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The leading term in the normal approximation to the distribution of
Student’st statistic is derived in a general setting, with the sole assumption
being that the sampled distribution is in the domain of attraction of a normal
law. The form of the leading term is shown to have its origin in the way in
which extreme data influence properties of the Studentized sum. The leading-
term approximation is used to give the exact rate of convergence in the central
limit theorem up to ordern−1/2, wheren denotes sample size. It is proved
that the exact rate uniformly on the whole real line is identical to the exact
rate on sets of just three points. Moreover, the exact rate is identical to that
for the non-Studentized sum when the latter is normalized for scale using a
truncated form of variance, but when the corresponding truncated centering
constant is omitted. Examples of characterizations of convergence rates are
also given. It is shown that, in some instances, their validity uniformly on the
whole real line is equivalent to their validity on just two symmetric points.

1. Introduction. The Studentized mean is an early example of one of the most
common approaches to adaptive statistical inference, where a nuisance parameter
is replaced by its estimator and the effect oninference carefully gauged. Initially,
in the case of Student’st statistic, this was done under the assumption that the
sampled distribution was normal, but later there developed a substantial literature,
to which Gayen (1949, 1950, 1952) and Hyrenius (1950) were early contributors,
on the effect of nonnormality on properties of the statistic. Wallace (1958),
Bowman, Beauchamp and Shenton (1977) and Cressie (1980) have reviewed work
in this area. Even in the case of normal data, where tables of the exact distribution
have long been readily available, the issue of convergence (to normality) of the
distribution of thet statistic has been of both theoretical and practical interest for
many years; see, for example, Anscombe (1950) and Gayen (1952).

From a theoretical viewpoint the problem of determining exact convergence
rates for thet statistic can be a particularly awkward one. Despite the statistic’s
simple representation in terms of the mean and mean of squares of independent

Received March 2002; revised January 2003.
AMS 2000 subject classifications. Primary 60F05; secondary 62E20.
Key words and phrases. Berry–Esseen theorem, characterization of rate of convergence, domain

of attraction, Edgeworth expansion, random norm, rate of convergence, self-normalized sum,
Studentize.

1419



1420 P. HALL AND Q. WANG

data, its distribution is surprisingly difficult to approximate using methods for
sums of independent random variables. The problem has, of course, long been
solved under sufficiently severe moment conditions, but its treatment in more
theoretically interesting cases, when its distribution is asymptotically normal but
few other assumptions are made, is far from straightforward.

In a major advance, Bentkus and Götze (1996) gave bounds of general
Berry–Esseen type for rates of convergence in the central limit theorem for
Student’st statistic when the data are independent and identically distributed. See
also Chibisov (1980, 1984) and Slavova (1985). Bentkus, Bloznelis and Götze
(1996) extended Bentkus and Götze’s arguments to nonidentically distributed
summands. Hall (1987) had earlier established Edgeworth expansions under
moment conditions that were no more severe than existence of the moments
actually appearing in the expansions. See also van Zwet (1984), Friedrich (1989),
Putter and van Zwet (1998), Bentkus, Götze and van Zwet (1997), Wang and Jing
(1999), Wang, Jing and Zhao (2000) and Bloznelis and Putter (1998, 2002).

However, moment conditions, even finite variance, are not the main prerequisite
for convergence of the distribution of Student’st statistic. In particular, Giné,
Götze and Mason (1997) showed that a necessary and sufficient condition for
the Studentized mean to have a limiting standard normal distribution is that
the sampled distribution lie in the domain of attraction of the normal law.
See also Logan, Mallows, Rice and Shepp (1973), Griffin and Mason (1991)
and Egorov (1996). Although it is not of direct relevance to our work, we
mention that the case where the data are from a time series is more complex.
There, convergence in the conventional, deterministically normalized central limit
theorem is not equivalent to convergence in the randomly normalized case; see
Hahn and Zhang (1998).

In the present paper we assume no more than that the sampled distribution lies
in the domain of attraction of the normal law, and describe rates of convergence,
in the independent-data case, without reference to moment properties. We give the
leading term in a normal approximation to the distribution of Student’st statistic,
and show that its form is strongly influenced by the effects that large data have on
the statistic. Using the leading term, we derive the exact convergence rate in the
central limit theorem, up to terms of ordern−1/2 (wheren denotes sample size),
or up to ordern−1 when the sampled distribution satisfies Cramér’s continuity
condition.

We show that, if the third moment should happen to be finite, the leading
term transforms into the conventional first term in an Edgeworth expansion of
the distribution of Student’st statistic. More generally, however, the leading term
can be used to show that the exact rate of convergence over the whole real line
is equivalent to the exact rate of convergence over very small sets, containing no
more than three points. The number of points can be reduced to two if we seek
necessary and sufficient characterizations of the convergence rate, rather than the
exact rate itself. We draw connections to the rate of convergence of the distribution
of a conventionally normalized, non-Studentized mean.
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2. Main results. Let X1,X2, . . . be independent and identically distributed
random variables, and letX have the distribution of a genericXi . Student’st
statistic, with numerator centered at its expectation, is defined to be

T =
(

n∑
i=1

Xi

)/{
n∑

i=1

X2
i − n−1

(
n∑

i=1

Xi

)2}1/2

.(2.1)

An alternative, more classical definition of the Studentized mean, in which the
sample variance has divisorn − 1 rather thann, has the formula(1− n−1)−1/2T ;
see Gossett (1908). All our results hold for this version of Student’s statistic, as
well as that given by (2.1). The principal results are Theorems 2.1 and 2.2, which
respectively describe the leading term and its role in a normal approximation to
the distribution ofT . Propositions 3.1 and 3.2 in the next section reveal the origins
of the leading term, and in particular link it to the way in which extremes affect
the distribution ofT .

