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PATH DECOMPOSITIONS FOR MARKOV CHAINS

BY GÖTZ KERSTING AND KAYA MEMIŞOǦLU

University of Frankfurt

We present two path decompositions of Markov chains (with general
state space) by means of harmonic functions, which are dual to each other.
They can be seen as a generalization of Williams’ decomposition of a
Brownian motion with drift. The results may be illustrated by a multitude
of examples, but we confine ourselves to different types of random walks and
the Pólya urn.

1. Introduction and main results. In his paper on path decomposition and
local time for diffusions Williams has given an appealing decomposition of a
Brownian motion with negative drift (say−1) at its global maximumM [Williams
(1974) and Pitman (1975)]. Let us state it as follows.

THEOREM 1 (Decomposition of a Brownian motion).Let X̂ = (X̂t )t≥0 be a
Brownian motion starting in 0 with drift 1 and let M be an independent random
variable with exponential distribution and expectation 1/2. Define the stopping
time

T := sup{t ≥ 0 :X̂s < M for all s < t}.
Moreover, let X̌ = (X̌t )t≥0 be a process starting in X̌0 = X̂T (= M), whose
conditional distribution, given X̂ and M , is equal to that of a Brownian motion
with drift −1,which is conditioned to stay below M . Then the process X̄ = (X̄t )t≥0
given by

X̄t :=
{

X̂t , t < T ,

X̌t−T , t ≥ T ,

is a Brownian motion with drift −1.

This theorem has been the starting point for further investigations. Williams al-
ready generalized his result to one-dimensional diffusion processes, and Bertoin
and Chaumont gave related paths decompositions for certain classes of Lévy
processes [Bertoin (1991, 1992, 1993) and Chaumont (1996)]. Millar (1978, 1977),
Jacobsen (1974) and Greenwood and Pitman (1980) discussed path decomposi-
tions from a broader point of view. Other path decompositions like Tanaka’s con-
struction arose from conditioned random walks [Tanaka (1989, 1990)]. However,
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these results do not seem to suggest a general pattern how to deduce path decom-
positions for other Markov processes.

In this paper we introduce a general method of path decomposing Markov
processes by means of positive harmonic functions, which covers most of the
mentioned results and thus offers a framework. We restrict ourselves to Markov
chains, that is, to the case of a discrete time parameter. The technically more
involved case of continuous time will be treated elsewhere.

Let P (x, dy) be a probability kernel on some state space(S,S). No (topo-
logical) restrictions are required for the state space. In the sequelX = (Xn)n∈N0

signifies a Markov chain with transition kernelP and time parametern ∈ N0 :=
{0,1,2,3, . . .}. The corresponding probability measure is denoted byPx , where
x as usual is the initial state of(Xn).

Further, let

h :S → R, 0 ≤ h < ∞
be a nonnegative harmonic function with respect toP , that is,

h(x) =
∫

P (x, dy)h(y)

for all x ∈ S. Recall that for any nonnegative harmonic functionh we may define
theh-transformed kernelP h, given by

P h(x, dy) := 1

h(x)
P (x, dy)h(y)

for all x ∈ S with h(x) > 0. P h is a probability kernel on the restricted state space

Sh := {x ∈ S :h(x) > 0}.
Furthermore,h gives rise to probability measuresPh

x with x ∈ Sh, given by

Eh
xφ(X1, . . . ,Xn) = h(x)−1Exφ(X1, . . . ,Xn)h(Xn)(1)

for any measurable functionφ :Sn → R. As is well known, under the measurePh
x

the process(Xn) is a Markov chain with transition kernelP h.
We are ready now to state the first main result of this paper, which gives a

pathwise construction of(Xn) on a richer probability space. To emphasize this, we
denote the corresponding probability measure byP. Later in the section on random
walks we will explain how this result fits to Williams’ decomposition theorem.

THEOREM 2 (Decomposition of a Markov chain).Let h ≥ 0 be harmonic
and o ∈ S such that h(o) > 0. Let X̂ = (X̂n) be a Markov chain with transition
kernel P h and initial state o, defined on a probability space with probability
measure P, and let Y be an independent random variable with values in (h(o),∞)

and distribution given by

P(Y > y) = h(o)

y
,
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such that Y−1 is uniformly distributed on (0, h(o)−1). Define the random variable

T := sup{n ≥ 0 :h(X̂m) < h(X̂n) ≤ Y for all m < n}.
Moreover, let X̌ = (X̌n) be a process starting in X̌0 = X̂T , whose conditional
distribution, given X̂ and Y , is equal to that of a Markov chain with transition
kernel P , which is conditioned to stay inside {x ∈ S :h(x) ≤ h(X̂T )}. Then the
process X̄ = (X̄n) given by

X̄n :=
{

X̂n, n < T ,

X̌n−T , n ≥ T ,

is a Markov chain with transition kernel P , that is, equal in distribution to (Xn)

under the measure Po.

VariableT is the moment, whenh(X̄n) attains its global maximum for the first
time. There are cases whenT may also take the value∞ with positive probability
(in Section 3 we discuss this possibility in more detail), then no global maximum
exists. In this case Theorem 2 holds withX̄n = X̂n for all n—this simply means
that no concatenation with a processX̌ takes place in this case.

Note thatT , in general, is not a stopping time, neither forX̄ nor for X̂: It is the
last moment, whenh(X̂n) exceeds all previous values, beforeh(X̂n) surpassesY
for the first time.

