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The leading term in the normal approximation to the distribution of
Student’st statistic is derived in a general setting, with the sole assumption
being that the sampled distribution is in the domain of attraction of a normal
law. The form of the leading term is shown to have its origin in the way in
which extreme data influence properties of the Studentized sum. The leading-
term approximation is used to give the exact rate of convergence in the central
limit theorem up to orden~1/2 wheren denotes sample size. It is proved
that the exact rate uniformly on the whole real line is identical to the exact
rate on sets of just three points. Moreover, the exact rate is identical to that
for the non-Studentized sum when the latter is normalized for scale using a
truncated form of variance, but when the corresponding truncated centering
constant is omitted. Examples of characterizations of convergence rates are
also given. Itis shown that, in some instances, their validity uniformly on the
whole real line is equivalent to their validity on just two symmetric points.

1. Introduction. The Studentized mean is an early example of one of the most
common approaches to adaptive statistical inference, where a nuisance parameter
is replaced by its estimator and the effectioference carefily gauged. Initially,
in the case of Students statistic, this was done under the assumption that the
sampled distribution was normal, but later there developed a substantial literature,
to which Gayen (1949, 1950, 1952) and Hyrenius (1950) were early contributors,
on the effect of nonnormality on properties of the statistic. Wallace (1958),
Bowman, Beauchamp and Shenton (1977) and Cressie (1980) have reviewed work
in this area. Even in the case of normal data, where tables of the exact distribution
have long been readily available, the issue of convergence (to normality) of the
distribution of ther statistic has been of both theoretical and practical interest for
many years; see, for example, Anscombe (1950) and Gayen (1952).

From a theoretical viewpoint the problem of determining exact convergence
rates for ther statistic can be a particularly awkward one. Despite the statistic’s
simple representation in terms of the mean and mean of squares of independent
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data, its distribution is surprisingly difficult to approximate using methods for
sums of independent random variables. The problem has, of course, long been
solved under sufficiently severe moment conditions, but its treatment in more
theoretically interesting cases, when its distribution is asymptotically normal but
few other assumptions are made, is far from straightforward.

In a major advance, Bentkus and Gotze (1996) gave bounds of general
Berry—Esseen type for rates of convergence in the central limit theorem for
Student's statistic when the data are independent and identically distributed. See
also Chibisov (1980, 1984) and Slavova (1985). Bentkus, Bloznelis and Goétze
(1996) extended Bentkus and Goétze’s arguments to nonidentically distributed
summands. Hall (1987) had earlier established Edgeworth expansions under
moment conditions that were no more severe than existence of the moments
actually appearing in the expansions. See also van Zwet (1984), Friedrich (1989),
Putter and van Zwet (1998), Bentkus, G6tze and van Zwet (1997), Wang and Jing
(1999), Wang, Jing and Zhao (2000) and Bloznelis and Putter (1998, 2002).

However, moment conditions, even finite variance, are not the main prerequisite
for convergence of the distribution of Student’statistic. In particular, Giné,
Gotze and Mason (1997) showed that a necessary and sufficient condition for
the Studentized mean to have a limiting standard normal distribution is that
the sampled distribution lie in the domain of attraction of the normal law.
See also Logan, Mallows, Rice and Shepp (1973), Griffin and Mason (1991)
and Egorov (1996). Although it is not of direct relevance to our work, we
mention that the case where the data are from a time series is more complex.
There, convergence in the conventional, deterministically normalized central limit
theorem is not equivalent to convergence in the randomly normalized case; see
Hahn and Zhang (1998).

In the present paper we assume no more than that the sampled distribution lies
in the domain of attraction of the normal law, and describe rates of convergence,
in the independent-data case, without reference to moment properties. We give the
leading term in a normal approximation to the distribution of Studergististic,
and show that its form is strongly influenced by the effects that large data have on
the statistic. Using the leading term, we derive the exact convergence rate in the
central limit theorem, up to terms of order/2 (wheren denotes sample size),
or up to ordem—1 when the sampled distribution satisfies Cramér’s continuity
condition.