Write � and φ for the standard normal distribution and density functions,
respectively. Putbn = sup{x :nx−2E[X2I (|X| ≤ x)] ≥ 1} and

Ln(x) = nE
(
�[x{1+ (X/bn)

2}1/2 − (X/bn)] − �(x)
)
.(2.2)

THEOREM 2.1. If the distribution of X is in the domain of attraction of the
normal law, and E(X) = 0, then

sup
−∞<x<∞

|P (T ≤ x) − {�(x) + Ln(x)}| = o(δn) + O(n−1/2).(2.3)

If, in addition, Cramér’s condition holds, that is,

lim sup
|t|→∞

|E(eitX)| < 1,

then O(n−1/2) on the right-hand side of (2.3) may be replaced by O(n−1).

We noted in Section 1 thatT has a limiting standard normal distribution if and
only if the distribution ofX is in the domain of attraction of the normal law and
E(X) = 0. Theorem 2.1 argues thatLn(x) is a leading term in an expansion of
the distribution ofT . As Theorem 2.2 will show, the exact order of magnitude
of Ln(x) is that of

δn = nP (|X| > bn) + nb−1
n

∣∣E{XI (|X| ≤ bn)}
∣∣

+ nb−3
n

∣∣E{X3I (|X| ≤ bn)}
∣∣ + nb−4

n E{X4I (|X| ≤ bn)}.
(2.4)

THEOREM 2.2. Assume the distribution of X is in the domain of attraction of
the normal law and E(X) = 0. Then δn → 0 and

sup
−∞<x<∞

|Ln(x)| � δn(2.5)
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as n → ∞. Here and below, an � bn denotes that

0 < lim inf
n→∞ an/bn ≤ lim sup

n→∞
an/bn < ∞.

Property (2.5) continues to hold if the supremum over all x is replaced by the
supremum over x ∈ {−x0, x0, x1}, where x0 > 31/2 and x1 is any real number not
equal to ±x0. Furthermore, if E(|X|3) < ∞, E(X2) = 1 and E(X3) = γ , then

sup
−∞<x<∞

∣∣n1/2Ln(x) − 1
6γ (2x2 + 1)φ(x)

∣∣ → 0(2.6)

as n → ∞.

There exist examples of distributions in the domain of attraction of the normal
law having zero mean and, for which any given one of the four components in the
definition of δn, at (2.4), dominate all the others along a subsequence. It follows
that none of the terms of whichδn is composed can be dropped if we require a
full account of the rate of convergence in the central limit theorem. Formula (2.6)
shows that in the case of finite third moment, the leading term is asymptotic to its
conventional form in an Edgeworth expansion.

Together, properties (2.3) and (2.5) give concise results about the rate of
convergence in the central limit theorem. For example, ifX is in the domain of
attraction of the normal law, andE(X) = 0, then (2.3) and (2.5) imply that

sup
−∞<x<∞

|P (T ≤ x) − �(x)| + n−1/2 � δn + n−1/2;(2.7)

and n−1/2 may be replaced byn−1 if Cramér’s condition is satisfied. One
application to which (2.7) can be put is the derivation of characterizations of rates
of convergence in the central limit theorem. In this regard, some examples can be
found in Hall and Wang (2003), on which the present paper is based.

We conclude this section by mentioning that the convergence rateδn is the
same as that in the case of the standard (i.e., non-Studentized) central limit
theorem, where a sum of independent and identically distributed random variables
is standardized for scale usingbn, but is centered conventionally, not using a
truncated mean. That is, if we defineS1 = b−1

n

∑
i≤n Xi , Fj(x) = P (Sj ≤ x) and

Ln1(x) = nE{�(x − X/bn) − �(x)} − 1
2nb−2

n φ′(x),(2.8)

then, provided the distribution ofX is in the domain of attraction of the normal
law andE(X) = 0, it is true that sup−∞<x<∞ |Ln1(x)| � δn and

sup
−∞<x<∞

|F1(x) − {�(x) + Ln1(x)}| = o(δn) + O(n−1/2).(2.9)

The methods of proof are similar to those given in Chapter 2 of Hall (1982).
Alternatively, if we putσ 2

n = E{X2I (|X| ≤ bn)} andS2 = (
∑

i≤n Xi)/(n
1/2σn),
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and defineLn2(x) as at (2.8) but withbn there replaced byn1/2σn, then
(2.9) continues to hold if we replace(F1,Ln1) by (F2,Ln2).

The similarities between the Studentized and non-Studentized cases do not
penetrate deeply, however. The leading terms in the respective settings are quite
different. In the case of finite third moment, the leading terms are asymptotic
to their respective Edgeworth forms, which are well known to have intrinsically
different formulae.

3. Proofs.

3.1. Proof of Theorem 2.1. Let α > 0 and defineYi = XiI (|Xi| ≤ αbn),
ρn = nP (|X| > αbn),

�n(x) = P

[ ∑
i≤n Yi

{∑i≤n Y 2
i − n−1(

∑
i≤n Yi)2}1/2

≤ x

]
,

Mn1(x) = nE
{(

�[x{1+ (X/bn)
2}1/2 − (X/bn)] − �(x)

)
I (|X| > αbn)

}
,

Mn2(x) = nE
{(

�[x{1+ (X/bn)
2}1/2 − (X/bn)] − �(x)

)
I (|X| ≤ αbn)

}
.

(3.1)

Theorem 2.1 is a direct consequence of the following two propositions, which will
be proved in Sections 3.3 and 3.4.

