The Annals of Probability

2004, Vol. 32, No. 2, 1356-1369

DOI 10.1214/009117904000000225

© Institute of Mathematical Statistics, 2004

A NEW FACTORIZATION PROPERTY OF THE
SELFDECOMPOSABLE PROBABILITY MEASURES

BY ALEKSANDER M. IKSANOV, ZBIGNIEW J. JUREK
AND BERTRAM M. SCHREIBER

Kiev T. Shevchenko National Universigniversity of Wroctaw
and Wayne State University

We prove that the convolution of a selfdecomposable distribution with
its background driving law is again selfdecomposable if and only if the
background driving law is-selfdecomposable. We will refer to this as the
factorization propertyof a selfdecomposable distribution; let/ denote
the set of all these distributions. The algebraic structure and various
characterizations of./ are studied. Some examples are discussed, the most
interesting one being given by the Lévy stochastic area integral. A nested

family of subclasseﬁ,{, n >0, (or a filtration) of the class/ is given.

Limit distribution theory and the study of infinitely divisible distributions
belong to the core of probability and mathematical statistics. Here we investigate
an unexpected relation between two classes of distributibresnd U, each of
which can be defined in terms of a collection of inequalities involving the Lévy
spectral measure and a semigroup of mappings. Indeed, the Lévy.dkadsfined
via linear transformationswhile the clasU involvesnonlinear transformations
Yet these classes exhibit some similarities and relationships, such as the proper
inclusionL C U; see Jurek (1985).

In recent years clags distributions have found many applications, in particular,
through their BDLPs (background driving Lévy processes); compare, for example,
Barndorff-Nielsen and Shephard (2001) and the references there. Also there were
developed stochastic methods for finding the BDLPs of some selfdecomposable
distributions; see Jeanblanc, Pitman and Yor (2002). On the other hand, in Jacod,
Jakubowski and Mémin (2003), clags distributions appeared in the context of
an approximation of processes by their discretization.

In Section 1 we recall the definitions of the classof selfdecomposable
distributions and the clas$l of s-selfdecomposable ones, followed by their
random integral representations. In Section 2 we introduce the new notion termed
the factorization propertyand the corresponding class’. These are class
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L distributions whose convolutions with their background driving distributions are
again clasg. distribution. Elements of the clags’ are characterized in terms

of their Fourier transforms (Corollary 1 and Theorem 3) and their Lévy spectral
measures (Corollary 2 and Theorem 2). Proposition 1 describes the topological
and algebraic structures of the cldss. Some explicit examples df/ probability
distributions, which includes, among others, the Lévy stochastic area integral, are
given in Section 3.

Our main results are given in the generality of probability measures on a Banach
space, but they are new for distributions on the real line as well. Indeed, changing
the pairing between a Banach space and its dual to the scalar product in all our
proofs, one gets results in Euclidean spaces and Hilbert spaces. On the other
hand, if one deals with variables assuming values in function spaces (stochastic
processes), then Banach spaces provide the natural setting. For instance, Brownian
motion and Bessel processes, when restricted to finite time, can be viewed as
measures on Banach spaces of continuous functions. There is a vast literature
dealing with probability on Banach spaces [e.g., cf. Araujo-Gine (1980) or
Hoffmann-Jgrgensen, Kuelbs and Marcus (1994) and the references in the articles
found there], and much of the work leading up to the results presented here was
carried out in this context. Finally, our proofs do not depend on the dimension of
the space on which the probability measures are defined. Thus, the generality of
Banach spaces seems to be the natural one. This paper continues the investigations
of Jurek (1985).

1. Introduction and notation. Let E denote a real separable Banach space,
E’ its conjugate spacé,, -) the usual pairing betweedf andE’, and|| - || the norm
on E. Theo-field of all Borel subsets of is denoted byB, while By denotes
Borel subsets off \ {0}. By #(E) we denote the (topological) semigroup of
all Borel probability measures oA, with convolution «” and the topology of
weak convergence=5." As in Jurek (1985), we denote the closed subsemigroup
of infinitely divisible measures it (E) by ID(E).

