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PATH DECOMPOSITIONS FOR MARKOV CHAINS

By GOTz KERSTING AND KAYA MEMISOGLU
University of Frankfurt

We present two path decompositions of Markov chains (with general
state space) by means of harmonic functions, which are dual to each other.
They can be seen as a generalization of Williams’' decomposition of a
Brownian motion with drift. The results may be illustrated by a multitude
of examples, but we confine ourselves to different types of random walks and
the Polya urn.

1. Introduction and main results. In his paper on path decomposition and
local time for diffusions Williams has given an appealing decomposition of a
Brownian motion with negative drift (say1) at its global maximunm/ [Williams
(1974) and Pitman (1975)]. Let us state it as follows.

THEOREM 1 (Decomposition of a Brownian motion).Let X = (f(,),zo be a
Brownian motion starting in O with drift 1 and let M be an independent random
variable with exponential distribution and expectation 1/2. Define the stopping
time

T :=sufs>0:X, <M forall s <1}.
Moreover, let X = (X,);=0 be a process starting in Xo = X7(= M), whose
conditional distribution, given X and M, is equal to that of a Brownian motion
with drift —1, whichis conditioned to stay below M. Thenthe process X = (X;);>0
given by

Xt — ):(t, < T,
X7, t>T,
is a Brownian motion with drift —1.

This theorem has been the starting point for further investigations. Williams al-
ready generalized his result to one-dimensional diffusion processes, and Bertoin
and Chaumont gave related paths decompositions for certain classes of Lévy
processes [Bertoin (1991, 1992, 1993) and Chaumont (1996)]. Millar (1978, 1977),
Jacobsen (1974) and Greenwood and Pitman (1980) discussed path decomposi-
tions from a broader point of view. Other path decompositions like Tanaka’s con-
struction arose from conditioned random walks [Tanaka (1989, 1990)]. However,
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PATH DECOMPOSITIONS 1371

these results do not seem to suggest a general pattern how to deduce path decom-
positions for other Markov processes.

In this paper we introduce a general method of path decomposing Markov
processes by means of positive harmonic functions, which covers most of the
mentioned results and thus offers a framework. We restrict ourselves to Markov
chains, that is, to the case of a discrete time parameter. The technically more
involved case of continuous time will be treated elsewhere.

Let P(x,dy) be a probability kernel on some state sp&se$). No (topo-
logical) restrictions are required for the state space. In the seqeelX,),cn,
signifies a Markov chain with transition kerngl and time parameter € Ng :=
{0,1,2,3,...}. The corresponding probability measure is denotedPpywhere
x as usual is the initial state 0X,,).

Further, let

h:S— R, O<h<o
be a nonnegative harmonic function with respecPtdahat is,

hx) = / P(x.dy)h(y)

for all x € S. Recall that for any nonnegative harmonic functiowe may define
the h-transformed kerneP”, given by

1
h .
P'(x,dy) = —h(x) P(x,dy)h(y)

for all x € S with i(x) > 0. P" is a probability kernel on the restricted state space
Sh:={x e S:h(x)>0}.

Furthermorel gives rise to probability measur®é with x € S*, given by

(1) EYp(X1, ..., Xp) =h(x) TExp(X1, ..., Xp)h(X,)

for any measurable functiop: S” — R. As is well known, under the measU?é
the proces$X,) is a Markov chain with transition kernél”.

We are ready now to state the first main result of this paper, which gives a
pathwise construction @fX,,) on a richer probability space. To emphasize this, we
denote the corresponding probability measur@blyater in the section on random
walks we will explain how this result fits to Williams’ decomposition theorem.

THEOREM 2 (Decomposition of a Markov chain).Let 2 > 0 be harmonic
and o € S such that 4(0) > 0. Let X = (X,,) be a Markov chain with transition
kernel P" and initial state o, defined on a probability space with probability
measure P, and let Y be an independent randomvariable with valuesin (i (o), o0)
and distribution given by

y
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such that ¥ ~1 is uniformly distributed on (0, 4(0)~1). Define the randomvariable
T :=supn > 0:h(X,) < h(X,) <Y for all m <n}.

Moreover, let X = (X,) be a process starting in Xo = X7, whose conditional
distribution, given X and Y, is equal to that of a Markov chain with transition
kernel P, which is conditioned to stay inside {x € S:h(x) < h(X7)}. Then the
process X = (X,,) given by

Xn = )fn, n< T,

Xn—Ta n Z T1

is a Markov chain with transition kernel P, that is, equal in distribution to (X;,)
under the measure P,,.