PROPOSITION3.1. Assume the distribution of X is in the domain of attraction
of the normal law, and E(X) = 0. Then, for each α > 0,

sup
−∞<x<∞

|P (T ≤ x) − {�n(x) + Mn1(x)}| = o(ρn).(3.2)

PROPOSITION3.2. Assume the distribution of X is in the domain of attraction
of the normal law, and E(X) = 0. Then, for each ε > 0 we have, for all sufficiently
small α > 0,

sup
−∞<x<∞

|�n(x) − {�(x) + Mn2(x)}| ≤ εδn + O(n−1/2).(3.3)

If, in addition, the distribution of X satisfies Cramér’s continuity condition, then
the term O(n−1/2) on the right-hand side of (3.3) may be replaced by O(n−1).

We remark that our method for proving Proposition 3.1 will show clearly that
the leading-term fragmentMn1 derives principally from the largest summand
amongX1, . . . ,Xn, that is, from the valueXmax of Xi for which |Xi | is greatest.
Indeed, it may be proved that

Mn1(x) = E
{(

�[x{1+ (Xmax/bn)
2}1/2 − (Xmax/bn)] − �(x)

)
I (|Xmax| > αbn)

}
+ o(ρn),
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uniformly in x. It follows that the leading termLn(x), introduced at (2.2) and
defined as the limit ofMn1 asα → 0, also has this origin.

The connections to extremes arise in part through the major role that large
summands play in convergence properties of series when the distribution of
the summands has infinite variance. See Darling (1952), Arov and Bobrov
(1960), Dwass (1966), Hall (1978), LePage, Woodroofe and Zinn (1981) and
Resnick (1986) for discussion of more conventional settings. In the present case the
main series where extremes cause difficulty is

∑
i≤n X2

i , appearing in the definition
of T at (2.1). The summands here have finite variance if and only if the sampled
distribution has finite fourth moment. However, extremes arising even from the
series

∑
i≤n Xi play a role in the leading term and so too in the convergence rate;

see Hall (1984) for discussion of the latter issue.

3.2. Proof of Theorem 2.2. It is straightforward to show thatδn → 0 and
sup−∞<x<∞ |Ln(x)| = O(δn). Therefore, it suffices to prove that

δn = O

{
sup
x∈S

|Ln(x)|
}
,(3.4)

whereS = {−x0, x0, x1} is the set of three points in the statement of the theorem;
and that (2.6) holds. This follows relatively straightforwardly.

3.3. Proof of Proposition 3.1. PutV = maxi≤n |Xi | andJ = argmaxi≤n|Xi |;
ties may be broken in any measurable way. DefineS to be the sign ofXJ

and let T1 = ∑
i≤n Xi , T2 = ∑

i≤n X2
i , T3 = ∑

i≤n Yi + SV I (V > αbn) and

T4 = ∑
i≤n Y 2

i + V 2I (V > αbn). The probability that two or more values of|Xi |,
for 1 ≤ i ≤ n, exceedαbn equalsO(ρ2

n). Therefore,P {(T1, T2) = (T3, T4)} =
1− O(ρ2

n), whence it follows that, uniformly inx,

P (T ≤ x) = P

{
T1

(T2 − n−1T 2
1 )1/2

≤ x

}

= P

{
T3

(T4 − n−1T 2
3 )1/2

≤ x

}
+ O(ρ2

n).

(3.5)

Put π(v) = P (X ≥ 0||X| = v). Conditional onX1, . . . ,Xn, let S(V ) denote
a random variable that takes the values+1 and−1 with probabilitiesπ(V ) and
1 − π(V ), respectively. LetT5 = ∑

i≤n Yi + S(V )V I (V > αbn). Then (T3, T4)

has the same joint distribution as(T5, T4), and so by (3.5) we have, uniformly inx,

P (T ≤ x) = P (W ≤ x) + O(ρ2
n),(3.6)

whereW = T5/(T4 − n−1T 2
5 )1/2.
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Define

TY = ∑
i≤n

(Yi − EYi), TB = ∑
i≤n

(Y 2
i − EY 2

i ),

ν = E{XI (|X| ≤ αbn)}, τ2 = E{X2I (|X| ≤ αbn)}.
Note that a formula for�n(x), equivalent to (3.1), is

�n(x) = P

[
TY + nν

{TB + nτ2 − n−1(TY + nν)2}1/2
≤ x

]
.(3.7)

Let the random variableN1 have the standard normal distribution. The joint
distribution of the vector(b−1

n TY , b−2
n TB), conditional onV > εbn, converges to

the joint distribution of(N1,0). In particular, the second component of the limiting
distribution is degenerate at 0. The convergence has the following property: for
all ε > 0,

sup
v>αbn

sup
−∞<x<∞

∣∣P (b−1
n TY ≤ x;b−2

n |TB | ≤ ε|V = v) − P (N1 ≤ x)
∣∣ → 0.(3.8)

For a formal proof of (3.8), it suffices to observe that the joint distribution of
(
∑

i≤n Yi,
∑

i≤n Y 2
i ), conditional onV = v > αbn, equals the unconditional joint

distribution of (
∑

i≤n−1 Yi,
∑

i≤n−1 Y 2
i ); and thatb−1

n

∑
i≤n−1(Yi − EYi) → N1

in distribution, b−2
n

∑
i≤n−1(Y

2
i − EY 2

i ) → 0 in probability andb−1
n |E(Y1)| +

b−2
n E(Y 2

1 ) → 0.
SinceT4 = TB + nτ2 + V 2I (V > αbn), T5 = TY + nν + S(V )V I (V > αbn),

b−2
n nτ2 → 1 andb−1

n nν → 0, then, for allε > 0, we have from (3.8),

sup
v>αbn

sup
−∞<x<∞

∣∣P [
b−1
n {T5 − S(V )(V/bn)} ≤ x;

|b−2
n T4 − 1− (V /bn)

2| ≤ ε|V = v
] − P (N1 ≤ x)

∣∣ → 0.