EachlID distributionu is uniquely determined by a triple: a shift vectoe E,
a Gaussian covariance operam@and a Lévy spectral measusé; we will write
u=[a, R, M]. These are the parameters in the Lévy—Khintchine representation of
the characteristic functiofs, namelyu € ID iff f(y) = exp(®(y)), where

@(y) =i{y,a) —1/2(Ry, y)
+ [/ — 1 —i(y, x) 1) <1(x)]M (dx), y € E';
E\{0}
® is called thd_évy exponendf i [cf. Araujo and Giné (1980), Section 3.6].
On the Banach spacg we define two families of transform®, and U,,
for r > 0, as follows:
X

T,x=rx and U,x=maxQO, ||x| —r) i
x

U,(0)=0.
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The T,’s are linear mappings; th&,’s are nonlinear and are calleshrinking
operationsor s-operationgor short.

In Jurek (1985) the clask(E) of selfdecomposablmeasures was introduced
as thoseu = [a, R, M] € ID(E) such that

M=>T.M forO<c <1

As pointed out there (Corollary 3.3), this condition is equivalent to the traditional
definition:

1) w € L(E) iff V(O<c<1) 3(ue€P(E)) p=Tept * e

It follows easily thatL (E) is a closed convolution topological semigroup®tE).
The importance of the clads(E) arises from the fact that it extends the classical
and much-studied class tife stable distributions

One important example of a selfdecomposable measure is Wiener mégésure
on the Banach spa&z ([0, 1]). Thatw is selfdecomposable follows immediately
from the fact that its finite-dimensional projections are Gaussian measures, hence,
selfdecomposable.

Similarly, a measurg = [a, R, M] is calleds-selfdecomposablen E, and we
will write v € U(E), if

M>UM forO<r < 0.
As shown in Jurek (1985) [cf. Jurek (1981)],
2 v e UE) iff V(O<c<1)3(ve € P(E)) v=T* %1,

[the convolution power is well defined asis in ID(E)]. In particular, we infer
thatU(E) is also a closed convolution topological semigroup. In fact, we have the
inclusions

L(E) CU(E) CID(E) C P(E).

Relations between the semigroupg&E) andU(E) and their characterizations
were studied in Jurek (1985), and this paper is our main reference for this work,
including the terminology and basic notation.

Let

IDiog(E) = {12 € ID(E): [ logd-+ Ixlhu(dx) < oo,

and recall that the mappingy: IDog(E) — L(E) given by

(3) 1) = £ [ e d,))

is an algebraic isomorphism between the convolution semigridgg and L;
compare Jurek (1985), Theorem 3.6. Abdy&-) denotes a Lévy process, that is,
an E-valued process with stationary and independent increments, with trajectories
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in the Skorohod space of cadlag functions, and such Yh@d) = 0 a.s. and
LY, (1) =p.

If a classL distribution is given by (3) then we refer 19, as thebackground
driving Lévy proces¢BDLP) [cf. Jurek (1996)]. The measupein (3) will be
called thebackground driving probability distributio(BDPD) and the r.v¥, (1) is
thebackground driving random variabi@DRV).

Similarly, for s-selfdecomposable distributions we define a mapping
4:ID(E) — U(E) given by

(@) 9(p) = oc(/(o,l)dep(s)),

which is an isomorphism between the topological semigrdbDg®’) and U(E);
compare Jurek (1985), Theorem 2.6. In ¥4)-) is an arbitrary Lévy process.

Let a(y) = [z e u(dx), y € E’, be the characteristic functior{Fourier
transform) of a measure. Then random integrals like (3) or (4) have characteristic
functions of the form

—~

Y = log o
5) (£( /(a,b]”(”d p<r>))<y> exp /(a’b] 0/ (h(t)y) dt.

when# is a deterministic function antl,(-) a Lévy process; see Lemma 1.1 in
Jurek (1985).