VariableT is the moment, wheh(X,,) attains its global maximum for the first
time. There are cases wh&mmay also take the valuso with positive probability
(in Section 3 we discuss this possibility in more detail), then no global maximum
exists. In this case Theorem 2 holds wih) = X,, for all n—this simply means
that no concatenation with a proceésakes place in this case. .

Note thatT, in general, is not a stopping time, neither fomor for X: It is the
last moment, wheh(f(n) exceeds all previous values, befohref(n) surpasse¥
for the first time.

Variable7', thus, may contain information about the future behaviok ofrhe
notable fact is thal is asplitting time, for X as well as forX. Splitting times for
Markov processes have been introduced by Jacobsen (1974) just in the context of
path decompositions, they fulfil a generalized Markov property, which corresponds
to the Markovian character of after the momenf. In contrast to the classic
definition of a stopping time, a splitting timg allows a change of law of the
process(X74.)nen, depending on the value & and X7, as in our case. For
details compare the original work of Jacobsen (1974).

It was remarked by Doob and others that there is a kind of duality between
the kernelsP and P" [see Chapter 12.4 in Dellacherie and Meyer (1988)]. This
is also reflected in our context: The next result presents a path decomposition
for a Markov chainX = (X,), whose transitions now obey thetransformed
kernel P". This dual decomposition takes place at the minimurthok,)).



PATH DECOMPOSITIONS 1373

THEOREM 3 (Dual decomposition). Let 2 > 0 be harmonic ( for the kernel P)
and o € S such that (o) > 0. Let X* = (X*) be a Markov chain with transition
kernel P and initial state o and let U be an independent random variable,
uniformly distributed in the interval (0, #(0)). Define the random variable

T* :=supn > 0:h(X) > h(X) > U for all m <n}.

Moreover, let X* = (X) be a process starting in X = X%.., whose conditional
distribution, given X* and U, is egqual to that of a Markov chai nvvvith transition
kernel P", which is conditioned to stay inside {x € S:h(x) > h(X}.)}. Then the
process X* = (X}) given by
o )V(;", n<T*,
" X;I;_T7 n Z T*v

is a Markov chain with transition kernel P”, that is, equal in distribution to (X,,)
under the measure P

REMARK 1 [Exact sampling of sypi(X,)]. sup, #(X,) cannot be simulated
directly because this would require infinitely many valdgs Given thatT can
be determined by finitely many simulation steps, our theorem offers an alternative:
sup, h(X,) andh(Xr) are equal in distribution, and the theorem gives a recipe
to sample the latter random variable exactly. In Section 3 we give an additional
condition that ensures th@tcan be determined algorithmicly.

REMARK 2. The conditioned Markov chairfs, respectivelyf(*, can also be
obtained as unconditioned Markov chains, as we shall explain in the next section.
In general, they ark-processes af only, given the value ofX 7, Y), respectively,

(X%, U) (see Lemma 5 for detalils).

REMARK 3. If g = ch for some constant > 0, thenP” and P¢ are equal.
Correspondingly, our constructions are the samegf@nd # up to the scaling
factorc. One would also expect that, in essence, the path decompositions remains
unaltered, ifh is replaced byz + c¢. This is not easy to see directly for the
first construction. Here duality is helpful, the transition frdmo # + ¢ can be
well understood for the second construction. For details we refer to the proof of
Theorem 3.

REMARK 4 (Doob inequality). As an immediate consequence of our decom-
position, we obtain the inequality

h(Xo) _Eh(X,)
A A

IP’( sup h(X;) > /\) <P(Y >\ =

1<i<n

This is Doob’s martingale inequality, applied to the martingalex,,)).
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The paper is organized as follows. In Section 2 we prove both theorems.
In Section 3 the question is addressed, how to detect the valu&saofd T*
algorithmicly. In Section 4 we apply the decompositions to different types of
random walks.

2. Proof of themain results. Let us first have a closer look at the conditioned
chain described in Theorem 2. It can be obtained as a Markov chain with suitable
transition kernel. Let us recall this well-known construction. For0 define

gs(x) := Py (h(X;) <sVi € Np)
and the stopping time
oy :=inf{i > 0:h(X;) > s}.

LEMMA 4. If h(x) <s,theng;(x) > 0.

PROOF Assumer; < oo a.s. Then Fatou’s lemma and the martingale property
of (h(X,)) lead to

Exh(Xo,) =Ex M h(Xoonn) < iminf Exh(Xo,nn) =h(x) <s.

