayesian model checking test statistic, and which is

dealt with in Section 6.1, and

• the measure of the information about θ in a given distribution h on Ω, also rec-

ognized by Shannon as the self-information about θ in its own distribution, which

is relevant when assessing the strength of knowledge about θ and as a measure of

the homogeneity in a population h, and which is dealt with in Section 6.2.

Most of the statistical literature concentrates on inference for a given experiment and as

a consequence, its main focus is the measure of the information in X = x. In the non-

Bayesian DoE literature the information in E is then typically measured through real

valued transformations of Fisher information matrices introduced in Kiefer (1959), and

through divergence measures introduced in Csiszár (1963, 1967). On the other hand, the

information theory literature stemming from Shannon (1948) starts by characterizing

the information about a random variable in its own distribution through the negative

of its entropy. In the Bayesian DoE literature the information in E is then measured

through the cross entropy betweenX and θ as in Lindley (1956), in an approach general-

ized in Raiffa and Schlaiffer (1961) and in DeGroot (1962, 1984), where the information

in E is measured through the negative of the Bayes risk and it is interpreted as the

uncertainty in the prior minus the expected uncertainty in the posterior.

Different from that, this manuscript starts from and focuses on a characterization of

the measure of the information in experiment E that encompasses as special cases the

measures of information in Kiefer (1959), Csiszár (1963, 1967), Lindley (1956), Raiffa

and Schlaiffer (1961) and DeGroot (1962).

In Section 6.1, the measure of the information about θ in an observation X = x from

E is defined to be a non-negative convex function of the corresponding likelihood ratio

or posterior distribution, in Definition 6.1-6.2. All added, it turns that the choice of

the most informative experiment can be posed as a decision problem where the reward

from choosing experiment E is its likelihood ratio or posterior distribution statistic, the

utility function is convex, the utility of the reward is the information in the observed

outcome, and the expected utility from choosing E is the information in E.
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In Section 6.2, the information about θ in a distribution h on Ω is defined to be

the information in an observed outcome that updates a baseline prior into a posterior

h. The uncertainty about θ in h is then measured as the information in a one-point

distribution minus the information in h.

Section 7 explores the relationship between the information in E and the expected

impact of E on the uncertainty about θ in its own distribution. By showing that

the information in E is not always interpretable as the uncertainty in the prior minus
the expected uncertainty in the posterior, this section clarifies the sense in which our

definition of information generalizes the definition of information proposed in De Groot

(1962) and adopted most often in Bayesian DoE.

Section 8 illustrates through an example how the framework described in this

manuscript allows for a unified approach to the selection of an experiment, to the

construction of a reference prior for a given experiment, to the assessment of the validity

of the model and to the quantification of the impact of X = x on the knowledge about

θ.

It is important to emphasize that even though this manuscript might look like a

review paper to some, Definitions 4.1, 5.1-5.2 and 6.1-6.2, their motivation, some ex-

amples and the interpretation of Proposition 3.1 are new. Readers mainly interested

in statistical inference might want to read Sections 3.2.1, 6.1 and 5 first, because they

provide a more intuitive starting point to the manuscript that does not rely on the ax-

iomatic framework built in Sections 3 and 4. In that alternative presentation one first

defines the measure of the information in a given observation X = x, and then presents

the measure of the information in experiment E as the average of the information in all

the observations that could have been yielded by it.

2 Background and notation

2.1 Statistical experiments

Definition 2.1. A statistical experiment E = {(X,SX); (Pθ,Ω)} yields an observation
on a random variable X defined on SX , with an unknown probability distribution that
is known to be in the family (Pθ, θ ∈ Ω).

Following Wald (1950) and Blackwell (1951), here an experiment E is considered

to be a family of probability measures, (Pθ, θ ∈ Ω), on a common sample space, SX ,

one of which is assumed to be the distribution of X . One might think of each θ in

Ω as representing a possible explaining “theory” and the parameter space Ω as rep-

resenting the set of all conceivable “theories”. When comparing experiments E and

F = {(Y, SY ); (Qθ,Ω)}, the only necessary common thread between them is that the

parameter space be the same, and that the same unknown θ governs the distribution of

X and Y .

Note that here, a statistical experiment coincides with what the inference literature

calls a parametric model. Thus, “a measure of the information about θ in experiment
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E” is synonymous of “a measure of the information about θ in the statistical model

(Pθ, θ ∈ Ω)”. To avoid measure theoretical details, throughout this paper we assume

that the probability measures (Pθ , θ ∈ Ω) are dominated by a σ-finite measure µ (i.e.,

that there is a measure µ such that events of µ-measure zero also have Pθ-measure zero),

and thus the corresponding density functions, pθ, will always exist. We also assume that

sample spaces are complete separable metric spaces. That covers all situations faced in

the usual statistical inference and design of experiments practice.

As an example, linear normal experiments are the ones that yieldX ∈ Rn distributed

as a Nn(Aβ, σ2I), where A is a known n×p design matrix and β is a vector of regression

parameters. Here θ denotes either β with Ω = Rp or (β, σ) with Ω = Rp × [0,∞),

depending on whether σ is assumed known or unknown, and selecting an experiment

consists of choosing a design matrix A.

An experiment is said to be totally non-informative, denoted by Etni, if the distri-

butions of X are the same for all θ. One can not learn about θ by observing from Etni,

and it is the baseline relative to which the information in every experiment is measured.

At the other end, an experiment is said to be totally informative, denoted by Eti, if for

every pair (θi, θj) ∈ Ω × Ω the intersection of the support sets for Pθi
and Pθj

is an

empty set, and thus if it is a family of mutually singular distributions. After performing

Eti, the Pθ that generated X = x can be identified with certainty.

In Bayesian setups, the uncertainty about θ ∈ Ω is modelled through a prior distribu-

tion π on Ω, which allows one to represent the experiment or statistical model (Pθ, θ ∈ Ω)

through the marginal distribution of X , Pπ, with density function pπ(x) = Eπ[pθ(x)],
and to construct the joint distribution for (X, θ) with density function

fπ(x, θ) = pθ(x)π(θ) = pπ(x)πE(θ|x), (1)

where πE(θ|x) denotes the density of the posterior distribution of θ. Let the sampling,

predictive and posterior densities of F = (Y ;Qθ) be denoted by qθ(y), qπ(y) and πF (θ|y).
Note that when designing an experiment, data as well as parameters are unknown

and the reasons against treating them symmetrically by considering both X and θ
as random and by averaging over both parameter and sample spaces are a lot less

compelling than for inference problems. In fact, it is our perception that the only

difference between the Bayesian and the non-Bayesian way of planning for an experiment

is in the way one interprets the optimality design criteria available.

2.2 Likelihood functions attainable and information in E

Given an observation X = x yielded by experiment E, likelihood functions, lx(θ), are

functions of θ proportional to pθ(x) with the constant of proportionality being arbitrary.

Before performing the experiment, lX(θ) can be regarded as a random function on Ω.

For totally non-informative experiments, Etni, likelihood functions are always constant,

while for totally informative experiments, Eti, likelihood functions are always zero ev-

erywhere except for one value θ in Ω. For any experiment, the relatively “flatter” the

attainable likelihoods, the harder it is to identify the θ that explains the observations,
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and the worse that experiment is for inferential purposes.

Adherents to likelihood based inference will recognize informative experiments to be

the ones that provide highly concentrated likelihood functions. Given a choice, they

will prefer experiments that tend to produce likelihoods with more pronounced peak(s)

and the measures of the information in E should quantify this tendency. Comments in

this direction can be found in Barnard (1959), in Barnard, Jenkins, and Winsten (1962,

p. 323), and in Birnbaum (1962, pp. 293, 304).

When θ is real valued and Ω is open, the relative peakedness of the likelihood at θ
can be measured through the squared relative rate of change of the likelihood function,

rx(θ) = (l̇x(θ)/lx(θ))2 = (ṗθ(x)/pθ(x))
2, (2)

where the dot indicates the derivative with respect to θ. Before the experiment is

performed, x is unobserved and rX (θ) is a random function on Ω with possibly a different

distribution under each pθ. Under regularity conditions (see, e.g., Lehmann 1983), one

can assess the information about θ in E through the average of rX (θ) under pθ,

Iθ
F i(E) = Epθ

[(
ṗθ(x)

pθ(x)
)2] = V arpθ

[
ṗθ(x)

pθ(x)
], (3)

which was introduced in Fisher (1922) and is called the Fisher information in E. The

larger Iθ
F i(E), the smaller the asymptotic variance for the maximum likelihood estimator

of θ, and the more informative E is. When Ω is an open subset of Rp, the Fisher

information is defined to be the covariance matrix of the vector of ratios between the

partial derivatives of lx(θ) and lx(θ).

The DoE literature largely focuses on using real valued transformations of the Fisher

information matrix, introduced in Kiefer (1959). However, Fisher information might not

exist and when it does exist, it typically depends on the unknown value of θ, in which

case different experiments could be optimal for different values of θ. Furthermore, the

performance of E for tasks other than estimation under squared error loss should be

assessed on the basis of how well those tasks can be performed, which may involve

aspects of the association between X and θ not captured by Fisher information.

3 Sufficiency ordering of experiments and information

In statistical decision theoretic terms, the information about θ in an experiment E de-

pends on the performance of E in relation to the terminal consequences of the statistical

decisions made based on the data obtained from it. Sometimes one needs to select an

experiment E based on its expected performance on a given decision problem with loss

function L(θ, d) defined on Ω×D, where d is a decision and D is the space of decisions.

To make a decision based on data from E = (X ;Pθ) one selects a decision rule, δ(x),
that assigns to each x ∈ SX a possible decision d, and the performance of δ(X) under

each θ ∈ Ω is appraised through its risk function, RE(θ, δ) = Epθ
[L(θ, δ(x))].
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In principle, one could assess the performance of E on that given terminal decision

problem through the class of risk functions of its admissible rules (i.e., the rules that can

not be improved upon for every θ), but that does not lead to any clear cut choice between

two experiments. To narrow that choice down, one could compare experiments E and F
on the basis of the risk function of a given pair of admissible rules, like their respective

Bayes rules (minimizing the weighted average of RE(θ, δ) under a given distribution on

Ω), or their minimax rules (minimizing the maximum of RE(θ, δ) over Ω). Most often

though, one would still find E to be either better or worse than F depending on the

value of θ. To attain a total ordering of the experiments available, one must compare

them on the basis of a real number like the average risk for their Bayes rules (i.e., their

Bayes risk), or the maximum risk for their minimax rule (i.e., their minimax risk).

By considering the choice between any two experiments, E and F , based on the Bayes

or the minimax risk for a specific terminal decision problem, one might chose experiment

E or F depending on the problem at hand. However, sometimes by observing X from

E one can do at least as well as by observing Y from F for every terminal decision

problem, and thus in particular for every statistical inference problem. These situations

lead to the ordering of experiments considered next.

3.1 When is experiment E “sufficient for” or “always at least as
informative as” experiment F?

Definition 3.1 (Blackwell 1951, 1953). Experiment E = (X ;Pθ) is said to be “suf-
ficient for” F = (Y ;Qθ) if there exists a stochastic transformation of X to a random
variable W (X) such that W (X) and Y have identical distribution under each θ ∈ Ω.

Lehmann (1988, p. 521) re-phrases this by stating that “experiment E is sufficient

for F if there exists a random variable Z with a known distribution and a function g(·, ·)
such that for all θ ∈ Ω, X being distributed as Pθ implies that g(X,Z) is distributed

as Qθ.” In fact, there is no loss of generality in assuming that the distribution of Z
is uniform on (0, 1) and independent of X . Thus, E is “sufficient for” F whenever by

using a realization X = x of experiment E and an auxiliary randomization, Z, one can

simulate data distributed as Y without knowing θ.

The sufficiency ordering of experiments is the central subject of study of the com-
parison of experiments literature stemming out of Blackwell’s seminal papers. Brief

expositions can be found in Blackwell and Girshik (1954), Savage (1954), Lehmann

(1959, 1988), DeGroot (1970), LeCam (1975, 1996), Torgersen (1976), Vajda (1989),

Shiryaev and Spokoiny (2000) and Gollier (2001). For a thorough presentation, see

Heyer (1982), Strasser (1985), LeCam (1986) or Torgersen (1991a). For a review with

an exhaustive list of references and examples, see Goel and Ginebra (2003).

In statistical inference, experiment E = (X ;Pθ) is typically fixed and given and

discussions are limited to the comparison between E and the sub-experiment ET that

yields a statistic based on X , T (X). Clearly E is always “sufficient for” ET in the

sense of Definition 3.1. Furthermore, when T (X) is a sufficient statistic for X , once
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given T (x) = t one can also generate data distributed as X without knowing θ, and

hence in that case experiment ET is also “sufficient for” E. Therefore, stating that a

statistic T (X) is sufficient for X is equivalent to stating that experiments E and ET

are “sufficient for” each other. But Definition 3.1 applies more generally, since it allows

for the comparison of experiments on unrelated sample spaces. (In fact, as remarked in

Le Cam (1975), ‘to state that E is “sufficient for” F is the same as to state that there

exists an experiment EF yielding (X,Y ) for which X is a sufficient statistic for EF ’).