2. A new factorization property of class L distributions. ClassL distrib-
utions decompose by themselves as is evident from the convolution equation (1).
However, recently it has been noted that in some classical formulaelcldissri-
butions appear convoluted with their background driving probability distributions
(BDPDs); for instance, the Lévy stochastic area integral is one such example; com-
pare Jurek (2001). The following is our main result that describes the cases when a
selfdecomposable distribution can be factored as another Eldssdribution and
its corresponding BDPD.

THEOREM 1. A selfdecomposable probability distributipn= 4(v) convo-
luted with its background driving law is selfdecomposable if and onlyiifis
s-selfdecomposahbl&lore explicitly, for v and p in IDjog We have

(6) JWyxv=»2(p)  iffv=_7(p).

PrRooFr Sufficiency Supposeu is selfdecomposable and its background
driving law v is s-selfdecomposable. That i3y = {(v) for some unique
v € IDjpog andv = g(p). Hence,p € IDjog(E), by formula (4.1) in Jurek (1985).
Consequently, we have

v ) = (o) % LG (0) = F(o % 1(p)) = d(p) € L,
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where the last equality follows from Calfary 4.6 in Jurek (1985). Also, we
have used the fact that the mappingsand § commute [cf. Theorem 3.6 and
Corollary 4.2. in Jurek (1985)]. The sufficiency is proved.

NecessitySuppose that a selfdecomposaple- {(v) is such that x L(v) is
again selfdecomposable. Then there is a unjgedD)og such that

vx L(v) =d(p).

Applying the mappingf to both sides and employing Corollary 4.6 in Jurek (1985)
and the commutativity, we conclude

J0) =G L) = FUL(p)) = L(F(p)).
Sinced is one-to-oney = g(p), which completes the proof of necessity.]

We will say that a selfdecomposable probability distributipn has the
factorization propertywe will write 1 € L/) if its convolution with its BDPD
gives another selfdecomposable distribution, that is,

(7) pell iff u=J()forvelDpg and pxvel.

Before describing the algebraic structure of the clags let us recall that
by definitionclass L, distributionsare those selfdecomposable distributions for
which the cofactorg.. in (1) are inL(E). Equivalently, these are distributions of
random integrals (3), wherg is a distribution from the clasé. This class was
first introduced for real-valued r.v.’s in Urbanik (1973) as the first of a decreasing
sequencd., (n=0,1,2,...) of subclasses of the clagsand later studied by
Kumar and Schreiber (1978) and in the vector-valued case in Kumar and Schreiber
(1979), Sato (1980), Nguyen (1986) and Jurek (1983a, b). In fact, Jurek (1983a)
contains the most general setting, where in (1) the operdioraay be chosen
from any one-parameter group of operators.

PrROPOSITION1. The classL’/ of selfdecomposable distributions with the
factorization property is a closed convolution subsemigroup.d¥loreover

() Fora>0,TyuelLliff uelL’.
(i) A probability measuren € L/ iff there exists a(unique probability
measurey € IDjog such that

@8  u=4Gm)=4gU) thatis L7 = 4(g(IDig)) = (L)

(i) Ly c L', whereL; consists of those clags distributions whose BDLP
are in classL.

PROOF The semigroup structure and properties (i) and (ii) follow from
formula (6), Theorem 1 and properties of the mappigsnd §. To prove that
L7 is closed, letu, € L/ and letu, = n. Thenu = 4(v) € L by (3), andu, =
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L(v,) = L(v) = u. From Jurek and Rosinski (1988) we conclude that> v and
[g109(X + [Ix|Dvy(dx) — [z log(l + |lx])v(dx). Consequentlyy x v € L and,
thereforew € L/, which proves thaL./ is closed.

Since eachu € L1 has its BDPDv € L and L1 C L, (iii) follows from the
semigroup property of.. [

Theorem 1 can be expressed in terms of characteristic functions. Namely:

COROLLARY 1. In orderthat
0 o0
9) exp(/ logd(e™*y) ds) D(y) = exp/ logp(e *y)ds, yeE,
0 0

for somev andp in ID|qg, it is necessary and sufficient that
1
(10) 5() =exp [ logi(sy) ds.