Becausei(X,,) > s a.s., this is a contradiction. ThuB, (o; = 00) = gs(x) >0
and the lemma is proved

Furthermore, fok(x) < s the Markovian character of the chain gives
qs(x) =/ P(x,dy)qs(y).
yih(y)<s
Thus, g, is also a harmonic function for the kerngl restricted to the sef; :=

{x € S:h(x) <s} and again for each we can define g,-transformed kerne,
of P on the respective sét by setting

Qs(x,dy) =

P(x,dy)qs(y)
qs(x)

=P, (X1€dy|h(X;) <sVieNp).
It follows that
Py(X1€dx1, ..., Xy €dx, | h(X;) <sVieNp)
_ P(x,dx1) - P(xn-1, dxn)qs(xy)
gs(x)
= Qs (x,dx1) -+ Qs (xp—1, dxp).

Altogether we obtain the following result.
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LEMMA 5. Under P, the process (X,,), conditioned to stay inside Ss, s > 0,
isa Markov chain with transition kernel Q;(x, dy).

The main step of our proof, which is based on a change of measure type
argument, is contained in the next lemma.

LEMMA 6. Leth beharmonicand O < h(o) < h(x) <s. Let U be uniformly
distributed in (0, 2(0)~1) and independent of (X,,) (with respect to Pﬁ). Then

Ph< = —1 a <oo}> h( )P (O'A < OO)
h(Xo) ™ h(x)

1 1 h(o)
P (g o= <V = 5 ) = gy 0

PROOF Since(h(X,)) is aP,-martingale and;, a stopping time,
h(Xg an) ) ( h(Xy) )
P.(o, <n)=E,| —————;0, < =E, | —"— <
(0 <n) x<h(X0'_;/\n) oy <n I OYM) ;o0 <n

[note thatk (X, A,) > 0 on the evenfo, < n}]. By means of (1) we rewrite this
equation as

Pi(og <n)= h(x)Eh (m o5 < n)

:h(x)Eh< 1 <n>
h(XaA)

AsSn — 00,

] )
@ Py < 00) =hEL (5 T

and, consequently,

Qh(x)(x) =1-P, (Uh(x) < OO)

—h(x)Eh< t 1 I )
- X h(x) h(Xgh(x)) {6/1()()<OO} :

Sinceh(X,,) "L, h(x)~1 < h(0)~2, by assumption,

3)

Ph<U§i {og<oo} ‘(X )) LI{O <00}
x h(Xg) ' h(Xe) ™

! 1 h(o) h(o)
Ph( - U<—|(X ) _ _ ] .
h(Xo,) lionc <o) < U= h(x) ‘( ) h(x)  h(Xo,) {on() <00}

Taking expectations, the claim follows from (2) and (3]
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PRoOOF OFTHEOREM 2. Define
T:=inf{i > 0:h(X;) <h(X;))Vj=>i}

to be the moment, wherg: (X,,)) attains its global maximum for the first time.
First, we prove

(4) Po((X1,..., Xp) € B,t=m)=P((X1,...,X,) € B, T =m)
for natural numbers & m < n. Since

{(X1,...,X,) € B,T =m}

={(X1,....X») € BN By »,h(X;) <h(X;y)Vj=>n}
with
Byoni={(x1, ..., xp) th(x1), ..., h(xm—1)
<h(xm) = h(Xm+1), - .-, h(xn)},
it follows that
Po((Xl, ..., X,)€EB, T :m)

= P(o,dx1) - P(xp—1, dxn)Qh(xm)(xn)-
BBy

On the other hand, sindgX7) = h(Xo) > h(X1), h(X2), ...,
((X1,....,X,) € B, T =m)
={(X1,.... Xm. X1, ..., Xn_m) € BN By}
N({h(Xm) <Y <h(Xs,), 6m < 00} Uh(Xp) <Y, 6, = 00}),
where the stopping times, are defined as
G i=infli >m 1 h(X;) > h(Xm)).

It follows that

P((X1,...,X,) € B,T =m)

= P"0,dx1) - PP (xp—1, dxm)
BNBy

X Q) Xms dXmy1) -+ Onix) Xn—1, dxp)

%, :xm)

h
= P(0ydx1) -+ P (51, dy) Lm0t ()

IP( 1 I 1 - 1
X —= 14 <D= ——F=
§ {6 <00} Y h(Xm)

ph < 1 I 1 - 1 )
—_— <= .
T\B Ko)WY T )
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Now (4) follows in view of Lemma 6 becaud& 1 is uniformly distributed.
Next, we prove

(5) Po((X1,...,X,) €B,t>n)=P((X1,...,X,) € B, T > n).
From
{(X1,...,Xn) €B, T >n}
={(X1,...,X,) € B}
N{h(X;) > maxh(Xy),...,h(X,)) for somei > n},
it follows that