As an example of a sufficiency ordering of experiments, let E and F be a pair of

linear normal experiments that observeX and Y from NnE
(Aβ, σ2I) and NnF

(Bβ, σ2I)
respectively, where A and B are known nE × p and nF × p matrices. Hansen and

Torgersen (1974) prove that when σ2 is known E is “sufficient for” F if and only if

Iθ
F i(E) − Iθ

F i(F ) = A
′

A − B
′

B is non-negative definite, and that for unknown σ2 an

additional condition is that nE ≥ nF + rank(A
′

A−B
′

B).

The Definition 3.1 making E sufficient for F if one can derive from X a random

variable with the same distribution as Y using a known random mechanism that only

depends on X , is grounded on a randomization argument seemingly devoid of statistical

meaning. Nevertheless, that meaning follows from the well established fact that E is

“sufficient for” F if, and only if E is “always at least as good as” F in the sense

that for every decision problem and for every decision rule δ(Y ) based on F , there

exists a decision rule δ∗(X) based on E such that RE(θ, δ∗(x)) ≤ RF (θ, δ(y)) for all θ.
Consequently, when E is “sufficient for” F the Bayes and minimax risks under E are

at most as large as the ones under F for every prior and loss.

Therefore, E is “sufficient for” F if and only if E is preferable to F for every sta-

tistical decision problem with a loss defined on Ω × D, which includes non-sequential

estimation, testing, classification, the prediction of future observations and any other

purely inferential problem, where learning about θ is the single goal of experimenting.

Hence, the phrase “E is always at least as informative as F” is used as a synonym for

“E is sufficient for F” (see, e.g., Blackwell and Girshik 1954; Lehmann 1988). This also

explains why any ordering of experiments that respects the sufficiency ordering is called

an information ordering in Torgersen (1991a), and why the sufficiency ordering will be

essential in the characterization of the measure of the information in an experiment.

Comparisons in the sense of this sufficiency ordering are always made on the basis

of statistical merit only, ignoring experimental costs. By stating that E is “sufficient

for” or “always at least as informative as” F if and only if E is preferable to F for every

decision problem with a loss on Ω×D, one excludes from consideration the comparison

of experiments under one-period bandit and stochastic control type problems, which

have loss functions defined on Ω × SX (see, e.g., Gonzalez and Ginebra 2001), and the

comparison under mixed problems with the goal of maximizing both information about

θ and outcome, which have loss functions defined on Ω ×D × SX (see, e.g., Verdinelli

and Kadane 1992). One also excludes the comparison of experiments in terms of their

performance under problems with loss functions that depend on the experiment itself,

like the ones that include in the loss experimental costs that depend on sample size.
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3.2 Variability of likelihood ratio statistics and information in E

The Blackwell-Sherman-Stein and Le Cam theorems presented below establish the

equivalence between the sufficiency ordering of experiments, the convex ordering of their

likelihood ratio statistics, and the convex ordering of the distribution of the posterior

distributions attained under a given prior. That will enable us to propose measuring the

information in E through measures of the variability of its likelihood ratio and posterior

distribution statistics, as described in Section 5.

Here we focus on the case where Ω has a finite number of elements, Ω = {θ1, . . . , θk},
because it is an important case in its own (under it, Fisher information is not even

defined), and because it provides the basic tool for the cases where Ω is infinite.

3.2.1 The vector of likelihood ratios as a likelihood function

Let E = (X ;Pθ) be an experiment on Ω, and let Pπ =
∑k

i=1 πiPθi
be a convex combi-

nation of the elements in (Pθi
, θi ∈ Ω) that dominates all the elements in that family

(i.e., Pπ is such that any measurable set of Pπ-measure zero has Pθi
-measure zero for

all i). In that case, the ‘likelihood to averaged likelihood ratio statistic’

Tπ(X) =
1

pπ(X)
(pθ1(X), . . . , pθk

(X)) =
1

Eπ[lX(θ)]
(lX (θ1), . . . , lX(θk)), (4)

is minimal sufficient for E (see, e.g., Basu 1975; Lehmann 1983), and its distribution

characterizes the statistical properties of E. In particular, Pπ can be any convex com-

bination with strictly positive weights (i.e. with πi > 0 for i = 1, . . . , k), and we focus

on this case, but when all measures in E are dominated by one of them, say Pθ1 , then

Tθ1(X) =
1

pθ1(X)
(pθ2(X), . . . , pθk

(X)) (5)

is also minimal sufficient for E and all the discussion that follows in terms of Tπ(X)

can be rephrased in terms of Tθ1(X) without any loss of generality. The range of values

taken by Tπ(X), {Tπ(x), x ∈ SX}, is a subset of the set

Kπ = {u = (u1, . . . , uk) ∈ Rk : ui ≥ 0 and

k∑

i=1

πiui = 1}, (6)

which is the convex hull of {(1/π1, . . . , 0), . . . , (0, . . . , 1/πk)}. The range of values taken

by Tθ1(X) when X ranges in SX , {Tθ1(x), x ∈ SX}, is a subset of Rk−1
+ .

As a function of θ, with x fixed, the vector of observed likelihood ratios Tπ(x) is

proportional to (pθ1(x), . . . , pθk
(x)) with constant of proportionality 1/pπ(x) and there-

fore, Tπ(x) is a standardized version of the likelihood function. As a function of x, the

j-th coordinate of Tπ(x), pθj
(x)/pπ(x), is the density function for the distribution of

X under θ = θj when the dominating measure is Pπ instead of µ and Tπ(x) becomes

the list of conceivable density functions for X . (Note that the assumption that infer-

ences should not depend on the dominating measure is tantamount to the constant of

proportionality of the likelihood function being irrelevant).



176 On the Measure of Information

Remark: A choice of a particular set of weights, (π1, . . . , πk), is just a matter of

choice of a dominating measure Pπ , and of a version of standardized likelihood function

Tπ(x), and all that can be devoid of any Bayesian connotation. In fact, in the sufficiency

ordering literature one typically restricts attention to uniform weights, πi = 1/k. On

the other hand, in Bayesian terms one is entitled to interpret π as a prior distribution

and Tπ(X) as the ‘posterior to prior ratio statistic’,

Tπ(X) = (
πE(θ1|X)

π1
, . . . ,

πE(θk|X)

πk
). (7)

3.2.2 The Blackwell-Sherman-Stein and Le Cam theorem

Here, we compare the experiments on Ω E = (X ;Pθ) and F = (Y ;Qθ), through

the distribution of their corresponding likelihood ratio statistics, Tπ(X) and Sπ(Y ).

For totally non-informative experiments, Etni, the likelihood function is constant, and

Tπ(X) = (1, . . . , 1) with probability one. For totally informative experiments, Eti, the

likelihood is zero everywhere except at one θj ∈ Ω, and Tπ(X) = (0, . . . , 1/πj , . . . , 0),

which is an extreme point of Kπ. In general, the further Tπ(X) tends to fall away from

(1, . . . , 1) towards an extreme point of Kπ, the easier it is to guess θ and the more

informative E is. Given that for every experiment

Epπ
[Tπ(x)] = (1, . . . , 1), (8)

the more informative E is, the more spread out is the distribution of Tπ(X) (under

X ∼ Pπ) away from (1, . . . , 1) towards extreme points of Kπ. Therefore it should not

come as a surprise that the Blackwell-Sherman-Stein theorem, enunciated next, relates

“E being always at least as informative as F” to the distribution of Tπ(X) when X
is Pπ-distributed being more variable than the distribution of Sπ(Y ) when Y is Qπ-

distributed, where Qπ =
∑k

i=1 πiQθi
.

Proposition 3.1. Experiment E = (X ;Pθ) is “sufficient for” experiment F = (Y ;Qθ)

if and only if for some strictly positive set of weights π,

Epπ
[φ(Tπ(x))] ≥ Eqπ

[φ(Sπ(y))] (9)

for every convex function φ(·) on Kπ.

Equivalently, this proposition can be re-stated in terms of the convex ordering of

likelihood ratio statistics as “experiment E is sufficient for F if and only if the distri-

bution of Tπ(X) when X ∼ Pπ is larger in the convex order than the distribution of

Sπ(Y ) when Y ∼ Qπ, i.e., if and only if

Tπ(X)|pπ
≥cx Sπ(Y )|qπ

.” (10)

Since convex functions take on their larger values over “extreme regions”, any measure

of the form E[φ(U)] with a convex φ(·) can be interpreted as a measure of the dispersion

of the random variable U . Consequently, “E is sufficient for F” is equivalent to “the
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distribution of Tπ(X) under Pπ is always more variable than the distribution of Sπ(Y )

under Qπ, no matter how variability is measured”. In particular, when E is sufficient for

F , the distribution of any set of coordinates of Tπ(X) is always more variable than the

distribution of that same set of coordinates of Sπ(Y ). For details on the convex order of

distributions and its interpretation as a variability order, see Shaked and Shantikumar

(1994, chap. 2 and 5) and the Appendix.

Blackwell (1951, 1953), Sherman (1951) and Stein (1951) prove Proposition 3.1 for

the case where π is the uniform distribution on Ω. Nevertheless, when Proposition 3.1

holds for any one strictly positive π, it holds for any other set of weights, π, under

which Pπ and Qπ dominate E and F . In particular, when E and F are dominated by

Pθ1 and Qθ1 , one can replace Pπ and Qπ by Pθ1 and Qθ1 , and Tπ(X) and Sπ(Y ) by

Tθ1(X) and Sθ1(Y ) in Proposition 3.1, and one can re-phrase that result by stating that

E is “sufficient for” F if and only if Epθ1
[χ(Tθ1(x))] ≥ Eqθ1

[χ(Sθ1(y))] for every convex

function χ(·) on Rk−1
+ .

Since Tπ(X) and Sπ(Y ) are likelihood functions, Proposition 3.1 compares the in-

formativity of E and F through the variability of the distribution of the likelihood

functions they yield. On the other hand, given that any convex function φ(u) on Kπ

can be posed as φ(u) = ϕ(π1u1, . . . , πkuk) where ϕ(h1, . . . , hk) is a convex function on

the simplex of Rk, Proposition 3.1 can also be posed in Bayesian terms as follows.

Proposition 3.2. Experiment E is “sufficient for” F if and only if for a given strictly
positive prior distribution π on Ω,

Epπ
[ϕ(πE(θ|x))] ≥ Eqπ

[ϕ(πF (θ|y))] (11)

for every convex function ϕ(·) on the simplex of Rk, where πE(θ|x) and πF (θ|y) are the
posterior distributions under the same prior π.

This proposition can be re-phrased as “E is sufficient for F if and only if for some

strictly positive prior π,

(πE(θ1|X), . . . , πE(θk |X))|pπ
≥cx (πF (θ1|Y ), . . . , πF (θk|Y ))|qπ

.” (12)

Given that E[ϕ(·)] measures the variability of the distribution of distributions on the

simplex of Rk, stating that “E is sufficient for F” is equivalent to stating that “the

distribution of (πE(θ1|X), . . . , πE(θk|X)) under Pπ is always more variable than the

distribution of (πF (θ1|Y ), . . . , πF (θk |Y )) under Qπ, no matter how variability is mea-

sured.” Also, “E is sufficient for F” implies that πE(θi|X) is always more variable around

Epπ
[πE(θi|x)] = πi than πF (θi|Y ) is around Eqπ

[πF (θi|y)] = πi, coordinate-wise.

I formulate the version of Blackwell-Sherman-Stein theorem in Proposition 3.1 before

the one in Proposition 3.2 for historical reasons, and because it frames the sufficiency

ordering of experiments in terms of the convex ordering of their likelihood functions,

which might make that result more appealing than by framing it in terms of the convex

ordering of their posterior distributions.
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Remark: When E is an experiment on a parameter space with an infinite number of

elements, the infinite-dimensional vector of likelihood ratios, Tπ(X), and πE(θ|X), are

stochastic processes indexed by θ ∈ Ω and with the corresponding distributions induced

by X ∼ Pπ(x). For the statement and proof of a result analogous to Proposition 3.1

that applies for experiments on countable or uncountable parameter spaces see Le Cam

(1986, pp. 43-44). In the infinite Ω case, it is established that an experiment E is

“sufficient for” or “almost at least as informative as” F if and only if Proposition 3.1

holds for the restrictions of experiments E and F to every finite subset of Ω. Given

that the convex ordering of a stochastic process is implied by the corresponding finite

dimensional convex orderings (see, e.g., Bassan and Scarsini 1991), this allows one to

generalize Proposition 3.1-3.2 both to countable and continuous parameter spaces.

4 What is a valid measure of information in E?

Given two experiments, often neither of them is sufficient for the other and therefore, the

sufficiency ordering is partial and does not serve the purpose of ranking experiments and

determining the most informative one. The following definition identifies the minimal

set of requirements for a function on a set of experiments on Ω to qualify as a valid

measure of the information in them, inducing a total ordering in that set.

Definition 4.1. A measure of the information about θ in an experiment E assigns a
value I(E) such that

1. I(E) is a real number,

2. I(Etni) = 0, and

3. whenever E1 and E2 are such that E1 is “sufficient for” E2, then I(E1) ≥ I(E2).

