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Abstract. In this paper, the object of study is a Skorohod SDE in a convex polyhedron with oblique reflection at the boundary. We
prove that the solution is pathwise differentiable with respect to its deterministic starting point up to the time when two of the faces
are hit simultaneously. The resulting derivatives evolve according to an ordinary differential equation, when the process is in the
interior of the polyhedron, and they are projected to the tangent space, when the process hits the boundary, while they jump in the
direction of the corresponding reflection vector.

Résumé. L’object du présent travail est l’étude d’une équation différentielle stochastique de type Skorohod dans un polyèdre
convexe avec réflexions obliques au bord. Nous démontrons que pour presque toutes les trajectoires, la solution est différentiable
par rapport au point de départ jusqu’au temps où deux faces sont atteintes simultanément. Les dérivées sont à l’intérieur du polyèdre
solutions d’une équation différentielle ordinaire. Au bord du polyèdre elles sont projetées dans l’espace tangeant en sautant en
direction du vecteur de reflection correspondant.
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1. Introduction

We consider a Markov process with continuous sample paths, characterized as the strong solution of a stochastic
differential equation (SDE) of the Skorohod type, where the domain G is a convex polyhedron in Rd , i.e. G is the
intersection of a finite number of half spaces. The process is driven by a d-dimensional standard Brownian motion
and a drift term, whose coefficient function is supposed to be continuously differentiable and Lipschitz continuous. At
the boundary of the polyhedron it reflects instantaneously, the possibly oblique direction of reflection being constant
along each face.

Let G = ⋂N
i=1 Gi , where each Gi is a closed half space with inward normal ni . The direction of reflection on the

faces ∂Gi will be denoted by constant vectors vi . As an example one might think of the process of a Brownian motion
in an infinite two-dimensional wedge, established by Varadhan and Williams in [12] (see Fig. 1).

The study of such SDEs is motivated by several applications: For instance, these processes arise as a diffusion
approximation of storage systems or of single-server queues in heavy traffic (see, e.g. Section 8.4 in [3] for details).

In [7] Lions and Sznitman established an existence and uniqueness result for solutions of SDEs with oblique
reflecting boundary conditions on smooth domains, which was extended by Dupuis and Ishii in [6] for SDEs on
domains that might have corners.

Burdzy and Chen proved in [2] Hölder continuity of the Neumann heat kernel in the case of normal reflection in
Lipschitz domains, in order to construct a synchronous coupling of reflected Brownian motions. In [8] Mandelbaum
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Fig. 1. Two-dimensional wegde with oblique reflection.

and Ramanan established a directional derivative of the Skorohod map along trajectories having left and right limits
at every point in the case of oblique reflection on the domain Rd+.

The aim of the present paper is to show that the solution of the Skorohod SDE is pathwise differentiable with respect
to the deterministic initial value and to characterize the pathwise derivatives up to time τ , when at least two faces of
G are hit simultaneously for the first time. This is an addition to the results of [4], where Deuschel and Zambotti
considered such a differentiability problem for SDEs on the domain Rd+ with normal reflection at the boundary. Our
proceeding will be quite similar to that in [4], in particular we shall use the same technical lemma dealing with the
minimum of a Brownian path (see Lemma 1 in [4]). The resulting derivatives are described in terms of an ODE-like
equation. When the process is away from the boundary, they evolve according to a simple linear ordinary differential
equation, and when it hits the boundary, they have a discontinuity; more precisely, they are projected to the tangent
space and jump in direction of the corresponding reflection vector (cf. Section 3). In addition, we provide a Bismut–
Elworthy formula for the gradient of the transition semigroup of the process which is stopped in τ (see Corollary 2.4).

A crucial step in the proof of the differentiability result is to show that the solution of the Skorohod SDE depends
Lipschitz continuously on the initial value. To do this we shall apply a criterion given in [5]. In particular, we have to
ensure that a certain static geometric property holds (cf. Assumption 2.1 in [5]), so that an additional restriction to the
directions of reflection is needed.

Our result is similar to a system, which has been introduced by Airault in [1] in order to develop probabilistic
representations for the solutions of linear PDE systems with mixed Dirichlet–Neumann conditions on a regular do-
main in Rn. However, in contrast to [1] we study pathwise differentiability properties of a process with reflection
following [4], but with possibly oblique reflection.

The paper is organized as follows: In Section 2 we state the main result and in Section 4 we prove it. In Section 3
we investigate the results in detail, while we establish a martingale problem connected with the derivatives and we
check the Neumann condition.

2. Model and main result

Throughout the paper we denote by ‖ · ‖ the Euclidian norm, by 〈·, ·〉 the canonical scalar product and by e =
(e1, . . . , ed) the standard basis in Rd , d ≥ 2. We consider processes on the domain G, which is a convex polyhe-
dron, i.e. G ⊆ Rd takes the form G = ⋂N

i=1 Gi , where each Gi := {x: 〈x,ni〉 ≥ ci} is a closed half space with inward
normal ni and intercept ci . The boundary of the polyhedron consists of the sides ∂Gi = {x : 〈x,ni〉 = ci} and with
each side ∂Gi we associate a constant, possibly oblique direction of reflection vi , pointing into the interior of the
polyhedron. We always adopt the convention that the directions vi are normalized such that 〈vi, ni〉 = 1. For every
i ∈ {1, . . . ,N}, let v⊥

i , n⊥
i ∈ span{ni, vi} be such that

〈
vi, v

⊥
i

〉 = 〈
ni, n

⊥
i

〉 = 0,
〈
n⊥

i , v⊥
i

〉 = 〈ni, vi〉 = 1,
〈
ni, v

⊥
i

〉
> 0, (2.1)
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Fig. 2. Choice of n⊥
i

and v⊥
i

.