PO((le sy Xn) S B, T > I’l)
= /B P(0,dx1) -+ P(xp—1, d%n)Px, (Omaxi(xy)....h(xn)) < 9)-

On the other hand,
{(X1,...,X,)€B, T >n)
={(X1,...,Xn) € B)N {7, < 00, h(X5,) < Y}
with
G =infli > n:h(X;) > maxh(X1), ..., h(X,))}.
It follows that

P((X1,...,Xn) € B, T > n)

:/ P"0, dx1)--- P"(xy_1,dx,)
B

IP( ! < 71 1 X
x Pl — = 5, =
Yy = h(Xgn) {on<oo}

h(xy)
h(o)

=/ P(o,dx1) - P(x,_1,dxy,)
B

1 1
h
Px,, (; = (X IUma>(h(x1) ,,,,, h(m)><00})'

SinceY ~1 is uniformly distributed and because of Lemma 6, (5) also follows.
Combining (4) and (5), we obtain
P((X1,...,Xy) € B) =P,((X1, ..., X») € B)

and the theorem is proved[]
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Theorem 3 could be proved along the same lines, with some marked differences.
We prefer to deduce it from Theorem 2 via duality.

PROOF OF THEOREM 3. First assume thai(x) > 0 for all x € S. Then,
as is easily seen, /k(x) is harmonic with respect taP”, moreover, the
1/ h-transformed kernel oP” is equal toP, (P")Y/" = P. Also Y 1 is uniformly
distributed in (0, (1/k(0))~1) = (0, h(0)). In this situation Theorem 3 is an
immediate consequence of Theorem 2.

Next, let us assume tha(x) also takes the value 0. Thérix) + ¢ is a strictly
positive harmonic function for > 0 with respect taP. The formula

e _ 10 €

©) P _mm+e%+th¢R”
which follows from (1), enables us to tranfer the validity of the path decomposition
according to Theorem 3 frotla + ¢ to 4. On the one han®”*¢ converges td”,
as follows from (6). On the other hand, the processes induced by our construction
(resp. its components, the uniform random variables, the splitting times, and the
conditioned Markov chains) converge in distributiongas- 0. [

3. Detecting the value of the splitting time. It is too much to expect that
such a general decomposition result as ours will provide useful information for
any Markov chain possessing nontrivial harmonic functions. There are examples
with an exotic touch.

As an attempt to distinguish favorable situations from less appealing cases, let
us adopt an algorithmic point of view and ask the question: When is it sufficient
to run the chainX for finitely many steps in order to detect the valueféf Recall
that, in generalf is not a stopping time and cannot be observed immediately.
Clearly T is determined b)(f(n)ngc, where the stopping time. > T denotes the
moment of crossing the levél,

1. :=inf{n > 0:h(X,) > Y.

Thus, on the eventsup, #(X,) > Y} = {z. < co} only finitely many steps ok
are required.
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The situation may become less desirable, howevél, it suph} = {t. = oo}
occurs. Then it may happen thAthas a finite value, which, nevertheless, cannot
be observed within finite time, neither by nor by some other mean. To put this
in mathematical terms: We say thAtis detected by a stopping time t (stopping
time with respect toX; we allow thatr depends orY, too), if finite values ofl
may be recognized from finite values of namely, that the value f is a.s. not
bigger thanc. Expressed in formulas, this means

{T <oo}={r <00} ={T <71 <00}, P-a.s.

ThenT =sufn < t:n < 7., h(X,) > max., h(X;)}, P-a.s. Note that. de-
tectsT, if {T < oo} = {r. < o0}, P-a.s.

An instance where n@ -detecting stopping time exists may be considered as
unfavourable and we give an example at the end of this section (see Example 1).
For a majority of harmonic functions this kind of phenomenon does not occur. We
introduce now a class of harmonic functions leading to path decompaositions with
splitting times, which always cdpe detected by stopping times.

First observe that the condition

7) Suph(X,) = oo, Plas.,

for all x € §* implies sup h(X,) = oo andt, < co P-a.s. ThenT is detected
by t.. More generally, consider the condition

(8) suph(X,) = suph, Plas.,

for all x € S”, thus, suph(f(n) = suph P-a.s. Then, in case thét. = oo} occurs,

T takesthe yalueo, if h(f(n) < supk for all n, and, otherwise, the smallest value
such thati (X,,) = suph. Thus, introducing the stopping time

t:=inf{n > 0:h(X,) = Suph)}

T = 7 on the even{r, = oc}. It follows that T is detected by the stopping time
T:=T,AT.