We show that, if the third moment should happen to be finite, the leading
term transforms into the conventional first term in an Edgeworth expansion of
the distribution of Student’s statistic. More generally, however, the leading term
can be used to show that the exact rate of convergence over the whole real line
is equivalent to the exact rate of convergence over very small sets, containing no
more than three points. The number of points can be reduced to two if we seek
necessary and sufficient characterizations of the convergence rate, rather than the
exact rate itself. We draw connections to the rate of convergence of the distribution
of a conventionally normalized, non-Studentized mean.
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2. Main results. Let X1, X», ... be independent and identically distributed
random variables, and lef have the distribution of a generi;. Student’st
statistic, with numerator centered at its expectation, is defined to be

en (L) /(g ]

An alternative, more classical definition of the Studentized mean, in which the
sample variance has diviser— 1 rather tham, has the formulgl — n=1)~%/27;
see Gossett (1908). All our results hold for this version of Student's statistic, as
well as that given by (2.1). The principal results are Theorems 2.1 and 2.2, which
respectively describe the leading term and its role in a normal approximation to
the distribution off'. Propositions 3.1 and 3.2 in the next section reveal the origins
of the leading term, and in particular link it to the way in which extremes affect
the distribution ofT".

Write & and ¢ for the standard normal distribution and density functions,
respectively. Pub, = sup{x :nx 2E[X?%I (|X| <x)] > 1} and

(2.2) Ly (x) =nE(®x {14 (X/by)?}Y2 — (X /by)] — @ (x)).

THEOREM 2.1. If the distribution of X is in the domain of attraction of the
normal law, and E (X) = 0, then
(2.3) sup |P(T <x) —{®) + La(x)}| = 0(8,) + O(n /).

—o0<X <O
If, in addition, Cramér’s condition holds, that is,

limsup|E(¢'"%)| < 1,

|t]—00

then O (n=Y?) on the right-hand side of (2.3) may be replaced by O (n1).

We noted in Section 1 th&t has a limiting standard normal distribution if and
only if the distribution ofX is in the domain of attraction of the normal law and
E(X) =0. Theorem 2.1 argues that, (x) is a leading term in an expansion of
the distribution of7. As Theorem 2.2 will show, the exact order of magnitude
of L, (x) is that of

8y =nP(IX| > by) +nby | E{XI(|X| < by)}|

2.4
@4) +nb 3| E{X31(|X| < bp)}| +nb,*E(X* (|1X| < b))

THEOREM2.2. Assumethe distribution of X isin the domain of attraction of
the normal law and E(X) = 0. Then §,, — 0 and

(2.5) sup  [L,(x)] <y

—00<X <O
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asn — oo. Hereand below, a,, < b,, denotesthat

0 < liminf a, /b, <limsupa, /b, < cc.
n—00 n— 00
Property (2.5) continues to hold if the supremum over all x is replaced by the
supremum over x € {—xq, xo, x1}, where xg > 3%/ 2and x; is any real number not
equal to +xq. Furthermore, if E(|X|3) < oo, E(X?) =1and E(X3) =y, then

(2.6) sup  [nY2L,(x) — ty(2® + Dp(x)| - 0

—o0<X <O

asn — oQ.

There exist examples of distributions in the domain of attraction of the normal
law having zero mean and, for which any given one of the four components in the
definition of §,, at (2.4), dominate all the others along a subsequence. It follows
that none of the terms of whic#), is composed can be dropped if we require a
full account of the rate of convergence in the central limit theorem. Formula (2.6)
shows that in the case of finite third moment, the leading term is asymptotic to its
conventional form in an Edgeworth expansion.

Together, properties (2.3) and (2.5) give concise results about the rate of
convergence in the central limit theorem. For exampl€ is in the domain of
attraction of the normal law, anfl(X) = 0, then (2.3) and (2.5) imply that

(2.7) sup |P(T <x)—®x)|+nY2=<5,+n2
—00<X <O

and n~Y2 may be replaced by:~1 if Cramér's condition is satisfied. One
application to which (2.7) can be put is the derivation of characterizations of rates
of convergence in the central limit theorem. In this regard, some examples can be
found in Hall and Wang (2003), on which the present paper is based.

We conclude this section by mentioning that the convergenceéjaie the
same as that in the case of the standard (i.e., non-Studentized) central limit
theorem, where a sum of independent and identically distributed random variables
is standardized for scale usirlg, but is centered conventionally, not using a
truncated mean. That is, if we defiSg= b;lzifn X;, Fj(x)=P(S; <x) and

(2.8) Ly1(x) =nE{®(x — X/b,) — ®(x)} — 2nb, ¢ (x),

then, provided the distribution of is in the domain of attraction of the normal
law andE (X) =0, it is true that sup, _, _~, |Lx1(x)| <, and

(2.9) sup  |Fi(x) — {®(x) + Ly1(x)}| = 0(8,) + O(n~?).

The methods of proof are similar to those given in Chapter 2 of Hall (1982).
Alternatively, if we puto? = E{X?I(|X| < b,)} and S2 = (i<, Xi)/(nY?0y),
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and defineL,»(x) as at (2.8) but withb, there replaced by:/2s,, then
(2.9) continues to hold if we replac@y, L,1) by (F2, L,2).

