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MINIMAX AND ADAPTIVE ESTIMATION OF THE WIGNER
FUNCTION IN QUANTUM HOMODYNE TOMOGRAPHY WITH
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We estimate the quantum state of a light beam from results of quantum
homodyne measurements performed on identically prepared quantum sys-
tems. The state is represented through the Wigner function, a generalized
probability density on R

2 which may take negative values and must respect
intrinsic positivity constraints imposed by quantum physics. The effect of the
losses due to detection inefficiencies, which are always present in a real ex-
periment, is the addition to the tomographic data of independent Gaussian
noise.

We construct a kernel estimator for the Wigner function, prove that it is
minimax efficient for the pointwise risk over a class of infinitely differentiable
functions, and implement it for numerical results. We construct adaptive es-
timators, that is, which do not depend on the smoothness parameters, and
prove that in some setups they attain the minimax rates for the corresponding
smoothness class.

1. Introduction. In 1932 Wigner published a seminal paper [30] in which
he introduced a fundamental tool for quantum mechanics known these days as
the Wigner function. Glauber extended such techniques to quantum optics where
phase space representations of quantum states play an important role in detecting
quantum effects in light [7, 13].

Quantum homodyne tomography (QHT) is a technique for reconstructing the
state of a quantum system from measurement data. It was theoretically proposed
in [29] and put in practice for the first time by Smithey et al. [26]. This method
allows quantum opticians to visualize the Wigner function of newly created states
of light and verify whether the theoretical predictions agree with the statistical
findings. We mention a few experiments such as the creation of squeezed states [5]
and of single-photon-added coherent states [31].

Various aspects of the corresponding ill-posed inverse problem have been an-
alyzed in [9, 23] and [22], and different estimation methods have been proposed
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by Banaszek et al. [3] and Lvovsky [24]. For an overview of the QHT problem in
quantum optics we refer to [21] and for more recent developments to [25].

This paper addresses the statistical problem of estimating the Wigner function
of a beam of light from results of QHT measurements on independent, identically
prepared beams.

One way to think about quantum tomography as a statistical problem is as fol-
lows: the unknown parameter is a joint density W of two variables, Q and P .
We observe the random variable (X,�) = (cos(�)Q + sin(�)P,�) where � is
chosen independently of (Q,P ), and uniformly in the interval [0, π]. The joint
density of (X,�) can be expressed mathematically in terms of the joint density
W of (Q,P ), which is allowed to take negative as well as positive values, sub-
ject to certain restrictions which guarantee that (X,�) does have a proper prob-
ability density. In an ideal situation W would be a density function and then the
statistical problem would be to estimate W from independent samples of (X,�).
In the context of positron emission tomography this problem has been addressed
in [8], which provides minimax rates for the pointwise risk on a class of “very
smooth” probability densities. The quantum tomography version where W is a
proper Wigner function is treated along similar lines in [16] with the important
difference that the proof of the lower bound requires the construction of a “worst
parametric family” of Wigner functions rather than probability densities.

In this paper we consider a statistical problem which is more relevant for the
experimentalist confronted with various noise sources corrupting the ideal data
(X,�). It turns out that a good model for a realistic quantum tomography mea-
surement amounts to replacing (X,�) by the noisy observations (Y,�), where
Y := √

ηX + √
(1 − η)/2ξ , with ξ a standard Gaussian random variable indepen-

dent of (X,�). The parameter 0 < η < 1 is called the detection efficiency and
represents the proportion of photons which are not detected due to the losses in
the measurement process. This is the statistical problem of this paper, a combi-
nation of two classical problems: noise deconvolution and PET tomography. The
nonclassical feature is that although all the one-dimensional projections of W are
indeed bona fide probability densities, the underlying two-dimensional “joint den-
sity” need not itself be a bona fide joint probability density, but can have small
patches of “negative probability.”

So far there has been little attention paid to this problem by statisticians, al-
though on the one hand it is an important statistical problem coming up in modern
physics, and on the other hand it is “just” a classical nonparametric statistical in-
verse problem. A first step in the direction of estimating ρ has been made in [2],
where consistency results are presented for linear and sieve maximum likelihood
estimators. We recommend this paper as a complement to the present one.

Section 2 starts with a short introduction to quantum mechanics followed by
the particular problem of estimating the Wigner function in quantum homodyne
tomography. In Section 2.3 we describe some features of Wigner functions and
show to what extent these functions differ from probability densities on the plane.
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The section ends with a description of the experimental set-up and the derivation
of the Gaussian noise from physical principles.

Section 3 contains the main results of this paper. We assume that the unknown
Wigner function belongs to a class A(β, r,L) of “very smooth” functions similar
to those of [8, 6] and [16]. The estimator has a standard kernel-type form per-
forming in one step the deconvolution and the inverse Radon transform. In Propo-
sition 1 we compute upper bounds for the pointwise risk. Theorem 1 establishes
the lower bound and gives the minimax rate, which is slower than any power of
1/n but faster than any power of 1/ logn. Rates with a similar behavior have been
obtained in [6], which inspired some of the results obtained in this paper. Adaptive
estimators can be derived in some cases (when r ≤ 1) (see Theorem 2), converging
at the same rates as their nonadaptive correspondents.

In Section 4 we present results of computer simulations for a few quantum
states, among which is the Schrödinger cat state which is expected to be produced
in the lab in the future. Section 5 collects the proof of Proposition 1 and a sketch
of the proof of the adaptive upper bounds.

Section 6 concentrates on the proof of the lower bound for the pointwise risk.
For this we construct a pair of Wigner functions W1,2 belonging to the class
A(β, r,L) such that the distance between them is large enough and the χ2 dis-
tance between the likelihoods of the corresponding models is small. It is now a
well-known lower-bounds principle that the best rate of estimation can be viewed
as the largest distance between parameters in order to detect the change in the sta-
tistical model. This construction is original in the statistics literature as it relies on
the positivity of the corresponding density matrices ρ1 and ρ2 rather than of the
Wigner functions themselves.

2. Physical background of quantum tomography. In this section we
present a short introduction to quantum mechanics in as far as it is needed for
understanding the background of our statistical problem. The reader who is not
interested in the physics can skip this section and continue with Section 3. In
Section 2.2 we describe the measurement technique called quantum homodyne
tomography and show how this can be used to estimate the Wigner function which
is a particular parametrization of the quantum state of a monochromatic pulse of
light. More details on Wigner functions can be found in Section 2.3. The main is-
sue tackled in this paper is the influence of noise due to the detection process on the
estimation of the Wigner function. The experimental setup of quantum homodyne
tomography with noisy observations is discussed in Section 2.4.

For more background material we refer to the textbook [21] on quantum optics
and quantum tomography, the paper [2] which deals with the problem of quantum
tomography from a statistical perspective, the review paper on quantum statistical
inference [4] and the classic textbooks on quantum statistics [17] and [18].
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2.1. Short excursion into quantum mechanics. Quantum mechanics is the the-
ory which describes the physical phenomena taking place at the microscopic level
such as the emission and absorption of light by individual atoms, the detection of
light photons. As a theory about physical reality, quantum mechanics makes pre-
dictions about the results of measurements performed in the lab. Such predictions
are statistical in nature in the sense that in general we cannot infer the result of
a measurement on a single quantum system but only the probability distribution
of results of identical measurements performed on a statistical ensemble of iden-
tically prepared systems. Any such distribution is a function of the state in which
the system is prepared, and of the performed measurement. Our statistical prob-
lem can then be briefly described as follows: estimate the state based on results of
measurements on a number of identically prepared systems.

Mathematically, the main concepts of quantum mechanics are formulated in the
language of self-adjoint operators acting on Hilbert spaces. The reader who is not
familiar with this theory may think of finite-dimensional Hilbert spaces C

d , and
d × d matrices as operators on C

d . To every quantum system one can associate
a complex Hilbert space H with inner product 〈·, ·〉 whose vectors represent the
wave functions of the system or pure states, as we will see below. In general, a state
is described by a density matrix, which is a compact operator ρ on H having the
following properties:

1. Self-adjoint: ρ = ρ∗, where ρ∗ is the adjoint of ρ.
2. Positive: ρ ≥ 0, or equivalently 〈ψ,ρψ〉 ≥ 0 for all ψ ∈ H .
3. Trace 1: Tr(ρ) = 1.