The most prominent class of functions fulfilling (8) is constituted by the
minimal harmonic functions. Recall that a nonnegative harmonic fundtios
said to be minimal (or extremal), if for any other harmonic functiosuch that
O0<k(x) <h(x)forall x € S, it follows k = ch with some constant € [0, 1].

For a countable state space the following result is a consequence of Doob’s
theorem from Martin boundary theory. We give a proof for arbitrary state space.

PrRoOPOSITIONT. If hisaminimal harmonic function, then
h(X,) — Suph, Pl-as.,

for all x € S".
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PROOF Since

[, Py = [ heo tPedy) b [ Py =hen
1/h(X,)is aPﬁ—supermartingaIe. Thus, from the martingale convergence theorem

h(X,) — L, Pl-a.s,

where L is a random variable with values if®, supk]. For y > 0 define the
function

ky(x) :=PL(L <y)

for x € §”. This function is harmonic with respect to the ker®él because
—_pl(ii
ky(x) =P} <I|,r1n h(X,) < y)

= [ PhanPi(imace) <y ) = [ Phocdyk o)
Sh n Sh
It follows that
Mk, () = [ PGy, () = [ PGk, ).

wherek, (x) may be chosen arbitrary for ¢ S". This last equation says that
h - k, is harmonic with respect t®, also

h-k, <h
by definition ofk,, . Since by assumptiol is minimal, we conclude that
h-k, =ah
and, therefore,
PiL<y)=a

for all x € S" with some constant = a, €0, 1].
Next we show that the only possible values torare 0 or 1. Consider the
estimate

P ({L <yIn () {h(Xm) < y})

<PYL<y,h(X,)<y)<PYL<y).

Sinceh(X,) — L, P!-a.s., the left-hand side convergeL < y), asn — oo,
providedy is a point of continuity ofL. Consequently,

Pl(h(X,) <y, L<y)— a.
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On the other hand, by the Markov property,

P (h(X)) <y.L <) =f

P! (h(Xy) € dy)Pi(L <)
Yy h(y)<y

= Pl (h(X,) € dy)a
Yy h(y)<y

=aP!(h(X,) < 7).
If y is a point of continuity of the distribution df, it follows that
PUR(X)) <y, L<y) = aPi(L <y) =a®.

Thereforeq = 2, respectivelyy = 0 or 1 for ally (up to countably many), which
means thal. has a degenerate distribution,

L=p, Plas.

for some constang e (0, suph]. Also 8 does not depend on the starting state
of (X,). Since Yh(X,) is a nonnegativePfg-supermartingale, we conclude by
Fatou’s lemma,

W)™t = im EM(X,) Tt > Bl =70

or h(x) < p < suph for all x € $". Therefore,L = suph, P*-a.s., which is our
claim. [

An interesting example with different harmonic functions is provided by
Pdlya’s urn scheme. We show now that some of these functions lead to path
decompositions with detectable splitting times, while others do not.

ExXAMPLE 1. InPdlya’surn schemeeach drawn ball is put back into the urn
together with an extra ball of the same color (two different colors). We consider
the Markov chainX, = (R,, T,,), n > 0, with statest = (r,7) e N2, 0 < r < 1,
wherer denotes the number of red balls antthe total number of balls in the urn.
The transition probabilities are

C, forx=(@1),y=¢+11+1),

Py=1"
l—;, forx=@1,y=0t+1).

ThenforgivenO< p<1l,g=1-p,
e t—2 r—1_t—r—1
hp == (127 r g
hl’

is a harmonic function. Here sy = oco. A quick calculation showsy = p,
respectively,g, such thatX is a random walk. It is not difficult to conclude
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that (7) is fulfilled. This also follows from the last proposition because it is
well known that these harmonic functions are minimal [Blackwell and Kendall
(1964)]. Consequently, the associated path decompositions possess detectable
splitting times. (The corresponding dual decomposition establishes an exotic path
decomposition of a random walk by means of a Pélya urn.)