The similarities between the Studemed and non-Studdized cases do not
penetrate deeply, however. The leading terms in the respective settings are quite
different. In the case of finite third moment, the leading terms are asymptotic
to their respective Edgeworth forms, which are well known to have intrinsically
different formulae.

3. Proofs.

3.1. Proof of Theorem 2.1. Let o > 0 and defineY; = X;I1(|X;| < ab,),
pn =nP(|X|> aby),

an(x)=P|: ZiSnYi :|’

i Y2 — Ly, v2y2 =
M1 (x) = nE{(®[x{1+ (X /by)2}Y? — (X/by)] — @) (1X| > aby)),
Myu2(x) = nE{(®[x{1+ (X/bn)?}Y? — (X /by)] — @) (1X| < aby)).

Theorem 2.1 is a direct consequence of the following two propositions, which will
be proved in Sections 3.3 and 3.4.

(3.1)

PropoOSITION3.1. Assumethedistribution of X isin the domain of attraction
of the normal law, and E(X) = 0. Then, for each« > 0,

(3.2) sup  [P(T < x) — {W(x) + Mp1(x)} = 0(pn).

—00 <X <O

PrROPOSITION3.2. Assumethedistribution of X isinthe domain of attraction
of the normal law, and E (X) = 0. Then, for each ¢ > 0 we have, for all sufficiently
small o > 0,

(3.3) sUp W, (x) — (®(x) + Mu2(0)}| < 8, + O(n~Y?).

—R0<X <O
If, in addition, the distribution of X satisfies Cramér’s continuity condition, then
the term O (n~1/2) on the right-hand side of (3.3) may be replaced by O (n~1).

We remark that our method for proving Proposition 3.1 will show clearly that
the leading-term fragment/,1 derives principally from the largest summand
amongXsi, ..., X,, that is, from the valu&ax Of X; for which | X;| is greatest.
Indeed, it may be proved that

Mu1(x) = E{(®@[x {1+ (Xmax/bn)?}Y? — (Xmax/Ba)] — D ()] (| Xmaxl > aby)}
+0(,0n),
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uniformly in x. It follows that the leading terni, (x), introduced at (2.2) and
defined as the limit oM,;; asa — 0, also has this origin.

The connections to extremes arise in part through the major role that large
summands play in convergence properties of series when the distribution of
the summands has infinite variance. See Darling (1952), Arov and Bobrov
(1960), Dwass (1966), Hall (1978), LePage, Woodroofe and Zinn (1981) and
Resnick (1986) for discussion of more conventional settings. In the present case the
main series where extremes cause difficulfy’is, Xl.z, appearing in the definition
of T at (2.1). The summands here have finite variance if and only if the sampled
distribution has finite fourth moment. However, extremes arising even from the
series)_;_,, X; play a role in the leading term and so too in the convergence rate;

see Hall (1984) for discussion of the latter issue.

3.2. Proof of Theorem 2.2 It is straightforward to show thai, — 0 and
SUP_ o< x <00 |Ln(x)] = O(8,). Therefore, it suffices to prove that

(3.4) b, = 0{sup|Ln<x>|},

xed

whered$ = {—xo, x0, x1} IS the set of three points in the statement of the theorem;
and that (2.6) holds. This follows relatively straightforwardly.

3.3. Proof of Proposition 3.1 PutV = max, |X;| andJ = argmax.,|X;|;
ties may be broken in any measurable way. Defthéo be the sign ofX;
and letTh = Y, Xi, To = Yicn X2, T3 = Y, Vi + SVI(V > ab,) and
Ta=Y;, Y2+ V2I(V > ab,). The probability that two or more values o¢; |,
for 1 <i < n, exceedab, equalsO(p?). Therefore,P{(Ty, T2) = (T3, Ts)} =
1- O(,o,f), whence it follows that, uniformly i,

1
P(T <x)= P{ T T < x}
(3.5)

:P{ Ts 5x}+0(p3).
(T4 — n=1T2)1/2

Putz(v) = P(X > 0]|X| = v). Conditional onX3y, ..., X, let S(V) denote
a random variable that takes the values and—1 with probabilitiesz (V) and
1—7(V), respectively. Letls =3 ;.. Y; + S(V)VI(V > aby,). Then (T3, Ty)
has the same joint distribution é5;, T4), and so by (3.5) we have, uniformly in