which implies 〈vi, n
⊥
i 〉 = −〈v⊥

i , ni〉 (cf. Fig. 2). Furthermore, let (nk
i )k=3,...,d be a completion of {ni, n

⊥
i } to an ortho-

normal basis of Rd .
To ensure Lipschitz continuity (see Lemma 4.1) and pathwise existence and uniqueness, a further assumption on

the directions of reflection is needed, namely that either

ni = vi or ai〈ni, vi〉 >
∑
j 	=i

aj

∣∣〈ni, vj 〉
∣∣ (2.2)

for some positive constants ai and for all i (cf. Theorem 2.1 in [5]).
The set of continuous real-valued functions on G is denoted by C(G), and Cb(G) denotes the set of those functions

in C(G) that are bounded on G. For each k ∈ N, Ck(G) denotes the set of real-valued functions that are k-times
continuously differentiable in some domain containing G, and Ck

b(G) denotes the set of those functions in Ck(G) that
are bounded and have bounded partial derivatives up to order k. Furthermore, we denote by � the Laplace differential
operator on C2(G) and by Dvi

:= 〈vi,∇〉 the directional derivative operator associated with the direction of reflection
vi on the side ∂Gi .

Now, for any starting point x ∈ G, we consider the following stochastic differential equation of the Skorohod type:

Xt(x) = x +
∫ t

0
b
(
Xr(x)

)
dr + wt +

∑
i

vi l
i
t (x), t ≥ 0,

Xt (x) ∈ G,dlit (x) ≥ 0,

∫ ∞

0
1G\∂Gi

(
Xt(x)

)
dlit (x) = 0, t ≥ 0, i ∈ {1, . . . ,N}, (2.3)

where w is a d-dimensional Brownian motion on a complete probability space (Ω, F ,P). For every i, li (x) denotes
the local time of X(x) in ∂Gi , i.e. it increases only at those times, when X(x) is at the boundary ∂Gi . The components
bi :G → R of b are supposed to be in C1(G) and Lipschitz continuous. Then, existence and uniqueness of strong
solutions of (2.3) are guaranteed in the case of normal reflection by the results of [11], since G is convex, and in the
case of oblique reflection by [6], since by condition (2.2) the assumptions of Case 2 in [6] are fulfilled (cf. Remark 3.1
in [6]).

Notice that there is one degree of freedom in defining the local times in the Skorohod SDE (2.3): Setting l̃i (x) =
hil

i(x) for any real constants hi > 0, l̃i (x) satisfies the conditions in (2.3) as well. Thus, it is possible to replace
vil

i(x) by h−1
i vi l̃

i (x) in the Skorohod SDE. Consequently, the norm of the reflection vectors vi does not affect the
Skorohod equation, so that the vectors can be thought to be normalized. However, we shall use the normalization
〈vi, ni〉 = 1 chosen above, to simplify the computations in the sequel.

Furthermore, by the Girsanov theorem there exists a probability measure P̃(x), which is equivalent to P, such that
the process

Wi
t (x) :=

∫ t

0
bi

(
Xr(x)

)
dr + wi

t , t ≥ 0, i ∈ {1, . . . , d}, (2.4)
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is a d-dimensional Brownian motion under P̃(x). Next we define the stopping time τ by

τ := inf
{
t ≥ 0: Xt(x) ∈ ∂Gi ∩ ∂Gj , i 	= j

}
, x ∈ G, (2.5)

to be the first time when the process hits at least two of the faces simultaneously. The following simple example shows
that even under the assumption in (2.2) τ can a.s. be infinite and finite as well.

Example 2.1. Let G = R2+, i.e. G is a two-dimensional wedge with angle π
2 and inward normals ni = ei , i ∈ {1,2}

(cf. Fig. 1). We choose v1 = n1 and v2 = (− tan θ,1), where θ ∈ (−π
4 , π

4 ) denotes the angle between n2 and v2, such
that the vector v2 points towards the corner if θ is positive. Then, the assumption in (2.2) holds with a1 = a2 = 1.
From Theorem 2.2 in [12] we know that

P[τ < ∞] =
{

0 if θ ≤ 0,

1 if θ > 0,

for any starting point x ∈ G \ {0}. Nevertheless, τ has infinite expectation for every θ ∈ (−π
2 , π

2 ) (see Corollary 2.3
in [12]).

Set

Ci := {
s ≥ 0: Xs(x) ∈ ∂Gi

}
, ri(t) := sup

(
Ci ∩ [0, t]), i ∈ {1, . . . ,N},

with the convention sup∅ := 0, and furthermore C := ⋃N
i=1 Ci and r(t) := max{i=1,...,N} ri(t). Then, for every i,

Ci ∩ [0, τ ) is known to be a.s. a closed set of zero Lebesgue measure without isolated points (closed relative to [0, τ ))
and t �→ ri(t) is locally constant and right continuous. For t ∈ [0, τ ) we define

s(t) :=
{

0 if t < infC,

i if r(t) = ri(t),

i.e. s(t) = i if the last hit of the boundary before time t was in ∂Gi , and s(t) = 0 if up to time t the process has not
hit the boundary yet. Let (An)n be the family of connected components of [0, τ ) \ C. An is open, so that there exists
qn ∈ An ∩ Q, n ∈ N. We set an := infAn and bn := supAn as well as μ(qn) := sup{bk: bk < an} with sup∅ := 0, i.e.
μ(qn) denotes the last time before time qn, when the process reaches the boundary of the polyhedron. Finally, we set
μ(t) = μ(qn) for all t ∈ [μ(qn), bn). Notice that a.s. μ(t) is not the same as r(t) because otherwise the set C would
contain isolated points.