Also,

h(x) =

~ | N

is a harmonic function. In this cagd, = 741, respectively, +- 211, consequently,
under the measuréﬁ the shifted random variable%,, + (1, 1), n > 0, can be
viewed as a Pdélya urn (with one extra red ball added to the urn at the beginning).
We like to show that the corresponding path decomposition gives rise to an
undetectable splitting tim& . To this end we make use of the familiar facts
that n(X,) = R,/ T, is a.s. convergent and that, given the liniit the random
variablesZ,, := R, — R,_1, n > 1, are independent Bernoulli variables with
success probability. These statements are valid with respe(mcas well a§’h
Flrst we show thaf" < oo, P-a.s. erteXn = (Rn, T ), Z = R — Rn 1 and

=lim, h(X,) P-a.s. Then fromR, = Ro + g Z: andT,, = n + Tp, it follows
n
[sumicsi <) = fsupdocts - by = o .
" "i=1

thus, by the properties of sums of i.i.d. Bernoulli variablssp, h(X,) <L} has
zero probability. In other words, the moment

= mf{n > Oh(f(n) = Suph(f(m)}v

when for the first timei(X,,) obtains its global maximum, is finite-a.s., which
implies T < oo, P-a.s. Furthermore, syp(X,) < 1, such that{r, = oo} =

{sup, h(X,) < Y} has strictly positive probability. Therefore, does not deteck.

In fact, there is no stopping time detectirfg at all. For anyP-a.s. finite
stopping timer we have{N <t} = {supjzoh(}?tﬂ-) < M}, P-a.s., whereVf :=
max, <, h(X,). Thus, from the strong Markov property

P(N <7)=E¢(X;, M)  with ¢ (x,m) :=P" (Suph(Xj) < m).
j=0

Sincey (x,m) < 1 form <1 and sinceM < 1, P-a.s., it followsP(N < 7) < 1.
Similarly, P(N <t | Y) < 1, P-a.s. (recall that we allow to depend ony).
Becausd” = N on the even{Y > 1}, we obtain

PY>1,T<t)=PY =1 N<1)
=EP(N<t|Y);Y>1) <P(Y >1)
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and, consequentli(T < 1) < 1. SinceT < oo, P-a.s.,r cannot detecT .

REMARK 5. The class of harmonic functions given by (8) can be described in
different ways. Givenr € §”, we have the following equivalent conditions:

suph(X,) = suph, Pl-a.s.
n

= lmh(X,)=suph, Pl-a.s.
— Ii’rinh(X,,)e{O,suph}, P,-a.s.

For the proof we refer to the following facts, which follow from the martingale
property of (h(X,)) with respect toP, and the supermartingal property of
(1/h(X,)) with respect to Pfj: (i) h(X,) is a.s. convergent to a random
variable L, with respect to both measurBs and Pﬁ, whereL < oo, P,-a.s. and
L >0,P!-a.s., (i) if h(X,) = suph for somen, thenh(X,,) = suph, P'-a.s. for
all m > n, (iii) the measure®, andP” are related by the formulas

dP'(-N{L < o0}) = %dPx(-), dP,.(-N{L >0}) = @dpﬁg(-)
[see Theorem 1, Section VII.6, in Shiryaev (1995)]. In much the same manner it
follows that under the assumptidrix) < suph,

irr]lfh(Xn) =infh, P,-a.s.
= Iirrln h(X,) =Iinfh, P.-a.s.

— lim 2.(X,) € {inf h, o0}, Pl-as.

These conditions describe a class of harmonic functions such that the splitting
time T* of the dual path decomposition is detectable by some stopping time.
Combining both sets of conditions, we obtain the following characterization of (7):

If x €S, then

suph(X,) = oo, Plas. < infh(X,)=0, P,-a.s.
n n

This can also be expressed in terms of the crossingtiraed its dual companion,
t¥:=inf{n > 0:h(X¥) < U}
as follows,
T, < 00, P-as. < 1} <00, P*-a.s.
4. Examples. random walks. In this section we apply our theorems to

random walks(X,,) in S = R?, that is, Markov chains, whose transition kernels
are shift-invariant,

P(x,dy)= PO, —x +dy) Vx,yeRd.
We assume that the kernel is nondegenerate.
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4.1. Random walk with drift. First we consider the situation that the random
walk has a drift, which means that the increments have finite expectation unequal
to zero,

(9) W= EoX1=/xP(0,dx);éO.
Furthermore, we assume that
(20) o) = / P (0, dx)e™¥ < 0o

for all u € R?, where (-, -) denotes the ordinary dot product Bf. Note that

w = grady(0).
Then, as it is easy to see, the functions

hy(x):=e"¥,  uec,
are harmonic, where
C:={u:pu)=1}.
Theh,-transformed kernels are given by
Phu(x,dy) = P(x,dy)e =),

Note that these kernels are again shift-invariant, which means(#at is a
random walk also with respect to the measu?%s The corresponding drift is

= Ep Xy = /x P (0, dx) = /xe<“’x> P (0, dx) = gradp(u).