The positivity property implies that all the eigenvalues of ρ are nonnegative, and
by the trace property, they sum up to 1. The reader may have noticed that the above
requirements are reminiscent of the properties of probability distributions, and this
connection will be strengthened in a moment when we discuss the distribution of
measurement results.

Before that we will take a look at the structure of the space of states on a given
Hilbert space H . Clearly, the convex combination λρ1 + (1 − λ)ρ2 of two density
matrices ρ1 and ρ2 is a density matrix again and it corresponds to the state obtained
as the result of randomly performing one of the two preparation procedures with
probabilities λ and, respectively, 1−λ. The extremals of the convex set of states are
called pure states and are represented by one-dimensional orthogonal projection
operators. Indeed an arbitrary density matrix can be brought to the diagonal form

ρ =
dimH∑
i=1

λiPi ,

where Pi is the projection onto the one-dimensional space generated by the eigen-
vector ei ∈ H of ρ and λi ≥ 0 is the corresponding eigenvalue, that is, ρei = λiei .
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The predictions made by quantum mechanics can be tested in the lab by per-
forming measurements on quantum systems. We will now give the mathematical
description of a measurement with space of outcomes given by the measure space
(
,�). If the system is prepared in the state ρ, then the result is random and has
probability distribution Pρ over (
,�) such that the map ρ �→ Pρ is affine, that
is, it maps a convex combination of states into the corresponding convex combi-
nation of probability distributions. This can be naturally interpreted as saying that
for any mixed state λρ1 + (1 − λ)ρ2, the distribution of the results will reflect the
randomized preparation procedure.

The most common measurement is that of an observable such as energy, posi-
tion, spin, and so on. An observable is described by a self-adjoint operator X = X∗
on the Hilbert space H and we suppose here for simplicity that it has a discrete
spectrum, that is, it can be written in the diagonal form

X =
dimH∑
a=1

xaPa,(1)

with xa ∈ R the eigenvalues of X, and Pa one-dimensional projections onto the
eigenvectors of X. The result of the measurement of the observable X will be
denoted by X and is a random variable with values in the set 
 = {x1, x2, . . .}.
When the system is prepared in the state ρ, the result X has the distribution

Pρ[X = xa] = Tr(Paρ).(2)

Notice that the conditions defining the density matrices insure that Pρ is indeed a
probability distribution. In particular, the expectation on X in the state ρ is

Eρ[X] :=
dimH∑
a=1

xaPρ[X = xa] = Tr(Xρ),(3)

and the characteristic function is given by

Eρ[exp(itX)] = Tr[exp(itX)ρ].(4)

Measurements with continuous outcomes as well as outcomes in an arbitrary mea-
sure space can be described in a similar way by using the spectral theory of self-
adjoint operators [18].

Suppose that a preparation procedure produces an unknown state ρ. It is clear
that in general no individual measurement can completely determine the state but
only gives us statistical information about Pρ and thus indirectly about ρ. The
problem of state estimation should then be considered in the context of measure-
ments on a large number of systems which are identically prepared in the state ρ.
Here we consider the simplest situation when we perform identical and indepen-
dent measurements on each of the n systems separately.
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2.2. Quantum homodyne tomography and the Wigner function. The statisti-
cal problem analyzed in this paper is that of estimating a function Wρ : R2 → R

from i.i.d. data (Y1,�1), . . . , (Yn,�n) with distribution P
η
ρ on R × [0, π]. In this

subsection we will give an account of the physical origin of this problem.
The quantum system is monochromatic light in a cavity, whose state is described

by (infinite-dimensional) density matrices on the Hilbert space of complex-valued
square integrable functions on the line L2(R). The function of interest Wρ is called
the Wigner function and depends in a one-to-one fashion on the state ρ of the light.

Two important observables of this quantum system are the electric and magnetic
fields whose corresponding self-adjoint operators on L2(R) are given by

Qψ(x) = xψ(x) and, respectively, Pψ(x) = −i
dψ

dx
.

The Wigner function Wρ : R2 → R is much like a joint probability density for these
quantities; for instance, its marginals along any direction φ ∈ [0, π] in the plane
which are given by the Radon transform of Wρ ,

R[Wρ](x,φ) =
∫ ∞
−∞

Wρ(x cosφ − t sinφ,x sinφ + t cosφ)dt,(5)

are bona fide probability densities and correspond to the measurement of the
quadrature observables Xφ := Q cosφ + P sinφ. However, in quantum mechanics
noncommuting observables such as Q and P cannot be measured simultaneously;
thus we cannot speak of their joint probability distribution. This fact is reflected
at the level of the Wigner function, which need not be positive; indeed, it might
contain patches of “negative probability.”

Thus, for a given quantum system prepared in state ρ we can measure only
one of the quadratures Xφ for some phase φ and we obtain a result with probabil-
ity density pρ(x|φ) = R[Wρ](x,φ). Let us consider now that we have n quantum
systems prepared in the same state ρ and we measure the quadrature X�i

on the ith
system with phases �i chosen independently with uniform distribution on [0, π].
We obtain independent identically distributed results (X1,�1), . . . , (Xn,�n) with
density pρ(x,φ) = pρ(x|φ) with respect to the measure 1

π
λ, where λ is the

Lebesgue measure on R×[0, π]. The Radon transform R :Wρ �→ pρ(x,φ) is well
known in statistics for its role in tomography problems such as positron emission
tomography (PET) [28], and has a broad spectrum of other applications ranging
from astronomy to geophysics [10]. In PET one estimates a probability density
f on R

2 related to the tissue distribution in a cross section of the human body
from i.i.d. observations (X1,�1), . . . , (Xn,�n), with probability density equal to
R[f ]. The observations are obtained by recording events whereby pairs of photons
emitted at the collision of a positron and an electron hit detectors placed in a ring
around the body after flying in opposite directions along an axis determined by an
angle φ ∈ [0, π]. The difference with our situation is that the role of the unknown
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distribution is played by the Wigner function, which as we mentioned is not neces-
sarily positive in the usual sense but carries an intrinsic positivity constraint in the
sense that it corresponds to a density matrix (see Section 2.3). Another difference
with respect to PET is that in QHT the experimenter can decide how to choose the
phases �i . Indeed, in some experiments the phases are equidistant, that is, they
take one of the values l

k
π where l runs from 0 to k − 1 for some k ∈ N, but one has

now the additional problem of how to choose k as a function of n. We believe that
by using uniformly distributed phases one does not incur any loss in the asymp-
totic rates, but it remains an interesting open question whether a specially designed
choice of phases can improve the results. This may be the case for some parametric
classes of Wigner functions with an asymmetric aspect like those corresponding to
squeezed states (see Section 2.3).

2.3. Properties of Wigner functions. The physics literature on Wigner func-
tions and other types of “phase space functions” is vast, but a starting point for the
interested reader may be the book [21]. Here we focus on the similarities and the
differences with usual probability densities encountered in PET.

Consider the space of Hilbert–Schmidt operators on L2(R),

T2 := {A ∈ B(L2(R)) :‖A‖2
2 = Tr(A∗A) < ∞},

on which there exists an inner product 〈A,B〉2 = Tr(A∗B), and notice that the
density matrices form a closed subset of T2. The Wigner function WA is the image
of A through the linear map W :T2 → L2(R

2) defined by the property that the
Fourier transform F2 with respect to both variables has the expression

W̃A(u, v) := F2[WA](u, v) = Tr
(
A exp(iuQ + ivP)

)
.(6)

In particular, this defines the Wigner function Wρ of the state with density ma-
trix ρ. By passing to the polar coordinates (u, v) = (t cosφ, t sinφ) we have
uQ + vP = tXφ , and using (4) together with the fact that pρ(·|φ) is the density
for measuring Xφ we have

W̃ρ(u, v) = Tr(ρ exp(itXφ)) = F1[pρ(·|φ)](t),(7)

where the Fourier transform F1 in the last term is with respect to the first variable,
keeping φ fixed. The reader familiar with PET may recognize that the composition
F2 ◦F1 mapping pρ into Wρ is just the inverse Radon transform [10], proving our
assertion that QHT is about the tomography of the Wigner function.