Under information measure I(·), and with experimental costs being the same, one

would prefer E to F whenever I(E) > I(F ). The requirement that I(·) be a real

number guarantees that the ordering induced by I(·) is total and thus it singles out

which experiment to choose. That excludes matrices as well as real valued functions of

θ or π, but it allows for the evaluation of real functions of θ or π at θ = θ0 or π = π0.

The second requirement setting I(Etni) equal to 0, captures the fact that one should

never pay not to see the outcome of an experiment. Nevertheless, when comparing any

two experiments the value taken by I(Etni) is irrelevant and therefore optimality design

criteria can differ from an information measure by a constant term. As a consequence,

the definition of optimality design criteria would consist only of the first and third

requirements in Definition 4.1.

The third requirement in the above definition is needed because when E is at least

as good as F for every terminal decision problem, then E has to be preferred to F
under every information measure. This requirement can also be justified through the

randomization argument in Definition 3.1, because when one can reproduce data like the

one from experiment F starting from the data from E plus an auxiliary randomization,
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without knowing θ, then E has to be preferred to F under every information measure.

Given that this randomization argument uses only the statistical model, (Pθ; θ ∈ Ω),

one does not need to assume that θ is a random variable nor that the experiments will

be used in a decision problem to justify Definition 4.1.

Lindley (1956), Kiefer (1959) and De Groot (1962) argue that the measures of the

statistical information they propose do respect the sufficiency ordering, thus implicitly

recognizing the role played by that ordering in the characterization of the measure of

the information in an experiment. Definition 4.1 goes one step further by making the

sufficiency ordering into the only essential requirement in that characterization. For

more specific references to the necessity of the third requirement in Definition 4.1, see

Vajda (1989, chap. 6) and Torgersen (1991a, sec.7.2, 1994, p. 314-318).

The following properties are straightforward consequences of Definition 4.1.

Property 1: The information in E is never smaller than the information in totally

non-informative experiments, and is never larger than the information in totally

informative ones, 0 < I(E) < I(Eti).

Property 2: The information in experiment E observingX , and the information in

sub-experiment ET observing a statistic T (X), satisfy I(E) ≥ I(ET ) with equality

if the statistic T (X) is sufficient for X .

Property 3: If I(·) is an information measure and r(·) is a real increasing function

on the range of I(·) with r(0) = 0, then r(I(·)) is an information measure.

Property 4: Given any collection of measures of the information in an exper-

iment, {Iη(·), η ∈ Γ}, their linear combinations with non-negative coefficients,

their supremum and their infimum values, are all valid measures of information.

By letting η = θ and Γ = Ω, or η = π and Γ be the set of probability measures on

Ω, this allows one to construct measures of information out of real valued functions

of θ or π the way it is illustrated in Examples 1, 4 and 8 below.

Property 5: Given any sequence of measures of the information in an experiment,

I1(·), I2(·), . . ., its limit, if it exists, is a valid information measure.

Example 1: In Stone (1961) and Goel and DeGroot (1979) it is proven that when

E is “sufficient for” F , the difference of the Fisher information matrices of E and F ,

Iθ
F i(E)−Iθ

F i(F ), is non-negative definite. Consequently, if γ(·) is a real valued function of

non-negative definite symmetric matrices such that γ({0}) = 0 and that γ(M1) ≥ γ(M2)

whenever M1 −M2 is non-negative definite, then

Iθ
F i,γ(E) = γ(Iθ

F i(E)) (13)

satisfies the second and third requirements in Definition 4.1. Examples of (13) include

the determinant of Iθ
F i(E), Iθ

D(E) = |Iθ
F i(E)|, and the A, E and all the other optimality

design criteria introduced by Kiefer (1959) and extensively used by the DoE literature.

Other than for location experiments though, (13) is still a function of θ and thus fails the
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first requirement in Definition 4.1. Nevertheless, one can convert (13) into information

measures by resorting to Property 4 and either

1. using an average of (13) with respect to a given distribution π0 on Ω, Iπ0

Fi,γ(E) =

Eπ0 [γ(I
θ
F i(E))], which in particular includes guessing θ to be equal to θ0, or

2. using Is
F i,γ(E) = maxθ∈Ω γ(I

θ
F i(E)), or I i

F i,γ(E) = minθ∈Ω γ(I
θ
F i(E)).

Clearly, all information measures must abide by Definition 4.1, because any measure

of information that preferred experiment F to E even though one could obtain data like

the one from F from the data from E plus an auxiliary randomization, would make for a

silly information measure. Some may want to argue though that the list of requirements

in Definition 4.1 is incomplete.

• Some might expect the measure of the information in an experiment to be additive

in the sense that if Ei = (Xi;P
i
θ) for i = 1, . . . , N is a set of experiments on the

same Ω, and if ΠN
i=1Ei is an experiment observing all Xi independently given θ,

then I(ΠN
i=1Ei) =

∑N
i=1 I(Ei). But by requiring that, one would discard basically

all measures of the information in E except Iθ0

Fi(E) with θ0 ∈ R, (19) and (50).

For example, under a linear normal experiment Ei yielding Xi ∈ Rn distributed

Nn(Aiθ, σ
2I) with θ ∈ Rp and n < p, θ is not estimable and ID(Ei) = |A′

iAi| = 0

and yet, performing several such experiments independently leading to a total

sample size larger than p could make θ estimable and ID(ΠiEi) = |IFi(ΠiEi)| > 0,

in which case ID(ΠiEi) >
∑

i ID(Ei). Additivity would also exclude the measures

in Sections 5.3 and 5.4, under which I(ΠiEi) ≤
∑

i I(Ei).

Also, given that an infinite independent replication of any experiment E with

Pθi
6= Pθj

if θi 6= θj , is equivalent to a totally informative experiment, Eti, the

information in such an infinite replication would be equal to I(Eti). Under the

additivity requirement, the information in Eti would then have to either be infinite

or 0 if I(E) = 0, and one would have to rule out all the measures of the information

with 0 < I(Eti) < ∞. In fact, note that carrying out a totally informative

experiment twice independently, provides the same information as carrying it out

once, which also violates this type of additivity requirement.

• Given experiments E0 = (X0;P
0
θ ) and E1 = (X1;P

1
θ ) on Ω and given p ∈ (0, 1),

the mixture experiment (1 − p)E0 + pE1 is the one obtained by first observing

a Bernoulli random variable I on {0, 1} with probability of success p, and then

performing experiment EI . Some might expect the measure of the information

in an experiment to be linear under mixture experiments, I((1 − p)E0 + pE1) =

(1 − p)I(E0) + pI(E1). Indeed, all the measures covered by Definition 5.1 satisfy

this condition, but imposing it on all measures of the information in E by listing

it in Definition 4.1, would rule out measures based on the negative of the minimax

risk for a given loss, measures covered by Example 1, (38) and (51).

• Fisher information matrices and Bayes risk typically depend on which parametriza-

tion one chooses. Adding the requirement that the information about θ in an ex-

periment E always be the same as the information about any one-to-one function
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ψ = ψ(θ) would also exclude most of the design optimality criteria considered in

Example 1 and in Section 5.3. This lack of invariance has long been known and

accepted by the DoE literature, and even though in specific contexts being invari-

ant under a re-parametrization is a plus, that loses its appeal when parameters

have a definite physical meaning (see, e.g., Pukelsheim, 1993, p. 137).

It is important to emphasize that Definition 4.1 lists the minimal set of requirements

for functions on a set of experiments to qualify as measures of the information in them

(much like the Kolmogorov axiom set lists the minimal set of requirements for functions

on a field of events to qualify as measures of their probability). That does not mean

that in specific settings like for example the ones considered in information theory or in

Bernardo (2005a, 2005b), one is not entitled to impose additivity, linearity, invariance

or any other additional requirements and in that way reduce the set of measures of the

information in an experiment under consideration.

5 Generalized divergence measures of the information in

an experiment E

As a consequence of Proposition 3.1, all measures of the variability of Tπ(X), expressed

as Epπ
[φ(Tπ(x))] for a convex function φ(·), satisfy the first and third requirement of

Definition 4.1 and therefore they qualify as design optimality criteria. As a consequence

of Proposition 3.2, the same can be said of all measures of the variability of πE(θ|X),

expressed as Epπ
[ϕ(πE(θ|x))] for a convex function ϕ(·).

Definition 5.1-5.2 below, encompassing the definitions of information in E of Lindley

(1956), Raiffa and Schlaifer (1961), DeGroot (1962) and Csiszár (1963, 1967) as special

cases, trivially further restrict φ(·) and ϕ(·) so that Epπ
[φ(Tπ(x))] and Epπ

[ϕ(πE(θ|x))]
also satisfy the second requirement in Definition 4.1 and qualify as measures of the

information in E. In Section 5.6, Tπ(x) and πE(θ|x) are interpreted as the reward from

choosing and performing experiment E, φ(·) and ϕ(·) become utility functions, and

Epπ
[φ(Tπ(x))] and Epπ

[ϕ(πE(θ|x))] become the expected utility from choosing E.

5.1 Definition of generalized divergence measures

Definition 5.1. The generalized φ-divergence measure of the information about θ in
an experiment E = (X ;Pθ) is

Iφ(E) = Epπ
[φ(Tπ(x))] =

∫

SX

φ(
pθ1(x)

pπ(x)
, . . . ,

pθk
(x)

pπ(x)
)pπ(x)dx, (14)

where φ(u) is a real valued convex function on Kπ such that φ(1, . . . , 1) = 0.

Condition φ(1, . . . , 1) = 0 sets Iφ(Etni) equal to 0 (every convex function can be

made to satisfy this condition by subtracting from it, its value at (1, . . . , 1)). It is easy

to check that any two such convex functions with a difference that is linear on Kπ
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lead to the same Iφ(·), but this is all the arbitrariness there is in the choice of φ(·)
because Torgersen (1991a, p. 354) proves that if Epπ

[φ1(Tπ(x))] = Epπ
[φ2(Tπ(x))] for

all experiments on Ω, then φ1(·) − φ2(·) has to be linear on Kπ. (Note though that in

the context of one subset of experiments on Ω, different Iφ(·) might induce the same

ordering).

Now, one can re-phrase Proposition 3.1 by stating that E is “sufficient for” or “always

at least as informative as” F , if and only if for one non vanishing π it holds that

Iφ(E) ≥ Iφ(F ) for every convex φ(·) on Kπ. Hence, the claim that measuring the

information in E is essentially the same as measuring the variability of its likelihood
ratio statistics; the more variable Tπ(X) is around Epπ

[Tπ(x)] = (1, . . . , 1) in the sense

of Epπ
[φ(·)], the more peaked the likelihood functions that tend to be yielded by E, and

the more informative E is in the sense of Iφ(·).
The Bayesian interpretation of Definition 5.1 follows from the fact that

Iφ(E) = Epπ
[φ(

πE(θ1|x)
π1

, . . . ,
πE(θk|x)

πk
)], (15)

and therefore that measuring the information in E is essentially the same as measuring
the variability of its posterior to prior ratio statistics. Given that any convex function

φ(u) on Kπ can be posed as φ(u) = ϕ(π1u1, . . . , πkuk) where ϕ(h1, . . . , hk) is a convex

function on the simplex of Rk, one can re-phrase Definition 5.1 as follows.

Definition 5.2. The generalized φ-divergence measure of the information about θ in
an experiment E = (X ;Pθ) is

Iφ(E) = Epπ
[ϕπ(πE(θ|x))] =

∫

SX

ϕπ(πE(θ1|x), . . . , πE(θk|x))pπ(x)dx, (16)

where πE(θ|x) is the posterior under prior π and where ϕπ(h) = φ(h1/π1, . . . , hk/πk) is
a convex function on the simplex of Rk such that ϕπ(π1, . . . , πk) = 0.

Condition ϕπ(π) = 0 sets Iφ(Etni) equal to 0, and any two such convex functions

with a difference that is linear will lead to the same measure Iφ(·). For every E,

0 ≤ Iφ(E) ≤ Iφ(Eti) = π1ϕπ(1, . . . , 0) + . . .+ πkϕπ(0, . . . , 1). (17)

One can now re-phrase Proposition 3.2 by stating that E is “sufficient for” F if and

only if for one strictly positive π, it holds that Iφ(E) ≥ Iφ(F ) for every convex

φ(u) = ϕ(π1u1, . . . , πkuk). Hence, the claim that measuring the information in E is

also the same as measuring the variability of the distribution of the posterior distribu-
tions that tend to be yielded by it; The more variable πE(θ|X) is aroundEpπ

[πE(θ|X)] =

(π1, . . . , πk) in the sense of Epπ
[ϕπ(·)], the more peaked the posterior distributions that

tend to be yielded by E, and the more informative E is in the sense of Iφ(·).
Section 6.1 defines the measure of the information in an observation X = x yielded

by experiment E to be equal to φ(Tπ(x)) or to ϕπ(πE(θ|x)) for non-negative convex

functions φ(·) and ϕπ(·). That will allow one to interpret Iφ(E) as the average of the
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information in all the observations that could have been yielded by E, and it will provide

one motivation for Definition 5.1-5.2 that does not rely on Proposition 3.1-3.2 and on

the axiom set in Definition 4.1.