It is well known that C is a smooth manyfold ifR? of codimension 1.
For us the following elementary property is of interest: ko€ C, u # 0, let
0u(A) := @ (A -u) = Ege*X1) ) e R, the moment generating function of, X1).

By assumption this random variable is nondegenerate, therefprées strictly
convex. Furthermorey, (1) = 1 for exactly two values, namely, 0 and 1, therefore,
¢, (0) <0 andg/ (1) > 0. By means of the chain rule, these derivatives are easily
calculated asu, grade(0)) and(u, grade (1)), such that

(u, n) <0, (u, y) >0 forallu e C,u#0.
Applying the law of large numbers to the random wekk,), we obtain
hu(X,) — 0, P.-a.s., and h,(X,) — 0o, P-a.s.

Thus, (8) is fulfiled. Coming to path decompositions, we obtain that the
corresponding splitting and crossing times are a.s. finite,

T <1, <00 as. and T" <t <o0 a.s.



PATH DECOMPOSITIONS 1385

w

[

Let us describe our first path decomposition in more detail. We choss® € R?,
thus,s, (o) = 1. LetY be as in theorem 2, that iB(Y > y) =1/y for y > 1, and
let

M := |u| tlogy.

ThenP(M > m) =P(Y > elulmy = ¢~lulm thus, M is exponentially distributed
with expectation||«||~1. Moreover,

(u, x)

h,(x)>Y <+— <— xeH,M),

el
whereH, (M) := {x: (u, x) > ||u||M} is a halfspace ifR?, which has distancé/
from the origin. Altogether we obtain for eaahe C, u # 0, a different recipy to
simulate the original random walk with initial state O.

1. Let M be exponentially distributed with expectatigm| 1. Let X be an
independent random walk with transition kerm-.
2. Define

T :=supn>0:X, ¢ H,(M), (u, X,n) < (u, X,)¥Vm < n}.

This is the first moment whe¢X,,) is closest to the halfspadé, (M), but has
not yet entered it.

3. LetX be a random walk with transition kern2land initial positionXo = X7,
conditioned not to leave the halfspace, and put

}_(n = )fl’h n< T!
Xu_T, n>T.

Then(X,) is a random walk with transition kerné!.

In particular, if (X,,) is a one-dimensional random walk with negative drift, then
C contains (besides 0) just one positive numbeiThe A-transformed process
X is a random walk with positive drift, and@ is the last moment of a record
value, beforeX exceeds\t. The corresponding path decomposition is in complete
analogy with Williams’ path decomposition for Brownian motion with drift.
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The dual decompaosition has a similar form. There are plenty of other harmonic
functions for multi-dimensnal random walks with drift, which lead to further
(albeit less transparent) path decompositions.

4.2, Driftless randomwalk with absorbtion. A random walk(Z,,) on the real
line S = R with expected increments

E021:/x P@O,dx)=0

does not possess any interesting harmonic functions. Therefore we change the
setting by making all negative states into absorbing states, that is, we consider
a driftless random walk with absorbtion {r-00, 0),

X, :=Zipn wherer :=inf{i >0:Z; <0}.

ThenP(x,dy) = P(0, —x+dy),if x > 0,andP (x, dy) = 8,(dy), if x <0, where
3, is the Dirac-measure in. It is well known [Bertoin and Doney (1994)] that

P(Hy < x), x>0,
h(x):= { 2 Pty

k>0
0, x <0,

defines a harmonic function with respecttowhereH; are the strictly descending
ladder epochs for the random walK;,) with initial state O.

The process$X,) also has under the meas®g, a clear meaning: It is equal in
distribution to the processZ,), conditioned never to entér oo, 0) [Bertoin and
Doney (1994)].

Thus, our theorems offer two dual path decompositions: A path decomposition
for driftless random walks with absorbtion in the negative numbers—at their
maximal value, and a path decomposition falriftless randomwalks, conditioned
to stay positive—at their minimal value. Details are left to the reader.

4.3. Isotropic randomwalks on homogeneoustrees. Consider a homogeneous
treeT, with » > 3 edges at each node. The tree can be seen as the Cayley-graph of
a free groupG generated by elementsA := {a1, ..., a,} witha? = ... =a2 =e,
wheree is the identity. Then each nodecorresponds to exactly one formal string

X =aj,a;, - aj,
with i; #i;41 forall 1 < j <d — 1. Define the distance of a nodefrom the
centere as

lx| :=d if x corresponds to the reduced wore-= a;,a;, - - - a;,

and letc(x, y) be the last common vertex in the graph gty € 7,.. Two reduced
nodest =a;,a;,---a; andy =aj,aj,---a; are neighborsifandonly jk—/| =1
and|y~1x| =1, wherey~1 = aaj_,---aj.
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Consider an isotropic nearest neighbor random walkr,grthat is, a random
walk (X,) with values in7, and

1
P(x,xa;))=- Vi<i<r.
r

Sawyer and Cartwright have shown [Sawyer (1997) and Cartwright and Sawyer
(1991)] that in the isotropic case all minimal harmonic functions of this process
are given by

o (x) = (r — 1)2letx.o)l—lx|

with = ag;,a;,--- € AN an infinite sequence corresponding to an endpoint at
infinity of the treeT,. Thus, theh,-transform corresponds to conditioning the
isotropic random walk to end .