It can be shown that the map W :T2 → L2(R
2) is isometric up to a constant:

〈A,B〉2 = 2π〈WA,WB〉 := 2π

∫ ∫
WA(q,p)WB(q,p)dq dp,(8)

and this fact is often used as a tool for calculating the expectation of an observable
X ∈ T2 similarly to the way it is done in classical probability:

Tr(ρX) = 2π

∫ ∫
WX(q,p)Wρ(q,p)dq dp.(9)
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Let us come back to our physical system, the light in a cavity, and consider its
energy, which is given by the sum of intensities of the electric and magnetic fields
H := 1

2(Q2 + P2). As predicted by Einstein before the creation of quantum theory,
the possible values that this observable may take are “quantized,” which can be
explained if we think of light as a packet of photons with each photon contribut-
ing a fixed quantum of energy. Indeed, by solving the eigenvalue problem we find
Hψj = (j + 1/2)ψj where {ψj }j≥0 is an orthonormal basis of L2(R) whose vec-
tors have the physical interpretation of pure states with precisely j photons and are
given by

ψj(x) = 1√√
π2j j !

Hj(x)e−x2/2,(10)

where Hj(x) are the Hermite polynomials (see, e.g., [12]).
Notably, the vacuum state corresponding to zero photons has nonzero energy

1/2, a purely quantum phenomenon called vacuum fluctuations reflected in the
fact that the distributions of Q and P are Gaussian with variance 1/2. We would
like to stress here that the Gaussian distribution emerges directly from physical
principles and it is the same Gaussian character of the vacuum which will lead to
our model for the detection noise in Section 2.4.

An interesting consequence of relation (9) is found by taking X to be the vacuum
state Pψ0 whose Wigner function is WX(q,p) = exp(−q2 − p2)/π . Then, as the
left-hand side of the equation is positive, this implies that the negative patches of
Wρ around the origin must be balanced by positive ones in such a way that the
integral remains positive. In fact this property holds for any point in the plane and
the localized oscillations of the Wigner function are a signature of nonclassical
states, such as states with a fixed number of photons or the so-called “Schrödinger
cat states” like the one estimated in Figure 3.

On the other hand, there exist probability densities that are not Wigner func-
tions, for example, the latter cannot be too “peaked” (cf. [21]):

|Wρ(q,p)| ≤ 1

π
for all (q,p) ∈ R

2.(11)

A general density matrix ρ can be seen as an infinite-dimensional matrix with
coefficients ρjk = 〈ψj ,ρψk〉 for j, k ≥ 0 such that

∑
k≥0 ρkk = 1 (trace 1), and

[ρjk] ≥ 0 (positive definite matrix). In particular, the diagonal elements pk = ρkk

represent the probability of measuring k photons for a system in state ρ. The den-
sity pρ(x,φ) is given in terms of the matrix elements of ρ by

pρ(x,φ) = 1

π

∞∑
j,k=0

ρjkpjk(x,φ) := 1

π

∞∑
j,k=0

ρjkψj (x)ψk(x)e−i(j−k)φ,(12)

and a similar formula holds for the Wigner function Wρ(q,p) = ∑∞
j,k=0 ρjkWjk(q,

p), with Wjk such that R[Wjk] = pjk . For any density matrices ρ, τ (8) can be
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written

‖Wρ − Wτ‖2
2 :=

∫ ∫
|Wρ(q,p) − Wτ(q,p)|2 dp dq

(13)

= 1

2π
‖ρ − τ‖2

2 := 1

2π

∞∑
j,k=0

|ρjk − τjk|2.

Some examples of quantum states that can be created at this moment in the lab
are given in Table 1 of [2]. Typically, the corresponding Wigner functions have
a Gaussian tail but need not be positive. As a consequence of (11) not all two-
dimensional Gaussian distributions are Wigner functions, but only those for which
the determinant of the covariance matrix is at least 1

4 . Equality is obtained for a
remarkable set of states called squeezed vacuum states having Wigner functions
W(q,p) = 1

π
exp(−e2ξ q2 − e−2ξp2), determined by the squeezing factor ξ . More

generally, the celebrated Heisenberg uncertainty relation says that for any state ρ

the noncommuting observables P and Q cannot have probability distributions such
that the product of their variances is smaller than 1

4 .

2.4. Experimental setup and noisy observations. The optical setup sketched
in Figure 1 consists of an additional laser of high intensity |z|2 
 1 called a lo-
cal oscillator, a beam splitter through which the cavity pulse prepared in state ρ is
mixed with the laser, and two photodetectors each measuring one of the two beams
and producing currents I1,2 proportional to the number of photons. An electronic
device produces the result of the measurement by taking the difference of the two
currents, integrating it over the time interval of the pulse, and rescaling it by a
factor proportional to |z| (see below). A detailed analysis taking into account vari-
ous losses (mode mismatching, detection inefficiency) in the detection process can
be found in [21]. It turns out that all these losses can be modeled by a Gaussian
noise in the measurement results, and here we detail only the case of detection
inefficiency. In the high photon number regime |z|2 
 1 the (integrated) current
depends linearly on the intensity of the beam with a proportion η < 1 of the pho-
tons being detected. The process can be described classically by considering that
each individual photon has probability η of being detected and 1 − η of being ab-
sorbed without detection. Thus in a beam of j photons the probability of detecting
k ≤ j is b

j
k (η) = (j

k

)
ηk(1 − η)j−k , and for an incoming state ρ we obtain the prob-

ability distribution of the results pk(η) = ∑∞
j=k ρjjb

j
k (η). This “photon lottery”

can be equivalently described by replacing the realistic detector with an ideal one
in front of which we place an imaginary beam splitter (see Figure 1) which has
transmissivity t = √

η and reflectivity r = √
1 − η.

In order to understand why this is the case and how the measurement noise
appears, we will present two equivalent pictures of the action of the beam splitter
stemming from the wave-particle duality typical in quantum mechanics. As shown
in Figure 1 a beam splitter receives two incoming beams and has two outgoing
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FIG. 1. Quantum homodyne tomography measurement setup.

beams as output. In the case of the imaginary beam splitter sitting in front of the
detector, one of the incoming beams is the vacuum and let us assume that the
beam to be measured has j photons. Then the joint state of the two beams is
ψ0 ⊗ ψj ∈ L2(R) ⊗ L2(R) and the transformation to the outgoing vector is ψ0 ⊗
ψj �→ ∑j

k=0[bj
k (η)]1/2ψj−k ⊗ψk, which simply means that with probability b

j
k (η)

we get k photons going to the ideal detector and j − k will not be detected, as
described above.

The second description is in terms of the transformation of the electric and mag-
netic field operators of the beams denoted by (Ql ,Pl) and (Qr ,Pr ), with the first
couple acting on the left side of the tensor product L2(R) ⊗ L2(R) and the sec-
ond pair on the right side. The fields of the outgoing beams are Q′

l = tQl − rQr ,
Q′

r = rQl + tQr and similarly for P’s.
Then by computing the combined effects of the beam splitters, we have the

fields arriving at the two detectors, Q1 = t√
2
[Q+Qlo]− rQ1vac and Q2 = t√

2
[Q−

Qlo] − rQ2vac, and similarly for P1,P2. We remind the reader that the number of
photons in a beam is described by N := 1

2(Q2 + P2 − 1). Using the fact that in the

limit |z|2 
 1 the laser can be treated classically by replacing Qlo by |z|√
2

cosφ and
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Plo by |z|√
2

sinφ, we get

N1 − N2 = √
2t |z|[(tQφ + rQvac

φ ) + O(|z|−1)],
with O(|z|−1) a term whose variance is bounded by C/|z|, and Qvac

φ a quadrature
operator of a vacuum mode accounting for the two fictitious beam splitters. Thus
in the limit |z| → ∞ the rescaled integrated current difference I1 − I2/

√
2η|z| has

the same distribution as tQφ + rQvac
φ , that is, that of the sum of two independent

random variables Y := √
ηX + √

(1 − η)/2ξ, where X ∼ Pρ(·|φ) is the result of
measuring Xφ , ξ has the N(0,1) law and 1√

2
ξ has the distribution of the quadrature

in the vacuum (see Section 2.3). The efficiency-corrected probability density is
then the convolution

pη
ρ(y,φ) = (

π(1 − η)
)−1/2

∫ ∞
−∞

pρ(x,φ)exp
[
− η

1 − η
(x − η−1/2y)2

]
dx.(14)

Finally, the constants |z| and η are measured in advance as part of the calibration
of the experiment and are considered to be known.