The following theorem gives a representation of the derivatives of X in terms of an ODE-like equation:

Theorem 2.2. The mapping x �→ Xt(x), x ∈ G, is differentiable a.s. for all t ∈ [0, τ ) \ C and, setting η
ij
t :=

∂Xi
t (x)/∂xj , i, j ∈ {1, . . . , d}, there exists a right continuous extension of η on [0, τ ), which has a.s. the following

form:

η
·j
t = δ·j +

∫ t

0

d∑
k=1

∂b

∂xk

(
Xr(x)

)
η

kj
r dr, if s(t) = 0,

(2.6)

η
·j
t = 〈

η
·j
μ(t)−, v⊥

i

〉
n⊥

i +
d∑

k=3

〈
η

·j
μ(t)−, nk

i

〉
nk

i +
∫ t

ri (t)

d∑
k=1

∂b

∂xk

(
Xr(x)

)
η

kj
r dr, if s(t) = i.

The proof of Theorem 2.2 is postponed to Section 4. If we consider the case G = Rd+ and normal reflection at the
boundary, i.e. vi = ni = ei , the result corresponds to that of Theorem 1 in [4].

Remark 2.3. In the special case where N = d and the normals ni form an orthonormal basis of Rd , it is also possible
to provide a random walk representation for the derivatives, which is very similar to that in [4], by using essentially
the same arguments as in the proof of Theorem 1 and Proposition 1 in [4].
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As soon as pathwise differentiability is established, we can immediately provide a Bismut–Elworthy formula:
Define Xτ

t (x) := Xt(x)1{t<τ } and for all f ∈ Cb(G) the associated transition semigroup Ptf (x) := E[f (Xτ
t (x))],

x ∈ G, t > 0. Setting η
ij
t := ∂Xi

t (x)/∂xj for t ∈ [0, τ ) and ηij := 0 on [τ,∞), i, j ∈ {1, . . . , d}, we get

Corollary 2.4. For all f ∈ Cb(G), t > 0 and x ∈ G:

∂

∂xi
Ptf (x) = 1

t
E

[
f

(
Xτ

t (x)
)∫ t

0

d∑
k=1

ηki
r dwk

r

]
, i ∈ {1, . . . , d}, (2.7)

and if f ∈ C1
b(G):

∂

∂xi
Ptf (x) =

d∑
k=1

E

[
∂f

∂xk

(
Xτ

t (x)
)
ηki

t

]
, i ∈ {1, . . . , d}. (2.8)

Proof. Formula (2.8) is straightforward from the differentiability statement in Theorem 2.2 and the chain rule. For
formula (2.7) see the proof of Theorem 2 in [4]. �

3. Martingale problem and Neumann condition

In this section we investigate the derivatives of X, established in Theorem 2.2, in detail. Let j ∈ {1, . . . , d} be arbitrary
but fixed. From the representation of the derivatives in (2.6) it is obvious that (η

·j
t )0≤t<τ evolves according to a linear

differential equation, when the process X is in the interior of the polyhedron, and that it has a discontinuity, when X

hits the boundary, and it jumps in the following manner: For any jump time ti , when X hits ∂Gi , i ∈ {1, . . . ,N}, i.e.
ti = μ(qn) for any qn satisfying s(qn) = i, we have:

η
·j
ti

= 〈
η

·j
ti−, v⊥

i

〉
n⊥

i +
d∑

k=3

〈
η

·j
ti−, nk

i

〉
nk

i .

Recall that {ni, n
⊥
i , nk

i ; k = 3, . . . , d} is an orthonormal basis of Rd , so that

η
·j
ti− = 〈

η
·j
ti−, ni

〉
ni + 〈

η
·j
ti−, n⊥

i

〉
n⊥

i +
d∑

k=3

〈
η

·j
ti−, nk

i

〉
nk

i

and

η
·j
ti

− η
·j
ti− = 〈

η
·j
ti−, v⊥

i − n⊥
i

〉
n⊥

i − 〈
η

·j
ti−, ni

〉
ni = −〈

η
·j
ti−, ni

〉
vi, (3.1)

where the last equality follows from Lemma 3.1. Consequently, we observe that at each time, when X reaches the
boundary ∂Gi , η·j is projected to the tangent space, since 〈η·j

ti
, ni〉 = 0, and jumps in the direction of vi or −vi ,

respectively.

Lemma 3.1. For all i ∈ {1, . . . ,N} and η ∈ Rd :〈
η, v⊥

i − n⊥
i

〉
n⊥

i − 〈η,ni〉ni = −〈η,ni〉vi.