Therefore, ifN2 denotes a standard normal random variable that is independent
of V , then

sup
v>αbn

sup
−∞<x<∞

∣∣∣∣P (W ≤ x|V = v) − P

[
N2 + S(V )(V/bn)

{1+ (V /bn)2}1/2
≤ x

∣∣∣V = v

]∣∣∣∣ → 0.

Equivalently,

P (W ≤ x|V = v) − �[x{1+ (v/bn)
2}1/2 − S(v)(v/bn)] → 0,

uniformly in v > αbn and−∞ < x < ∞. Multiply throughout bydFn(v), where
Fn denotes the distribution function ofV conditional onV > αbn; integrate over
v > αbn; and then multiply byP (V > αbn), to prove that, uniformly inx,

P (W ≤ x;V > αbn)

= E
(
�[x{1+ (V /bn)

2}1/2 − S(V )(V/bn)]I (V > αbn)
) + o(ρn)

= nE
(
�[x{1+ (X/bn)

2}1/2 − (X/bn)]I (X > αbn)
) + o(ρn).

(3.9)



1426 P. HALL AND Q. WANG

To derive the last identity, reformulate the expectation using an integration by parts
argument, and note that

P {S(V )V > y} = nP (X > y) + O[{nP (X > y)}2],
P {S(V )V ≤ y} = nP (X ≤ y) + O[{nP (X ≤ y)}2],

where both remainders are of the stated orders uniformly iny > αbn and
y < −αbn, respectively.

Furthermore,

E{P (W ≤ x|V ≤ αbn)I (V ≤ αbn)}
= E

(
I

[
TB + nν

{TY + nτ2 − n−1(TB + nν)2}1/2
≤ x

]
I (V ≤ αbn)

)

= �n(x) − E

(
I

[
TB + nν

{TY + nτ2 − n−1(TB + nν)2}1/2 ≤ x

]
I (V > αbn)

)
,

using (3.7) to obtain the last identity. A simpler version of the argument leading
to (3.9) may be used to prove that the subtracted term above equals�(x)ρn +
o(ρn), uniformly in x. Therefore,

P (W ≤ x;V ≤ αbn) = �n(x) − �(x)ρn + o(ρn),(3.10)

uniformly in x. Combining (3.10) with (3.6) and (3.9), we conclude that
(3.2) holds.

3.4. Proof of Proposition 3.2. DefineSn = ∑
j Xj , S∗

n = ∑
j Yj , V 2

n = ∑
j X2

j

andV ∗2
n = ∑

j Y 2
j . It is well known [e.g., Efron (1969)] that, forx ≥ 0,

�n(x) = P [S∗
n/V ∗

n ≤ x{n/(n + x2)}1/2].(3.11)

Noting also that for|u| ≤ 1,

sup
−∞<x<∞

∣∣�{x(1+ u2)1/2 − u}

− [
�(x) + {−u + 1

6u3(2x2 + 1) + 1
12u

4x(x2 − 3)
}
φ(x)

]∣∣ ≤ C|u|5,
whereC is an absolute constant, and thatnE{|X/bn|5I (|X| ≤ αbn)} ≤ αδn, we
have that, for anyα > 0,

sup
−∞<x<∞

|Mn2(x) − Qn1(x)| ≤ Cαδn,(3.12)

whereunj = nE{(X/Bn)
j I(|X|≤αbn)} and

Qn1(x) = −un1φ(x) + un3
1
6(2x2 + 1)φ(x) + un4

1
12x(x2 − 3)φ(x).
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In view of (3.11) and (3.12), Proposition 3.2 will follow if, for eachε > 0, we have
for all sufficiently smallα > 0,

sup
−∞<x<∞

|P (S∗
n/V ∗

n ≤ x) − {�(x) + Qn1(x)}| ≤ εδn + O(n−1/2),(3.13)

andO(n−1/2) may be replaced byO(n−1) if Cramér’s condition is satisfied.
Without loss of generality,x ≥ 0. Since the distribution ofX is in the

domain of attraction of the normal law, then{Sn/Vn} is stochastically bounded
[see, e.g., Giné, Götze and Mason (1997)] and similarly{S∗

n/V ∗
n } is also

stochastically bounded. Hence, by Theorem 2.5 of Giné, Götze and Mason (1997),

for x > δ
−1/12
n ,

P (S∗
n ≥ xV ∗

n ) ≤ e−x sup
n

E{exp(|S∗
n/V ∗

n |)} ≤ Aexp(−δ−1/12
n ) ≤ Aδ2

n.

(Here and below,A denotes a positive constant which might be different at each
appearance.) Moreover,|1 − �(x) − Qn1(x)| ≤ Aδ2

n uniformly in x > δ
−1/12
n .

Therefore, (3.13) will follow if, for eachε > 0, we have for all sufficiently
smallα > 0,

sup′|P (S∗
n/V ∗

n ≤ x) − {�(x) + Qn1(x)}| ≤ εδn + O(n−1/2),(3.14)

andO(n−1/2) may be replaced byO(n−1) if Cramér’s condition is satisfied, where
sup′ denotes the supremum overx ∈ [0, δ

−1/12
n ].