VariableT , thus, may contain information about the future behavior ofX̂. The
notable fact is thatT is asplitting time, for X̄ as well as forX̂. Splitting times for
Markov processes have been introduced by Jacobsen (1974) just in the context of
path decompositions, they fulfil a generalized Markov property, which corresponds
to the Markovian character of̄X after the momentT . In contrast to the classic
definition of a stopping time, a splitting timeT allows a change of law of the
process(X̄T +n)n∈N, depending on the value ofT and X̄T , as in our case. For
details compare the original work of Jacobsen (1974).

It was remarked by Doob and others that there is a kind of duality between
the kernelsP andP h [see Chapter 12.4 in Dellacherie and Meyer (1988)]. This
is also reflected in our context: The next result presents a path decomposition
for a Markov chainX = (Xn), whose transitions now obey theh-transformed
kernelP h. This dual decomposition takes place at the minimum of(h(Xn)).
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THEOREM 3 (Dual decomposition). Let h ≥ 0 be harmonic ( for the kernel P )
and o ∈ S such that h(o) > 0. Let X̌∗ = (X̌∗

n) be a Markov chain with transition
kernel P and initial state o and let U be an independent random variable,
uniformly distributed in the interval (0, h(o)). Define the random variable

T ∗ := sup{n ≥ 0 :h(X̌∗
m) > h(X̌∗

n) ≥ U for all m < n}.
Moreover, let X̂∗ = (X̂∗

n) be a process starting in X̂∗
0 = X̌∗

T ∗ , whose conditional
distribution, given X̌∗ and U , is equal to that of a Markov chain with transition
kernel P h, which is conditioned to stay inside {x ∈ S :h(x) ≥ h(X̌∗

T ∗)}. Then the
process X̄∗ = (X̄∗

n) given by

X̄∗
n :=

{
X̌∗

n, n < T ∗,

X̂∗
n−T , n ≥ T ∗,

is a Markov chain with transition kernel P h, that is, equal in distribution to (Xn)

under the measure Ph
o .

REMARK 1 [Exact sampling of supn h(Xn)]. supn h(Xn) cannot be simulated
directly because this would require infinitely many valuesXn. Given thatT can
be determined by finitely many simulation steps, our theorem offers an alternative:
supn h(Xn) andh(X̂T ) are equal in distribution, and the theorem gives a recipe
to sample the latter random variable exactly. In Section 3 we give an additional
condition that ensures thatT can be determined algorithmicly.

REMARK 2. The conditioned Markov chainšX, respectivelyX̂∗, can also be
obtained as unconditioned Markov chains, as we shall explain in the next section.
In general, they areh-processes ofX only, given the value of(X̂T , Y ), respectively,
(X̌∗

T ∗,U) (see Lemma 5 for details).

REMARK 3. If g = ch for some constantc > 0, thenP h andP g are equal.
Correspondingly, our constructions are the same forg and h up to the scaling
factorc. One would also expect that, in essence, the path decompositions remains
unaltered, ifh is replaced byh + c. This is not easy to see directly for the
first construction. Here duality is helpful, the transition fromh to h + c can be
well understood for the second construction. For details we refer to the proof of
Theorem 3.

REMARK 4 (Doob inequality). As an immediate consequence of our decom-
position, we obtain the inequality

P

(
sup

1≤i≤n

h(X̄i) ≥ λ

)
≤ P(Y > λ) = h(X̄0)

λ
= Eh(X̄n)

λ
.

This is Doob’s martingale inequality, applied to the martingale(h(Xn)).
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The paper is organized as follows. In Section 2 we prove both theorems.
In Section 3 the question is addressed, how to detect the values ofT and T ∗
algorithmicly. In Section 4 we apply the decompositions to different types of
random walks.

2. Proof of the main results. Let us first have a closer look at the conditioned
chain described in Theorem 2. It can be obtained as a Markov chain with suitable
transition kernel. Let us recall this well-known construction. Fors ≥ 0 define

qs(x) := Px

(
h(Xi) ≤ s ∀ i ∈ N0

)
and the stopping time

σs := inf{i ≥ 0 :h(Xi) > s}.

LEMMA 4. If h(x) ≤ s, then qs(x) > 0.

PROOF. Assumeσs < ∞ a.s. Then Fatou’s lemma and the martingale property
of (h(Xn)) lead to

Exh
(
Xσs

) = Ex lim
n→∞h

(
Xσs∧n

) ≤ lim inf
n→∞ Exh

(
Xσs∧n

) = h(x) ≤ s.

Becauseh(Xσs ) > s a.s., this is a contradiction. Thus,Px(σs = ∞) = qs(x) > 0
and the lemma is proved.�

Furthermore, forh(x) ≤ s the Markovian character of the chain gives

qs(x) =
∫
y : h(y)≤s

P (x, dy)qs(y).

Thus,qs is also a harmonic function for the kernelP restricted to the setSs :=
{x ∈ S :h(x) ≤ s} and again for eachs we can define aqs-transformed kernelQs

of P on the respective setSs by setting

Qs(x, dy) := 1

qs(x)
P (x, dy)qs(y)

= Px

(
X1 ∈ dy | h(Xi) ≤ s ∀ i ∈ N0

)
.

It follows that

Px

(
X1 ∈ dx1, . . . ,Xn ∈ dxn | h(Xi) ≤ s ∀ i ∈ N0

)
= P (x, dx1) · · ·P (xn−1, dxn)qs(xn)

qs(x)

= Qs(x, dx1) · · ·Qs(xn−1, dxn).