Proof. By the choice of v⊥
i and n⊥

i in (2.1) we have vi = ni + 〈vi, n
⊥
i 〉n⊥

i and v⊥
i = 〈v⊥

i , ni〉ni + n⊥
i , which is

equivalent to〈
vi, n

⊥
i

〉
n⊥

i = vi − ni, v⊥
i − n⊥

i = −〈
vi, n

⊥
i

〉
ni.
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Hence,〈
η, v⊥

i − n⊥
i

〉
n⊥

i − 〈η,ni〉ni = −〈η,ni〉
〈
vi, n

⊥
i

〉
n⊥

i − 〈η,ni〉ni = −〈η,ni〉(vi − ni) − 〈η,ni〉ni

= −〈η,ni〉vi. �

From the observations above it becomes clear that the process (Xt (x), η
·j
t )0≤t<τ is Markovian with state space

G × Rd . Next we want to provide the infinitesimal generator for this Markov process. For that purpose we define the
operator L as follows: Let the domain D(L) be that set of continuous bounded functions F on G × Rd satisfying the
following conditions:

(i) For every η ∈ Rd , F(·, η) ∈ C2
b(G) and the Neumann boundary condition holds:

Dvi
F (·, η)(x) = 0 for x ∈ ∂Gi , i ∈ {1, . . . ,N}. (3.2)

(ii) For every x ∈ G, we have F(x, ·) ∈ C1
b(Rd), i.e. bounded and continuously differentiable with bounded partial

derivatives, satisfying the following boundary conditions: If x ∈ ∂Gi for all η ∈ Rd :

F(x,η) = F
(
x,η − 〈η,ni〉ni

)
, Dvi

F (x, ·)(η) = 0. (3.3)

Note that by the jump behaviour of η·j , provided in (3.1), and by the boundary condition (3.3) we have for every
F ∈ D(L) and t < τ :

F
(
Xt,η

·j
t

) = F
(
Xt,η

·j
t−

)
. (3.4)

Finally, the operator L is defined by:

LF(x,η) := L1F(·, η)(x) + L2F(x, ·)(η), F ∈ D(L),

where

L1F(·, η)(x) := 1

2
�F(·, η)(x) +

d∑
i=1

bi(x)
∂F

∂xi
(·, η)(x),

L2F(x, ·)(η) :=
d∑

i=1

(
d∑

k=1

∂bi

∂xk
(x)ηk

)
∂F

∂ηi
(x, ·)(η).

Proposition 3.2. For F ∈ D(L),

F
(
Xt(x), η

·j
t

) − F
(
x,η

·j
0

) −
∫ t

0
LF

(
Xs,η

·j
s

)
ds, t < τ,

is a martingale.

Proof. Applying Itô’s formula, in particular the version for finite variation processes (see e.g. Theorem IV.18.8
in [10]), we have

F
(
Xt(x), η

·j
t

) − F
(
x,η

·j
0

)
=

d∑
i=1

∫ t

0

∂F

∂xi

(
Xs(x), η

·j
s

)
dXi

s(x) +
d∑

i=1

∫ t

0

∂F

∂ηi

(
Xs(x), η

·j
s

)
dη

ij
s (x) + 1

2

∫ t

0
�F

(·, η·j
s

)(
Xs(x)

)
ds

+
∑

0<s≤t

{
F

(
Xs(x), η

·j
s

) − F
(
Xs(x), η

·j
s−

) −
d∑

i=1

∂F

∂ηi

(
Xs(x), η

·j
s−

)(
η

ij
s − η

ij
s−

)}
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= mt +
∫ t

0
LF

(
Xs(x), η

·j
s

)
ds +

N∑
i=1

∫ t

0
Dvi

F
(
Xs(x), η

·j
s

)
dlis(x)

+
∑

0<s≤t

F
(
Xs(x), η

·j
s

) − F
(
Xs(x), η

·j
s−

) −
∑

0<s≤t

d∑
i=1

∂F

∂ηi

(
Xs(x), η

·j
s−

)(
η

ij
s − η

ij
s−

)
,

where (mt ) is a martingale. Clearly, the third and the fourth term vanish by the boundary conditions (3.2) and (3.4).
Using (3.1) the last term can be rewritten as

−
∑

0<s≤t

N∑
m=1

d∑
i=1

∂F

∂ηi

(
Xs(x), η

·j
s−

)(
η

ij
s − η

ij
s−

)
1{s=μ(s)}1{Xs(x)∈∂Gm}

=
∑

0<s≤t

N∑
m=1

〈
η

·j
s−, nm

〉 d∑
i=1

DvmF
(
Xs(x), ·)(η·j

s−
)
1{s=μ(s)}1{Xs(x)∈∂Gm},

which is equal to zero by (3.3). �

Since (Xt (x), η
·j
t )t<τ is Markovian, we can conclude from Proposition 3.2 that its generator coincides with L at

least on the closure of D(L) w.r.t. the sup-norm topology.
At the end of this section we give another confirmation of the results in Theorem 2.2, namely, they imply that the

Neumann condition holds for X:

Corollary 3.3. Let Xτ
t (x) := Xt(x)1{t<τ } again be the process stopped in τ . Then, for all f ∈ Cb(G) and t > 0, the

transition semigroup Ptf (x) := E[f (Xτ
t (x))], x ∈ G, satisfies the Neumann condition at ∂G:

x ∈ ∂Gi �⇒ Dvi
Ptf (x) = 0, i ∈ {1, . . . ,N}.

Proof. Let x ∈ ∂Gi . By a density argument it is sufficient to consider bounded functions f , which are continuously
differentiable and have bounded derivatives. Then, for each t > 0 we obtain by dominated convergence and the chain
rule:

Dvi
Ptf (x) = E

[
d∑

k=1

∂f

∂xk

(
Xt(x)

)
Dvi

Xk
t (x)1{t∈[0,τ )}

]
.