Let B2
n = nEY 2

1 and Wn = B−2
n

∑
j (Y

2
j − EY 2

j ). Noting that (1 + y)1/2 =
1 + 1

2y − 1
8y2 + 1

16y
3 + θy4, whereθ = θ(y) satisfies|θ | ≤ 1

16 for |y| ≤ 1
2, we

may prove that

P (S∗
n/V ∗

n ≤ x)

= P {S∗
n ≤ xBn(1+ Wn)

1/2}
≥ −P

(|Wn| ≥ 1
2

) + P
{
S∗

n ≤ xBn

(
1+ 1

2Wn − 1
8W2

n + 1
16W

3
n − 1

16W
4
n

)}
,

P (S∗
n/V ∗

n ≤ x)

= P {S∗
n ≤ xBn(1+ Wn)

1/2}
≤ P

(|Wn| ≥ 1
2

) + P
{
S∗

n ≤ xBn

(
1+ 1

2Wn − 1
8W2

n + 1
16W

3
n + 1

16W
4
n

)}
.

In view of Markov’s inequality, it is readily seen that, for eachε > 0, we have for
any sufficiently smallα > 0 and all sufficiently largen,

P (|Wn| ≥ 1/2) ≤ 16E(W4
n) ≤ A(α4δn + δ2

n) ≤ εδn.

Hence, (3.14) will follow if we prove that, for eachε > 0, we have for|θ | ≤ 1/16
and any sufficiently smallα > 0,

sup′∣∣P {
S∗

n ≤ xBn

(
1+ 1

2Wn − 1
8W2

n + 1
16W

3
n + θW4

n

)}
− {�(x) + Qn1(x)}∣∣

≤ εδn + O(n−1/2),

(3.15)
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andO(n−1/2) may be replaced byO(n−1) if Cramér’s condition is satisfied.
Let

∑
j 	=k ,

∑
j 	=k 	=l and

∑
j 	=k 	=l 	=m denote summations over pairs, triples and

quadruples, respectively, of distinct integers between 1 andn. PutZj = Y 2
j −EY 2

j .
Simple calculations show that

B6
nW3

n =
n∑

j=1

Z3
j + 3

∑
j 	=k

Zj (Z
2
k − EZ2

k) + ∑
j 	=k 	=l

ZjZkZl + Wn1,

B8
nW4

n =
n∑

j=1

Z4
j + 4

∑
j 	=k

Zj (Z
3
k − EZ3

k) + 12
∑
j 	=k

(Z2
j − EZ2

j )(Z
2
k − EZ2

k) + Wn2,

whereWn1 = 3(n − 1)E(Z2
1)

∑
j Zj and

Wn2 = 4(n − 1)E(Z3
1)

n∑
j=1

Zj + 24(n − 1)E(Z2
1)

n∑
j=1

(Z2
j − EZ2

j )

+ 12n(n − 1)(EZ2
1)

2 + 24
∑

j 	=k 	=l

ZjZkZ
2
l + ∑

j 	=k 	=l 	=m

ZjZkZlZm.

Therefore,

P

{
S∗

n ≤ xBn

(
1+ 1

2
Wn − 1

8
W2

n + 1

16
W3

n + θW4
n

)}

= P

{
1

Bn

n∑
j=1

ξj (x) + x

B4
n

∑
j 	=k

ϕjk + x

B6
n

∑
j 	=k 	=l

ψjkl

≤ x(1+ Wn3) − nEη1(x)

Bn

}
,

where ξj (x) = ηj (x) − Eηj (x), ψjkl = − 1
16ZjZkZl , Wn3 = 1

16B
−6
n Wn1 +

θB−8
n Wn2,

ηj (x) = Yj − x

2Bn

Zj + x

8B3
n

Z2
j − x

16B5
n

Z3
j − θx

B7
n

Z4
j ,

ϕjk = 1

8
ZjZk − 3

16B2
n

Zj (Z
2
k − EZ2

k) − 4θ

B4
n

Zj (Z
3
k − EZ3

k)

− 12θ

B4
n

(Z2
j − EZ2

j )(Z
2
k − EZ2

k).

It is readily seen that

E(B−6
n Wn1)

4 ≤ Aδ4
n(α

4δn + δ2
n) and E(B−8

n Wn2)
2 ≤ Aδ2

n(α
2δn + δ2

n).
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Hence, for eachε > 0, we have for any sufficiently smallα > 0 and all sufficiently
largen,

P (|Wn3| ≥ 2εδn) ≤ P (|B−6
n Wn1| ≥ εδn) + P (|B−8

n Wn2| ≥ εδn)

≤ A{ε−4(α4δn + δ2
n) + ε−2(α2δn + δ2

n)} ≤ εδn.

Result (3.15) now follows easily from the following three propositions. We
will only prove Propositions 3.3 and 3.4 in subsequent sections. The proof of
Proposition 3.5 is relatively straightforward although requiring tedious algebra,
and hence details are omitted. The proof ofProposition 3.2 is therefore complete.

PROPOSITION3.3. For all 0 < α ≤ 1
2,

sup′ sup
−∞<y<∞

∣∣∣∣∣P
{

1

Bn

n∑
j=1

ξj (x) + x

B4
n

∑
j 	=k

ϕjk + x

B6
n

∑
j 	=k 	=l

ψjkl ≤ y

}

− {�(y) + Ln(y)}
∣∣∣∣∣

= o(δn) + O(n−1/2),

(3.16)

where Ln(y) = n[E�{y − ξ1(x)/Bn} − �(y)] − 1
2�(2)(y).

PROPOSITION 3.4. If lim sup|t|→∞ |EeitX| < 1, then the term O(n−1/2) on
the right-hand side of (3.16) may be replaced by O(n−1).