Altogether we obtain the following result.
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LEMMA 5. Under Px the process (Xn), conditioned to stay inside Ss , s ≥ 0,
is a Markov chain with transition kernel Qs(x, dy).

The main step of our proof, which is based on a change of measure type
argument, is contained in the next lemma.

LEMMA 6. Let h be harmonic and 0 < h(o) ≤ h(x) ≤ s. Let U be uniformly
distributed in (0, h(o)−1) and independent of (Xn) (with respect to Ph

x ). Then

Ph
x

(
U ≤ 1

h(Xσs )
I{σs<∞}

)
= h(o)

h(x)
Px(σs < ∞),

Ph
x

(
1

h(Xσh(x)
)
I{σh(x)<∞} < U ≤ 1

h(x)

)
= h(o)

h(x)
qh(x)(x).

PROOF. Since(h(Xn)) is aPx-martingale andσs a stopping time,

Px(σs ≤ n) = Ex

(
h(Xσs∧n)

h(Xσs∧n)
;σs ≤ n

)
= Ex

(
h(Xn)

h(Xσs∧n)
;σs ≤ n

)
[note thath(Xσs∧n) > 0 on the event{σs ≤ n}]. By means of (1) we rewrite this
equation as

Px(σs ≤ n) = h(x)Eh
x

(
1

h(Xσs∧n)
;σs ≤ n

)

= h(x)Eh
x

(
1

h(Xσs )
;σs ≤ n

)
.

As n → ∞,

Px(σs < ∞) = h(x)Eh
x

(
1

h(Xσs )
I{σs<∞}

)
(2)

and, consequently,

qh(x)(x) = 1− Px

(
σh(x) < ∞)

(3)

= h(x)Eh
x

(
1

h(x)
− 1

h(Xσh(x)
)
I{σh(x)<∞}

)
.

Sinceh(Xσs )
−1, h(x)−1 ≤ h(o)−1, by assumption,

Ph
x

(
U ≤ 1

h(Xσs )
I{σs<∞}

∣∣∣ (Xn)

)
= h(o)

h(Xσs )
I{σs<∞},

Ph
x

(
1

h(Xσh(x)
)
I{σh(x)<∞} < U ≤ 1

h(x)

∣∣∣ (Xn)

)
= h(o)

h(x)
− h(o)

h(Xσh(x)
)
I{σh(x)<∞}.

Taking expectations, the claim follows from (2) and (3).�
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PROOF OFTHEOREM 2. Define

τ := inf{i ≥ 0 :h(Xj ) ≤ h(Xi)∀ j ≥ i}
to be the moment, where(h(Xn)) attains its global maximum for the first time.
First, we prove

Po

(
(X1, . . . ,Xn) ∈ B,τ = m

) = P
(
(X̄1, . . . , X̄n) ∈ B,T = m

)
(4)

for natural numbers 0≤ m ≤ n. Since

{(X1, . . . ,Xn) ∈ B,τ = m}
= {(X1, . . . ,Xn) ∈ B ∩ Bm,n,h(Xj ) ≤ h(Xm)∀ j ≥ n}

with

Bm,n := {
(x1, . . . , xn) :h(x1), . . . , h(xm−1)

< h(xm) ≥ h(xm+1), . . . , h(xn)
}
,

it follows that

Po

(
(X1, . . . ,Xn) ∈ B,τ = m

)
=

∫
B∩Bm,n

P (o, dx1) · · ·P (xn−1, dxn)qh(xm)(xn).

On the other hand, sinceh(X̂T ) = h(X̌0) ≥ h(X̌1), h(X̌2), . . . ,

{(X̄1, . . . , X̄n) ∈ B,T = m}
= {(X̂1, . . . , X̂m, X̌1, . . . , X̌n−m) ∈ B ∩ Bm,n}

∩ ({
h(X̂m) ≤ Y < h

(
X̂σ̂m

)
, σ̂m < ∞} ∪ {h(X̂m) ≤ Y, σ̂m = ∞}),

where the stopping timeŝσm are defined as

σ̂m := inf{i ≥ m :h(X̂i) > h(X̂m)}.
It follows that

P
(
(X̄1, . . . , X̄n) ∈ B,T = m

)
=

∫
B∩Bm,n

P h(o, dx1) · · ·P h(xm−1, dxm)

× Qh(xm)(xm, dxm+1) · · ·Qh(xm)(xn−1, dxn)

× P

(
1

h(X̂σ̂m
)
I{σ̂m<∞} <

1

Y
≤ 1

h(X̂m)

∣∣∣X̂m = xm

)

=
∫
B∩Bm,n

P (o, dx1) · · ·P (xn−1, dxn)
h(xm)qh(xm)(xn)

h(o)qh(xm)(xm)

× Ph
xm

(
1

h(Xσh(xm)
)
I{σh(xm)<∞} <

1

Y
≤ 1

h(xm)

)
.



PATH DECOMPOSITIONS 1377

Now (4) follows in view of Lemma 6 becauseY−1 is uniformly distributed.
Next, we prove

Po

(
(X1, . . . ,Xn) ∈ B,τ > n

) = P
(
(X̄1, . . . , X̄n) ∈ B,T > n

)
.(5)

From

{(X1, . . . ,Xn) ∈ B,τ > n}
= {(X1, . . . ,Xn) ∈ B}

∩ {
h(Xi) > max

(
h(X1), . . . , h(Xn)

)
for somei > n

}
,

it follows that

Po

(
(X1, . . . ,Xn) ∈ B,τ > n

)
=

∫
B

P (o, dx1) · · ·P (xn−1, dxn)Pxn

(
σmax(h(x1),...,h(xn)) < ∞)

.