The above follows from (5) and (6). For details see Jurek (1985), Theorems
2.9 and 3.10.

COROLLARY 2. In order to have the equality
/ N(e*A)ds + N(A) =/ G(e’A)ds forall A € By,
(0,00) (0,00)

for some Lévy spectral measures N and G with finite logarithmic moments on sets
{x:]lx]| > c}, itis necessary and sufficient that

(11) N(A) =f Gt tA)dr  forall Ae Bo.
0.1

This is easily obtained from (7), (9) and (10). For more details see Jurek (1985),
formulae (2.9) and (3.4).

One may also characterize the factorization property purely in terms of Lévy
spectral measures and functions, as shift and Gaussian parts do not contribute any
restrictions. For that purpose let us recall that by ltéey spectral functiorof
u=[a, R, M] we mean the function

(12) Ly(D,r):=—=M({x € E:|lx|| > r andx/|x|| € D}),

where D is a Borel subset of unit sphefe= {x € E: ||x|| = 1} andr > 0. Note
that L, uniquely determiness.

THEOREM 2. In order thatu = [a, R, M] have the factorization property
thatis u € L7, itis necessary and sufficient that there exist a unique Lévy spectral
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measures with finite logarithmic moments on all sets of fofm || x| > ¢}, ¢ > 0,
such that

oo prl
(13) M(A):/ / G(e's 1A)dsdr  forall A e Bo.
0 0

Equivalentlyfor all Borel subsetd® of the unit sphereirE, dLy (D, -)/dr exists
and

dLy(D,r)
> r—
dr
is a convexnonincreasing function o0, co).

(14)

PROOF If u e L/, then sinceM(A) = Jo°N(e*A)ds and N has the
form (11), we infer equality (13). From (13) we get

o0 OQL D’ o0 —_
(15) LM(D,r):/ / sz)dwdu:/ 2 Lo (D, w)dw
r u w r w

and, consequently,

(16) i(rdLM(D,r))z_/‘oo dLG(D,w)’

dr dr

at points of continuity ofLs (D, -). Hence, the existence of the first derivative and
the properties of the function (14) follow.

Conversely, if the function (14) is nonincreasing and convex, then first of all, the
Lévy spectral measur® corresponds to a clagsprobability measure, say, by
Jurek (1985), Theorem 3.2(b). Furthermaqtrés of the form (3), where the BDRV
Y, (1) has finite logarithmic moment, and its Lévy spectral measusatisfies

w

oo
M(A) :/(; G(efA)ds, A € Bo.

Hence, in terms of the corresponding Lévy spectral functions, the convexity
assumption implies that

dLy(D,r)

o0
Lo(D.r) = —r M2 1) —/ (D, 5)ds,
d/" r

for a uniquely determined, nonincreasing, right-continuous funcgob, -).

In other words,dLg(D,r)/dr = q(D,r) exists almost everywhere and is
nonincreasing inr. By Theorem 2.2(b) in Jurek (1985), we infer thét
corresponds to a clasd probability measure, meaning that the distribution of
Y,(1) in (3) is in U. By Theorem 1 we conclude that has the factorization
property, which completes the proofl]

As an immediate consequence of (14) we have the following.
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COROLLARY 3. If a Lévy spectral functiorL y; (D, r) is twice differentiable
inr,thenu = [a, R, M] € L/ if and only if the functions — r2d2L (D, r)/dr?
are nondecreasing and right continuous @ co).

Finally, we describe distributions in the clak$ in terms of their characteristic
functions.

THEOREM 3. (@) A functiong:E’ — C is the characteristic function of a
classL/ distribution if and only if there exists a unigques IDjog such that

1 rw| N 1 o
17) g(y)zeXpUO/O w;i?y)dudw]:gg;%;, yeE.