3. Statistical procedure and results. For convenience we summarize now
the statistical problem tackled in this paper.

Consider (X1,�1), . . . , (Xn,�n), independent identically distributed random
variables with values in R × [0, π] and distribution Pρ having density pρ(x,φ)

with respect to 1
π
λ, λ being the Lebesgue measure on R × [0, π], given by

pρ(x,φ) = R[Wρ](x,φ),

where R is the Radon transform defined in (5) and Wρ : R2 → R is a so-called
Wigner function which we want to estimate. The space of all possible Wigner
functions is parametrized by infinite-dimensional matrices ρ = [ρjk]∞j,k=0 such
that Trρ = 1 (trace 1) and ρ ≥ 0 (positive definite), in the way indicated by (6).
Moreover, the correspondence between ρ and Wρ is one-to-one and isometric with
respect to the L2 norms as in (13). The properties of Wigner functions have been
discussed in Section 2.3, in particular the fact that Wρ may take negative values.

What we observe are not the variables (X�,��) but the noisy ones (Y1,�1), . . . ,

(Yn,�n), where

Y� := √
ηX� +

√
(1 − η)/2ξ�,(15)

with ξ� a sequence of independent identically distributed standard Gaussians which
are independent of all (Xj ,�j ). The parameter 0 < η < 1 is known and we denote
by p

η
ρ the density of (Y�,��) given by the convolution (14). The aim is to recover

the Wigner function Wρ from the noisy observations.
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Class of Wigner functions. In order to apply the minimax estimation technol-
ogy we will assume that the unknown Wigner function is infinitely differentiable
and belongs to the following class described via its Fourier transform:

A(β, r,L) =
{
Wρ Wigner function :

∫
|W̃ρ(w)|2e2β‖w‖r

dw ≤ (2π)2L

}
,

where 0 < r ≤ 2, and β,L > 0. From now on we denote by 〈·, ·〉 and ‖ · ‖ the
usual Euclidean scalar product and norm, while C(·) will denote positive con-
stants depending on parameters given in the parentheses. From the physical point
of view the choice of a class of very smooth Wigner functions seems to be quite
reasonable considering that to date no quantum state of light has been constructed
which does not satisfy such conditions. The reason for the difficulty in engineering
states with less smooth Wigner functions is that the interactions needed to produce
such states should be very nonlinear in the electric and magnetic fields while it
is known that photons are rather weakly interacting particles. For example, until
recently the creation of squeezed states requiring a quadratic interaction was a not-
trivial achievement [5]. We mention here without proof the result of a computation
showing that if a density matrix ρ satisfies the condition Tr(ρ exp[aNr/2]) < ∞ for
some a, r > 0, then Wρ ∈ A(β, r,L) for some β,L > 0. In light of the previous
argument we consider that this condition is actually rather weak.

Estimation method. For the problem of estimating a probability density
f : R2 → R directly from data (X�,��) with density R[f ] we refer to the litera-
ture on X-ray tomography and PET, studied in [8, 19, 20, 28], and the references
therein. In the context of tomography of bounded objects with noisy observations,
Goldenshluger and Spokoiny [14] solved the problem of estimating the borders of
the object (the support). For the problem of Wigner function estimation when no
noise is present, we mention the parallel work [16].

Let Nη denote the density of the rescaled noise
√

(1 − η)/2ξ and let Ñη be its
Fourier transform. Denote by p

η
ρ(y,φ) the probability density of (Y�,��) in (14).

Then

pη
ρ(y,φ) =

∫ ∞
−∞

1√
η
pρ

(
y − x√

η
,φ

)
Nη(x) dx :=

(
1√
η
pρ

( ·√
η
,φ

)
∗ Nη

)
(y),

where p ∗ q(y) = ∫
p(y − x)q(x) dx denotes the convolution of p and q . Via a

change of variable we can write p
η
ρ(y,φ) as in (14). In the Fourier domain this

relation becomes F1[pη
ρ(·, φ)](t) = F1[pρ(·, φ)](t√η)Ñη(t), where F1 denotes

the Fourier transform with respect to the first variable.
In this paper we modify the usual tomography kernel in order to take into ac-

count the additive noise on the observations and construct a kernel K
η
h that asymp-

totically performs both deconvolution and inverse Radon transformation on our
data. Let us define the estimator

Ŵ
η
h,n(q,p) = 1

n

n∑
�=1

K
η
h

(
q cos�� + p sin�� − Y�√

η

)
,(16)
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where 0 < η < 1 is a fixed parameter, and the kernel is defined by

K
η
h(u) = 1

4π

∫ 1/h

−1/h

exp(−iut)|t |
Ñη(t/

√
η)

dt,

(17)

K̃
η
h(t) = 1

2

|t |
Ñη(t/

√
η)

I (|t | ≤ 1/h),

and h > 0 tends to 0 when n → ∞ in a proper way to be chosen later. For simplic-
ity, let us denote z = (q,p) and [z,φ] = q cosφ + p sinφ; then the estimator can
be written

Ŵ
η
h,n(z) = 1

n

n∑
�=1

K
η
h

(
[z,��] − Y�√

η

)
.

This is a one-step procedure for treating two successive inverse problems. The
main difference with the no-noise problem treated by Guţă and Artiles [16] is that
the deconvolution is more difficult than inverse Radon transformation, and thus the
techniques for proving the optimality of the method (lower bound) are essentially
different. Technically, the no-noise kernel-type estimator has dominating variance,
while in the case of noisy observations the bias dominates the variance, as we will
see later on.

In Section 3.1 we analyze the mean squared error (MSE) at some fixed point.
Our results concern minimax efficiency and adaptive optimality for this problem.
We compute an upper bound for the convergence rate of the proposed estimator
by minimizing the sum of upper bounds (uniform over the whole class) of the bias
and of the variance. The optimality in rate of our estimator follows from the lower
bounds, which are proved in Section 6. The meaning of the lower bounds results
is that asymptotically, no other estimation technique could outperform our method
uniformly over all Wigner functions in the given class. Moreover, we prove the
lower bounds, including the asymptotic constant (sharp minimax).

We use a technique based on two hypotheses that appeared in [11] for periodic
Sobolev classes and in [6] for classes of supersmooth functions, to which we refer
for the details of some of the computations. We concentrate on the main construc-
tion involved in the lower bound, that is, the choice of two hypotheses belonging
to the fixed class of Wigner functions such that their values in a fixed point are
sufficiently different while their corresponding models have likelihoods close to
each other.

Despite the generality of a minimax sharp estimator, for practical purposes it
is not obvious how to choose the smoothness parameters r and β . Therefore, an
adaptive method (i.e., free of prior knowledge of parameters β , r and L provided
that they are in some set) is designed for classes with r ≤ 1 in Section 3.2. They
behave as well as the previous estimators, provided that we know maximal values
of parameters. In particular, this estimator is optimal adaptive (i.e., adaptive and
attaining the minimax rate) and efficient. We note that in general such procedures
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do not always exist. We are fortunate in our case and this is mainly due to the
dominating bias.

3.1. Pointwise estimation. In this section we give minimax and adaptive re-
sults for the pointwise risk (MSE) for the estimator Ŵ

η
h,n in (16). The next propo-

sition contains upper bounds for the two components of the risk, the bias and vari-
ance, as functions of the parameter h and the number n of samples. The bounds
are uniform over all Wigner functions in the class A(β, r,L).

PROPOSITION 1. Let (Y�,��), � = 1, . . . , n, be i.i.d. data coming from the
model (15) and let Ŵ

η
h,n be an estimator (with h → 0 as n → ∞) of the underlying

Wigner function Wρ belonging to the class A(β, r,L), with 0 < r ≤ 2. Then

sup
z∈R2

sup
Wρ∈A(β,r,L)

|E[Ŵ η
h,n(z)] − Wρ(z)|2 = Lhr−2

4πβr
exp

(
−2β

hr

)(
1 + o(1)

)
,

sup
z∈R2

sup
Wρ∈A(β,r,L)

E
[|Ŵ η

h,n(z) − E[Ŵ η
h,n(z)]|2

] ≤ 1

8γ 2n
exp

(
2γ

h2

)(
1 + o(1)

)
,

where γ = (1 − η)/(4η), and o(1) → 0 as h → 0 and n → ∞.