PROPOSITION3.5. For each ε > 0, we have for any sufficiently small α > 0,

sup′|�[x − {nEη1(x)/Bn}] − �(x) + Qn2(x)| ≤ εδn + O(n−1),(3.17)

sup′|Ln[x − {nEη1(x)/Bn}] − Qn3(x)| ≤ εδn + O(n−1),(3.18)

where unj = nE{(X/Bn)
j I (|X| ≤ αbn)}, Qn2(x) = un1φ(x) + 1

8xun4φ(x) and

Qn3(x) = un3
1
6(2x2 + 1)φ(x) + un4

1
24x(2x2 − 3)φ(x).

3.5. Proof of Proposition 3.3. Standard methods based on Taylor’s expansion,
although requiring tedious algebra, may be used to establish the following lemmas.
Define

unj = nE{(X/Bn)
j I (|X| ≤ αbn)}, g(t, x) = E[exp{itξ1(x)/Bn}]

and

fn(t, x) = e−t2/2[1+ n{g(t, x) − 1} + 1
2t2]

.
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LEMMA 3.6. If 0 < α ≤ 1
2, then for all sufficiently large n,

∣∣nB−2
n Eξ2

1(x) − (
1− xun3 + 1

4x2un4
)∣∣ ≤ 2(1+ x2)(αδn + n−1),(3.19) ∣∣nB−3

n Eξ3
1(x) − (

un3 − 3
2xun4

)∣∣ ≤ 12(1+ |x|3)(αδn + n−1),(3.20)

|nB−4
n Eξ4

1(x) − un4| ≤ 32(1+ x4)(αδn + n−1),(3.21)

nB−5
n E|ξ1(x)|5 ≤ 32(1+ |x|5)αδn.(3.22)

LEMMA 3.7. There exists a constant c0 > 0 such that, for all α ∈ (0, 1
2],

|t| ≤ c0n
1/2, all x ∈ [0, δ

−1/12
n ] and all sufficiently large n,

|g(t, x)| ≤ e−t2/8n,(3.23)

|gn(t, x) − e−t2/2| ≤ A(1+ x4)(1+ α−1)δn(t
2 + t4)e−t2/8,(3.24)

|gn(t, x) − fn(t, x)| ≤ {A(1+ x8)(1+ α−2)δ2
n(t

4 + t8) + 2n−1t4}e−t2/8.(3.25)

Throughout the proof of Proposition 3.3, we assume that 0< α ≤ 1
2, 0 ≤ x ≤

δ
−1/12
n andn is sufficiently large. Definēϕjk = ϕjk +ϕkj , Tn = B−1

n

∑
j ξj (x) and

�n,m = x

B4
n

m−1∑
j=1

n∑
k=j+1

ϕ̄jk + 6x

B6
n

m−2∑
j=1

n∑
k=j+1

n∑
l=k+1

ψjkl.

Noting that B2
n = nEY 2

1 = b2
n for sufficiently largen, we obtain that|Yj | ≤

Bn/2 and|Zj | ≤ B2
n/2. Using these properties,E(ψ123|Xj) = 0, j = 1,2,3, and

E(ϕ̄12|Xj ) = 0, j = 1,2, we may deduce thatE(ϕ2
12) ≤ 28(EY 4

1 )2, E(ψ2
123) ≤

(EY 4
1 )3 and, for 1≤ m ≤ n,

E(�2
n,m) ≤ 2x2{mnB−8

n E(ϕ2
12) + mn2B−12

n E(ψ2
123)}

≤ 210mn−1x2δ2
n,

(3.26)

the last inequality following from the fact thatnB−4
n EY 4

1 ≤ δn. Moreover, noting
that n−1 ≤ δn → 0, |un4| ≤ δn and |un3| ≤ (1 + α−1)δn, it follows easily from
(3.19)–(3.21) that

∣∣∣∣Eξ2
1(x)

EY 2
1

− 1
∣∣∣∣ ≤ 2(1+ x2)(1+ α−1)δn ≤ 1

2
,(3.27)

nB−3
n |Eξ3

1(x)| ≤ 32(1+ |x|3)(1+ α−1)δn,(3.28)

nB−4
n Eξ4

1(x) ≤ 65(1+ x4)δn.(3.29)
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We now turn back to the proof of (3.16). Using the identities

�n,n = x

B4
n

∑
j 	=k

ϕjk + x

B6
n

∑
j 	=k 	=l

ψjkl

and
∫

eityd{�(y) + Ln(y)} = fn(t, x), and Esseen’s smoothing lemma [e.g.,
Petrov (1975), page 109], it may be shown that

sup
−∞<y<∞

|P (Tn + �n,n ≤ y) − {�(y) + Ln(y)}|

≤
∫
|t|≤min{δ−2

n ,c0n
1/2}

|E exp{it (Tn + �n,n)} − fn(t, x)||t|−1 dt

+ A(δ2
n + n−1/2) sup

−∞<y<∞
|(d/dy){�(y) + Ln(y)}|

≤
4∑

j=1

Ijn + A(δ2
n + n−1/2)(1+ α−1δ2/3

n ),

(3.30)

wherec0 is as in Lemma 3.7,

I1n =
∫
|t|≤δ

−1/4
n

∣∣E exp{it (Tn + �n,n)}

− E exp(itTn) − itE{�n,n exp(itTn)}∣∣|t|−1 dt,

I2n =
∫
|t|≤δ

−1/4
n

2|E exp(itTn) − fn(t, x)||t|−1 dt

+
∫
δ
−1/4
n ≤|t|≤c0n

1/2
|E exp(itTn)||t|−1 dt,

I3n =
∫
|t|≤δ

−1/4
n

|E{�n,n exp(itTn)}|dt,

I4n =
∫
δ
−1/4
n ≤|t|≤min{δ−2

n ,c0n
1/2}

|E exp{it (Tn + �n,n)}||t|−1 dt,

and we have used the property, implied by (3.27)–(3.29), that

sup
−∞<y<∞

|L′
n(y)| ≤ A

{
1

2

∣∣∣∣nEξ2
1(x)

B2
n

− 1
∣∣∣∣ + n|Eξ3

1(x)|
6B3

n

+ nEξ4
1(x)

24B4
n

}

≤ A(1+ x4)(1+ α−1)δn ≤ A(1+ α−1)δ2/3
n .