(b) ®(-) is the Lévy exponent of a clagd distribution if and only if for each
y € E’, the functionR > r > ®(ry) € C is twice differentiable and

2

d
W(y) = [2 D)+

<I>(ty)]

is the Lévy exponent of a distribution fromk;g)

PROOF (@) If w € LY then by (8), (3)—(5), changing variables and the order
of integration gives

00 N o rl
Iog/fc(y):/o log(g(v) )(e_sy)ds=/o /0 logv (e ty)dtds

oo pe 1 rwlogp
=f / Iogﬁ(uy)esczuds=f f 99°5Y) gy dw
o Jo o Jo w

The other equality follows from Theorem 1 and formula (9).

Conversely, ifv € ID|og then the random integrdl(v) exists and consequently
w = g(L(v)) is defined as well. So the calculation above applies to show that its
characteristic function is of the form (17), which completes proof of part (a).

For part (b) note that ifu andv are related as above, with respective Lévy
exponentsd andV¥, then by (a)

1 rw
ry(t)=q)(ty)=// \p(n;y)dudw

_/ /“” \Il(vy)d Jw //S‘Il(vy)

Hencer, is twice dlfferentlable, and the formula fdr follows.
On the other hand, sinag, (1) =r,(st), we haver;y @) = sr; (st) andrg/y ) =
2r]/(1). If  andW are related as in (b), then

(18)

Wisy) = 2r], (1) + 77, (1) = 257 (5) + 527!/ (5) = [s i<I>(sy>]
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Since¥ (0) = 0, two integrations give (18), so by (a) the proof is completd.

As was already mentioned above, Urbanik (1973) introduced a family of
decreasing classes ntimes selfdecomposable distributions

o0
(19) IDDLoDL1D DLy DLyy1 D DLos=[)|LsDS,

n=1
via some limiting procedures, whefg) = L is the class of all selfdecomposable
distributions andS denotes the class of all stable distributions (in the above
inclusions we suppressed the dependence of cldsses the Banach spadg).
Also note that the clask; of distributions in Proposition 1 is exactly the class
in the sequence (19).

Recall thatu is n times selfdecomposable if and only if it admits the integral

representation (3) witho being (n — 1) times selfdecomposable. For other
equivalent approaches see Kumar and Schreiber (1979), Sato (1980), Nguyen

(1986) or Jurek (1983a, b). Let us define class;é:c)f measures with thelassL,,
factorization propertyas follows:
(20) LI ={ueLlyipxd (wely), n=012..,

where the isomorphismhis given by (3) and. ~1(x) is the BDPD [the probability

distribution of the BDRVY (1)] for w. In other wordsu from L,, is in L,{ if when
it is convolved with its BDPD one obtains another distribution from the dass
For the purpose of the next results let us recall that

neL, iff ©=J4(p) forauniquep € L,_1NIDjog, L, = 4(L,—1 N IDjog),
and
_ o g+l i
nwelL, iff ,t,L:oC(/(; e de<m>>=1 (v)
for a uniquev € ID ;o1
[cf. Jurek (1983b)].

PrRoOPOSITION2. Forn=0,1,2,..., we have the following

(i) The classed; are closed convolution semigroups also closed under the
dilationsT,, a > 0.
(i) Lyy1C L-,{ C L, (proper inclusionk
(iif) A probability measureu € L-,{ iff there exists a unique probability
measurev € IDjypi1 = {p € ID: [ log"*1(1 + |x|)p(dx) < oo} such that
w = 4"t (g v)), where 4! = ¢ and £7(-) = 4(4"1()) (i.e., the mappingd is
composed with itself timeg. That is

(1) L} =g, =4(L!_NIDg),  n>0, whereL’ = g(IDjog).
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PrRoOOF Part (i) follows the proof of Proposition 1 and definition (20). Part (ii),
for n = 0, is just Proposition 1(ii). Suppose the inclusions in (ii) hold for some
k>1.Then

L(Lr+1N1Djog) C Jl(L,{ N1IDjog) C L(Lx N IDjog),

which means thak ;42 C L7{+1 C Ly41, and, therefore, (i) is proved for atl

Since the mappingg and g are one-to-one, to prove that the inclusions are
proper it suffices to notice thdtis a proper subset @il. The latter is true because
in order for ans-selfdecoposablg (p), p € ID, to be selfdecomposable, that is,
equal tod (v) for somev € IDjqg, it is necessary and sufficient that= 4 (v) * v;
compare Jurek [(1985), Theorem 4.5].