The pointwise convergence rate of Ŵ
η
h,n with h = hopt is then shown to be min-

imax by proving an additional lower bound.

THEOREM 1. Let β > 0, L > 0, 0 < r ≤ 2 and (Y�,��), � = 1, . . . , n, be i.i.d.
data coming from the model (15), and let Ŵ

η
h,n be as defined in (16) with the kernel

K
η
h of (17) and let the bandwidth hopt be given by the solution of

2β

hr
opt

+ 2γ

h2
opt

= logn.(18)

Then Ŵ
η
h,n satisfies the following upper bounds in pointwise distance:

lim sup
n→∞

sup
z∈R2

sup
Wρ∈A(β,r,L)

E[|Ŵ η
h,n(z) − Wρ(z)|2]ϕ−2

n ≤ C,

where the constant C and the pointwise rate are

C = 1, ϕ2
n = Lhr−2

opt

4πβr
exp

(
− 2β

hr
opt

)
if 0 < r < 2,

C > 0, ϕ2
n = n−β/(β+γ ) if r = 2.

Moreover, the previous rate is minimax efficient for 0 < r < 2 and nearly minimax
for r = 2; that is, the following lower bounds hold:

lim inf
n→∞ inf

Ŵn

sup
Wρ∈A(β,r,L)

E[|Ŵn(z) − Wρ(z)|2]ϕ−2
n ≥ 1 ∀z ∈ R if 0 < r < 2,
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lim inf
n→∞ inf

Ŵn

sup
Wρ∈A(β,2,L)

E[|Ŵn(z) − Wρ(z)|2](n logn)β/(β+γ ) ≥ c > 0

∀z ∈ R if r = 2,

where infŴn
is taken over all possible estimators Ŵn of the Wigner function Wρ .

PROOF. The proof of the lower bounds is given in Section 6.
Sketch of proof of the upper bounds. By Proposition 1 we write

sup
z∈R2

sup
Wρ∈A(β,r,L)

E[|Ŵ η
h,n(z) − Wρ(z)|2] ≤ CBhr−2 exp

(
−2β

hr

)
+ CV

n
exp

(
2γ

h2

)
,

where CB and CV denote the constant terms, depending on β, r,L and η.
We select the best bandwidth as hopt = arg infh>0{CBhr−2 exp(−2β/hr) +
CV /n exp(2γ /h2)}. By taking derivatives we get

2β

hr
+ 2γ

h2 = logn + C
(
1 + o(1)

)
as n → ∞,

where C > 0 depends on β, r,L and η. This allows us to take hopt as in (18) and
check that up to constants

hr−2
opt exp

(
− 2β

hr
opt

)
= hr−2

opt · 1

n
exp

(
2γ

h2
opt

)(
1 + o(1)

) ∼ hr−2
opt Var(Ŵ η

hopt,n
(z)),

that is, the bias term is asymptotically larger than the variance term, for all
0 < r < 2, and they are of the same order if r = 2. �

REMARKS ON BANDWIDTHS AND RATES. The bandwidth (18) and conse-
quently the rates are given in an implicit form. We show now that more explicit
expressions can be obtained, if we restrict to values of r in certain intervals.

If r ≤ 1, then it suffices to take bandwidth

h1 =
(

logn

2γ
− β

γ

(
logn

2γ

)r/2)−1/2

and the bias term is larger than the variance term (for h = h1) and of the same
order as ϕ2

n (for h = hopt):

L

4πβr

(
logn

2γ

)1−r/2

exp
(
−2β

(
logn

2γ

)r/2

+ o(1)

)
.

If 1 < r ≤ 4/3, then we take h2 = (
logn
2γ

− β
γ
h−r

1 )−1/2 and we get the risk bound

(for h = h2) of the same order as ϕ2
n (for h = hopt):

L

4πβr

(
logn

2γ

)1−r/2

exp
(
−2β

(
logn

2γ

)r/2

+ C1(r, β, γ )

(
logn

2γ

)r−1

− o(1)

)
.

In general one has to consider separately the cases (k − 1)/k < r/2 ≤ k/(k + 1).
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We deal with a composition of two ill-posed inverse problems with the decon-
volution being the dominating factor and the inverse Radon transformation bring-
ing corrections to the usual rates. For r = 1 we can compare our result with that
of [16] for the idealized tomography model without noise. While the latter is al-
most parametric, in the presence of deconvolution the rates decrease to a factor√

logn exp(−c
√

logn), which is faster than (logn)−a but slower than power n−a

rates, for any a > 0. Compared with the density estimation in the convolution
model of [6], we get an additional logarithmic factor h−1

opt/2 in the rates due to the
presence of the inverse Radon transformation. However, as we will see later, an
important difference with [6] is the proof of the lower bound requiring the con-
struction of a “most difficult” family of Wigner functions.

3.2. Optimal adaptive estimation. In the previous theorem the kernel esti-
mator Ŵ

η
h,n has a bandwidth h = hopt which is the solution of (18) depend-

ing on the parameters β and r of the class. In the next theorem we will show
that there exists an adaptive estimator, that is, not depending on the parameters,
performing as well as the former estimators, provided that they lie in the set
B = {(β, r,L) :β > 0,0 < r < 1,L > 0}.

THEOREM 2. Let (Y�,��), � = 1, . . . , n, be i.i.d. data coming from the
model (15). Then Ŵ

η
h,n with h = had,

had =
(

2η logn

1 − η
−

√
2η logn

1 − η

)−1/2

,

is an optimal adaptive estimator over the set of parameters B. That is, the estima-
tor attains the same upper bounds, for all (β, r,L) ∈ B,

lim sup
n→∞

sup
Wρ∈A(β,r,L)

E[|Ŵ η
had,n

(z) − Wρ(z)|2]ϕ−2
n ≤ 1 ∀z ∈ R

2,

where the rate ϕ−2
n is given in Theorem 1 for the case 0 < r < 1.

For the proof of this theorem we refer to a similar result of [6]. Note that had
is a fixed quantity and does not depend on the data. An important consequence is
that in conjunction with the lower bounds in Theorem 1, the estimator Ŵ

η
had,n

is
optimal adaptive and efficient over the set B for the pointwise risk. This means it
attains the minimax rate and the constant C = 1 for an estimator free of β, r and
L provided that these parameters are in the class B.

4. Practical implementation. We study three Wigner functions, each one be-
longing to some class A(β,2,L) with arbitrary β < 1/4. The one- and two-photon
states are described by diagonal density matrices with ρjj = δj,1 and, respectively,
ρjj = δj,2, and can be readily produced in the lab. The third state is a so-called
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Schrödinger cat state which is represented by the sum of two vectors correspond-
ing to laser states, and which may be available experimentally in the near future.

For the one-photon state, we simulated n = 5000 noisy data (Y�,��) by first
generating (X�,��) having density pρ(x,φ) and then adding the noise by using
standard Gaussians ξ� and detection efficiency η = 0.9. We calculated the estima-
tor Ŵ

η
h,n with optimal bandwidth hopt = (logn/(2β +2γ ))−1/2. We then reconsid-

ered the kernel function and localized it by using a modified kernel having Fourier
transform

K̃
′η
h (t) = |t |

2Ñη(t/
√

η)
(19)

×
(
I

(
|t | ≤ 1

h

)
+ exp

(
h2 − 1

u(2/h − u)

)
I

(
1

h
≤ |t | ≤ 2

h

))
.