In this case the constant harmonic function is not minimal, as it is given by

1= fA ho(Oudo).

with p being the uniform distribution o™ with mass one. This can be easily
seen by a bare-hand calculation:

[ ot de)

= Z (r )2|C(X,LU)|—|X‘

1) lxl= (r — DxI-1
r( ) we Al

x|

1)|x\ 12 2 r-p*

- weab]
|c(x w)|=k
1
- - — Dl — 1y~ I*
= D ((r HEr - 1)
k=0
[x]—1
D G e Gt e ol 1)"')
k=1

k=1,...,|x|-1 k=|x|

1
— _ -1 _ — 1lxl
_r(r_l)m_l(lﬂr 1) 1+ —DM)
=1
Thus, the isotropic random walk can be constructed by first chosing uniformly an
endpointw and then starting A,,-transformed random walk.
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The transition kerneP”« of such a minimal harmonic function, then is given
by

r—1

) if dy (x) < do(y),
.

1
r(r—1)"
for adjacent nodes:, y, with the distance ofx to » defined asd,(x) :=
2lc(x, w)| — |x]|.

The rich harmonic function space allows both the direct decomposition and the
dual decomposition. As in the case of the random walk, again we have

inf ,(X) =0, P-a.s. and sup,(X,) = oo, Pho-a.s,
n

Pho(x,y) =
if dyy(x) > dy(y),

which means for the corresponding splitting timeéand7*:
T <1, <00 as. and T" <t <o0 a.s.

Fix a harmonic functiork,,. For both decompaositions we still need the kernels
of the conditioned chains and, therefore, we need

qs(x) ::)‘Px(hw(Xi) <sVie NO),
g¥(x) := APl (h,(X;) > s Vi € No)

with somei, 1* > 0. The kernelQ; of a conditionedP-chain (resp.Q; of a
conditionedP” chain) is then given by

Qs (x, ) =1/gs()P(x, »)gs(v),  QF(x,y) =1/q; () P"(x, y)g; ().
First we deduce a closed form fgy. The definition ofg, immediately gives us
gs(x) =P, ((r — D%E) < 5Vi e N).

Note that both kernel® and P"«, plus the harmonic functions,,, only depend
ond,(x) = 2|c(x, w)| — |x|, and, therefore, the functiajp also only depends on
the value ofd,,(x). Thus,g, can be reexpressed as

e logs
qs(x) —q<dw(x) - {mj)

with ¢ : Z — R, defined as
G(n) :=1P(d,(X;) <0Vi e Ng|d,(Xo) =n)

with A > 0 and the boundary conditigi(0) = 1. Furthermoreg has to satisfy the
following recurrence equation as a direct consequence of the harmonigityoaf
the sef{x:h(x) <s}:

1 -1
§() =46+ D+ —=4G — 1.
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Solving this recurrence with the two conditiofi€d) = 1 andg (i) =0 fori > 0
leads to the solution

r—1"—r+1

g(n)= 2—r ’

0, else.

if n <0,

Now we can construct the first decomposition of a free isotropic random walk on
T, as follows (refer to the decomposition of a random walk for more details):

1. LetM be exponentially distributed with expectation 1. lebe an independent
random walk or, with transition kernelP”«.
2. Define

T :=supin > 0:d,(X,) < M, dy(Xm) < dp(Xp)Vm <n).

3. Let X be a random walk with transition kerthw(fm and initial position
Xo= Xr, and put

Xn — )fn, n< T,
X7, n>T.

Then(X,) is an isotropic random walk of..

Some similar considerations in the case of a conditioRéd-process lead to
the following recurrence equation g,

aion =1 1., .
FH=—=4"(+D+ 4" -1
with the solution given by

e (r=D1—1
q (’)_7@—1)!'—1 .

The dual decomposition of B"~-chain first starts an isotropic random walk Bin
and attaches a condition@#~-chain with kernelp. Details are left to the reader.
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