Remark: For experiments on infinite Ω, likelihood ratio statistics become stochastic

processes indexed by θ. From the remark in Section 3.2.2 it follows that one can extend

generalized divergence measures to experiments on infinite Ω, either be it countable

or uncountable, by basing them on any arbitrary finite subset of coordinates of their

infinite-dimensional likelihood ratio process or posterior distribution. Alternatively,

given that the convex ordering of a stochastic process is implied by the corresponding

finite dimensional convex orderings (see, e.g., Bassan and Scarsini 1991), one is also

entitled to use as a measure of the information in E either (14) with φ(·) being a convex

functional of the complete infinite-dimensional likelihood ratio process, or (16) with ϕ(·)
being a convex functional of the posterior distribution, as it is exemplified in Section 8.

Definition 5.1-5.2 reduces the choice of a measure of the information in an experi-

ment E on Ω, to the choice of a convex function φ(·) on Kπ, or to the choice of a convex

function ϕπ(·) on the simplex of Rk. Next, a wide array of generalized divergence mea-

sures is presented, each bringing a different perspective on what statistical information

means. They include the most well known information measures as well as measures

not yet recognized as such by the DoE literature.

5.2 Csiszár divergences as generalized divergence measures

An experiment on Ω = {θ1, θ2} consisting of an ordered pair (Pθ1 , Pθ2) is called a

dichotomy. For them, the more informative E is, the easier it is to distinguish θ1
from θ2 based on outcomes of E, the further pθ1(X) tends to be away from pθ2(X)

when X ∼ Pθ1 , the further pθ2(X)/pθ1(X) tends to be away from 1, and given that

Epθ1
[pθ2(x)/pθ1(x)] = 1, the more variable pθ2(X)/pθ1(X) is when X ∼ Pθ1 . For a

closely related argument see Good (1979, 1985).

For non-dichotomous experiments E dominated by Pθi
, this argument applies to

each pair (θi, θj), and it provides the intuitive appeal behind the generalized divergences

measures obtained from φ(u1, . . . , uk) = uig(uj/ui) with g(·) being a convex function

on R+ with g(1) = 0,

Iθi,θj

g (E) = Epθi
[g(

pθj
(x)

pθi
(x)

)], (18)

that can also be interpreted as measures of the variability of pθj
(X)/pθi

(X) when

X ∼ Pθi
. These numbers, known as Csiszár divergences, were independently related to

the information in E by Csiszár (1963, 1967) and by Ali and Silvey (1966), and their

statistical meaning stems from their relation to the Bayes risk when testing θj against

θi (see, e.g., Torgersen 1991b, 1994; Vajda 1989).

Other than for dichotomies, Csiszár divergences are functions of (θi, θj) and not real

numbers as required of information measures, but they can be made into information

measures by using properties 4 and 5 in Section 4. These properties can also be used
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to symmetrize (18) through I
θi,θj

g (E) + I
θj ,θi

g (E) or through min {Iθi,θj

g (E), I
θj ,θi

g (E)}.
When g(u) = u logu, (18) becomes

I
θi,θj

KL (E) = Epθj
[log

pθj
(x)

pθi
(x)

], (19)

which is the Kullback-Leibler divergence between Pθj
and Pθi

introduced by Good (1950,

1960) and Kullback (1959). The two symmetrized versions of (19) described above, are

respectively recognized in the literature as the Jeffreys divergence and as the intrinsic

discrepancy, advocated for in Bernardo (2005a) on the grounds of its additivity, of its

parametrization invariance, and of its finiteness.

When g(u) = |u1/r − 1|r with r ≥ 1, (18) becomes

I
θi,θj ,r
S (E) =

∫

SX

|pθj
(x)1/r − pθi

(x)1/r |rdx, (20)

which relates the information in E with distances between Pθi
and Pθj

; for r = 1 it is

their statistical or variational distance, and for r = 2 it is their Hellinger distance.

When g(u) = sign(1 − t)(1 − ut) with t > 0 and t 6= 1, (18) becomes

I
θi,θj ,t
R (E) = sign(1 − t)(1 −Epθi

[(
pθj

(x)

pθi
(x)

)t]), (21)

that are measures studied by Rényi (1961); for t = 2 or g(u) = (u− 1)2, one obtains

I
θi,θj ,t=2
R (E) =

∫

SX

(pθj
(x) − pθi

(x))2

pθi
(x)

dx = V arpθi
[
pθj

(x)

pθi
(x)

]. (22)

When g(u) = maxi{ui, 1} − 1, one obtains

I
θi,θj

M (E) =

∫

SX

max{pθj
(x), pθi

(x)}dx − 1. (23)

Finally note that Kullback (1959, pp. 26-28), Torgersen (1991a, pp. 52-56) and oth-

ers, derive Fisher information matrices through limiting arguments involving (19), and

therefore all the information measures in Example 1 can be included within this gener-

alized divergence framework in that way.

5.3 Expected value of sample information as generalized divergences

When it comes to comparing experiments in terms of their performance under one given

non-sequential statistical decision problem, the negative of the Bayes risk for the given

prior and loss and the negative of the minimax risk for the given loss, both satisfy

the first and third requirements in Definition 4.1 and thus qualify as optimality design

criteria, but their value for totally non-informative experiments is not 0 and thus they

fail to make it as measures of the information in an experiment.
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In Bayesian decision theory, Raiffa and Schlaiffer (1961) and DeGroot (1962) ap-

praise the statistical worth of experiment E = (X ;Pθ) through the expected value of

the sample information (EVSI) in E, which is defined as

Iπ,L
V (E) = Epπ

[EπE(θ|x)[L(θ, dπ) − L(θ, dπE(θ|x))]], (24)

where dπ denotes the Bayes decision with respect to the prior distribution (i.e., dπ

minimizes Eπ[L(θ, d)]), and where dπE(θ|x) denotes the Bayes decision with respect to

the posterior distribution. That is, Iπ,L
V (E) is the expected savings in loss when, a

posteriori, the best decision based on the posterior distribution obtained through E is

used, instead of the best decision based on the prior. Given that

Iπ,L
V (E) = Eπ [L(θ, dπ)] −Epπ

[EπE(θ|x)[L(θ, dπE(θ|x))]], (25)

where the first term does not depend on E and the second term coincides with the Bayes

risk for the problem, and given that Iπ,L
V (Etni) = 0, it follows that (24) satisfies all the

requirements of Definition 4.1 and thus it qualifies as a measure of the information in

E. The experiment maximizing Iπ,L
V (E) is the one minimizing the corresponding Bayes

risk, and it holds that for every E,

0 < Iπ,L
V (E) < Iπ,L

V (Eti) = Eπ [L(θ, dπ)]. (26)

Example 2: In estimation problems, the decision space is Ω. For θ ∈ R and L1(θ, d) =

(d−θ)2, the Bayes decision with respect to π is dπ = Eπ[θ], and Eπ [L1(θ, d
π)] = V arπ [θ].

From (24) and the conditional variance identity it follows that

Iπ,L1

V (E) = V arπ [θ] −Epπ
[V arπE(θ|x)[θ]] = V arpπ

[EπE(θ|x)[θ]], (27)

or which is the same,

Iπ,L1

V (E) = Epπ
[EπE(θ|x)[θ]

2] −Eπ[θ]2. (28)

Thus, the more the posterior Bayes decision, dπE(θ|x) = EπE(θ|x)[θ], varies with x, the

more informative is experiment E. In estimation problems with θ ∈ Rp and L1(θ, d) =

(d− θ)′H(d− θ), where H is a known p×p non-negative definite symmetric matrix, the

Bayes decision under π is dπ = Eπ[θ], Eπ [L1(θ, d
π)] = trace{HV arπ [θ]} and

Iπ,L1

V (E) = tr{H(V arπ[θ] −Epπ
[V arπE(θ|x)[θ]])} = tr{HV arpπ

[EπE(θ|x)[θ]]}. (29)

Example 3: In classification problems, Ω has k elements, Ω = {θ1, . . . , θk}, and X
has to be classified as coming from one of the k distributions. When the loss is zero if

the classification is correct (i.e., L2(θi, d = θi) = 0), and it is one if it is incorrect (i.e.,

L2(θi, d = θj) = 1 when θi 6= θj), the Bayes decision under π is the θi that maximizes

π(θ) and Eπ [L2(θ, d
π)] = 1−maxi πi. It follows that the EVSI in E for this problem is

the expected increase in the modal probability of the distribution of θ due to E,

Iπ,L2

V (E) = Epπ
[
maxi{πilx(θi)}
Eπ[lx(θ)]

] − max
i
πi = Epπ

[max
i
πE(θi|x)] − max

i
πi. (30)
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In general, when Ω has k elements and the decision space has J elements, every loss

function can be represented through a k×J matrix {Lij} where Lij is the non-negative

loss incurred when θ is θi and one picks decision dj . In that case, the EVSI in E is

Iπ,L
V (E) = Epπ

[ max
j=1,...,J

{−
k∑

i=1

Lijπi
pθi

(x)

pπ(x)
}] − max

j=1,...,J
{−

k∑

i=1

Lijπi}, (31)

which is a generalized divergence measure both under the non-negative convex function

φ
(1)
π,L(u) = max

j=1,...,J
{−

k∑

i=1

Lijπiui} +

k∑

i=1

Lidππiui, (32)

as well as under the possibly negative convex function

φ
(2)
π,L(u) = max

j=1,...,J
{−

k∑

i=1

Lijπiui} − max
j=1,...,J

{−
k∑

i=1

Lijπi}. (33)

For details on Bayes risk based measures of the information in an experiment, see Lindley

(1961), Chaloner and Verdinelli (1995), Dawid (1998), or Dawid and Sebastiani (1999).

5.4 Mutual information and its extensions as generalized divergences

If one treats θ as a random variable, one can measure the degree of association or

dependency between X and θ implicit in their joint distribution fπ(x, θ) through the

real valued random variable,

Tπ(X, θ) =
fπ(X, θ)

pπ(X)π(θ)
=
πE(θ|X)

π(θ)
=
pθ(X)

pπ(X)
=

lX(θ)

Eπ(lX(θ))
. (34)

The stronger the association between X and θ, the better X explains θ, and the more

informative E should be about θ. In particular, when X and θ are independent,

Tπ(X, θ) = 1 with probability one and E = Etni. When X and θ are functionally

dependent, Tπ(X, θ) is 0 for all (X, θ) except for (X, θj) where it is 1/πj , and E = Eti.

For an arbitrary experiment, the stronger the association between X and θ, the further

the value of fπ(X, θ) tends to be away from the value of pπ(X)π(θ), and the further

Tπ(X, θ) tends to be away from one. Since Epππ[Tπ(x, θ)] = 1 for all E, the stronger

that association, the more variable Tπ(X, θ) when (X, θ) is distributed as pππ.

The connection between variability of Tπ(X, θ) and association of X and θ is made

explicit in Ali and Silvey (1965). Its connection to the information in E follows as a

consequence of using Proposition 3.1 with φπ(u) =
∑k

i=1 πig(ui), where g(·) is con-

vex on R+; that leads to E being “sufficient for” F implying that Tπ(X, θ)|pππ ≥cx

Sπ(Y, θ)|qππ, which in turn means that E being “sufficient for” F implies that the

distribution of Tπ(X, θ) under pππ is always more variable than the distribution of

Sπ(Y, θ) = qθ(Y )/qπ(Y ) under qππ, no matter how variability is measured.
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When φπ(u) =
∑k

i=1 πig(ui) with the function g(·) being convex on R+ and with

g(1) = 0, (14) becomes

Iπ
g (E) = Epππ[g(Tπ(x, θ))], (35)

which serves as a measure of the variability of Tπ(X, θ) when (X, θ) ∼ pππ, as a measure

of the association between X and θ, and as a measure of the information in E.

Example 4: A special case of (35) obtained with φπ(u) =
∑k

i=1 πiui logui is

Iπ
MI (E) = Efπ

[log
fπ(x, θ)

pπ(x)π(θ)
] = Epπ

[− log pπ(x)] −Eπ [Epθ
[− log pθ(x)]], (36)

which in information theory is recognized as the mutual information or cross entropy

between X and θ (see, Cover and Thomas 1991; Barron 1999). In purely Bayesian terms

Iπ
MI (E) = Eπ[−logπ] −Epπ

[EπE(θ|x)[− logπE(θ|x)]], (37)

which is the expected reduction of the entropy of the distribution of θ. Following the

lead by Lindley (1956, 1972), Good (1960) and Rényi (1967a,b), (36) has become the

default design optimality criteria in Bayesian DoE. Taking advantage of the analogy

between (25) and (37), DeGroot (1962, 1979) and Bernardo (1979a) pose Iπ
MI (E) as an

example of EVSI. It is also the Bayes risk when estimating the true density, pθ, under

the KL-divergence loss (see, e.g., Haussler and Opper 1997).

Considering the set {Iπ
MI (·), π ∈ Γ}, where Γ is the set of probability measures on

Ω, and using Property 4 in Section 4 leads to

IC(E) = sup
π∈Γ

Iπ
MI (E), (38)

which is a measure of the information in E that corresponds to the concept of capacity

(Cover and Thomas 1991), and which is related to the minimax risk for estimating the

true density, pθ, under the KL-divergence loss (see, e.g., Haussler and Opper 1997).

The π that maximizes (38) is closely related to the reference prior for E constructed in

Bernardo (1979b) and thus IC(E) can be interpreted as the mutual information in E
under that reference prior, which itself is a distribution that depends on E.