The function K̃ ′η is an infinitely differentiable function (much smoother than
K̃η); thus K ′η decays exponentially fast. In Figure 2 we plot a transversal cut
corresponding to the line p = 0, passing through the most difficult point to esti-
mate (0,0), in which the error is dominated by the bias. The true Wigner function

FIG. 2. Left: One-photon state, η = 0.9, n = 5000. Middle: Same data, modified kernel. Right:
Two-photon state, η = 0.95, n = 10,000.
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is plotted with a continuous line and the dashed line represents an estimator for one
sample of size n. The graphics on the left-hand side concern the one-photon state
with the original kernel estimator while the graphics in the middle show the esti-
mator with the modified kernel (19) at the same bandwidth. An important improve-
ment can be noticed in the case of the kernel K ′η. The left column concerns the
two-photon state with modified kernel. The pointwise loss was then computed for
ten samples (each of size n = 5000) at points (0,0), (0,±0.5), (0,±1), (0,±1.5)

and (0,±2) and the corresponding boxplots are shown in the lower panels of Fig-
ure 2. We notice that the highest losses are indeed observed at (0,0) and that the
losses are quite stable from one sample to another. In the case of the Wigner func-
tion of the Schrödinger cat state we considered samples larger than 10,000 data
which we binned in a 100 × 100 histogram. Figure 3 shows a contour plot of our
estimator Ŵ

η
h,n for a sample of size n = 500,000 and η = 0.95. Characteristic fea-

tures are clearly visible: two Gaussian-shaped domes on the sides with positive
(thin lines) and negative (thick lines) oscillations in the center. A similar estima-
tor has been computed for η = 0.85 and Figure 4 shows different cuts through
these estimators (dashed lines) compared with the true Wigner function (continu-
ous line). The relatively worse performance in the case η = 0.85 is confirmed by

FIG. 3. Contour plot of the estimated Wigner function for the Schrödinger cat state.
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FIG. 4. Transversal cuts through the Wigner function for the Schrödinger cat state. Top: Estimated
Wigner function (dashed line), η = 0.95, n = 500,000. Bottom: Estimated Wigner function (dashed
line) and estimator without deconvolution (dash-dotted line), η = 0.85, at n = 500,000.

Table 1 which gives the mean square errors over 100 samples of size n at different
peaked or flat points (q,p) of the Wigner function and for the two different noise
levels, η = 0.95 and η = 0.85. Tomographic reconstruction with real data was con-
sidered in [5]. However, in this reference no Gaussian deconvolution is performed.
Thus one actually estimates a convoluted Wigner function W

η
ρ = R−1[pη

ρ] with

TABLE 1
Schrödinger cat state: MSE × 105 for 100 samples of size n at points (q,p)

for η = 0.95 (left side) and η = 0.85 (right side)

(q,p) : n 10,000 100,000 500,000 10,000 100,000 500,000

(0,0) 507 173 119 1224 330 229
(0,3) 54 10 4.16 428 161 67.9
(0,2.5) 56.9 14.1 4.5 361 181 67.7
(0.5,0) 414 113 70.1 909 258 164
(3,0) 29.7 7.09 1.66 225 94.6 31.1
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usual parametric rate within logn factors [8]. We have tested such an estimator
for the case of the Schrödinger cat state with n = 500,000 and η = 0.85 and cuts
through the Wigner function. A result we obtained is the dash-dotted line shown in
the panels in the lower part of Figure 4. This cut can be compared with the dashed
line representing our estimator, which performs both inverse Radon transformation
and deconvolution.

5. Proofs of upper bounds.

PROOF OF PROPOSITION 1. Since our data are i.i.d., we write

E[Ŵ η
h,n(z)] = 1

π

∫ π

0

∫
K

η
h

([z,φ] − y/
√

η
)
pη

ρ(y,φ) dy dφ

= 1

π

∫ π

0
K

η
h ∗ (√

ηpη
ρ

(·√η,φ
))

([z,φ]) dφ.

Now, write the convolution in the integral as an inverse Fourier transform. Indeed,
it has Fourier transform [see (17)]

F
[
K

η
h ∗ (√

ηpη
ρ

(·√η,φ
))]

(t) = K̃
η
h(t)F1[pη

ρ(·, φ)](t/√η
)

= 1
2 |t |F1[pρ(·, φ)](t)I (|t | ≤ 1/h).

Replace this into the expected value of our estimator and use (7):

E[Ŵ η
h,n(z)] = 1

4π2

∫ π

0

∫ 1/h

−1/h
e−it[z,φ]|t |W̃ρ(t cosφ, t sinφ)dt dφ

= 1

4π2

∫ ∫
e−i(qu+pv)W̃ρ(u, v)I

(√
u2 + v2 ≤ 1/h

)
dudv(20)

= 1

4π2

∫
e−i〈z,w〉W̃ρ(w)I (‖w‖ ≤ 1/h)dw,

where we denote w = (u, v). We recall that we also have

Wρ(z) = 1

4π2

∫
e−i〈z,w〉W̃ρ(w)dw,

and then we write for the pointwise bias of our estimator,

|E[Ŵ η
h,n](z) − Wρ(z)|2 = 1

(4π2)2

∣∣∣∣∫ e−i〈z,w〉{F [E[Ŵ η
h,n]](w) − W̃ρ(w)}dw

∣∣∣∣2
≤ 1

(4π2)2

∫
|W̃ρ(w)|2e2β‖w‖r

dw

∫
‖w‖>1/h

e−2β‖w‖r

dw

≤ Lhr−2

4πβr
e−2β/hr (

1 + o(1)
)

as h → 0,
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by the assumption on our class. As for the variance of our estimator,

V [Ŵ η
h,n(z)] = E

[|Ŵ η
h,n(z) − E[Ŵ η

h,n(z)]|2
]

≤ 1

n
E

[∣∣∣∣Kη
h

(
[z,�] − Y√

η

)∣∣∣∣2]
(21)

≤ 1

n

∫ π

0

∫ (
K

η
h

([z,φ] − y/
√

η
))2

pη
ρ(y,φ) dy dφ.

At this point, let us denote

G(t) := F
[
K

η
h

([z,φ] − ·/√η
)]

(t) = √
ηeit[z,φ]√ηK̃

η
h

(−t
√

η
)
.

Replace in (21) by taking into account that for a probability density p
η
ρ(·, φ) we

have |F1[pη
ρ(·, φ)]| ≤ 1,

E

[∣∣∣∣Kη
h

(
[z,�] − Y√

η

)∣∣∣∣2]

=
∫ π

0

1

2π

∣∣∣∣∫ G ∗ G(t)F1[pη
ρ(·, φ)](t) dt

∣∣∣∣dφ

≤ 1

2

(∫
|G(t)|dt

)2

≤ 1

2

(
η

2

∫
|t |≤1/(h

√
η)

|t |
Ñη(t)

dt

)2

.

Finally we obtain

E

[∣∣∣∣Kη
h

(
[z,�] − Y√

η

)∣∣∣∣2]
≤ 1

2

(
2η

∫ 1/(h
√

η)

0

t

2
exp

(
t2 1 − η

4

)
dt

)2

.(22)

Let us note here that, more generally, for any positive a, s and for any A ∈ R, we
can use integration by parts to get the asymptotic evaluation∫ x

0
tA exp(ats) dt = 1

as
xA+1−s exp(axs)

(
1 + o(1)

)
as x → ∞.(23)

We use formula (23) for the integral in (22) as 1/h → ∞, and with (21) we get

V [Ŵ η
h,n(z)] ≤ 2η2

(1 − η)2n
exp

(
1 − η

2η

1

h2

)(
1 + o(1)

)
, n → ∞. �

PROOF OF THEOREM 2. Over B we have

E[|Ŵ η
had,n

(z) − Wρ(z)|2] ≤ L

4πβr
(had)

r−2 exp
(
− 2β

(had)r

)

+ 2η2

(1 − η2)n
exp

(
1 − η

2η(had)2

)
,



486 C. BUTUCEA, M. GUŢĂ AND L. ARTILES

and it is easy to check that, for (β, r,L) ∈ B,

exp
(
− 2β

(had)r

)
≤ exp

(
− 2β

hr
opt

)(
1 + o(1)

)
,

1

n
exp

(
1 − η

2η(had)2

)
= exp

(
−

√
η − 1

2η
logn

)
= o(1) exp

(
− 2β

hr
opt

)
.

Thus, Ŵ
η
had,n

attains precisely the rate ϕ2
n (C = 1). �

6. Proof of lower bounds. In this section we will construct a pair of Wigner
functions W1 and W2 depending on a parameter h̃ such that h̃ → 0 as n → ∞.
The choice of h̃ [see (31)] is such that it insures the existence of the lower bound
in Theorem 1, and it should not be confused with the window h appearing in the
expression of the estimator which is optimal with respect to the upper bounds. We
choose W1 and W2 of the forms

W1(z) = W0(z) + V
h̃
(z) and W2(z) = W0(z) − V

h̃
(z),

where W0 is a fixed Wigner function corresponding to the density matrix ρ0. The
function V

h̃
is not a Wigner function of a density matrix but belongs to the linear

span of the space of Wigner functions and thus has a corresponding matrix τ h̃ in
the linear span of density matrices. The choice of W0,Vh̃

is such that

ρ1 = ρ0 + τ h̃ and ρ2 = ρ0 − τ h̃

are density matrices (positive and trace equal to 1) with Radon transforms
p1 and p2. Suppose that the following conditions are satisfied:

W1 and W2 belong to the class A(β, r,L),(24)

|W2(z) − W1(z)| ≥ 2ϕn

(
1 + o(1)

)
as n → ∞,(25)

nχ2 := n

∫ π

0

∫
(p

η
2(y,φ) − p

η
1(y,φ))2

p
η
1(y,φ)

dy dφ = o(1)

(26)
as n → ∞.