On the other hand,

{(X̄1, . . . , X̄n) ∈ B,T > n}
= {(X̂1, . . . , X̂n) ∈ B} ∩ {

σn < ∞, h
(
X̂σn

) ≤ Y
}

with

σn := inf
{
i > n :h(X̂i) > max

(
h(X̂1), . . . , h(X̂n)

)}
.

It follows that

P
(
(X̄1, . . . , X̄n) ∈ B,T > n

)
=

∫
B

P h(o, dx1) · · ·P h(xn−1, dxn)

× P

(
1

Y
≤ 1

h(X̂σn)
I{σn<∞}

∣∣∣X̂n = xn

)

=
∫
B

P (o, dx1) · · ·P (xn−1, dxn)
h(xn)

h(o)

× Ph
xn

(
1

Y
≤ 1

h(Xσmax(h(x1),...,h(xn))
)
I{σmax(h(x1),...,h(xn))<∞}

)
.

SinceY−1 is uniformly distributed and because of Lemma 6, (5) also follows.
Combining (4) and (5), we obtain

P
(
(X̄1, . . . , X̄n) ∈ B

) = Po

(
(X1, . . . ,Xn) ∈ B

)
and the theorem is proved.�
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Theorem 3 could be proved along the same lines, with some marked differences.
We prefer to deduce it from Theorem 2 via duality.

PROOF OF THEOREM 3. First assume thath(x) > 0 for all x ∈ S. Then,
as is easily seen, 1/h(x) is harmonic with respect toP h, moreover, the
1/h-transformed kernel ofP h is equal toP , (P h)1/h = P . Also Y−1 is uniformly
distributed in (0, (1/h(o))−1) = (0, h(o)). In this situation Theorem 3 is an
immediate consequence of Theorem 2.

Next, let us assume thath(x) also takes the value 0. Thenh(x) + ε is a strictly
positive harmonic function forε > 0 with respect toP . The formula

Ph+ε
o = h(o)

h(o) + ε
Ph

o + ε

h(o) + ε
Po,(6)

which follows from (1), enables us to tranfer the validity of the path decomposition
according to Theorem 3 fromh + ε to h. On the one handPh+ε

o converges toPh
o ,

as follows from (6). On the other hand, the processes induced by our construction
(resp. its components, the uniform random variables, the splitting times, and the
conditioned Markov chains) converge in distribution, asε → 0. �

3. Detecting the value of the splitting time. It is too much to expect that
such a general decomposition result as ours will provide useful information for
any Markov chain possessing nontrivial harmonic functions. There are examples
with an exotic touch.

As an attempt to distinguish favorable situations from less appealing cases, let
us adopt an algorithmic point of view and ask the question: When is it sufficient
to run the chainX̂ for finitely many steps in order to detect the value ofT ? Recall
that, in general,T is not a stopping time and cannot be observed immediately.
ClearlyT is determined by(X̂n)n≤τc , where the stopping timeτc ≥ T denotes the
moment of crossing the levelY ,

τc := inf{n ≥ 0 :h(X̂n) > Y }.
Thus, on the event{supn h(X̂n) > Y } = {τc < ∞} only finitely many steps of̂X
are required.
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The situation may become less desirable, however, if{Y ≥ suph} = {τc = ∞}
occurs. Then it may happen thatT has a finite value, which, nevertheless, cannot
be observed within finite time, neither byτc nor by some other mean. To put this
in mathematical terms: We say thatT is detected by a stopping time τ (stopping
time with respect toX̂; we allow thatτ depends onY , too), if finite values ofT
may be recognized from finite values ofτ , namely, that the value ofT is a.s. not
bigger thanτ . Expressed in formulas, this means

{T < ∞} = {τ < ∞} = {T ≤ τ < ∞}, P-a.s.

Then T = sup{n ≤ τ :n < τc, h(Xn) > maxi<n h(Xi)}, P-a.s. Note thatτc de-
tectsT , if {T < ∞} = {τc < ∞}, P-a.s.

An instance where noT -detecting stopping time exists may be considered as
unfavourable and we give an example at the end of this section (see Example 1).
For a majority of harmonic functions this kind of phenomenon does not occur. We
introduce now a class of harmonic functions leading to path decompositions with
splitting times, which always canbe detected by stopping times.

First observe that the condition

sup
n

h(Xn) = ∞, Ph
x-a.s.,(7)

for all x ∈ Sh implies supn h(X̂n) = ∞ and τc < ∞ P-a.s. ThenT is detected
by τc. More generally, consider the condition

sup
n

h(Xn) = suph, Ph
x-a.s.,(8)

for all x ∈ Sh, thus, supn h(X̂n) = suph P-a.s. Then, in case that{τc = ∞} occurs,
T takes the value∞, if h(X̂n) < suph for all n, and, otherwise, the smallest valuen

such thath(X̂n) = suph. Thus, introducing the stopping time

τ̂ := inf{n ≥ 0 :h(X̂n) = suph}
T = τ̂ on the event{τc = ∞}. It follows thatT is detected by the stopping time
τ := τc ∧ τ̂ .

The most prominent class of functions fulfilling (8) is constituted by the
minimal harmonic functions. Recall that a nonnegative harmonic functionh is
said to be minimal (or extremal), if for any other harmonic functionk such that
0 ≤ k(x) ≤ h(x) for all x ∈ S, it follows k = ch with some constantc ∈ [0,1].