(3.6) P(T <x)=P(W <x)+ 0(p?),

whereW = Ts/(Ty — n~1T2)Y/2,
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Define
Ty =Y (Y; — EY)), Tg =Y (Y2 —EYD),
i<n i<n
v=E(XI(X| <aby)},  t°=E{X’I(X| <ab,)}.
Note that a formula fod,, (x), equivalent to (3.1), is
Ty +nv ]
<x|.
{Tg +nt2 —n—YTy +nv)2}1/2 —
Let the random variabl&v; have the standard normal distribution. The joint
distribution of the vecto(b;lTy, b;ZTB), conditional onV > ¢b,, converges to
the joint distribution of N1, 0). In particular, the second component of the limiting

distribution is degenerate at 0. The convergence has the following property: for
alle >0,

(3.8) sup sup |P(b; 1Ty <x;b;2|Ts| <¢|V =v)— P(N1<x)|— 0.

v>ab, —00<Xx <00

(3.7) W, (x) =P|:

For a formal proof of (3.8), it suffices to observe that the joint distribution of
Qi<n i Xi<n Yl.z), conditional onV = v > ab,, equals the unconditional joint
distribution of (X —,_1 ¥i, Yi<s—1 ¥?); and thatb, 13", _1(Y; — EY;) — N1
in distribution, b,2Y";-,_1(Y? — EY?) — 0 in probability andb,|E(Y1)| +
b 2E(Y2) — 0.

SinceTs = Tg + nt2+ V2I(V > ab,), Ts =Ty + nv + S(V)VI(V > ab,),
b 2nt? — 1 andb; nv — 0, then, for alle > 0, we have from (3.8),

sup  sup |P[b,Ts— S(V)(V/ba)} < x;
v>ab, —00<X <00
b, 2Ty —1— (V/by)?| <e|V =v] — P(N1 < x)| - 0.

Therefore, if N2 denotes a standard normal random variable that is independent
of V, then

sup  sup P(W§x|V=v)—P|: — 0.

v>ab, —00<Xx <00

Na+ S(V)(V /by)
v <5V = ”]

Equivalently,
P(W < x|V =v) — ®[x{1+4 (v/b)*}Y/? — S(v)(v/by)] = O,

uniformly in v > ab,, and—oo < x < co. Multiply throughout byd F, (v), where
F,, denotes the distribution function &f conditional onV > ab,,; integrate over
v > aby,; and then multiply byP (V > ab,), to prove that, uniformly in,

P(W <x;V >ab,)
(3.9) = E(®[x{1+ (V/by)?}Y? — S(V)(V/b)IL(V > aby)) + 0(pn)
= nE(®[x{1+ (X/b)?}? — (X/b)II (X > aby)) + 0(pn).
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To derive the last identity, reformulate the expectation using an integration by parts
argument, and note that

P{S(V)V >y} =nP(X > y) + O[{nP(X > y)}*],
P{S(V)V <y}=nP(X <y)+ O[{nP(X <)},

where both remainders are of the stated orders uniformly in ab, and
y < —ab,, respectively.
Furthermore,

E{P(W =x|V <ab,)I(V <aby,)}

E(I[ Ts +nv < }I(V< b))
= X o
{Ty + nt2 —n—X(Tp +nv)2}1/2 — -

TB +nv <
{Ty +nt2 —n—Y(Tp +nv)2}1/2 =

:\Il,,(x)—E<I|: x:|I(V>05bn)>’

using (3.7) to obtain the last identity. A simpler version of the argument leading
to (3.9) may be used to prove that the subtracted term above eqj¢a)p, +
o(pp), uniformly in x. Therefore,

(3.10) P(W =x;V <ab,) =¥, (x) — ®(x)pn + 0(pn),

uniformly in x. Combining (3.10) with (3.6) and (3.9), we conclude that
(3.2) holds.

3.4. Proof of Proposition 3.2 Defines, =Y, X;, Sy =%, Y, V=3 ; X7
and Vn*2 =2 sz. It is well known [e.g., Efron (1969)] that, for > O,
(3.11) W, (x) = P[S*/ V' <x{n/(n+x?)}V?.
Noting also that fofu| < 1,

sup | ®{x(1+u?Y? —u)

—[@@) + {—u+ 2P + D) + Hu*x(x? = 3)}p(0)]] = Clul®,

whereC is an absolute constant, and thaf {|X/b,[°1 (|1X| < ab,)} < a8, we
have that, for any > 0,

(3.12) Sup  [Mp2(x) — Qn1(x)| < Cady,

—00<X <00

whereu,; =nE{(X/By)’ Ix|<ab,)} and

0n1(¥) = —Un1¢(¥) + tn35 (202 + D (x) + tpazpx (x? — 3¢ (x).
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Inview of (3.11) and (3.12), Proposition 3.2 will follow if, for eaeh- 0, we have
for all sufficiently smallx > 0,

(3.13)  sup |P(S;/V, =x) —{®() + Qui()} < €8, + O~ Y?),

—o0 <X <O

and 0 (n~Y2) may be replaced by (n~1) if Cramér’s condition is satisfied.