Then we reduce the minimax risk to these two functions, W1 and W2, and bound
the max from below by the mean of the two risks, to get for some 0 < τ < 1,

inf
Ŵn

sup
Wρ∈A(β,r,L)

E[|Ŵn(z) − Wρ(z)|2]

≥
(

inf
Ŵn

1

2

(
Eρ1[|Ŵn(z) − W1(z)|]
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+ (1 − τ)Eρ1

[
I

[
dP

η
ρ2

dP
η
ρ1

≥ 1 − τ

]
|Ŵn(z) − W2(z)|

]))2

≥ (1 − τ)2

4
· (2ϕn)

2
P

2
ρ1

[
dP

η
ρ2

dP
η
ρ1

≥ 1 − τ

](
1 + o(1)

)
.

We use the triangle inequality to get rid of the estimator and (25). Follow-
ing Lemma 4 in [6], we know that the last probability in the display above is
bounded from below by 1 − τ 2 provided that nχ2 ≤ τ 4. It is therefore sufficient
to check (26), in order to find τn → 0, as n → ∞ and give a lower bound of the
minimax risk of order ϕ2

n(1 + o(1)), for any estimator Ŵn.
We construct first the functions W1,2 and then prove (24)–(26) in Section 6.3.

Note that for the case r = 2 we prove a weaker form of (26): nχ2 = O(1) as
n → ∞. The same reasoning as above shows that φ2

n is then the optimal rate up to
some constant (depending on some fixed τ ).

6.1. Construction of the density matrix ρ0. In this section we will construct a
family of density matrices ρα,ξ from which we will later select ρ0 = ρα0,ξ0 used in
the lower bound. We derive their asymptotic behavior in Lemmas 1 and 2, and we
show that W

ξ
α belongs to the class A(β, r,L) for α > 0 small enough and ξ close

to 1.
Let us consider the Mehler formula (see [12], 10.13.22)

∞∑
k=0

zk 1√
πk!2k

Hk(x)2e−x2 = 1√
π(1 − z2)

exp
(
−x2 1 − z

1 + z

)
,(27)

where Hk are the Hermite polynomials. Integrating both terms with f
ξ
α (z) =

α((1 − z)/(1 − ξ))αI (ξ ≤ z ≤ 1), for some 0 < α, ξ < 1, we get

pξ
α(x,φ) :=

∞∑
k=0

ψk(x)2
∫ 1

0
f ξ

α (z)zk dz

(28)

=
∫ 1

0

f
ξ
α (z)√

π(1 − z2)
exp

(
−x2 1 − z

1 + z

)
dz,

where ψk are the orthonormal vectors defined in (10). The Fourier transform of p
ξ
α

is

W̃ ξ
α (w) = F1[pξ

α](‖w‖, φ) =
∫ 1

0

f
ξ
α (z)

1 − z
exp

(
−‖w‖2 1 + z

4(1 − z)

)
dz.(29)

Notice that the normalization condition
∫

p
ξ
α = 1 is equivalent to W̃

ξ
α (0) = 1,

which is satisfied for the chosen functions f
ξ
α , and thus p

ξ
α is a probability density.
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From the first equality in (28) we deduce that p
ξ
α is the probability density corre-

sponding to a diagonal density matrix ρα,ξ with elements ρ
α,ξ
k,k = ∫ 1

0 zkf
ξ
α (z) dz.

We look now at the behavior of p
ξ
α(x,φ) with respect to x.

LEMMA 1. For all 0 < α, ξ < 1 and |x| > 1 there exist constants c,C depend-
ing on α and ξ , such that c|x|−(1+2α) ≤ p

ξ
α(x,φ) ≤ C|x|−(1+2α).

PROOF. We have

pξ
α(x,φ) = α

(1 − ξ)α
√

π

∫ 1

ξ

(1 − z)α−1/2

(1 + z)1/2 exp
(
−x2 1 − z

1 + z

)
dz,

which by the change of variables u = x
√

1−z
1+z

becomes

pξ
α(x,φ) = α2α+1|x|

(1 − ξ)α
√

π

∫ x
√

(1−ξ)/(1+ξ)

0

u2α

(u2 + x2)α+1 exp(−u2) du.

By denoting g(u) = u2α exp(−u2), the last integral is bounded for |x| ≥ 1 as fol-
lows:

α

(1 − ξ)α
√

π |x|2α+1

∫ √
(1−ξ)/(1+ξ)

0
g(u)du

≤ pξ
α(x,φ) ≤ α2α+1

(1 − ξ)α
√

π |x|2α+1

∫ ∞
0

g(u)du. �

A similar analysis can be done for the matrix elements of ρα . In the particular
case α = 1 and ξ = 0 we have ρ

1,0
k,k = 1

(k+1)(k+2)
.

LEMMA 2. For all 0 < α, ξ < 1 we have

ρ
α,ξ
k,k = α

(1 − ξ)α
�(α + 1)k−(1+α)(1 + o(1)

)
as n → ∞.

PROOF. We notice that by definition of ρ
α,ξ
k,k and the property∫ 1

0
zk(1 − z)α dz = �(1 + α)�(1 + k)

�(2 + α + k)
,

∣∣∣∣ρα,ξ
k,k − α

(1 − ξ)α

�(1 + α)�(1 + k)

�(2 + α + k)

∣∣∣∣ = α

(1 − ξ)α

∫ ξ

0
zk(1 − z)α dz

≤ αξk+1

(1 − ξ)α
.

Now, using Stirling’s approximation for the function � (see [1], 6.1.47) we deduce
that �(1+k)/�(2+α +k) = k−(1+α)(1+o(1)) and, given that k1+αξk+1 = o(1),
we obtain the desired result. �



QHT WITH NOISY DATA 489

LEMMA 3. For any (β, r,L) such that 0 < r ≤ 2, there exist 0 < α, ξ ≤ 1 such
that W

ξ
α belongs to the class A(β, r,L).

PROOF. Using (29) we get∫
e2β‖w‖r |W̃ ξ

α (w)|2 dw

=
∫ ∞

0
te2βtr

(∫ 1

0

f
ξ
α (z)

1 − z
exp

(
−t2 1 + z

4(1 − z)

)
dz

)2

dt

= α2

(1 − ξ)2α

∫ ∞
0

te2βtr
(∫ 1

ξ
(1 − z)α−1 exp

(
− t2

2(1 − z)
+ t2

4

)
dz

)2

dt

≤ α2

(1 − ξ)2α

∫ ∞
0

te2βtr+t2/2
(∫ 1

ξ
(1 − z)α−1 exp

(
− t2

2(1 − ξ)

)
dz

)2

dt

≤
∫ ∞

0
t exp

(
2βtr − t2(1 + ξ)

2(1 − ξ)

)
dt ≤ C(β, r, ξ),

where C(β, r, ξ) > 0 can be made smaller than (2π)2L for any 0 < r ≤ 2 and for
0 < ξ < 1 close enough to 1. �

6.2. Construction of V
h̃

and asymptotic properties of ρh̃. Let V
h̃

be the func-
tion defined on R

2 whose Fourier transform is

F2[Vh̃
](w) = Ṽ

h̃
(w) := J

h̃
(t)

(30)

= 2
√

πβrLh̃1−r/2eβ/h̃r

e−2β|t |r J
(
|t |r − 1

h̃r

)
,

where t = ‖w‖, and J is a three-times continuously differentiable function with
bounded derivatives and such that I[2δ,D−2δ](u) ≤ J (u) ≤ I[δ,D−δ](u), for some
δ > 0 and D > 4δ. The choice of the function V

h̃
is motivated for the case

0 < r < 2 by the results on lower bounds for deconvolution obtained in [6]. The
parameter h̃ → 0 as n → ∞ is solution of the equation

2β

h̃r
+ 2γ

h̃2
= logn + (log logn)2.(31)

When r = 2, we choose

h̃ =
(

log(n logn)

2(β + γ )

)−1/2

.(32)

We think of V
h̃

as a function belonging to the linear span of the Wigner func-
tions. Indeed, as shown in (13), the convex map sending a density matrix ρ to its
corresponding Wigner function Wρ can be extended by linearity to an isometry
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(up to a constant) with respect to the ‖ · ‖2 norm on the two spaces. We can thus
construct a matrix τ h̃ belonging to the linear span of the space of density matrices
and whose corresponding Wigner function is V

h̃
. Because the function V

h̃
is in-

variant under rotations in the plane, the corresponding matrix has all off-diagonal
elements equal to 0 and for the diagonal ones we can use the formula (from [21])

τ h̃
kk = 4π2

∫ ∞
0

Lk(t
2/2)e−t2/4tJ

h̃
(t) dt,(33)

where Lk are the Laguerre polynomials defined in the proof of the following
lemma.