For a countable state space the following result is a consequence of Doob’s
theorem from Martin boundary theory. We give a proof for arbitrary state space.

PROPOSITION7. If h is a minimal harmonic function, then

h(Xn) → suph, Ph
x-a.s.,

for all x ∈ Sh.
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PROOF. Since∫
Sh

P h(x, dy)h(y)−1 =
∫
Sh

h(x)−1P (x, dy) ≤ h(x)−1
∫
S
P (x, dy) = h(x)−1,

1/h(Xn) is aPh
x -supermartingale. Thus, from the martingale convergence theorem

h(Xn) → L, Ph
x-a.s.,

whereL is a random variable with values in(0,suph]. For γ ≥ 0 define the
function

kγ (x) := Ph
x(L ≤ γ )

for x ∈ Sh. This function is harmonic with respect to the kernelP h because

kγ (x) = Ph
x

(
lim
n

h(Xn) ≤ γ

)

=
∫
Sh

P h(x, dy)Ph
y

(
lim
n

h(Xn) ≤ γ

)
=

∫
Sh

P h(x, dy)kγ (y).

It follows that

h(x)kγ (x) =
∫
Sh

P (x, dy)h(y)kγ (y) =
∫
S
P (x, dy)h(y)kγ (y),

wherekγ (x) may be chosen arbitrary forx /∈ Sh. This last equation says that
h · kγ is harmonic with respect toP , also

h · kγ ≤ h

by definition ofkγ . Since by assumptionh is minimal, we conclude that

h · kγ = αh

and, therefore,

Ph
x(L ≤ γ ) = α

for all x ∈ Sh with some constantα = αγ ∈ [0,1].
Next we show that the only possible values forα are 0 or 1. Consider the

estimate

Ph
x

(
{L ≤ γ } ∩ ⋂

m≥n

{h(Xm) ≤ γ }
)

≤ Ph
x

(
L ≤ γ,h(Xn) ≤ γ

) ≤ Ph
x(L ≤ γ ).

Sinceh(Xn) → L, Ph
x-a.s., the left-hand side converges toPh

x(L ≤ γ ), asn → ∞,
providedγ is a point of continuity ofL. Consequently,

Ph
x

(
h(Xn) ≤ γ,L ≤ γ

) → α.
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On the other hand, by the Markov property,

Ph
x

(
h(Xn) ≤ γ,L ≤ γ

) =
∫
y : h(y)≤γ

Ph
x

(
h(Xn) ∈ dy

)
Ph

y(L ≤ γ )

=
∫
y : h(y)≤γ

Ph
x

(
h(Xn) ∈ dy

)
α

= αPh
x

(
h(Xn) ≤ γ

)
.

If γ is a point of continuity of the distribution ofL, it follows that

Ph
x

(
h(Xn) ≤ γ,L ≤ γ

) → αPh
x(L ≤ γ ) = α2.

Therefore,α = α2, respectively,α = 0 or 1 for allγ (up to countably many), which
means thatL has a degenerate distribution,

L = β, Ph
x-a.s.

for some constantβ ∈ (0,suph]. Also β does not depend on the starting statex

of (Xn). Since 1/h(Xn) is a nonnegativePh
x -supermartingale, we conclude by

Fatou’s lemma,

h(x)−1 ≥ lim
n

Eh
xh(Xn)

−1 ≥ Eh
xL

−1 = β−1

or h(x) ≤ β ≤ suph for all x ∈ Sh. Therefore,L = suph, Ph
x -a.s., which is our

claim. �

An interesting example with different harmonic functions is provided by
Pólya’s urn scheme. We show now that some of these functions lead to path
decompositions with detectable splitting times, while others do not.

EXAMPLE 1. In Pólya’s urn scheme each drawn ball is put back into the urn
together with an extra ball of the same color (two different colors). We consider
the Markov chainXn = (Rn,Tn), n ≥ 0, with statesx = (r, t) ∈ N

2, 0 < r < t ,
wherer denotes the number of red balls andt the total number of balls in the urn.
The transition probabilities are

Pxy =



r

t
, for x = (r, t), y = (r + 1, t + 1),

1− r

t
, for x = (r, t), y = (r, t + 1).

Then for given 0< p < 1, q = 1− p,

hp(x) := (t − 1)

(
t − 2
r − 1

)
pr−1qt−r−1

is a harmonic function. Here suphp = ∞. A quick calculation showsP
hp
xy = p,

respectively,q, such thatX̂ is a random walk. It is not difficult to conclude
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that (7) is fulfilled. This also follows from the last proposition because it is
well known that these harmonic functions are minimal [Blackwell and Kendall
(1964)]. Consequently, the associated path decompositions possess detectable
splitting times. (The corresponding dual decomposition establishes an exotic path
decomposition of a random walk by means of a Pólya urn.)