As an alternative to (36) one has proposed measuring information in E through the

negative of an average of the entropy of Pθ, I = −Eπ[Epθ
[− log pθ(x)]], and through

G = Eπ [−logπ] + I (see, e.g., Soofi 2000, p. 1351). Unfortunately, I and G can both

take different values on E and on experiment ET observing a sufficient statistic for E
and therefore, according to I and G one could prefer E to ET or ET to E. The third

requirement in Definition 4.1 rules that there should be a tie between E and ET , and

therefore I and G are not valid measures of the information in E.

Example 5: When φπ,r(u) =
∑k

i=1 πi|u1/r
i − 1|r with r ≥ 1, (35) becomes

Iπ,r
S (E) =

∫

SX

∫

Ω

|(fπ(x, θ))1/r − (pπ(x)π(θ))1/r |rdθdx (39)



188 On the Measure of Information

= Epπ
[
Eπ[|lx(θ)1/r −Eπ[lx(θ)]1/r |r]

Eπ [lx(θ)]
] (40)

which relates the information in E to the distance between the joint distribution of (X, θ)
and the product of their marginals. For r = 1, it coincides with twice the measure of

the association between X and θ proposed in Silvey (1964). An alternative way to pose

(40) in terms of average distance between posterior and prior is

Iπ,r
S (E) = Epπ

[

k∑

i=1

|πE(θi|x)1/r − π
1/r
i |r], (41)

which is as in (16) with ϕπ,r(h) =
∑k

i=1 |h
1/r
i − π

1/r
i |r.

Example 6: When φπ,t(u) = sign(1 − t)
∑k

i=1 πi(1 − ut
i) with t > 0 and t 6= 1,

Iπ,t
R (E) = sign(1 − t)(1 −Epππ[(

fπ(x, θ)

pπ(x)π(θ)
)t]), (42)

that are information measures considered in Goel and DeGroot (1981). For t = 2,

Iπ,t=2
R (E) = V arpππ[Tπ(X, θ)] = Epπ

[
V arπ [lx(θ)]

Eπ [lx(θ)]2
], (43)

which links the information in E with the variance of Tπ(X, θ). The larger the coefficient

of variation (or reciprocal of the signal to noise ratio) of the values of the likelihood

function, (lx(θ1), . . . , lx(θk)) that tend to be yielded by E, the larger the information in

E as measured through Iπ,t=2
R (E). Also,

Iπ,t=2
R (E) = Epπ

[

k∑

i=1

(πE(θi|x) − πi)
2

πi
], (44)

which is as in Definition 5.2 with ϕπ(h) =
∑

i(hi − πi)
2/πi.

Example 7: When φπ(u) =
∑k

i=1 πi max {ui, 1} − 1, (35) becomes

Iπ
M (E) =

∫

SX

∫

Ω

max {pπ(x)π(θ), fπ(x, θ)}dθdx − 1 (45)

= Epπ
[
Eπ[maxi{lx(θi), Eπ[lx(θ)]}]

Eπ [lx(θ)]
] − 1, (46)

that can also be posed as:

Iπ
M (E) = Epπ

[

k∑

i=1

max{πE(θi|x), πi}] − 1, (47)

which is as in (16) with ϕπ(h) =
∑k

i=1 max {hi, πi} − 1.
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5.5 Other examples of generalized divergence measures

Example 8: Consider φt(u) = 1 − ut1
1 u

t2
2 . . . utk

k , where t = (t1, . . . , tk) is a probability

measure on Ω and thus such that ti ≥ 0 and that
∑k

i=1 ti = 1, which is a non-negative

convex function on the set Kt. The corresponding generalized φ-divergence measure is

It
H1

(E) = 1 −
∫

SX

Πk
i=1pθi

(x)tidx = 1 −Epπ
[
Πk

i=1lx(θi)
ti

Eπ[lx(θ)]
], (48)

that is a natural generalization of (21). It can be checked that 0 ≤ I t
H1

(E) ≤ 1, that

It
H1

(E) = 0 if, and only if E = Etni, and that It
H1

(E) = 1 if, and only if E = Eti. The

smaller the ratio between a weighted geometric and a weighted arithmetic mean of the

likelihood values, (lx(θ1), . . . , lx(θk)), that tend to be yielded by E, the larger I t
H1

(E).

Its Bayesian interpretation follows from the fact that (48) can also be written as:

It
H1

(E) = 1 −Epπ
[
Πk

i=1πE(θi|x)ti

Πk
i=1π

ti

i

], (49)

which is as in Definition 5.2 with ϕt(h) = 1 − Πk
i=1(hi/πi)

ti . As it will be argued in

detail in Section 7, this important family of information measures is not encompassed

by the definition of measure of the information proposed in DeGroot (1962).

What makes these measures of information special is the fact that I t
H1

(E) = 1 −
HE(t), where HE(t) is a function on the distributions on Ω with finite support known

as the Hellinger transform of E. This transform is the Laplace transform of the distri-

bution of the vector of logarithms of the coordinates of Tπ(X) under Pπ, and as such

it characterizes the distribution of Tπ(X) and given that Tπ(X) is a sufficient statistic

for E, it also characterizes the experiment E (see, e.g., Goel 1988; Torgersen 1991a; Le

Cam and Yang 2000; Shiryaev and Spokoiny 2000). In pattern recognition, HE(t) are

used as upper bounds of the Bayes risk for classification (see, Fazekas and Liese 1996).

Since r(u) = − log (1 − u) is strictly increasing in [0, 1] and r(0) = 0,

It
H2

(E) = − log (1 − I t
H1

(E)) = − logHE(t) (50)

is also an information measure, which is additive under independent experiments. By

considering the set of information measures {I t
H2

(·), t ∈ Γ}, where Γ is the set of proba-

bility measures on Ω, and using Property 4 in Section 4, one can construct an information

measure that does not depend on t through

ICh(E) = sup
t∈Γ

It
H2

(E) = − inf
t∈Γ

logHE(t). (51)

When k = 2, ICh(E) is the information number defined in Chernoff (1952) and used to

obtain an upper bound for the logarithm of the Bayes risk for the problem of testing

simple versus simple hypotheses (see, e.g., Cover and Thomas 1991, p. 312).

Example 9: Consider the convex function φπ(u) = r
√
π1ur

1 + . . .+ πkur
k − 1 where

r ≥ 2. The corresponding generalized φ-divergence measure is

Iπ,r
RM (E) =

∫

SX

r
√
π1pθ1(x)

r + . . .+ πkpθk
(x)r dx− 1 = Epπ

[
r
√
Eπ[lx(θ)r]

Eπ [lx(θ)]
] − 1. (52)
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When r = 2, the larger the values taken by the ratio between the weighted root mean

square and arithmetic means of the (lx(θ1), . . . , lx(θk)) that tend to be yielded by E,

the larger Iπ,r=2
RM (E). Furthermore, it is easy to check that

Iπ,r
RM (E) = Epπ

[ r

√
Eπ[(

πE(θ|x)
π(θ)

)r]] − 1 = Epπ
[ r

√
EπE(θ|x)[(

πE(θ|x)
π(θ)

)r−1]] − 1, (53)

which is as in (16) with ϕπ(h) = r

√
π1−r

1 hr
1 + . . .+ π1−r

k hr
k − 1.

Example 10: The generalized φ-divergence obtained with φ(u) = maxi ui − 1 is

IMR(E) =

∫

SX

max
i
pθi

(x) dx− 1 = Epπ
[
maxi lx(θi)

Eπ[lx(θ)]
] − 1, (54)

and it links information in E with the ratio between the maximum and the average

values of the likelihood functions that tend to be attained through experiment E, and

with the maximum of the corresponding posterior to prior ratio,

IMR(E) = Epπ
[max

i

πE(θi|x)
πi

] − 1, (55)

which is as in Definition 5.2 with ϕπ(h) = maxi(hi/πi) − 1.

Example 11: Given the link between information in E and variability of its likeli-

hood ratio statistics Tπ(X), it is natural to expect that the variance-covariance matrix

of this statistic, V arpπ
[Tπ(x)], will be related to information. If A = {aij} is a known

k × k symmetric non-negative definite matrix and if 1
′

= (1, . . . , 1), the generalized

φ-divergence measure obtained with φA(u) = (u− 1)
′

A(u− 1) is

IA
Q(E) = Epπ

[(Tπ(X) − 1)
′

A(Tπ(X) − 1)] = trace(AV arpπ
[Tπ(X)]). (56)

In particular, when A = ll
′

for a known l ∈ Rk one obtains

I l
Q(E) = l

′

V arpπ
[Tπ(x)]l. (57)

Given that E “sufficient for” F implies that I l
Q(E) ≥ I l

Q(F ) for every l ∈ Rk and

therefore it implies that V arpπ
[Tπ(X)]−V arqπ

[Sπ(Y )] is a non-negative definite matrix,

any real valued transformation, γ(V arpπ
[Tπ(x)]), with γ(·) such that γ({0}) = 0 and

that γ(A) ≥ γ(B) whenever A−B is non-negative definite, is an information measure.

For example, this applies to the trace of V arpπ
[Tπ(x)].

5.6 The choice of an experiment as a decision theory problem

The generalized divergence measures in Definition 5.1-5.2 are linear under mixture ex-

periments, i.e., they are all such that Iφ((1−p)E0 +pE1) = (1−p)Iφ(E0)+pIφ(E1). In

fact, from results in Torgersen (1991a, p. 353-355) it follows that generalized divergence
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measures are the only measures of information abiding by Definition 4.1 and having this

property. Hence, adding the condition that I(E) be linear under mixtures to Definition

4.1 characterizes the information measures covered by Definition 5.1-5.2.

Furthermore, when comparing experiments the requirement setting I(Etni) = 0 is

irrelevant, and in that case, the conditions φ(1, . . . , 1) = 0 and ϕπ(π) = 0 in Definition

5.1-5.2 can be disposed of. As a consequence, setting aside experimental cost, the choice

of experiment based on statistical merit can be posed as a decision problem as follows.

Given a strictly positive set of weights, π = (π1, . . . , πk), one considers the re-

ward from choosing E to be its likelihood ratio statistic Tπ(X), with a distribution on

{Tπ(x), x ∈ SX} ⊂ Kπ induced by X ∼ Pπ and denoted by Tπ(X)|pπ
. By defining the

utility function on these rewards to be any given convex function on Kπ, φ(·) (which

here is neither assumed to be non-negative nor such that φ(1, . . . , 1) = 0), the choice

of the most informative experiment is equivalent to the choice of the Tπ(X)|pπ
that

maximizes the expected utility Epπ
[φ(Tπ(x))].

Analogously, given a strictly positive prior distribution π, one can consider the re-

ward from choosing E to be its posterior distribution statistic, πE(θ|X), with a dis-

tribution on {πE(θ|x), x ∈ SX} induced by X ∼ Pπ and denoted by πE(θ|X)|pπ
. By

defining the utility function on these rewards to be any given convex function on the

simplex of Rk, ϕ(·) (which here is neither assumed to be non-negative nor such that

ϕ(π) = 0), the choice of the most informative experiment is equivalent to the choice of

the πE(θ|X)|pπ
that maximizes the expected utility Epπ

[ϕ(πE(θ|x)].
To take experimental costs into consideration, one would have to include in the

utility function an extra term that would typically depend on sample size and/or the

specific outcome observed.

Note that the choice of an experiment is a decision problem, but it is not a statistical
decision problem, because one is not entitled to carry out an experiment to help decide

which experiment to chose. In this context, the measure of the information in an

experiment E, Iφ(E), can be interpreted as the expected utility from carrying out that

experiment. In the next section we interpret the utility of the reward actually obtained

after having performed experiment E to be the information observed in X = x.

6 Measure of the observed information

So far we have considered the measure of the information about θ to be “expected” from

an experiment, E = (X ;Pθ), in advance of observing the data, or what is the same, the

utility expected from choosing experiment E and carrying it out.

Here, we turn our attention to the measure of the information about θ “observed” in

a given realization X = x from E, or what is the same, to the utility of the reward that

one actually obtains from E. That in turn will allow one to measure the information

and the uncertainty about θ in any distribution h on Ω.
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6.1 Measure of the information about θ in an observation X = x

Once the experiment E has been chosen and carried out, the issue arises as to how

informative did the observed X = x actually turn out to be. In statistical inference,

experiment E is fixed and given, which explains why in that context the term informa-

tion most often refers to the information in X = x and not to the one in E; that is the

case for example in Good (1950, 1966), Barnard (1951, 1959), Birnbaum (1962, 1969),

Basu (1975), or Barndorff-Nielsen (1978). Even though the information in X = x and

the information in E are closely related, that connection is rarely made explicit.

The sufficiency principle rules that the information about θ in any observationX = x
from experiment E should depend only on the likelihood function determined by x, lx(θ).
In fact, given that Tπ(x) is a version of lx(θ), that principle rules that the information

in X = x should depend only on the position of Tπ(x) in the set Kπ, defined in Section

3.2.1 to be the convex hull of {(1/π1, . . . , 0), . . . , (0, . . . , 1/πk)}, or what is the same, it

should depend only on the position of πE(θ|x) on the simplex of Rk.