Without loss of generalityx > 0. Since the distribution ofX is in the
domain of attraction of the normal law, th¢s,/V,} is stochastically bounded
[see, e.g., Giné, Gotze and Mason (1997)] and similddy/V,"} is also
stochastically bounded. Hence, by Theorem 2.5 of Giné, G6tze and Mason (1997),
for x > 5,,_1/12,

P(S; = xV¥) < e " SUpE{exp(|S;/ Vi )} < Aexp(—s, /1% < As?.
n
(Here and belowA denotes a positive constant which might be different at each
appearance.) Moreovell — ®(x) — Q,1(x)| < A§2 uniformly in x > 5, 12,

Therefore, (3.13) will follow if, for eachke > 0, we have for all sufficiently
smalla > 0,

(3.14)  sup|P(S;/ V) <x) — {®(x) + Qui(x)}] < &8, + O(n~?),
andO (n~Y2) may be replaced b (» 1) if Cramér’s condition is satisfied, where
sup’ denotes the supremum ovek [0, 8,1_1/12].

Let B2 =nEYZ and W, = B, 2Y;(Y? — EY?). Noting that (1 + )2 =

1+ 3y — £y2+ &3+ 6y* whered = 6(y) satisfies|d| < & for |y| < 3, we
may prove that

P(S;/ Vi <x)

= P{S} <xB,(1+ W,¥?3

= —P(IWal = 3) + P{S; <xBu(1+ 3Wa — Wi + W, — W)},
P(S;/ V< x)

= P{S} <xB,(1+ W,Y3)

< P(IWal = 3) + P{S; <xBu(1+ 3Wa — WS+ 15 W5 + 15 W)}

In view of Markov's inequality, it is readily seen that, for eaclk 0, we have for
any sufficiently smalkr > 0 and all sufficiently large,

P(\Wa| = 1/2) < 16E(W,) < A(e*S, + 87) < &6,

Hence, (3.14) will follow if we prove that, for each> 0, we have fo6| < 1/16
and any sufficiently smait > 0,

sup|P{S} <xBy(1+ 3W, — W2+ W2 +0W,;))
(3.15) —{P(x) + 0n(x)}
<8, + 02,
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and 0 (n~Y?) may be replaced b@ (n~1) if Cramér’s condition is satisfied.

Let > s 2 ko ANA Y5 sy, dENOtE SUMMAtions over pairs, triples and
quadruples, respectively, of distinct integers between haRatZ; = sz — EY]?.
Simple calculations show that

BYW? = Zz3+322 (ZE—EZH+ Y. Z;ZkZi+ W,
ik J#kA

B3W, = Z Z8 443 Zj(ZE - EZ}) +12) (23— EZ3)(ZE — EZ}) + Waz,
j#k j#k
whereW,1=3(n — )E(Z2)¥; Z; and
n n
Wi2=40n —DE(Z3) Y Z; +240n — DE(ZD) Y (22— EZ?)
j=1 j=1

+120(n —DEZD?+24 Y Z;ZkZF+ Y. Z;ZkZiZnm.
J#kA J#kAlEm

Therefore,

P{S*< B(1+1W 1W2+ 1W3+9W4)}
n=X5n 2" "3 16

{ Zé]( )+ 4Z(p]k+ 6 Z lﬁ]kl

nj#k By JF#kFEL
nkEni(x
<x(1+ W3) — L()}
By,

where £;(x) = n;(x) — En;j(x), Yju = —15Z;ZxZi, Wpz = 75B,Wa1 +
0B 8W,2,

X 2 X 3 Ox 4
i =Yj = opZit gp3ti T 1ep5 L T BIA
Vi = éz‘,zk 16:;22 (22— EZ?) — gzj(zfj —~ EZ})
n
1>

(22 — EZ%(Z; - EZ}).