Thus, it suffices to show

Dvi
Xk

t (x) = 0, ∀k ∈ {1, . . . , d}, t < τ, (3.5)

which we shall prove now by an induction argument. First we consider t ∈ [0,minj 	=i infCj ). Recall that infCi = 0
and η·m

0 = δ·m, so we get for every l ∈ {1, . . . , d} by (2.6):

Dvi
Xl

t (x) =
d∑

m=1

vm
i

〈
η·m

0 , v⊥
i

〉(
n⊥

i

)l +
d∑

m=1

d∑
k=3

vm
i

〈
η·m

0 , nk
i

〉(
nk

i

)l

+
∫ t

ri (t)

d∑
k,m=1

vm
i

∂bl

∂xk

(
Xr(x)

)
ηkm

r dr

=
∫ t

ri (t)

d∑
k=1

∂bl

∂xk

(
Xr(x)

)
Dvi

Xk
r (x)dr,
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where we have used that 〈vi, v
⊥
i 〉 = 0 and 〈vi, n

k
i 〉 = 0. By the Lipschitz continuity of b we obtain

d∑
k=1

∣∣Dvi
Xk

t (x)
∣∣ ≤ C

∫ t

0

d∑
k=1

∣∣Dvi
Xk

r (x)
∣∣dr,

for some positive constant C and by applying Gronwall’s lemma we conclude that (3.5) holds for
t ∈ [0,minj 	=i infCj ).

Let now t < τ be arbitrary and assume that Dvi
Xk(x) = 0 on [0,μ(t)) for all k. Moreover, let j be such that

s(t) = j . Then, for every l we get again by (2.6):

Dvi
Xl

t (x) = 〈
Dvi

Xμ(t)−, v⊥
j

〉
n⊥

j +
d∑

k=3

〈
Dvi

Xμ(t)−, nk
j

〉
nk

j +
∫ t

rj (t)

d∑
k,m=1

vm
i

∂bl

∂xk

(
Xr(x)

)
ηkm

r dr

=
∫ t

rj (t)

d∑
k=1

∂bl

∂xk

(
Xr(x)

)
Dvi

Xk
r (x)dr,

and as above we obtain

d∑
k=1

∣∣Dvi
Xk

t (x)
∣∣ ≤ C

∫ t

0

d∑
k=1

∣∣Dvi
Xk

r (x)
∣∣dr,

which completes the proof again by Gronwall’s lemma. �

4. Proof of the main result

The first step to prove Theorem 2.2 is to show the Lipschitz continuity of x �→ (Xt (x))t w.r.t. the sup-norm topology
on a finite time interval:

Lemma 4.1. For an arbitrary but fixed T > 0, let (Xt (x)) and (Xt (y)), 0 ≤ t ≤ T , be solutions of (2.3) for some
x, y ∈ G. Then, there exists a positive constant K , only depending on T , such that a.s.

(i) sup
t∈[0,T ]

∥∥Xt(x) − Xt(y)
∥∥ ≤ K‖x − y‖,

(ii) sup
t∈[0,T ]

∣∣lit (x) − lit (y)
∣∣ ≤ K‖x − y‖ for all i.

Proof. By the assumption in (2.2), Theorem 2.1 in [5] ensures that Assumption 2.1 in [5] holds. Thus, we can apply
Theorem 2.2 in [5] to obtain

sup
t∈[0,T ]

∥∥Xt(x) − Xt(y)
∥∥ ≤ K1‖x − y‖ + K1 sup

t∈[0,T ]

∥∥∥∥
∫ t

0

[
b
(
Xr(x)

) − b
(
Xr(y)

)]
dr

∥∥∥∥,

and by the Lipschitz continuity of b we get

sup
t∈[0,T ]

∥∥Xt(x) − Xt(y)
∥∥ ≤ K1‖x − y‖ + K2

∫ T

0
sup
r≤s

∥∥Xr(x) − Xr(y)
∥∥ds,

for some positive constants K1 and K2, and (i) follows by the Gronwall lemma. Using again Theorem 2.2 in [5], the
Lipschitz property of b and (i) we obtain (ii). �
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Recall the definition of the P̃(x) Brownian motion W(x) in (2.4); the Skorohod SDE in (2.3) can be rewritten as
follows:

Xt(x) = x + Wt(x) +
∑

i

vi l
i
t (x), t ≥ 0, (4.1)

so that〈
Xt(x), ni

〉 = 〈x,ni〉 + 〈
Wt(x), ni

〉 + L̂i
t (x) + lit (x), t ≥ 0,

since 〈vi, ni〉 = 1, where

L̂i
t (x) :=

∑
j 	=i

〈vj , ni〉ljt (x), t ≥ 0.

Note that 〈W(x),ni〉 is again a Brownian motion under P̃(x) by Levy’s characterization theorem, since ni is a unit
vector. The local time li (x) is carried by the set of times t , when 〈Xt(x), ni〉 − ci = 0, so that it can be computed
directly by Skorohod’s lemma (see, e.g. Lemma VI.2.1 in [9]). This yields

lit (x) =
[
−〈x,ni〉 + ci − inf

s≤t

(〈
Ws(x), ni

〉 + L̂i
s(x)

)]+
, t ≥ 0.