Also,

h(x) := r

t

is a harmonic function. In this caseP h
xy = r+1

t+1 , respectively, 1− r+1
t+1 , consequently,

under the measurePh
x the shifted random variablesXn + (1,1), n ≥ 0, can be

viewed as a Pólya urn (with one extra red ball added to the urn at the beginning).
We like to show that the corresponding path decomposition gives rise to an
undetectable splitting timeT . To this end we make use of the familiar facts
that h(Xn) = Rn/Tn is a.s. convergent and that, given the limitL, the random
variablesZn := Rn − Rn−1, n ≥ 1, are independent Bernoulli variables with
success probabilityL. These statements are valid with respect toPx as well asPh

x .
First, we show thatT < ∞, P-a.s. WriteX̂n = (R̂n, T̂n), Ẑn = R̂n − R̂n−1 and

L̂ = limn h(X̂n) P-a.s. Then fromR̂n = R̂0 + ∑n
i=1 Ẑi andT̂n = n + T̂0, it follows{

sup
n

h(X̂n) ≤ L̂

}
=

{
sup
n

n∑
i=1

(Ẑi − L̂) ≤ L̂T̂0 − R̂0

}
,

thus, by the properties of sums of i.i.d. Bernoulli variables{supn h(X̂n) ≤ L̂} has
zero probability. In other words, the moment

N := inf
{
n ≥ 0 :h(X̂n) = sup

m
h(X̂m)

}
,

when for the first timeh(X̂n) obtains its global maximum, is finiteP-a.s., which
implies T < ∞, P-a.s. Furthermore, supn h(X̂n) ≤ 1, such that{τc = ∞} =
{supn h(X̂n) ≤ Y } has strictly positive probability. Therefore,τc does not detectT .

In fact, there is no stopping time detectingT at all. For anyP-a.s. finite
stopping timeτ we have{N ≤ τ } = {supj≥0h(X̂τ+j ) ≤ M}, P-a.s., whereM :=
maxn≤τ h(X̂n). Thus, from the strong Markov property

P(N ≤ τ ) = Eψ(X̂τ ,M) with ψ(x,m) := Ph
x

(
sup
j≥0

h(Xj ) ≤ m

)
.

Sinceψ(x,m) < 1 for m < 1 and sinceM < 1, P-a.s., it followsP(N ≤ τ
)
< 1.

Similarly, P(N ≤ τ | Y ) < 1, P-a.s. (recall that we allowτ to depend onY ).
BecauseT = N on the event{Y ≥ 1}, we obtain

P(Y ≥ 1, T ≤ τ ) = P(Y ≥ 1,N ≤ τ )

= E
(
P(N ≤ τ |Y );Y ≥ 1

)
< P(Y ≥ 1)
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and, consequently,P(T ≤ τ ) < 1. SinceT < ∞, P-a.s.,τ cannot detectT .

REMARK 5. The class of harmonic functions given by (8) can be described in
different ways. Givenx ∈ Sh, we have the following equivalent conditions:

sup
n

h(Xn) = suph, Ph
x-a.s.

⇐⇒ lim
n

h(Xn) = suph, Ph
x-a.s.

⇐⇒ lim
n

h(Xn) ∈ {0,suph}, Px-a.s.

For the proof we refer to the following facts, which follow from the martingale
property of (h(Xn)) with respect toPx and the supermartingal property of
(1/h(Xn)) with respect toPh

x : (i) h(Xn) is a.s. convergent to a random
variableL, with respect to both measuresPx andPh

x , whereL < ∞, Px-a.s. and
L > 0, Ph

x -a.s., (ii) if h(Xn) = suph for somen, thenh(Xm) = suph, Ph
x-a.s. for

all m ≥ n, (iii) the measuresPx andPh
x are related by the formulas

dPh
x(· ∩ {L < ∞}) = L

h(x)
dPx(·), dPx(· ∩ {L > 0}) = h(x)

L
dPh

x(·)
[see Theorem 1, Section VII.6, in Shiryaev (1995)]. In much the same manner it
follows that under the assumptionh(x) < suph,

inf
n

h(Xn) = inf h, Px-a.s.

⇐⇒ lim
n

h(Xn) = inf h, Px-a.s.

⇐⇒ lim
n

h(Xn) ∈ {inf h,∞}, Ph
x-a.s.

These conditions describe a class of harmonic functions such that the splitting
time T ∗ of the dual path decomposition is detectable by some stopping time.
Combining both sets of conditions, we obtain the following characterization of (7):
If x ∈ Sh, then

sup
n

h(Xn) = ∞, Ph
x-a.s. ⇐⇒ inf

n
h(Xn) = 0, Px-a.s.

This can also be expressed in terms of the crossing timeτc and its dual companion,

τ ∗
c := inf{n ≥ 0 :h(X̌∗

n) < U }
as follows,

τc < ∞, P-a.s. ⇐⇒ τ ∗
c < ∞, P

∗-a.s.

4. Examples: random walks. In this section we apply our theorems to
random walks(Xn) in S = R

d , that is, Markov chains, whose transition kernels
are shift-invariant,

P (x, dy) = P (0,−x + dy) ∀x, y ∈ R
d .

We assume that the kernel is nondegenerate.
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4.1. Random walk with drift. First we consider the situation that the random
walk has a drift, which means that the increments have finite expectation unequal
to zero,

µ := E0X1 =
∫

x P (0, dx) 
= 0.(9)

Furthermore, we assume that

ϕ(u) :=
∫

P (0, dx)e〈u,x〉 < ∞(10)

for all u ∈ R
d , where 〈·, ·〉 denotes the ordinary dot product inRd . Note that

µ = gradϕ(0).
Then, as it is easy to see, the functions

hu(x) := e〈u,x〉, u ∈ C,

are harmonic, where

C := {u :ϕ(u) = 1}.
Thehu-transformed kernels are given by

P hu(x, dy) = P (x, dy)e〈u,y−x〉.

Note that these kernels are again shift-invariant, which means that(Xn) is a
random walk also with respect to the measuresPhu

x . The corresponding drift is

µu := Ehu

0 X1 =
∫

x P hu(0, dx) =
∫

xe〈u,x〉 P (0, dx) = gradϕ(u).