LEMMA 4. The matrix τ h̃ has the asymptotic behavior

τ h̃
kk = O(k−5/4)o

h̃
(1).(34)

PROOF. We use the differential equation of the Laguerre polynomials (see
[15], 8.979), Lk(x) = 1

k
((x − 1)L′

k(x) − xL′′
k(x)). Thus

d

dt
Lk(t

2/2) = tL′
k(t

2/2) and
d2

dt2 Lk(t
2/2) = L′

k(t
2/2) + t2L′′

k(t
2/2),

which implies

t2

2
L′′

k(t
2/2) = 1

2

d2

dt2 Lk(t
2/2) − 1

2
t−1 d

dt
Lk(t

2/2)

and

Lk(t
2/2) = 1

2k

(
(t2 − 1)t−1 d

dt
Lk(t

2/2) − d2

dt2 Lk(t
2/2)

)
.

Using integration by parts we obtain

τ h̃
kk = 1

k

∫ ∞
0

Lk(t
2/2)e−t2/4[P1(t)Jh̃

(t) + P2(t)J
′
h̃
(t) + P3(t)J

′′
h̃
(t)]dt,

with Pi(t) polynomials of degree at most 3, whose coefficients do not depend on
h̃ or k. As the support of the function under the integral is contained in the interval
[1/h̃,∞), we can use the following bound for the behavior of Laguerre polynomi-
als (see [27], Theorem 8.9.12): supx∈[1,∞) e

−x/2|Lk(x)| = O(k−1/4). The matrix

τ h̃ has thus the asymptotic behavior

τ h̃
kk ≤ Ck−5/4

∫ ∞
1/h̃

|P1(t)Jh̃
(t) + P2(t)J

′
h̃
(t) + P3(t)J

′′
h̃
(t)|dt

= O(k−5/4)o
h̃
(1). �
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6.3. Proofs of (24)–(26) involved in the lower bound. Lemma 3 implies
that for ξ sufficiently close to 1, the Wigner function W

ξ
α belongs to the class

A(β, r, a2L). On the other hand, combining the results of Lemma 2 and Lemma 4
we get that for any α < 1/4 the diagonal matrices ρ1 = ρα,ξ + τ h̃ and ρ2 =
ρα,ξ − τ h̃ are positive and have trace 1 for h̃ sufficiently small. Thus there ex-
ist α0, ξ0 such that the corresponding ρ1 and ρ2 are density matrices and W0 =
W

ξ0
α0 ∈ A(β, r, a2L).
In the following proofs the constants δ and D appear from the construction

of V
h̃
. The whole proof holds for arbitrarily small δ > 0 and arbitrarily large D >

4δ, hence the desired results.

PROOF OF (24). By the triangle inequality∥∥F2[W1,2]eβ‖·‖r ∥∥
2 ≤ ∥∥F2[W0]eβ‖·‖r ∥∥

2 + ∥∥F2[Vh̃
]eβ‖·‖r ∥∥

2.

The first term in the sum above is less than 2π
√

La. For the second one we have∫
|F2[Vh̃

](w)|2e2β‖w‖r

dw

=
∫ π

0

∫
|t ||F2[Vh̃

](t cosφ, t sinφ)|2e2β|t |r dt dφ

= π

∫
|t ||J

h̃
(t)|2e2β|t |r dt

≤ 4π2βrLh̃2−re2β/h̃r
∫
δ≤|t |r−1/h̃r≤D−δ

|t |e−2β|t |r dt

≤ 4π2Le−2βδ.

Thus, if we take a = 1 − e−βδ/2, we get W1,2 in the class A(β, r,L(1 − e−βδ/2 +
e−βδ)) included in A(β, r,L). �

PROOF OF (25). Notice that |W2(z) − W1(z)|2 is equal to∣∣∣∣ 1

4π2

∫
R2

e−i〈z,w〉(W̃2(w) − W̃1(w)
)
dw

∣∣∣∣2
=

∣∣∣∣ 1

4π2

∫ 2π

0

∫ ∞
0

e−it[z,φ]|t |(W̃2(t cosφ, t sinφ)

− W̃1(t cosφ, t sinφ)
)
dt dφ

∣∣∣∣2
=

∣∣∣∣ 1

2π2

∫ 2π

0

∫ ∞
0

e−it[z,φ]|t |J
h̃
(t) dt dφ

∣∣∣∣2.
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Take z = 0 without loss of generality:

|W2(z) − W1(z)|2

=
∣∣∣∣ 1

2π

∫ π

0

∫
|t |J

h̃
(t) dt

∣∣∣∣2
≥ 4πβrLh̃2−re2β/h̃r

∣∣∣∣ 1

2π

∫
2δ≤|t |r−1/h̃r≤D−2δ

|t |e−2β|t |r dt

∣∣∣∣2
≥ 4

L

4πβr
h̃r−2e−2β/h̃r [

e−4βδ(1 + o(1)
) − e−2β(D−2δ)(1 + o(1)

)]2
,

which is larger than 4ϕ2
n[e−4βδ − e−2β(D−2δ)]2(1 + o(1)) for n large enough. Note

that for 0 < r < 2, the h̃ solution of (31) provides exact lower bounds, while for
r = 2, h̃ given by (32) provides optimal rates of order (n logn)−β/(β+γ ), which are
within a logarithmic factor optimal. �

PROOF OF (26). We want to bound from above nχ2 ≤ πn
∫
(p

η
2(y) −

p
η
1(y))2/p

η
1(y) dy. We have proven that p1(x) ≥ Cx−2 for all |x| ≥ 1. It is easy to

prove that after convolution with the Gaussian density of the noise the asymptotic
decay cannot be faster; thus p

η
1(y) ≥ c1

y2 ,∀|y| ≥ M, for some fixed M > 0. Then
we split the integration domain into |y| ≤ M and |y| > M and get

nχ2 ≤ Cn

(
C(M)‖pη

2 − p
η
1‖2 +

∫
|y|>M

y2(
p

η
2(y) − p

η
1(y)

)2
dy

)
.(35)

Let us see first that

‖pη
2 − p

η
1‖2 = C

∫
|J

h̃
(t)|2e−(1−η)t2/(2η) dt

≤ Ch̃1−r exp
(

2β

h̃r

)∫ ∞
(1+δh̃r )1/r/h̃

e−4βtr−(1−η)t2/(2η) dt(36)

≤ Ch̃2−r exp
(
−2β

h̃r
− 1 − η

2ηh̃2

)
.

Then ∫
|y|>M

y2(
p

η
2(y) − p

η
1(y)

)2
dy

≤
∫ (

∂

∂t

(
J

h̃
(t)e−(1−η)t2/(4η)))2

dt

(37)

≤ Ch̃1−r exp
(

2β

h̃r

)∫ ∞
(1+δh̃r )1/r/h̃

t2e−4βtr−(1−η)t2/(2η) dt

≤ Ch̃−r exp
(
−2β

h̃r
− 1 − η

2ηh̃2

)
.
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For the case 0 < r < 2 choose h̃ as solution of (31) to get that the expressions in
(36) and (37) tend to 0, and together with (35) this concludes the proof of (24).
For the case r = 2, h̃ given by (32), we get that the expression in (36) tends to 0
and (37) stays bounded as n → ∞; thus we obtain the desired result. �
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