The flatter lx(θ), the closer Tπ(x) is to (1, . . . , 1), the closer πE(θ|x) is to π, and

even though neither the likelihood principle nor the sufficiency principle have anything

to say about it, common wisdom dictates that the less informative X = x should be

considered to be. The more peaked lx(θ) is at some θj ∈ Ω, the closer Tπ(x) is to the

corresponding extreme point of Kπ, the further the posterior distribution πE(θ|x) is

from the prior π towards the one-point distribution with πE(θj |x) = 1, and common

wisdom dictates that the more informative X = x should be considered to be.

In the limit, observations are said to be totally non-informative and are denoted

by xtni, if they lead to a constant likelihood, lx(θ) = C, and therefore if Tπ(xtni) =

(1, . . . , 1), and if πE(θ|x) = π. Observations are said to be totally informative and are

denoted by xti, if they lead to a likelihood that is zero everywhere except at one θj ∈ Ω,

and therefore if Tπ(xti) is an extreme point of Kπ, and if one obtains a degenerate one-

point posterior distribution. The experiments Etni and Eti defined in Section 2.1, yield

observations in xtni and in xti with probability one. For most experiments though, the

sample space does not have any totally informative or totally non-informative points,

and the class of points denoted by xtni and xti are empty.

The sufficiency principle dictates that the information in X = x has to be measured

through functions of Tπ(x) and common wisdom dictates that these functions have to

be such that the further Tπ(x) is away from (1, . . . , 1) towards an extreme point of

Kπ, the larger the values they take. The following definition, which encompasses the

definition of measure of the information in X = x given in DeGroot (1984) as a special

case, naturally restricts attention to non-negative convex functions of Tπ(x).

Definition 6.1. The generalized φ-divergence measure of the information about θ in a
realization X = x from experiment E = (X ;Pθ) is

Iφ(x) = φ(
pθ1(x)

pπ(x)
, . . . ,

pθk
(x)

pπ(x)
) = φ(

πE(θ1|x)
π1

, . . . ,
πE(θk|x)

πk
), (58)

where φ(u) is a non-negative convex function on Kπ with φ(1, . . . , 1) = 0.
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Relative to Definition 5.1, the only new feature required of φ(u) in Definition 6.1 is

that it be non-negative, which leads to Iφ(x) being minimized at xtni, with Iφ(xtni) = 0.

Because of the convexity of φ(u) and of Kπ, Iφ(x) = φ(Tπ(x)) is maximized at one of

the extreme points of Kπ, when x = xti.

In Bayesian terms, the larger the impact of X = x on the beliefs about θ, the further

the ‘posterior to prior ratio statistic’ Tπ(x) is away from (1, . . . , 1) towards an extreme

point of Kπ, and by the convexity of φ(·), the larger Iφ(x) = φ(Tπ(x)). Given that any

convex φ(·) on Kπ can be posed as φ(u) = ϕ(π1u1, . . . , πkuk) where ϕ(·) is convex on

the simplex of Rk (i.e., the space of probability measures over Ω), one can re-phrase

Definition 6.1 in a way that captures that the further πE(θ|x) is away from π towards

an extreme point of the simplex, the more informative X = x is.

Definition 6.2. The generalized φ-divergence measure of the information about θ in a
realization X = x from experiment E is

Iφ(x) = ϕπ(πE(θ1|x), . . . , πE(θk|x)), (59)

where πE(θ|x) is the posterior under the prior π, and where ϕπ(h) = φ(h1/π1, . . . , hk/πk)

is a non-negative convex function on the simplex of Rk with ϕπ(π1, . . . , πk) = 0.

In Section 5.6, Iφ(x) plays the role of the utility of the reward obtained from E.

By definition, it follows that the average of the information in all the observations that

could have been yielded by E, Epπ
[Iφ(x)], is the information in E, Iφ(E), and that

average can also be interpreted as the expected utility of E. Given φ(·), the more

informative the observations that tend to be yielded by E in the sense of Iφ(x), the

more informative E is in the sense of Iφ(E), and the larger the expected utility of E.

This argument allows one to motivate Definition 5.1-5.2 and Section 5.6 without

relying on Proposition 3.1-3.2 and on the axiomatic framework of Definition 4.1. Defi-

nition 6.1-6.2 would in fact have made for a very good alternative starting point for the

manuscript. In that alternative presentation, instead of building the case for Definition

5.1-5.2 starting from first principles, one could have defined Iφ(E) to be just the average

of the information in all the observations that could have been yielded by E.

Finding Iφ(x) = φ(Tπ(x)) to be unpredictably larger than Iφ(E) = Epπ
[φ(Tπ(x))]

by identifying it to be an outlier of the distribution of Iφ(X) under Pπ , indicate that

1. X = x was unusually informative about θ, or maybe that

2. the data were not coming from any distribution in (Pθ ,Ω) and therefore the as-

sumed statistical model (experiment) was wrong, or most likely that

3. in the words of DeGroot (1984, p. 290), “the prior distribution might have been

misleading in that it was probably concentrated around an incorrect value of θ.”

In fact, Iφ(x) can be interpreted as a measure of the surprise about θ in X = x which

makes it useful as a Bayesian model checking test statistic to assess the compatibility

between X = x and π(θ), in the spirit of Box (1980) and of Bayarri and Berger (1999).
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Requiring that Iφ(x) = φ(Tπ(x)) and not just its expectation, Iφ(E) = Epπ
[φ(Tπ(x))],

be non-negative amounts to treating the three types of feedback listed above as valu-

able. Disposing of the non-negativity requirement in Definition 6.1-6.2 would give the

impression that after the experiment one can be worse off because his prior assumptions

were misguided or by mere bad luck.

It is important to remark that even though one can define Iφ(E) and the expected

utility of E through possibly negative convex functions on Kπ, when Ω is finite one can

always obtain one non-negative convex function on Kπ that leads to that same Iφ(E)

by adding to φ(·) an appropriate linear function. In that way, one can always associate

one (non-negative) φ-divergence measure of the information in X = x, Iφ(x), to every

φ-divergence measure of the information in E, Iφ(E).

In the context of the EVSI measures considered in subsection 5.3,

Iπ,L
V (x) = φ

(1)
π,L(Tπ(x)) = EπE(θ|x)[L(θ, dπ) − L(θ, dπE(θ|x))] (60)

is the φ-divergence measure under the non-negative convex function in (32) with

Iπ,L
V (E) = Epπ

[Iπ,L
V (x)]. It measures how much one saves after the experiment by a

posteriori using the Bayes decision a posteriori, dπE(θ|x), instead of the Bayes decision

a priori, dπ, and it is called the conditional value of sample information in Raiffa and

Schlaiffer (1961). Under the loss function in Example 2 Iπ,L1

V (x) is the square of the

difference between posterior and prior expected values of θ. Under the loss in Example

3 Iπ,L2

V (x) is the modal posterior probability minus the posterior probability of the prior

mode.

Under the possibly negative convex function in (33)

φ
(2)
π,L(Tπ(x)) = Eπ [L(θ, dπ)] −EπE(θ|x)[L(θ, dπE(θ|x))], (61)

which is also such that Iπ,L
V (E) = Epπ

[φ
(2)
π,L(Tπ(x))] but which can be negative and

therefore it does not qualify as a measure of the information in X = x. Instances where

one observes a sample that leads to a posterior expected loss that is larger than the

prior expected loss can be a highly informative warning.

Table 1 lists the measures Iπ
φ (x) associated to Examples 2 to 10. It includes as special

cases the KL-divergence between posterior and prior, and the coefficient of variation,

one minus the ratio between weighted geometric and arithmetic averages, and the ratio

between the maximum and the average of the values taken by the likelihood function.

Remark: The likelihood principle rules that, if the likelihood function lx(θ) obtained

from E is proportional to the likelihood function ly(θ) obtained from F , the conclusions

drawn from X = x should be identical to the conclusions drawn from Y = y, and in that

case, one should require that the information inX = x has to be equal to the information

in Y = y. Given that when lx(θ) is proportional to ly(θ) then Tπ(x) = Sπ(y), as a

consequence of the likelihood principle one should always use the same convex function

φ(·) to compare the information in observations from different experiments. Other than

that though, nothing else in our interpretation of informativity in terms of peakedness
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Ex. φπ(u) Iπ
φ (x) Iπ

φ (x)

2 (Eπ [θu] −Eπ [θ])2 (EπE(θ|x)[θ] −Eπ[θ])2 (
Eπ[θlx(θ)]
Eπ[lx(θ)] −Eπ [θ])2

3 maxi {πiui} − π(θπ
m)u(θπ

m) maxθ {πE(θ|x)} − πE(θπ
m|x) maxθ{π(θ)lx(θ)}

Eπ[lx(θ)] − π(θπ
m)lx(θπ

m)
Eπ[lx(θ)]

4
∑k

i=1 πiui logui EπE(θ|x)[log
πE(θ|x)

π(θ) ] Eπ [
lx(θ)

Eπ[lx(θ)] log
lx(θ)

Eπ[lx(θ)] ]

5
∑k

i=1 πi|u1/r
i − 1|r, 1 ≤ r Eπ[|(πE(θ|x)

π(θ) )1/r − 1|r] Eπ [|( lx(θ)
Eπ[lx(θ)])

1/r − 1|r]
6

∑k
i=1 πi(1 − ut

i), 0 < t < 1 1 −Eπ [(
πE(θ|x)

π(θ) )t] 1 − Eπ[lx(θ)t]
Eπ[lx(θ)]t

6
∑k

i=1 πi(u
t
i − 1), 1 < t Eπ [(

πE(θ|x)
π(θ) )t] − 1

Eπ[lx(θ)t]
Eπ[lx(θ)]t − 1

6
∑k

i=1 πi(u
2
i − 1) Eπ [(

πE(θ|x)
π(θ) )2] − 1

V arπ[lx(θ)]
Eπ[lx(θ)]2

7
∑k

i=1 πi max{ui, 1} − 1 Eπ [max{πE(θ|x)
π(θ) , 1}] − 1 Eπ[max{ lx(θ)

Eπ[lx(θ)] , 1}] − 1

8 1 − uπ1
1 . . . uπk

k 1 − Πk
i=1(

πE(θi|x)
πi

)πi 1 − Πk
i=1lx(θi)

πi

Eπ[lx(θ)]

9 r
√
π1ur

1 + . . .+ πkur
k − 1 r

√
Eπ [(

πE(θ|x)
π(θ) )r] − 1

r
√

Eπ[lx(θ)r]

Eπ[lx(θ)] − 1

10 maxi ui − 1 maxθ{πE(θ|x)
π(θ) } − 1

maxθ{lx(θ)}
Eπ[lx(θ)] − 1

Table 1: Measures of the information in X = x associated to the measures of the

information in E of Examples 2 to 10. Each measure is presented both in terms of

distance between the posterior and prior densities as well as in terms of a convex function

of the likelihood. In Example 3, θπ
m denotes the mode of the prior distribution.

of the likelihood and of variability of likelihood ratios follows from the likelihood or the

weaker sufficiency principle. The rationale for Definitions 5.1-5.2 and 6.1-6.2 is grounded

on Proposition 3.1-3.2 and on the axiom set in Definition 4.1.

6.2 Measure of the information about θ in a distribution h on Ω

Here, the information about a random variable θ in a distribution h on Ω is measured

through the information in an observation that updates a baseline reference distribution

treated as a prior, into a posterior h. The uncertainty about θ in h is then measured as

the information in a one-point distribution, hct, minus the information in h.

Definition 6.3. The information about θ in the distribution h = (h1, . . . , hk) on Ω is
the information in any observation X = x that updates the uniform prior distribution,
h1/k = (1/k, . . . , 1/k), into a posterior distribution h, πE(θ|x) = h. Within the context
of generalized divergence measures this leads to measuring information in h through

I(h) = φ1/k(kh1, . . . , khk), (62)

where φ1/k(u) are non-negative convex functions on Kh1/k
with I(h1/k) = φ1/k(1, . . . , 1) =

0 and with I(hct) = φ1/k(k, . . . , 0) = . . . = φ1/k(0, . . . , k). This is the same as

I(h) = ϕ1/k(h1, . . . , hk), (63)

where ϕ1/k(h1, . . . , hk) are non-negative convex functions on the simplex of Rk with
I(h1/k) = ϕ1/k(h1/k) = 0 and with I(hct) = ϕ1/k(1, . . . , 0) = . . . = ϕ1/k(0, . . . , 1).
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By requiring that ϕ1/k(h1/k) = 0, this definition arbitrarily considers I(h) to be

smallest for the uniform distribution h1/k, with I(h1/k) = 0, but it could be made

smallest for any other baseline distribution href on Ω by replacing h1/k by href in

Definition 6.3.

The replacement of h1/k by other baseline distributions is very much indicated in the

infinite Ω case, when uniform distributions lose their unique role as baseline distributions

and one might want to use an alternative reference prior instead, in a way analogous to

the one used in Clarke (1996) to measure the information in a prior distribution in terms

of equivalent sample size. Note though that the lack of a universal agreement on what

counts as a minimally informative reference distribution for uncountable Ω, coupled

with the fact that for them one-point distributions are not absolutely continuous, here

complicates considerably the jump from finite to uncountable Ω.