Fix any qn. Since 〈Xri(qn)(x), ni〉 − ci = 0 and t �→ lit (x) is increasing, we have for all s ≤ ri(qn):〈
Wri(qn)(x), ni

〉 + L̂i
ri (qn)(x) = −〈x,ni〉 + ci − liri (qn)(x) ≤ −〈x,ni〉 + ci − lis(x)

= −〈
Xs(x), ni

〉 + ci + 〈
Ws(x), ni

〉 + L̂i
s(x) (4.2)

≤ 〈
Ws(x), ni

〉 + L̂i
s(x).

Therefore, for all t ∈ An:

lit (x) = liri (qn)(x) = [−〈x,ni〉 + ci − 〈
Wri(t)(x), ni

〉 − L̂i
ri (t)

(x)
]+

. (4.3)

Next we compute the local times of the process with perturbed starting point. Recall that e = (e1, . . . , ed) denotes
the canonical basis of Rd . Set xε := x + εej , ε ∈ R, j ∈ {1, . . . , d}, where |ε| is always supposed to be sufficiently
small, such that xε lies in G \ ⋃

i,j : i 	=j (∂Gi ∩ ∂Gj ). We start with a preparing lemma:

Lemma 4.2. Let i ∈ {1, . . . ,N} and 0 ≤ s < t be arbitrary and let ϑ : Ω → [s, t] be the random variable such that
a.s. 〈Wϑ(x),ni〉 < 〈Wr(x), ni〉 for all r ∈ [s, t] \ {ϑ}. Then, there exists a random Δ > 0 such that a.s. ϑ is the only
time, when 〈W(xε), ni〉 = 〈W(x),ni〉 + 〈W(xε) − W(x),ni〉 attains its minimum over [s, t] for all |ε| < Δ.

Proof. Since 〈W(x),ni〉 is a Brownian motion under P̃(x), by Lemma 1 in [4] there exists a random variable γ such
that every γ -Lipschitz perturbation of 〈W(x),ni〉 attains its minimum only at ϑ . Using Lemma 4.1 and the Lipschitz
continuity of b we find a Δ > 0 such that supr∈[s,t] |〈b(Xr(xε))− b(Xr(x)), ni〉| ≤ γ for all |ε| < Δ. This implies that
h(r) := 〈Wr(xε) − Wr(x), ni〉 = h(s) + ∫ r

s
〈b(Xu(xε)) − b(Xu(x)), ni〉du is a γ -Lipschitz perturbation for such ε,

and the claim follows. �

Lemma 4.3. For all i and qn, n ∈ N, there exists a random Δi
n > 0 such that for all |ε| < Δi

n a.s.:

liqn
(xε) = [−〈xε, ni〉 + ci − 〈

Wri(qn)(xε), ni

〉 − L̂i
ri (qn)(xε)

]+
. (4.4)

Proof. We need only to consider the case s(qn) = i. Indeed, if qn < infCi we can use Lemma 4.1 to find a Δi
n > 0,

such that Xt(xε) /∈ ∂Gi for all t ∈ [0, qn] and for all |ε| < Δi
n, which implies liqn

(xε) = liqn
(x) = 0. If qn > infCi
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and s(t) 	= i, we set q̃n := sup{qk: qk < qn, s(qk) = i} and again by Lemma 4.1 there exists a Δi
n > 0, such that

Xt(xε) /∈ ∂Gi for all t ∈ [q̃n, qn] and for all |ε| < Δi
n, which implies liqn

(xε) = li
q̃n

(xε).
Let now qn be such that s(qn) = i. Using again Skorohod’s lemma, we obtain for all ε:

liqn
(xε) =

[
−〈xε, ni〉 + ci − inf

s≤qn

(〈
Ws(xε), ni

〉 + L̂i
s(xε)

)]+

=
[
−〈xε, ni〉 + ci − inf

s≤qn

(
fε(s) + gε(s)

)]+
,

where fε(s) := 〈Ws(xε), ni〉 + L̂i
s(x) and gε(s) := L̂i

s(xε) − L̂i
s(x). From the calculation in (4.2) above we know that

〈W(x),ni〉 + L̂i
s(x) attains its minimum over [0, qn] at ri(qn), and we have to show that for sufficiently small |ε|:

inf
s≤qn

(
fε(s) + gε(s)

) = fε

(
ri(qn)

) + gε

(
ri(qn)

)
. (4.5)

Recall that qn < τ , i.e. the process X hits the faces of the polyhedron G only successively, and recall that Ci is the
support of li (x). Thus, there exists a time q−

n < qn such that 2d := liqn
(x) − li

q−
n
(x) > 0 and Xs(x) /∈ ⋃

j 	=i ∂Gj for all

s ∈ [q−
n , qn] (note that we might have q−

n = 0 in the case where x ∈ ∂Gi and qn < inf
⋃

j 	=i C
j ). We apply Lemma 4.1

and find a Δ′
n > 0 such that also Xs(xε) /∈ ⋃

j 	=i ∂Gj for all s ∈ [q−
n , qn] and |ε| < Δ′

n. Hence, for such ε it follows

that L̂i(x), L̂i(xε) and gε are constant on [q−
n , qn], so that fε + gε attains its minimum over [q−

n , qn] at the same time
as 〈W(xε), ni〉. By Lemma 4.2, possibly after choosing a smaller Δ′

n, we know that this time is ri(qn), so that

inf
s∈[q−

n ,qn]
(
fε(s) + gε(s)