It is readily seen that

E(B;°W,)% < A8} (%5, + 82 and E(B;®W,2)? < As2(«?5, + 82).
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Hence, for each > 0, we have for any sufficiently small > 0 and all sufficiently
largen,
P(IWa3l = 268,) < P(IB;®W1| = £8,) + P(IB, *W,2| > &8,)
< Ale™Ha®, +8%) + e 7205, + 82)} < &6,
Result (3.15) now follows easily from the following three propositions. We
will only prove Propositions 3.3 and 3.4 in subsequent sections. The proof of

Proposition 3.5 is relatively straightforward although requiring tedious algebra,
and hence details are omitted. The prooPobposition 3.2 is therefore complete.

PROPOSITION3.3. Forall 0 <a < 3,

P[ Zs,<x>+B4Zw,k+ Zw,my}

" j#k By i

sup’  sup

—o0O<Yy<0oo

(3.16)
—{®() +£n(y)}‘

=0(8,) + 03,
where £,,(y) =n[E®{y — £&1(x)/Bn} — ®(»)] — 30 ().
PROPOSITION3.4. If imsup,_ o, |Ee”¥| < 1, then the term O (n~*/?) on
the right-hand side of (3.16) may be replaced by O (n™1).
ProPOSITION3.5. For each ¢ > 0, we have for any sufficiently small « > 0,
(3.17) sup|®[x — {nEni(x)/By}] — ®(x) + Qu2(x)| < &8, + O(n™ 1),
(3.18) SUP' | Ly [x — {nEni(x)/ By}l — Qn3(x)| < 8, + O(n™ 1),
whereu,j =nE{(X/B,)’ 1 (|1X| < aby)}, Qn2(x) = un1¢ (x) + %xunw (x) and
043(x) = 33 (22 + Dp (x) + tnaggx (2x% — 3B (x).

3.5. Proof of Proposition 3.3.  Standard methods based on Taylor's expansion,
although requiring tedious algebra, may be used to establish the following lemmas.
Define

unj =nE{(X/B) 1(1X| <aby)},  g(t,x) = E[exp{ité1(x)/By}]
and

Fult,x) =14 nlg(t, x) — 1} + 1.
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LEMMA 3.6. IfO0<« < , then for all sufficiently large n,

(3.19) [nB,2E£2(x) — (1 — xunz+ 3x°una)| < 2L+ x?) (@8, +n7h),

(3.20) nB3EE3(x) — (un3 — 3xuna)| < 121+ |x ) (@8, + 1Y),
(3.21) By EEL(x) — upal <3201+ x*) (@b, +n7h),
(3.22) nBPE[E1(x)|° < 321+ [x[¥)as,.

LEMMA 3.7. There exists a constant ¢g > 0 such that, for all « € (O, %],

1] < con/?, all x € [0, 5, ¥*?] and all sufficiently large n,

(3.23) gt x)| < e /8,
(3.24)  |g"(t,x) — e < AL+ xH L+ a 18, (12 + 1418,
(3.25) [g"(t,x) — fu(t,X)| < {AL+ xB) A+ a~2)52(t* +18) + oYy B,

Throughout the proof of Proposition 3.3, we assume thatdd< % O<x<

5, /% andn is sufficiently large. Defing; = ¢z + @ij, Ty = B; - 2 ;§j(x)and

6xm2 n

i IR S S SR

j=lk=j+1 BS j=1k=j+1i=k+1

Noting that B2 = nEY? = b2 for sufficiently largen, we obtain that|Y;| <

B,/2 and|Z;| < B2/2. Using these propertieE(x//lzng )=0,j=1,2,3, and
E(@121X;) =0, j = 1,2, we may deduce thal (¢2,) < 28(EY )2, E(Y2,9 <
(EY}h3and, for 1<m <n,

E(A2,) < 2x%(mnB;8E (%) + mn? B, 2E (Wyo)

(3.26)
_1x233,

< 20%n

the last inequality following from the fact tha‘an—‘lEYf < d,. Moreover, noting
thatn=1 < 8, — 0, |unal <8, and|u,3| < (1 + a~1)8,, it follows easily from
(3.19)—(3.21) that

2
(3.27) ‘E?Y(g) - 1‘ <21+x3)A+abHs, <=
(3.28) nB 3| EE3(x)] <321+ xP) (L + a5,

(3.29) nB AEE}(x) <651+ x5,
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We now turn back to the proof of (3.16). Using the identities

X X
An,nzﬁzfpjk‘FE > Yiu
n jk n kA

and [eYd{®(y) + £,(y)} = f.(t,x), and Esseen’s smoothing lemma [e.g.,
Petrov (1975), page 109], it may be shown that

sup  |P(Th+ Apn =y) —{P(y) + LM}

—o0<y<oo

<

[ BT+ M) = fule Il dr
|t]<min{8; <,con1/?}

3.30 _
(3.30) FAGZ Y2 sup (/AP0 + Lo
—00<y <00
4
<Y I+ A2+ (L +a 183,
j=1

wherecg is as in Lemma 3.7,
I, =/ _alEexplit (T, 4+ Ay )}
<8,
— EexpitT,) — it E{A, , expitT,)}||t| "t dr,