For part (i) we again use induction argument, Proposition 1 and the character-
ization of the classes,, quoted before Proposition 2]

REMARK 1. From formula (21) in Proposition 2, we see that the sequence of
classed.; is obtained from the sequenég in (19) by applying the mapping
and then inserting it to the right. This produces the following sequence of
interlacing subclasses:

UD LoD Ly DL1DL] DLy> DL, DL DLyy1D- D Lo

00 00
n=1 n=1

For the last inclusion recall that stable distributions aré iand have stable laws
as their BDPD. In other words, the stable distributions are invariant under the
mappingd. In fact, the same is true fof [cf. Jurek (1985), Theorems 3.9 and 2.8].

(22)

REMARK 2. Using Proposition 2(jii) inductively, one can obtain characteriza-

tions of the cIasseB,{, n > 1, similar to those obtained fdrg = L/ in Corollar-
ies 3 and 4 or in Theorem 3. We leave these calculations for the interested reader.

3. Examples of distributions with the factorization property. In this last
section we provide some explicit examples both on arbitrary Banach space and on
the real line.

ExXAMPLE A. 1. Onany Banach space, as pointed out in Remark 1, all stable
measures have the factorization property. In fact, a stable measure has a stable
processes as its BDLP; compare also Jurek [(1985), Theorem 3.8].

2. On any Banach spadg, for positive constants, 8 and vector; on the unit
sphereink, let

g
Ky.p.2(A) :a/o (% - 1)8vZ(A)dv, A€ 8.
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Then the infinitely divisible measur¢s, 0, K, g .1, a € E, have the factorization
property. This follows by applying Theorem 2 wiii = ¢é,, for ¢ > 0 and
0#£x € E; explicitly o = ¢/||x]l, B = lIx|l, z=x/]x].

Because of Propd#on 1, dilations, convolutionand weak limits of the above,
probability measures possess the factorization property as well; also see Jurek
(1985), Theorem 2.10.

EXAMPLE B. For our examples on real line we need some auxiliary facts.
Recall that for aniD distribution on the real line with Lévy spectral measife
its Lévy spectral function, as defined above, is separately given on the positive and
negative half-lines as follows:

—M{s e R|s > x}, for x > 0,

(23) Lu@) = {M{s eR|s < x}, forx <O.

Indeed, forx > 0 we setL(x) = Ly ({1}, x), while for x < 0, setLy(x) =
—Ly({-1}, —x).

From O’Connor (1979) or Jurek (1985), Theorem 2.2(b) we have the following
description ofs-selfdecomposable distributions:

la,0%, M] € UR)
(24)
iff Ly(x) is convex on(—oo, 0) and concave or0, co)

[this can also be deduced from the formula #iin Corollary 2, formula (11)].
For a classL distribution u = [a, o2, M] on the real line, formula (14) in
Theorem 2 gives that

ne L'
(25)
iff —x(dLy(x)/dx)is convex on—oo, 0) and concave orD, 0o).

Some examples of clags’ distributions are provided by the following:

PropPoOSITION 3. If n1,12,... are ii.d. Laplace variables(with density
Ze P and Y a2 < 0o, ax > 0, thenu = L(X3° axn) is selfdecomposable and
its background driving distributiom is s-selfdecomposablén other words i« has
the factorization property

PrROOF From Jurek (1996) we get thate L (because Laplace distributions
are selfdecomposable aids a closed semigroup) and its Lévy spectral function
has a density of the forme — >72 4 eXp(—ak_llx|)/|x|. Hence, it satisfies the
conditions in (25) and, thereforg, e L.
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1. Lévys stochastic area integralsd-or B, = (B,l, Btz), Brownian motion
onR2, the process

t
A,:/ BLdB?— B2dB, >0,
0

is calledLévys stochastic area integralt is well known that for fixed: > 0, and
a=(Ju,J/u) € R? we have