It is well known that C is a smooth manyfold inRd of codimension 1.
For us the following elementary property is of interest: Foru ∈ C, u 
= 0, let
ϕu(λ) := ϕ(λ ·u) = E0e

λ〈u,X1〉, λ ∈ R, the moment generating function of〈u,X1〉.
By assumption this random variable is nondegenerate, therefore,ϕu is strictly
convex. Furthermore,ϕu(λ) = 1 for exactly two values, namely, 0 and 1, therefore,
ϕ′

u(0) < 0 andϕ′
u(1) > 0. By means of the chain rule, these derivatives are easily

calculated as〈u,gradϕ(0)〉 and〈u,gradϕ(u)〉, such that

〈u,µ〉 < 0, 〈u,µu〉 > 0 for all u ∈ C,u 
= 0.

Applying the law of large numbers to the random walk(Xn), we obtain

hu(Xn) → 0, Px-a.s., and hu(Xn) → ∞, Phu
x -a.s.

Thus, (8) is fulfilled. Coming to path decompositions, we obtain that the
corresponding splitting and crossing times are a.s. finite,

T < τc < ∞ a.s. and T ∗ < τ ∗
c < ∞ a.s.
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Let us describe our first path decomposition in more detail. We chooseo := 0 ∈ R
d ,

thus,hu(o) = 1. LetY be as in theorem 2, that is,P(Y > y) = 1/y for y > 1, and
let

M := ‖u‖−1 logY.

ThenP(M > m) = P(Y > e‖u‖m) = e−‖u‖m, thus,M is exponentially distributed
with expectation‖u‖−1. Moreover,

hu(x) > Y ⇐⇒ 〈u,x〉
‖u‖ > M ⇐⇒ x ∈ Hu(M),

whereHu(M) := {x : 〈u,x〉 > ‖u‖M} is a halfspace inRd , which has distanceM
from the origin. Altogether we obtain for eachu ∈ C,u 
= 0, a different recipy to
simulate the original random walk with initial state 0.

1. Let M be exponentially distributed with expectation‖u‖−1. Let X̂ be an
independent random walk with transition kernelP hu .

2. Define

T := sup{n ≥ 0 :Xn /∈ Hu(M), 〈u, X̂m〉 < 〈u, X̂n〉 ∀m < n}.
This is the first moment when(X̂n) is closest to the halfspaceHu(M), but has
not yet entered it.

3. LetX̌ be a random walk with transition kernelP and initial positionX̌0 = X̂T ,
conditioned not to leave the halfspace, and put

X̄n :=
{

X̂n, n < T ,

X̌n−T , n ≥ T .

Then(X̄n) is a random walk with transition kernelP .

In particular, if (Xn) is a one-dimensional random walk with negative drift, then
C contains (besides 0) just one positive numberu. The h-transformed process
X̂ is a random walk with positive drift, andT is the last moment of a record
value, beforeX̂ exceedsM . The corresponding path decomposition is in complete
analogy with Williams’ path decomposition for Brownian motion with drift.
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The dual decomposition has a similar form. There are plenty of other harmonic
functions for multi-dimensional random walks with drift, which lead to further
(albeit less transparent) path decompositions.

4.2. Driftless random walk with absorbtion. A random walk(Zn) on the real
line S = R with expected increments

E0Z1 =
∫

x P (0, dx) = 0

does not possess any interesting harmonic functions. Therefore we change the
setting by making all negative states into absorbing states, that is, we consider
a driftless random walk with absorbtion in(−∞,0),

Xn := Zτ∧n whereτ := inf{i ≥ 0 :Zi < 0}.
ThenP (x, dy) = P (0,−x+dy), if x ≥ 0, andP (x, dy) = δx(dy), if x < 0, where
δx is the Dirac-measure inx. It is well known [Bertoin and Doney (1994)] that

h(x) :=



∑
k≥0

P(Hk ≤ x), x ≥ 0,

0, x < 0,

defines a harmonic function with respect toP , whereHk are the strictly descending
ladder epochs for the random walk(Zn) with initial state 0.

The process(Xn) also has under the measurePh
x , a clear meaning: It is equal in

distribution to the process(Zn), conditioned never to enter(−∞,0) [Bertoin and
Doney (1994)].

Thus, our theorems offer two dual path decompositions: A path decomposition
for driftless random walks with absorbtion in the negative numbers—at their
maximal value, and a path decomposition fordriftless random walks, conditioned
to stay positive—at their minimal value. Details are left to the reader.

4.3. Isotropic random walks on homogeneous trees. Consider a homogeneous
treeTr with r ≥ 3 edges at each node. The tree can be seen as the Cayley-graph of
a free groupG generated byr elementsA := {a1, . . . , ar} with a2

1 = · · · = a2
r = e,

wheree is the identity. Then each nodex corresponds to exactly one formal string

x = ai1ai2 · · ·aid

with ij 
= ij+1 for all 1 ≤ j ≤ d − 1. Define the distance of a nodex from the
centere as

|x| := d if x corresponds to the reduced wordx = ai1ai2 · · ·aid

and letc(x, y) be the last common vertex in the graph forx, y ∈ Tr . Two reduced
nodesx = ai1ai2 · · ·aik andy = aj1aj2 · · ·ajl

are neighbors if and only if|k− l| = 1
and|y−1x| = 1, wherey−1 = ajl

ajl−1 · · ·aj1.
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Consider an isotropic nearest neighbor random walk onTr , that is, a random
walk (Xn) with values inTr and

P (x, xai) = 1

r
∀1≤ i ≤ r.