1h=/ 2\E exp(itTy) — fo(t, x|t~ Ldr
It <8, /4
+ EexpitT,)||t| tdt,
[, EORGTIN

13n=/ | E{Ann exptT)) dt,
7]<6

n

Iay = Eexplit (T, + A, )}t~ Ldt,
" /6n1/4<t|<min{a;2,con1/z}l Rit (Tn + Ann)} 1]

and we have used the property, implied by (3.27)—(3.29), that

, 1| nE&3(x) n|EE3(x)|  nEE}(x)
up |£”(y)|SA{_T3_ ‘ 683 24B4 }

—00<y <00 2

<AQ+xH1+aHs, < Al +a Hso.
Using (3.26) and the fact that’* — 1 — iu| < u?/2, it can be shown that

(3.31) I, < %—/|z<8_1/4 E(A,Zlvn)|t| dt < 29x263/2 < 295413,

n

Using Lemma 3.7, we obtain
(3.32) Iz < A{A+xYA+a D) +n Y < A{Q+a D8 +n7Y
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Next we estimatds, andly,. Treating the former first, note th&t(p12|X1) =
E(p121X2) = 0 andEp?, < 28(EYH?, and that as in Bickel, Gotze and van Zwet
(1986),

/2
(3.33) E(pr2expit{é1(x) +&2(x)}/B,]) = —EE{él(X)éz(X)fplz} +11(x),

n

where by usinge’ — 1 —iu| < u?/2,|e™* — 1| < |ul, (3.27) and (3.29),

(x| < ‘E[(plz{eit&(x)/lfn _1_ M}{eizsz(x)/gn _ 1}”

n

+ Z—' E|:¢12§1(X){eit$2(x)/3" —1- Lséix) ”‘

n

|3
=553
2B3

3
< ';—'3<qu%2>1/2{Esf<x>}1/2{Esf<x)}1/2

Ellgral {E1(0) |5 (x) + E2(0) E2(0) )]

< A+ xP)|tPn V2B LEYH(EYHY25Y/2
< AL+ xd)|t1*n 25322,

sincenB*EY{ < 8, and B2 = n EY?. Tedious but elementary calculation shows
that

|E{g1(0)&2(x) @12} < A(L+ x%)n 252 By,
Substituting into (3.33), we deduce that
(3.34) |E(pr2explit{Er(x) + £2(x)}/Ba))| < AL+ x2)(* + [11°)n 2572y,

Similarly, it follows from the identitiesE (123X ;) =0, for j =1, 2, 3, and from
Ey%,,< (EY}H®and (3.27), that

(3.35) |E(Y1zsexpit{EL(x) + &2(x) + £3(x)}/Byl)| < AlrPn—363/2BS.
From (3.34), (3.35) and (3.23), it can be seen that
|E{ A €XQitT,)}]
<|xn®B, 4| E{p12expit T,)}| + |x|n®B, 8| E{yr123expit T,,)}|
< AQ+ xR + [1De 8,
and hence

(3.36) I3, = /|z<al/4 |E{AnnexplitTy)}dt < A+ |x[3)572 < As2/4.
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We next estimatédy,. PutAy = Ay, — Ay . Inview of (3.26),
|Eexplit (T, + Ann)} — Eexplit (T, + A} )} — it EAy m eXQit (T, + A% D)
< 29t2x2mn_165.
This inequality, together with the independence of ¥és, implies that for any
1<m<n,
|E explit (T + An,n)}l

(3.37)
<|g(t, )" 2 + Alx|8,|tllg(t, )" ° + At’x*mn 182,

where we have used the bouBdA, | < (E|A,.n|H)Y? < A|x|8,.

Letno = [16n¢~?log(s; 1)] + 5, where[-] denotes the integer part function. It
is clear that 1< ng < n for &, /% < |t| < min{s;2, con!/2}, for n large enough.
Hence, choosing: = ng in (3.37) and using (3.23), we get

I :/ Eexplit (T, + A t|"tdr
(3.38) o 8;1/45\tlfmin{sn‘z,conl/z}| Wit (Tn + Anw) 12|

< AL+ x?)(logs; )22 < AsH3.