Using (3.26) and the fact that|eiu − 1− iu| ≤ u2/2, it can be shown that

I1n ≤ 1
2

∫
|t|≤δ

−1/4
n

E(�2
n,n)|t|dt ≤ 29x2δ3/2

n ≤ 29δ4/3
n .(3.31)

Using Lemma 3.7, we obtain

I2n ≤ A{(1+ x8)(1+ α−2)δ2
n + n−1} ≤ A{(1+ α−2)δ4/3

n + n−1}.(3.32)
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Next we estimateI3n andI4n. Treating the former first, note thatE(ϕ12|X1) =
E(ϕ12|X2) = 0 andEϕ2

12 ≤ 28(EY 4
1 )2, and that as in Bickel, Götze and van Zwet

(1986),

E
(
ϕ12exp[it{ξ1(x) + ξ2(x)}/Bn]) = − t2

B2
n

E{ξ1(x)ξ2(x)ϕ12} + l1(x),(3.33)

where by using|eiu − 1− iu| ≤ u2/2, |eiu − 1| ≤ |u|, (3.27) and (3.29),

|l1(x)| ≤
∣∣∣∣E

[
ϕ12

{
eitξ1(x)/Bn − 1− itξ1(x)

Bn

}{
eitξ2(x)/Bn − 1

}]∣∣∣∣
+ |t|

Bn

∣∣∣∣E
[
ϕ12ξ1(x)

{
eitξ2(x)/Bn − 1− itξ2(x)

Bn

}]∣∣∣∣
≤ |t|3

2B3
n

E[|ϕ12|{|ξ1(x)|ξ2
2 (x) + ξ2

1(x)|ξ2(x)|}]

≤ |t|3
B3

n

(Eϕ2
12)

1/2{Eξ2
1(x)}1/2{Eξ4

1(x)}1/2

≤ A(1+ x2)|t|3n−1/2B−1
n (EY 4

1 )(EY 2
1 )1/2δ1/2

n

≤ A(1+ x2)|t|3n−2δ3/2
n B4

n,

sincenB−4
n EY 4

1 ≤ δn andB2
n = nEY 2

1 . Tedious but elementary calculation shows
that

|E{ξ1(x)ξ2(x)ϕ12}| ≤ A(1+ x2)n−2δ2
nB

6
n.

Substituting into (3.33), we deduce that∣∣E(
ϕ12exp[it{ξ1(x) + ξ2(x)}/Bn])∣∣ ≤ A(1+ x2)(t2 + |t|3)n−2δ3/2

n B4
n.(3.34)

Similarly, it follows from the identitiesE(ψ123|Xj) = 0, for j = 1,2,3, and from
Eψ2

123≤ (EY 4
1 )3 and (3.27), that∣∣E(

ψ123exp[it{ξ1(x) + ξ2(x) + ξ3(x)}/Bn])∣∣ ≤ A|t|3n−3δ3/2
n B6

n.(3.35)

From (3.34), (3.35) and (3.23), it can be seen that

|E{�n,n exp(itTn)}|
≤ |x|n2B−4

n |E{ϕ12exp(itTn)}| + |x|n3B−6
n |E{ψ123exp(itTn)}|

≤ A(1+ |x|3)δ3/2
n (t2 + |t|3)e−t2/8,

and hence

I3n =
∫
|t|≤δ

−1/4
n

|E{�n,n exp(itTn)}|dt ≤ A(1+ |x|3)δ3/2
n ≤ Aδ5/4

n .(3.36)
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We next estimateI4n. Put�∗
n,m = �n,n − �n,m. In view of (3.26),∣∣E exp{it (Tn + �n,n)} − E exp{it (Tn + �∗

n,m)} − itE�n,m exp{it (Tn + �∗
n,m)}∣∣

≤ 29t2x2mn−1δ2
n.

This inequality, together with the independence of theXk ’s, implies that for any
1 ≤ m ≤ n,

|E exp{it (Tn + �n,n)}|
≤ |g(t, x)|m−2 + A|x|δn|t||g(t, x)|m−5 + At2x2mn−1δ2

n,
(3.37)

where we have used the boundE|�n,m| ≤ (E|�n,m|2)1/2 ≤ A|x|δn.
Let n0 = [16nt−2 log(δ−1

n )] + 5, where[·] denotes the integer part function. It

is clear that 1≤ n0 ≤ n for δ
−1/4
n ≤ |t| ≤ min{δ−2

n , c0n
1/2}, for n large enough.

Hence, choosingm = n0 in (3.37) and using (3.23), we get

I4n =
∫
δ
−1/4
n ≤|t|≤min{δ−2

n ,c0n
1/2}

|E exp{it (Tn + �n,n)}||t|−1 dt

≤ A(1+ x2)(logδ−1
n )2δ2

n ≤ Aδ4/3
n .

(3.38)

Substituting the bounds forI1n, . . . , I4n back into (3.30), and recalling that
δn → 0, we obtain (3.16), and hence complete the proof of Proposition 3.3.