Because of the convexity of I(·), I(h) is largest at the extreme points of the simplex,

that correspond to degenerate one-point distributions, hct, with I(hct) = ϕ1/k(1, . . . , 0).

Requiring that ϕ1/k(1, . . . , 0) = . . . = ϕ1/k(0, . . . , 1) forces the information about θ in all

one-point distributions, I(hct), to be the same irrespective of the θj ∈ Ω ‘held true’ by

hct. (By assuming equal information for all one-point distributions, one is not assuming

that the information in a totally informative observation has to be the same irrespective

of the one-point posterior distribution that that observation is leading to).

Note that even though the ϕπ(h) given in examples 5 to 7 and 8 to 10 do not take

the same value on all the extreme points of the simplex, when Ω is finite one can always

find one non-negative convex function that satisfies ϕπ(1, . . . , 0) = . . . = ϕπ(0, . . . , 1)

and generates any generalized φ-divergence measure Iφ(E), by adding to ϕπ(h) an

appropriate function that is linear on the simplex and vanishes at π. For example, the

convex function ϕπ(h) =
∑k

i=1 max {hi, πi}−1 that yields the measure in (47) fails this

condition, but the non-negative convex function ϕπ(h) =
∑k

i=1 πi(hi+max{hi/πi, 1})−∑k
i=1 πi(πi + 1) satisfies this condition and yields the same measure in (47).

On the other hand, note that once the baseline href is agreed upon to be h1/k or

any other minimally informative reference distribution, only the subset of non-negative

convex functions on the simplex of Rk that are maximized on all hct and are 0 on href

qualify as measures of the information in h. In Examples 3 to 10 with href = h1/k, that

restricts consideration to the measures obtained as I(h) = φh1/k
(kh) = ϕh1/k

(h).

In the context of Example 4, the information in E is interpreted as the expected

reduction of the uncertainty about θ when the uncertainty is measured through the

entropy of its distribution, and Rényi (1967a, 1967b) relates the uncertainty about θ
in h to “the amount of missing information on θ when nothing else is known about θ
except that its distribution is h.” We next define the uncertainty about θ in h associated

to generalized divergence measures by analogy.

Definition 6.4. The uncertainty about θ in a distribution h on Ω is the information
in a one-point distribution minus the information in h, U(h) = I(hct) − I(h). Within
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the context of generalized divergences the uncertainty in h is thus measured through

U(h) = φ1/k(khct) − φ1/k(kh), (64)

or what is the same, through

U(h) = ϕ1/k(hct) − ϕ1/k(h), (65)

where φ1/k(u) and ϕ1/k(h) satisfy the conditions set in Definition 6.3.

Note that U(h) is a non-negative concave function on the simplex of Rk (i.e., on the

space of probability measures on Ω), which is minimized by all one-point distributions,

hct, with U(hct) = 0, and which is maximized by the uniform distribution, h1/k, with

U(h1/k) = I(hct) = ϕ1/k(1, . . . , 0). This coincides with the definition of uncertainty

function given in DeGroot (1962) and with the definition of measure of the diversity or

heterogeneity of a population with probability measure h given in Rao (1982), which

makes I(h) a measure of the homogeneity of that population.

One could in fact, define uncertainty measures being maximized by any other ref-

erence distribution, href , by replacing h1/k by href in Definitions 6.3 and 6.4. It is

important to emphasize though, that href should be a distribution commonly agreed

upon to represent maximum uncertainty (minimum information) about θ, irrespective

of the prior π that one is going to eventually use to compute the posterior πE(θ|x) in

the context of an experiment. Once the baseline distribution, href , is chosen, only the

subset of non-negative concave functions on the simplex of Rk that are 0 on all hct and

are maximized on href , qualify as measures of the uncertainty in h. In the context

of Examples 3 to 10 with href = h1/k, that restricts consideration to the uncertainty

measures obtained as U(h) = φh1/k
(khct) − φh1/k

(kh) = ϕh1/k
(hct) − ϕh1/k

(h).

Table 2 lists the measures of the uncertainty about θ in h associated to Examples

2 to 10. This list includes the variance of θ, and the entropy, the Gini-Simpson index,

the geometric average, one minus the maximum, and one minus the root mean square

average of h = (h1, . . . , hk). Even though Table 2 presents the version of these measures

for finite Ω, some of them can be extended by analogy to distributions on infinite Ω.

7 Information in E and uncertainty about θ

Here, the goal is to relate the information in E with the expected impact of E on the

uncertainty in the distribution of θ, and to clarify the sense in which Definition 5.1-

5.2 generalizes the definition of information in an experiment given in DeGroot (1962),

which is the one typically adopted in Bayesian DoE and which encompasses the measures

of information in Lindley (1956) and in Raiffa and Schlaiffer (1961), but which leaves

out measures like the ones in Examples 5 to 10.

In DeGroot (1962), the information about θ in E is defined to be the uncertainty

in the prior minus the expected uncertainty in the posterior, where as in Definition 6.4

uncertainty is measured through non-negative concave functions on the simplex of Rk,
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Example φπ(u) U(h)
2 (Eπ[θu] −Eπ[θ])2 Varh[θ]
3 maxi {πiui} − π(θπ

m)u(θπ
m) 1 − maxi hi

4
∑k

i=1 πiui logui Eh[− logh]

5
∑k

i=1 πi|ui − 1| 2(1 − 1/k − ∑k
i=1 |hi − 1/k|)

6
∑k

i=1 πi(1 − ut
i), 0 < t < 1 kt−1(Eh[ht−1] − 1)

6
∑k

i=1 πi(u
t
i − 1), 1 < t kt−1(1 −Eh[ht−1])

6
∑k

i=1 πi(u
2
i − 1) k(1 −Eh[h])

7
∑k

i=1 πi max{ui, 1} − 1 2 − 1/k − ∑k
i=1 max{hi, 1/k}

8 1 − uπ1
1 . . . uπk

k k(h1 . . . hk)1/k

9 r
√
π1ur

1 + . . .+ πkur
k − 1

r
√
k(1 − r

√
Eh[hr−1])

10 maxi ui − 1 k(1 − maxi hi)

Table 2: Measures of the uncertainty about θ in its own distribution h(θ) associated to

the measures of the information in E of Examples 2 to 10. Except for Example 2, the

baseline maximum uncertainty distribution is the uniform, h1/k, and in these cases the

measures of the information about θ in h(θ) can be obtained from I(h) = U(h1/k)−U(h).

U(·), taking the value 0 at all the degenerate one-point distributions, hct, and “typically

attaining their maximum at or near the distribution (1/k, . . . , 1/k),”

IDG(E) = U(π) −Epπ
[U(πE(θ|x))] = Epπ

[I(πE(θ|x))] − I(π). (66)

Therefore, the setting in De Groot (1962) covers all the measures of the information in

E that can be interpreted as the expected additive increase (decrease) of the informa-
tion (uncertainty) about θ in its distribution, when one updates the prior π based on

the outcome of E. Even though De Groot does not make explicit how one would go

about selecting the baseline maximum uncertainty distribution, it is implied that the

uncertainty function, U(·), and thus the baseline distribution that maximizes U(·), is

to be selected in a way that does not depend on the prior π.

Clearly, all the measures posed as IDG(E) are generalized divergence measures,

Iφ(E) = Epπ
[φ(

πE(θ|x)
π

)] = Epπ
[ϕπ(πE(θ|x))], (67)

with ϕπ(h) = U(π) − U(h), because ϕπ(·) is convex and ϕπ(π) = 0. It is thus natural

to ask wether or not all generalized divergence measures can be posed as in (66) and if

not, to determine which Iφ(E) can be posed as in (66), and which can not.

By comparing (66) with (25), it is clear that the setting in De Groot (1962) includes

all the measures considered in Section 5.3, with uncertainty being measured through

UL(h) = Eh[L(θ, dh)], which is already recognized in Raiffa and Schlaiffer (1961) as the

value of perfect information when π = h. By comparing (66) with (37), it is also clear

that (66) includes the mutual information in Example 4, with UMI (h) = Eh[− logh].
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In general, to pose any generalized divergence measure, Iφ(E), as in (66), one would

‘just’ have to define U(h) to be equal to ϕπ(hct) − ϕπ(h), where ϕπ(h) is one of the

convex functions defining that Iφ(E). The problem is that unless one can find one

such U(h) that is as in Definition 6.4 (i.e., it is non-negative, it is 0 for all hct, and it

is maximized at a commonly agreed upon maximum uncertainty href ), U(h) will not

make it into a meaningful measure of the uncertainty in h, and one will not be able to

interpret Iφ(E) as prior uncertainty minus expected posterior uncertainty.

In particular, it can be checked that the generalized divergence measures in (41),

(44), (47), (49), (53), and in (55), can not be posed as in (66) with U(·) satisfying

Definition 6.4, and therefore the measures of the information in an experiment covered

by Examples 5 to 10 can not be interpreted as prior uncertainty minus expected posterior

uncertainty as in De Groot (1962). For example, in order to pose the generalized

divergence measure in Example 7,

Iπ
M (E) = Epπ

[

k∑

i=1

max{πE(θi|x), πi}] − 1, (68)

as in (66), the only non-negative concave function U(h) with U(hct) = 0 that would

allow it is

2 −
k∑

i=1

(πihi + max{hi, πi}), (69)

and in order to pose the generalized divergence measure in Example 8,

Iπ
H1

(E) = 1 −Epπ
[
Πk

i=1πE(θi|x)πi

Πk
i=1π

πi

i

], (70)

as in (66), the only non-negative concave function U(h) with U(hct) = 0 that would

allow it is

(
h1

π1
)π1 . . . (

hk

πk
)πk , (71)

but (69) and (71) are maximized by h = π, which is the prior distribution used to

compute πE(θ|x), instead of being maximized at one commonly agreed maximum un-

certainty distribution, href . Therefore (69) and (71) fail to make it into meaningful

measures of the uncertainty in h. Calling measure of uncertainty to an object that

assumes that one’s subjective prior π represents maximum uncertainty about θ, is not

something that De Groot is likely to have settled for.

Among all the measures covered by (41), (44), (47), (49), (53) and by (55), in Ex-

amples 5 to 10, only the ones computed under π = href , I
href

φ (E), can be posed as in

(66) with a U(·) satisfying the requirements of Definition 6.4, but these special cases

only allow one to assess the value of E through its impact on the posterior distribu-

tions obtained from that reference prior and not through its impact on the posterior

distributions obtained from other priors.

Definition 4.1 leads to measuring the information in E through Iφ(E), in Definition

5.1-5.2, which encompasses IDG(E) as a special case but which also includes measures
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like the ones in Examples 5 to 10 that are not interpretable as prior uncertainty minus

expected posterior uncertainty about θ. In the extended setting of Definition 5.1-5.2,

the information about θ in E still relates to the expected impact of E on the uncertainty

about θ, but that impact does not have to be measured on an additive scale, as in (66).

Even though some might wish that the measure of the statistical information in E and

the measure of the self-information about θ in its own distribution always add up in

the sense of De Groot (1962), the two concepts being measured are different enough to

allow for other types of relations between their measures.

Of course, if one was willing to consider an uncertainty measure to be any non-

negative concave function on the simplex of Rk taking the value 0 on all extreme points

of that set, without any reference to a standard baseline maximum uncertainty distri-

bution, then all measures in Examples 5 to 10 could be posed as in (66), and in this

extended sense Definition 5.1 and the definition of information in De Groot (1962) would

coincide. But we believe that assuming that one’s subjective prior de facto represents

maximum uncertainty about θ, the way allowed for if one adopts this extended defi-

nition of uncertainty measure, goes against the spirit of what De Groot was trying to

capture through his definition of information in an experiment.

On the side, note that carrying out experiment E could lead to πE(θ|x) being less

concentrated than π, and therefore one could be left with less information (more un-

certainty) about θ in πE(θ|x) than there was in π (i.e., the entropy or the variance of

the observed posterior could be larger, or its modal probability smaller than the ones of

the prior). Therefore, even in the context of Examples 2 to 4 that fit in the framework

of De Groot (1962), I(πE(θ|x)) − I(π) can be negative and it should not be used as a

measure of the information about θ in X = x. Finding that a priori one was too certain

about θ is quit informative and worthwhile.

It is unfortunate that the term “information” has come to mean a wide array of

different concepts, such as statistical information in experiment E, observed informa-
tion in X = x and self-information about θ in a distribution h on Ω. But the word

“information” already refers to all these concepts and it is therefore important that one

precisely distinguishes and relates its meanings and its corresponding measures, the way

we have tried to do in this manuscript.

8 An illustrative example

The measures of the information in E = (X ;Pθ) can be used for comparing experi-

ments based on statistical merit in design of experiments, and they are the base for the

construction of reference priors for a given experiment (Bernardo 1979b, 2005a; Dawid

1979), and for the construction of minimally informative models for a given prior (Yuan

and Clarke 1999). The measures of the information in X = x serve as measures of the

surprise about θ in X = x which makes them useful as Bayesian model checking test

statistics. The measures of the information in a distribution h can be used to assess

the strength of knowledge about the corresponding random variable, and as measures

of concentration or of the homogeneity of a population with probability measure h.
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By linking the measure of the information in E, in X = x, and in h, under the

generalized divergence framework set up in Definitions 5.1-5.2, 6.1-6.2, and 6.3, one is

allowed a unified approach to all these problems. Here we briefly sketch where those

links lead to in the context of linear normal experiments.