) = fε

(
ri(qn)

) + gε

(
ri(qn)

)
, ∀|ε| < Δ′

n. (4.6)

Proceeding as in (4.2), we get for all s ≤ q−
n :

〈
Wri(qn)(x), ni

〉 + L̂i
ri (qn)(x)

= −〈x,ni〉 + ci − liri (qn)(x) = −〈x,ni〉 + ci − liqn
(x)

= −〈x,ni〉 + ci − li
q−
n
(x) − 2d ≤ −〈x,ni〉 + ci − lis(x) − 2d

= −〈
Xs(x), ni

〉 + ci + 〈
Ws(x), ni

〉 + L̂i
s(x) − 2d

≤ 〈
Ws(x), ni

〉 + L̂i
s(x) − 2d. (4.7)

Using the Lipschitz continuity of b and Lemma 4.1, we find a Δ′′
n > 0 such that

sup
s≤qn

∣∣〈Ws(xε) − Ws(x), ni

〉∣∣ = sup
s≤qn

∣∣∣∣
∫ s

0

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, ni

〉
dr

∣∣∣∣ ≤ d

2
, ∀|ε| < Δ′′

n,

i.e. for such ε (4.7) implies

inf
s≤q−

n

fε(s) − fε

(
r1(qn)

) = inf
s≤q−

n

(〈
Ws(xε), ni

〉 + L̂i
s(x)

) − 〈
Wri(qn)(xε), ni

〉 − L̂i
ri (qn)(x)

≥ inf
s≤q−

n

(〈
Ws(x), ni

〉 + L̂i
s(x)

) − sup
s≤q−

n

∣∣〈Ws(xε) − Ws(x), ni

〉∣∣
− 〈

Wri(qn)(xε), ni

〉 − L̂i
ri (qn)(x)

≥ 3

2
d − 〈

Wri(qn)(xε) − Wri(qn)(x), ni

〉 ≥ d. (4.8)
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By Lemma 4.1(ii) there exists a random Δ′′′
n > 0 such that a.s.

sup
s≤qn

∣∣gε(s)
∣∣ <

d

2
, ∀|ε| < Δ′′

n. (4.9)

Now using (4.8) and (4.9) we obtain for |ε| < min(Δ′′
n,Δ

′′′
n ):

inf
s≤q−

n

(
fε(s) + gε(s)

)

≥ inf
s≤q−

n

fε(s) − sup
s≤q−

n

∣∣gε(s)
∣∣ > d + fε

(
r1(qn)

) − d

2

= fε

(
r1(qn)

) + d

2
> fε

(
ri(qn)

) + gε

(
ri(qn)

)
, (4.10)

so that (4.5) follows from (4.6) and (4.10) for all |ε| < Δi
n := min(Δ′

n,Δ
′′
n,Δ

′′′
n ). �

Next we compute the difference quotients of X. For fixed j ∈ {1, . . . , d} we set xε = x + εej , ε 	= 0, and

ηt (ε) := 1

ε

(
Xt(xε) − Xt(x)

)
, t ≥ 0.

Let now t ∈ [0, τ ) \ C be fixed and n such that t ∈ An. We choose Δn > 0 such that a.s. for all |ε| < Δn we have
for all i that liqn

(x) = liqn
(xε) = 0 if qn < infCi , and both of them are strictly positive if qn > infCi , and finally that

formula (4.4) holds.
From (2.3) we deduce directly

Xt(xε) − Xt(x) = xε − x + Wt(xε) − Wt(x) +
N∑

j=1

vj

(
l
j
t (xε) − l

j
t (x)

)
. (4.11)

If s(t) = 0 we get immediately

ηt (ε) = δ·j + 1

ε

∫ t

0

(
b
(
Xr(xε)

) − b
(
Xr(x)

))
dr. (4.12)

Let us now consider the case s(t) = i, i ∈ {1, . . . ,N}, and set ti := μ(t). Then, possibly after choosing a smaller Δn,
we may suppose that lj (xε) is constant on [ti − δ, qn ∨ t] for every j 	= i and some positive δ since t < τ . In (4.11)
we use (4.3) and (4.4) to obtain

Xt(xε) − Xt(x)

= xε − x + Wt(xε) − Wt(x) +
∑
j 	=i

vj

(
l
j

ri (qn)(xε) − l
j

ri (qn)(x)
)

+ vi

(−〈xε − x,ni〉 − 〈
Wri(qn)(xε) − Wri(qn)(x), ni

〉 − (
L̂i

ri (qn)(xε) − L̂i
ri (qn)(x)

))
.

Hence,〈
Xt(xε) − Xt(x), ni

〉
= 〈xε − x,ni〉 + 〈

Wt(xε) − Wt(x), ni

〉 + L̂i
ri (qn)(xε) − L̂i

ri (qn)(x)

− 〈xε − x,ni〉 − 〈
Wri(qn)(xε) − Wri(qn)(x), ni

〉 − (
L̂i

ri (qn)(xε) − L̂i
ri (qn)(x)

)
=

∫ t

ri (qn)

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, ni

〉
dr. (4.13)



Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection 115

Recall the definition of v⊥
i and n⊥

i in (2.1). Since 〈vi, n
⊥
i 〉 = −〈v⊥

i , ni〉, we have

〈
Xt(xε) − Xt(x), n⊥

i

〉
= 〈

xε − x,n⊥
i

〉 + 〈
Wt(xε) − Wt(x), n⊥

i

〉 + ∑
j 	=i

〈
vj , n

⊥
i

〉(
l
j

ri (qn)(xε) − l
j

ri (qn)(x)
)