(26) x(t) = E[¢""*|B, =a]

= -exp{—(tucothru — 1 teR
sinhru P(—(tu u=2D, <

[cf. Lévy (1951) or Yor (1992), page 19]. Hence, the characteristic fungtiim
equal to the product af (1) = ru/ sinhru, which is selfdecomposable, agdr) =
exp —(tu cothru — 1)], which is its background driving characteristic function;
compare Jurek [(2001), Example B]. However, from Jurek [(1996), Example 1],
we have that is the characteristic function of the ripy = 322, k~ 1, where
then, are as in Proposition 3. Thus, Proposition 3 gives th& the characteristic
function of ans-selfdecomposable distribution. Consequently, by Theoremi4,
also a selfdecomposable characteristic function.

Using Proposition 3 in Jurek (2001) [or the above relation (26)], we may find
the BDLP foryx ().

2. Wenocur integralsLet B;, ¢ € [0, 1], be Brownian motion and be an
independent standard normal random variable. Then from Wenocur (1986) or Yor
(1992), page 19, for a particular choice of parameters, we have that

1
(27) E[exp{izz,lfo (B, il)zdsH = (coshr) Y2 . exp(—27 11 tanhy).

Thus, the distribution on,/[Ol(BS + 1)24ds corresponds to the convolution of a
classL distribution with characteristic functioftosh)~1/2 [which, in fact, is the
characteristic function of a convolution square root of the law of thelry=

> 1(2k — 1)~ n; cf. Jurek (1996)] and its BDPD, with characteristic function
exp(—2~ 1t tanhr), which is in the clasU, by Proposition 3. Consequently, the
above product is also the characteristic function of a dadsstribution.

[The fact that in (26) and (27) we have convolutions of selfdecomposable
distributions with their BDPDs was already observed in Jurek (2001).]

3. Gamma and related distributionga) Let y, , be thegamma distribution
with probability densityZ—x~1e™*1 g ) (x). It is easy to see that it is selfde-
composable [its Lévy spectral functidry, satisfies the equatiohL y;(x)/dx =
ae ¥ /x for x > 0], and its BDRV is the compound Poisson r.v. Reig ;),
that is, its jumps are exponentially distributed. Thus, by (24), the BDRYV is
s-selfdecomposable; in fact, it is-stable. See Jurek [(1985), formula (4.3),
page 606].

(b) Letp, be theBessel distributiongiven by the probability density functions

fu(x) =exp(—a — x)(x /)@~ V2L,_1(2J/ax), x>0,a>0,
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where I,_1(x) is the modified Bessel functionith index « — 1. Thenp, =
Ye.1 * POISay1.1). [lksanov and Jurek (2003) showed that the Bessel distribution
pq IS a shot-noise distribution.]

(c) Thorin’s distributions (the clas$ of generalized gamma distributions)
have the factorization property, as they are obtained from gammas, their trans-
lations and weak limits; compare Proposition 1 and case (a) above, or see Theo-
rem 3.1.1 in Bondesson (1992).

(d) Dufresne [(1998), page 295] studied distributional equations involving
symmetrized gamma r.v.'s. These are distributions whose probability density
functions are of a form

2—01+1/2|x|a—1/2

7121 ()

where the Kg are the MacDonald functions. Since gamma r.v.s areLin
convergent series of symmetrized gamma r.v.'s provide distributions with the
factorization property. [J

pOl(x) = Kot—l/2(|-x|)a X ERv

REMARK 3. Recall that a d.f.F on R is unimodal with mode aD iff
F(x) — xF'(x) is ad.f., or equivalently, ifff (x) = fol H(x/t)dr for some d.f.H.
Moreover,H may be chosen to be equalfgx) — x F'(x) a.e. Note that the above
relation is the same as (10) (on the level of Lévy exponents) or the conditions
described in Corollary 2 (on the level of Lévy spectral measures).
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