Consider E = (X ;Pθ) to be a linear normal regression experiment that yields X ∈
Rn distributed Nn(Aθ, σ2I) with known σ and with θ ∈ Rp. In this context, selecting

an experiment requires choosing an n× p design matrix A. Let the prior distribution,

π, be normal, Np(m0, σ
2V0), with known Eπ [θ] = m0 and V arπ[θ] = σ2V0, and thus let

the prior predictive, pπ(x), be Nn(Am0, σ
2(I +AV0A

′

)) and the posterior distribution,

πE(θ|x), be Np(mF , σ
2VF ) with EπE(θ|x)[θ] equal to mF = (V −1

0 + A
′

A)−1(V −1
0 m0 +

A
′

X) and with V arπE(θ|x)[θ] = σ2VF , where VF = (V −1
0 +A

′

A)−1.

When E and F are any two such linear normal experiments, E is “sufficient for” F
if and only if Iθ

F i(E) − Iθ
F i(F ) is non-negative definite (Hansen and Torgersen, 1974).

Given that here Iθ
F i(E) = A

′

A which does not depend on θ, for this type of experiments

one can restrict attention to the measures of the information covered by Example 1, that

in this context can all be posed as γ(A
′

A), with γ(·) being a real function such that

γ(M1) ≥ γ(M2) whenever M1 −M2 is non-negative definite. That is precisely what the

DoE literature requires of an optimality design criteria ever since Kiefer (1959), even

though they do not link this requirement to the sufficiency argument given above.

Next, we compute the measures of the information in E, in X = x, and in h(θ),
associated to Examples 2, 3, 4 and 8, for linear normal experiments, and find that all

the measures of the information in E are indeed functions of A
′

A as described above.

Example 2 (cont): When H = I , and therefore when comparing linear normal

experiments in terms of their performance under estimation with loss function L(θ, d) =

(d− θ)
′

(d− θ), one measures the information in E through

Iπ,L1

V (E) = trace{σ2(V0 − (V −1
0 +A

′

A)−1)}, (72)

which leads one to choose an experiment with a design matrix A minimizing the trace

of the posterior variance-covariance, VF = (V −1
0 + A

′

A)−1, among the set of available

experiments (see, e.g., Chaloner 1984). The measure of the information in X = x
associated to (72) is

Iπ,L1

V (x) = (mF −m0)
′

(mF −m0). (73)

Finding Iπ,L1

V (x) to be surprisingly larger than Iπ,L1

V (E) by finding that when X ∼ Pπ

the probability that Iπ,L1

V (X) > Iπ,L1

V (x) is very small might indicate that the prior

assumptions might have not been reasonable.

Moreover, in this context the uncertainty about θ in a distribution on Rp is measured

through the trace of its variance-covariance matrix and therefore, the impact of X = x
on the uncertainty about θ, UL1

V (π) − UL1

V (πE(θ|x)), is the trace of σ2(V0 − (V −1
0 +

A
′

A)−1), that in this case is always non-negative and it coincides with Iπ,L1

V (E), which

only holds for linear normal experiments.
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Example 3 (cont): Here, one measures the information in E through

Iπ,L2

V (E) = (2πσ2)−p/2(|(V −1
0 +A

′

A)−1|−1/2 − |V0|−1/2), (74)

which leads one to choose an experiment with an A maximizing the determinant of

(V −1
0 + A

′

A) and thus the determinant of Vpπ
[X ]. The measure of the information in

X = x associated to (74) is the modal posterior probability density minus the posterior

probability density at the prior mode,

Iπ,L2

V (x) =
1

(2πσ2)p/2|VF |1/2
(1 − exp {− 1

2σ2
(mF −m0)

′

V −1
F (mF −m0)}). (75)

In the context of this example, the information about θ in a distribution on Rp, is

measured through the value of the probability density at its mode, and the impact of

X = x on the information about θ, IL2

V (πE(θ|x))− IL2

V (π), is the difference between the

modal posterior density and the modal prior density, which in this case coincides with

Iπ,L2

V (E) but not for more general type of experiments.

Example 4 (cont): Here, one measures the information in E through

Iπ
MI (E) = (log |V0| − log |(V −1

0 +A
′

A)−1|)/2, (76)

which like in the previous example leads one to choose an experiment with an A that

maximizes the determinant of Vpπ
[X ] (see, e.g., Sebastiani and Wynn 2000). The mea-

sure of the information in X = x associated to (76) is the Kullback-Leibler divergence

between the posterior and the prior distributions,

2Iπ
MI (x) = log

|V0|
|VF |

+
1

σ2
(mF −m0)

′

V −1
0 (mF −m0) + trace{V −1

0 VF } − p. (77)

Here the uncertainty about θ is measured through the entropy of its distribution, and

the reduction of the uncertainty due to X = x, UMI(π)−UMI(πE(θ|x)), is the entropy

of the posterior minus the entropy of the prior, that for these linear normal experiments

coincides with Iπ
MI (E), but not in general.

Example 8 (cont): Goel and Padilla (1994), following the lead in Goel (1988),

extends (48) for infinite Ω through Iπ
H1

(E) = 1 −Epπ
[exp {Eπ[ln {pθ(x)/pπ(x)}]}], and

computes it for various exponential family experiments. Using their results, it follows

that under our linear normal regression model,

Iπ
H1

(E) = 1 − exp {−trace{AV0A
′}/2}, (78)

and

Iπ
H2

(E) = trace{AV0A
′}/2, (79)

which is the only measure of the information in E considered in this section that is

additive under independent experiments. In the context of this measure, one chooses

the experiment with an A maximizing the trace of AV0A
′

and thus maximizing the trace
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of Vpπ
[X ]; when V0 = I , that reduces to maximizing the trace of IFi(E). The measure

of the information in X = x associated to Iπ
H1

(E) is

Iπ
H1

(x) = 1 − exp {Eπ[ln pθ(x)] − lnEπ[pθ(x)]}, (80)

that for these linear normal experiments becomes

Iπ
H1

(x) = 1 − |V0|1/2

|VF |1/2
exp {−1

2
(

1

σ2
(m0 −mF )

′

V −1
F (m0 −mF ) + trace{V −1

F V0} − p)}.
(81)

Given that Iπ
H1

(E) can not be written as (66), here the impact of E and of X = x on

the information in the distribution of θ can not be measured on an additive scale.

9 Concluding remarks

The role of likelihood ratios in statistical inference is widely recognized but their role

in DoE is not. In this paper our main goal was to draw attention to the role played by

the convex ordering of likelihood ratio statistics in the characterization of the measure

of the information in an experiment, and therefore in the foundations of DoE. As a

consequence of ignoring that link, the DoE literature lacks a clear understanding on

why do optimality design criteria qualify as such and its scope is too narrow in that it

focuses on a small subset of valid optimality design criteria.

Some researchers in DoE might be disappointed by the fact that Definition 4.1 is

making the choice of an information measure as wide as possible instead of narrowing it

down, but that is an unavoidable consequence of information being a highly multidimen-

sional concept. As a consequence of Blackwell-Sherman-Stein theorem, in Proposition

3.1-3.2, if one imposed any extra requirement in Definition 4.1 other than linearity under

mixture experiments, some of the generalized divergence measures covered by Definition

5.1-5.2 would be excluded from consideration as information measures and Definition

4.1 would stop characterizing all valid measures of the information in an experiment.

The secondary goal of the paper was to present Definition 6.1-6.2 on how observed

information should be measured. That definition is very simple and its motivation is

hard to argue against even outside the sufficiency ordering framework and yet, we have

not found it anywhere in the literature (even though it owes a lot to DeGroot 1984). An

alternative way of presenting our ideas would begin by defining Iφ(x) as in Definition

6.1-6.2, and then defining Iφ(E) to be equal to Epπ
[Iφ(x)]. Instead, we focused on a

characterization of the measure of the information in E that naturally leads to Definition

5.1-5.2 and makes Definition 6.1-6.2 into its off-shot.

The choice of an experiment based on statistical merit only, is a decision problem
in which the reward from experiment E = (X ;Pθ) is its likelihood ratio or posterior

distribution, the utility function is convex, the utility of the reward is the observed

information in X = x, and the expected utility of E is the statistical information in E.

As remarked earlier, the axiom set in Definition 4.1 does neither assume that θ
is random nor that the results from E will be used in a statistical decision problem.
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Nevertheless, one might expect the information in E to depend on the strength of

knowledge about θ because the less uncertain one is about θ, the less value one finds

in the outcome to come from E (in the limit, anyone with a one-point prior should not

learn anything from any experiment). When choosing the design optimality criteria to

use, it is very convenient to think in terms of loss functions and/or prior distributions

the way it is illustrated in Section 5.3, (with the understanding that if one needs to

take experimental costs into consideration one also has to include in the loss terms that

typically depend on sample size and/or the specific outcome observed, as described in

Lindley, 1972, 2000 and in Bernardo and Smith, 1994). Once an optimality criteria is

chosen, there is no difference between the Bayesian and the non-Bayesian way of using it

to plan for an experiment and thus, we find it unfortunate that some insist in exporting

to DoE the same divide that separates Bayesian from Non-Bayesian inference.

By letting Ω be the source from which an input message, θ, is picked, E and F
be discrete memoryless channels and X = x and Y = y be the corresponding output

messages, comparing the fidelity of channels E and F as in information theory is anal-

ogous to comparing the information in experiments E and F . For the ones asking for a

comparison of Definition 4.1 to the axiomatic approach to information theory (see, e.g.,

Shore and Johnson 1980, Ebanks et al. 1998), note that their axiom sets apply to the

measure of the information observed and not to the measure of the information in E
that is the object in Definition 4.1. Furthermore, the typical axiom sets in information

theory implicitly assume that the goal is to summarize/update the information about

θ in a distribution on Ω as in Bernardo (1979a), which explains that if one abides by

their main axiom sets, one ends up normatively requiring that the information in E be

measured through its mutual information in Example 4. Definition 4.1 encompasses all

valid measures of the information in E and therefore it includes measures that might

not be useful in specific settings like the one of information theory.

The framework presented in this manuscript covers as special cases the comparison of

the information in experiment E = (X ;Pθ) that observes from X with the information

in the sub-experiment ET that observes from a statistic T (X), and the comparison of

E with experiments that observe censored or truncated versions of X .

On the other hand, in this manuscript it is assumed that all the information gath-

ered is to be used after the experiment is completed and therefore it excludes from

consideration sequential experiments, where the information in different parts of the

experiment are used for different purposes. An extension of Blackwell-Sherman-Stein

theorem is needed in order to relate sequential sufficiency as defined in Greenshtein

(1996) to variability orderings of sequential likelihood ratio statistics, which would help

extend generalized divergence measures to sequential experiments.

Appendix: convex functions and convex ordering

Real valued functions φ(·) defined on a convex set C in Rk are convex if φ(αu + (1 −
α)v) ≤ αφ(u)+(1−α)φ(v) for every α ∈ (0, 1) and every u and v in C. If φ(·) is convex

and h(·) is convex and non-decreasing on the range of φ(·), then h(φ(·)) is convex.
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Any convex function g(u) on R (R+) induces convex functions φi(u1, . . . , uk) = g(ui)

onRk (Rk
+) by acting coordinate wise. Given any arbitrary collection of convex functions

on the same subset, any linear combination of these functions with non-negative coeffi-

cients and the pointwise supremum of this collection of functions are convex. In particu-

lar, if g(·) is convex on R (R+), a0 ∈ R and ti ≥ 0, then φ(u1, . . . , uk) = a0+
∑k

i=1 tig(ui)

and φ(u1, . . . , uk) = max {a0,maxi{g(ui)}} are convex functions on Rk (Rk
+). For a de-

tailed coverage of convex analysis, see Rockafellar (1970).

Convex functions take on their larger values over “extreme regions.” Any measure of

the form E[φ(U)] with a convex function φ(·), serves as a measure of the variability of

the random vector U . The convex ordering defined next, allows one to compare random

variables in terms of their variabilities.

Definition 9.1. If U = (U1, . . . , Uk) and V = (V1, . . . , Vk) are random vectors such
that

E[φ(U)] ≥ E[φ(V )], (82)

for every real valued function φ(·) that is convex on the union of the supports of U and
V , then U is said to be larger than V in the convex order, denoted by U ≥cx V .

When U ≥cx V , U is more likely to take extreme values than V and thus U is

more spread out than V . In fact, one can re-phrase Definition 9.1 by stating that U
is larger than V in the convex order, if U is more variable than V irrespective of the

way one measures variability. In particular, when U and V are real valued random

variables, U ≥cx V implies that for every a ∈ R, E[(U − a)2] ≥ E[(V − a)2], and thus

V ar[U ] ≥ V ar[V ]. In general, U ≥cx V implies that V ar[U ]−V ar[V ] is a non-negative

definite matrix. Also, U ≥cx V implies Ui ≥cx Vi for i = 1, . . . , k, as well as the convex

ordering between any given set of components of U and V . For a very nice exposition

on convex orderings, see Shaked and Santikumar (1994, chap.2 and 5).
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