+ 〈
v⊥
i , ni

〉(〈xε − x,ni〉 + 〈
Wri(qn)(xε) − Wri(qn)(x), ni

〉 + L̂i
ri (qn)(xε) − L̂i

ri (qn)(x)
)

= 〈
xε − x,n⊥

i

〉 + 〈
Wri(qn)(xε) − Wri(qn)(x), n⊥

i

〉 + ∑
j 	=i

〈
vj , n

⊥
i

〉(
l
j

ri (qn)(xε) − l
j

ri (qn)(x)
)

+ 〈
xε − x,

〈
v⊥
i , ni

〉
ni

〉 + 〈
Wri(qn)(xε) − Wri(qn)(x),

〈
v⊥
i , ni

〉
ni

〉
+

∑
j 	=i

〈
vj ,

〈
v⊥
i , ni

〉
ni

〉(
l
j

ri (qn)(xε) − l
j

ri (qn)(x)
) +

∫ t

ri (qn)

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, n⊥

i

〉
dr.

By the choice of v⊥
i and n⊥

i , clearly v⊥
i = 〈v⊥

i , ni〉ni + n⊥
i , so that

〈
Xt(xε) − Xt(x), n⊥

i

〉
=

〈
xε − x + Wri(qn)(xε) − Wri(qn)(x) +

∑
j 	=i

vj

(
l
j

ri (qn)
(xε) − l

j

ri (qn)
(x)

)
, v⊥

i

〉

+
∫ t

ri (qn)

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, n⊥

i

〉
dr.

Note that Wri(qn)(xε)−Wri(qn)(x) = Wti−(xε)−Wti−(x), since Ci has zero Lebesgue measure. Moreover, ljri (qn)(xε)−
l
j

ri (qn)(x) = l
j
ti−(xε) − l

j
ti−(x) for all j 	= i by the choice of Δn. Using this and the fact that 〈vi, v

⊥
i 〉 = 0 we obtain

〈
Xt(xε) − Xt(x), n⊥

i

〉 =
〈
xε − x + Wti−(xε) − Wti−(x) +

∑
j

vj

(
l
j
ti−(xε) − l

j
ti−(x)

)
, v⊥

i

〉

+
∫ t

ri (qn)

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, n⊥

i

〉
dr

= 〈
Xti−(xε) − Xti−(x), v⊥

i

〉 + ∫ t

ri (qn)

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, n⊥

i

〉
dr, (4.14)

and for every k ∈ {3, . . . , d}, we have 〈vi, n
k
i 〉 = 0, so that

〈
Xt(xε) − Xt(x), nk

i

〉
=

〈
xε − x + Wt(xε) − Wt(x) +

∑
j 	=i

vj

(
l
j

ri (qn)(xε) − l
j

ri (qn)(x)
)
, nk

i

〉
+ 〈

vi, n
k
i

〉(
lit (xε) − lit (x)

)

=
〈
xε − x + Wri(qn)(xε) − Wri(qn)(x) +

∑
j

vj

(
l
j

ri (qn)(xε) − l
j

ri (qn)(x)
)
, nk

i

〉

+
∫ t

ri (qn)

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, nk

i

〉
dr

= 〈
Xti−(xε) − Xti−(x), nk

i

〉 + ∫ t

ri (qn)

〈
b
(
Xr(xε)

) − b
(
Xr(x)

)
, nk

i

〉
dr. (4.15)
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Recall that {ni, n
⊥
i , nk

i ; k = 3, . . . , d} is an orthonormal basis of Rd . By (4.13)–(4.15) we obtain

ηt (ε) = 〈
ηt (ε), ni

〉
ni + 〈

ηt (ε), n
⊥
i

〉
n⊥

i +
d∑

k=3

〈
ηt (ε), n

k
i

〉
nk

i

= 〈
ηti−(ε), v⊥

i

〉
n⊥

i +
d∑

k=3

〈
ηti−(ε), nk

i

〉
nk

i + 1

ε

∫ t

ri (t)

(
b
(
Xr(xε)

) − b
(
Xr(x)

))
dr. (4.16)

Then, from (4.12) and (4.16) we get

ηt (ε) = ηan(ε) + 1

ε

∫ t

an

[
b
(
Xr(xε)

) − b
(
Xr(x)

)]
dr

= ηan(ε) +
∫ t

an

d∑
k=1

[∫ 1

0

∂b

∂xk

(
Xα,ε

r

)
dα

]
η

kj
r (ε)dr, t ∈ An,

where X
α,ε
r := αXr(xε) + (1 − α)Xr(x), α ∈ [0,1]. By the same arguments as in Step 5 in the proof of Theorem 1

in [4], we obtain now that (2.6) holds for t ∈ [0, τ ) \ C. The Lipschitz continuity of x �→ (Xt (x))t , which is crucial
for that argument, is ensured by Lemma 4.1. Since C has zero Lebesgue measure, for t ∈ C the value of η

·j
t can be

changed arbitrarily without affecting the ODE system. Thus, by setting η
·j
t = η

·j
r(qn) for t ∈ [μ(qn), qn] ∩ C we can

extend η·j on [0, τ ), such that η·j is right continuous, since t �→ s(t) and t �→ ri(t) are right continuous as well, and
the proof of Theorem 2.2 is complete.
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