Sawyer and Cartwright have shown [Sawyer (1997) and Cartwright and Sawyer
(1991)] that in the isotropic case all minimal harmonic functions of this process
are given by

hω(x) = (r − 1)2|c(x,ω)|−|x|

with ω = ai1ai2 · · · ∈ AN an infinite sequence corresponding to an endpoint at
infinity of the treeTr . Thus, thehω-transform corresponds to conditioning the
isotropic random walk to end inω.

In this case the constant harmonic function is not minimal, as it is given by

1 =
∫
AN

hω(x)µ(dω),

with µ being the uniform distribution onAN with mass one. This can be easily
seen by a bare-hand calculation:∫

AN

hω(x)µ(dω)

= 1

r(r − 1)|x|−1

∑
ω∈A|x|

(r − 1)2|c(x,ω)|−|x|

= 1

r(r − 1)|x|−1

|x|∑
k=0

∑
ω∈A|x|

|c(x,ω)|=k

(r − 1)2k−|x|

= 1

r(r − 1)|x|−1

(
(r − 1)|x|(r − 1)−|x|︸ ︷︷ ︸

k=0

+
|x|−1∑
k=1

(r − 2)(r − 1)|x|−k−1(r − 1)2k−|x|︸ ︷︷ ︸
k=1,...,|x|−1

+ (r − 1)|x|︸ ︷︷ ︸
k=|x|

)

= 1

r(r − 1)|x|−1

(
1+ (r − 1)|x|−1 − 1+ (r − 1)|x|)

= 1.

Thus, the isotropic random walk can be constructed by first chosing uniformly an
endpointω and then starting ahω-transformed random walk.
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The transition kernelP hω of such a minimal harmonic functionhω then is given
by

P hω(x, y) =




r − 1

r
, if dω(x) < dω(y),

1

r(r − 1)
, if dω(x) > dω(y),

for adjacent nodesx, y, with the distance ofx to ω defined asdω(x) :=
2|c(x,ω)| − |x|.

The rich harmonic function space allows both the direct decomposition and the
dual decomposition. As in the case of the random walk, again we have

inf
n

hω(Xn) = 0, P-a.s. and sup
n

hω(Xn) = ∞, Phω-a.s.,

which means for the corresponding splitting timesT andT ∗:

T < τc < ∞ a.s. and T ∗ < τ ∗
c < ∞ a.s.

Fix a harmonic functionhω. For both decompositions we still need the kernels
of the conditioned chains and, therefore, we need

qs(x) := λPx

(
hω(Xi) ≤ s ∀ i ∈ N0

)
,

q∗
s (x) := λ∗Phω

x

(
hω(Xi) ≥ s ∀ i ∈ N0

)
with someλ,λ∗ > 0. The kernelQs of a conditionedP -chain (resp.Q∗

s of a
conditionedP h chain) is then given by

Qs(x, y) = 1/qs(x)P (x, y)qs(y), Q∗
s (x, y) = 1/q∗

s (x)P h(x, y)q∗
s (y).

First we deduce a closed form forqs . The definition ofqs immediately gives us

qs(x) = Px

(
(r − 1)dω(Xi) ≤ s ∀ i ∈ N0

)
.

Note that both kernelsP andP hω , plus the harmonic functionshω, only depend
on dω(x) = 2|c(x,ω)| − |x|, and, therefore, the functionqs also only depends on
the value ofdω(x). Thus,qs can be reexpressed as

qs(x) = q̃

(
dω(x) −

⌊
logs

log(r − 1)

⌋)
with q̃ :Z → R+ defined as

q̃(n) := λP
(
dω(Xi) ≤ 0∀ i ∈ N0 | dω(X0) = n

)
with λ > 0 and the boundary conditioñq(0) = 1. Furthermore,̃q has to satisfy the
following recurrence equation as a direct consequence of the harmonicity ofqs on
the set{x :h(x) ≤ s}:

q̃(i) = 1

r
q̃(i + 1) + r − 1

r
q̃(i − 1).
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Solving this recurrence with the two conditionsq̃(0) = 1 andq̃(i) = 0 for i > 0
leads to the solution

q̃(n) =



(r − 1)n − r + 1

2− r
, if n ≤ 0,

0, else.

Now we can construct the first decomposition of a free isotropic random walk on
Tr as follows (refer to the decomposition of a random walk for more details):

1. LetM be exponentially distributed with expectation 1. LetX̂ be an independent
random walk onTr with transition kernelP hω .

2. Define

T := sup{n ≥ 0 :dω(Xn) ≤ M,dω(Xm) < dω(Xn)∀m < n}.
3. Let X̌ be a random walk with transition kernelQ

hω(X̂T )
and initial position

X̌0 = X̂T , and put

X̄n :=
{

X̂n, n < T ,

X̌n−T , n ≥ T .

Then(X̄n) is an isotropic random walk onTr .

Some similar considerations in the case of a conditionedP hω-process lead to
the following recurrence equation forq̃∗,

q̃∗(i) = r − 1

r
q̃h(i + 1) + 1

r
q̃h(i − 1)

with the solution given by

q̃∗(i) = (r − 1)i − 1

(r − 1)i−1 .

The dual decomposition of aP hω -chain first starts an isotropic random walk onTr

and attaches a conditionedP hω-chain with kernelQ∗
s . Details are left to the reader.
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