Substituting the bounds foky,, ..., I4, back into (3.30), and recalling that
8, — 0, we obtain (3.16), and hence complete the proof of Proposition 3.3.

3.6. Proof of Proposition 3.4. Without loss of generality we assume that
8, <n~1/3. Indeed, fors, > n~1/3, it is obvious that the tern® (n~1/2) on the
right-hand side of (2.3) can be replaced®y»—1). Note thats, < n~1/2 implies
thatn P(|X| > b,) < n~Y/3. This, together with the fact that the distributionf
is in the domain of attraction of a normal law, implies thax 2 < oco.

We continue to use the notation in the proof of Proposition 3.3. Further, we put

~ l x m n 6x m n n
Afl,?qz:ﬁz > @jk-i-ﬁz oY vk

n j=lk=m+1 n j=lk=m+1ll=k+1
X n—1 n 6x n—2 n n
A _ T - - .
3,5 Y TS Y S Y e
n j=m+lk=j+1 n j=m+1lk=j+1l=k+1

As in the proof of (3.26), we have that, for0x < 5, "/*?,

(3.39) E(Apn-— ALY — A,(f?n)z < 21Om2n_2x283 < Amzn_zéil/s.

n,m

Hence, formg = C logn, whereC is a constant that we shall specify later,

P(|Apy — AR, — AP | >n~Y) < AC%(logn)?5;Y/® < AC%sn3/2.

n,mo
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Proposition 3.4 will now follow if we show that, for8 x < §, 1/12

oosuypoJP(T" + AL+ AP, <) —{PO) + La()}]
(3.40)  ~®=r<

=0(8,) + 0(n™ Y.

Throughout the proof of Proposition 3.4, we assume thatoO< ,0<x <

8, Y 2 andn is sufficiently large. We need the following lemma, the proof of which
can be found in Prawitz (1972). See also Bentkus, Gotze and van Zwet (1997).

LEMMA 3.8. Let F beadistribution function with characteristic function f.
Thenfor all y e Rand T > 0, it holdsthat

(3.41) Iiin F(z) < 3+PV. / ! exp(—iyt)T K (t/T) f (1) dt,
Ny -T

(342) limF(z)>3—PV. / ! exp(—iyt)T YK (—t/T) f () dt,
zty -T

P.V.Li—l}:%(/_h+/ )

and 2K (s) = K1(s) + i K2(s)/(ms),
Ki(s)=1-s|, Ko(s) =ms(1— |s|)cotms + |s] for |s] <1,
and K (s) =0for |s| > 1.

where

We shall give the proof of (3.40) by using Lemma 3.8 and some of the tech-
nigues of Bentkus, Gotze and van Zwet (1997). BY-) = E(-|Xk+1,---, Xy)
we shall denote expectation conditional g1, ..., X,. Define

%Zm
I’l

k=n/2+1

n/2

%Z@lk
n

k=mo+1

= nl/2 5’1—2/3 E, 1/2 8n—2/3 E,

’ 2=n

and putro = 1—limsup,_, , |Ee'"X|,

nl/2 8,1_2/3r0

T 16(1+ 14+ 10)
As in the proof of (3.26),
n/2 2
E(t1+12)% < 208, %3 (B > 901k> +E<B4 Z 901k) }
n k=mo+1 n k=n/2+1

< Ax2823,
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This, together with the bound9x < 6,,_1/12, implies that

(3.43) EH 2 <An " BY3EQ+ 114 12)% < An~ 1623,

Also, we have thatl < (ro/16)n%/28, %3,
Returning to the proof of (3.40), note that depends only oiX o 11, ..., X,.
Using (3.41), and arguing as in Bentkus, Gotze and van Zwet (1997), we obtain

(3.44) 2P (T, + AD, + AP

n,mo n,mo

<y)<1+ENL+EI,

where, With f (1) = Epg exdit (T, + A, + A2 )1,

n=H"! f exp(—iyn) K1(t/H) f (1) dt,
R

I = LP.V./ exp(—iyt)Ko(t/H) f (1)t~ Ldr.

T R

The following results are derived by Hall and Wang (2003), on which the present
paper is based:

(3.45) |ElLl=0(5,) + O™,
(3.46) [El+1—2{®() + Li(} =0(@:) + 0.
It follows from (3.44)—(3.46) that
P(T,+ A%+ AP, <) @)+ La(y) +0(6,) + O™ ).
Similarly, using (3.42) and symmetry arguments, one can show that
P(Ti+ AN, +A2, >y) <1—{@() + L)} +0(6,) + O™,

Result (3.40) now follows, and hence the proof of Proposition 3.4 is complete.
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