3.6. Proof of Proposition 3.4. Without loss of generality we assume that
δn ≤ n−1/3. Indeed, forδn ≥ n−1/3, it is obvious that the termO(n−1/2) on the
right-hand side of (2.3) can be replaced byO(n−1). Note thatδn ≤ n−1/3 implies
thatnP (|X| ≥ bn) ≤ n−1/3. This, together with the fact that the distribution ofX

is in the domain of attraction of a normal law, implies thatEX2 < ∞.
We continue to use the notation in the proof of Proposition 3.3. Further, we put

�̃(1)
n,m = x

B4
n

m∑
j=1

n∑
k=m+1

ϕ̄jk + 6x

B6
n

m∑
j=1

n∑
k=m+1

n∑
l=k+1

ψjkl,

�̃(2)
n,m = x

B4
n

n−1∑
j=m+1

n∑
k=j+1

ϕ̄jk + 6x

B6
n

n−2∑
j=m+1

n∑
k=j+1

n∑
l=k+1

ψjkl.

As in the proof of (3.26), we have that, for 0≤ x ≤ δ
−1/12
n ,

E
(
�n,n − �̃(1)

n,m − �̃(2)
n,m

)2 ≤ 210m2n−2x2δ2
n ≤ Am2n−2δ11/6

n .(3.39)

Hence, form0 = C logn, whereC is a constant that we shall specify later,

P
(∣∣�n,n − �̃(1)

n,m0
− �̃(2)

n,m0

∣∣ ≥ n−1) ≤ AC2(logn)2δ11/6
n ≤ AC2δn3/2.
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Proposition 3.4 will now follow if we show that, for 0≤ x ≤ δ
−1/12
n ,

sup
−∞<y<∞

∣∣P (
Tn + �̃(1)

n,m0
+ �̃(2)

n,m0
≤ y

) − {�(y) + Ln(y)}∣∣
= o(δn) + O(n−1).

(3.40)

Throughout the proof of Proposition 3.4, we assume that 0< α ≤ 1
2, 0 ≤ x ≤

δ
−1/12
n andn is sufficiently large. We need the following lemma, the proof of which

can be found in Prawitz (1972). See also Bentkus, Götze and van Zwet (1997).

LEMMA 3.8. Let F be a distribution function with characteristic function f .
Then for all y ∈ R and T > 0, it holds that

lim
z↓y

F (z) ≤ 1
2 + P.V.

∫ T

−T
exp(−iyt)T −1K(t/T )f (t) dt,(3.41)

lim
z↑y

F (z) ≥ 1
2 − P.V.

∫ T

−T
exp(−iyt)T −1K(−t/T )f (t) dt,(3.42)

where

P.V.

∫ T

−T
= lim

h↓0

(∫ −h

−T
+

∫ T

h

)
,

and 2K(s) = K1(s) + iK2(s)/(πs),

K1(s) = 1− |s|, K2(s) = πs(1− |s|)cotπs + |s| for |s| < 1,

and K(s) ≡ 0 for |s| ≥ 1.

We shall give the proof of (3.40) by using Lemma 3.8 and some of the tech-
niques of Bentkus, Götze and van Zwet (1997). ByEk(·) = E(·|Xk+1, . . . ,Xn)

we shall denote expectation conditional onXk+1, . . . ,Xn. Define

τ1 = n1/2δ−2/3
n Em0

∣∣∣∣∣ x

B4
n

n/2∑
k=m0+1

ϕ̄1k

∣∣∣∣∣, τ2 = n1/2δ−2/3
n Em0

∣∣∣∣∣ x

B4
n

n∑
k=n/2+1

ϕ̄1k

∣∣∣∣∣,
and putτ0 = 1− lim sup|t|→∞ |EeitX|,

H = n1/2δ
−2/3
n τ0

16(1+ τ1 + τ2)
.

As in the proof of (3.26),

E(τ1 + τ2)
2 ≤ 2nδ−4/3

n

{
E

(
x

B4
n

n/2∑
k=m0+1

ϕ̄1k

)2

+ E

(
x

B4
n

n∑
k=n/2+1

ϕ̄1k

)2}

≤ Ax2δ2/3
n .
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This, together with the bound 0≤ x ≤ δ
−1/12
n , implies that

E(H−2) ≤ An−1δ4/3
n E(1+ τ1 + τ2)

2 ≤ An−1δ4/3
n .(3.43)

Also, we have thatH ≤ (τ0/16)n1/2δ
−2/3
n .

Returning to the proof of (3.40), note thatH depends only onXm0+1, . . . ,Xn.
Using (3.41), and arguing as in Bentkus, Götze and van Zwet (1997), we obtain

2P
(
Tn + �̃(1)

n,m0
+ �̃(2)

n,m0
≤ y

) ≤ 1+ EI1 + EI2,(3.44)

where, withf (t) = Em0 exp[it{Tn + �̃
(1)
n,m0 + �̃

(2)
n,m0}],

I1 = H−1
∫
R

exp(−iyt)K1(t/H)f (t) dt,

I2 = i

π
P.V.

∫
R

exp(−iyt)K2(t/H)f (t)t−1 dt.

The following results are derived by Hall and Wang (2003), on which the present
paper is based:

|EI1| = o(δn) + O(n−1),(3.45)

|EI2 + 1− 2{�(y) + Ln(y)}| = o(δn) + O(n−1).(3.46)

It follows from (3.44)–(3.46) that

P
(
Tn + �̃(1)

n,m0
+ �̃(2)

n,m0
≤ y

) ≤ �(y) + Ln(y) + o(δn) + O(n−1).

Similarly, using (3.42) and symmetry arguments, one can show that

P
(
Tn + �̃(1)

n,m0
+ �̃(2)

n,m0
> y

) ≤ 1− {�(y) + Ln(y)} + o(δn) + O(n−1).

Result (3.40) now follows, and hence the proof of Proposition 3.4 is complete.
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