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ASYMPTOTIC BEHAVIOR OF THE UNCONDITIONAL NPMLE OF
THE LENGTH-BIASED SURVIVOR FUNCTION FROM RIGHT
CENSORED PREVALENT COHORT DATA'

BY MASOUD ASGHARIAN AND DAVID B. WOLFSON
McGill University

Right censored survival data collected on a cohort of prevalent cases with
constant incidence are length-biased, and may be used to estimate the length-
biased (i.e., prevalent-case) survival function. When the incidence rate is con-
stant, so-called stationarity of the incidence, it is more efficient to use this
structure for unconditional statistical inference than to carry out an analysis
by conditioning on the observed truncation times. It is well known that, due
to the informative censoring for prevalent cohort data, the Kaplan—-Meier es-
timator is not the unconditional NPMLE of the length-biased survival func-
tion and the asymptotic properties of the NPMLE do not follow from any
known result. We present here a detailed derivation of the asymptotic proper-
ties of the NPMLE of the length-biased survival function from right censored
prevalent cohort survival data with follow-up. In particular, we show that the
NPMLE is uniformly strongly consistent, converges weakly to a Gaussian
process, and is asymptotically efficient. One important spin-off from these
results is that they yield the asymptotic properties of the NPMLE of the
incident-case survival function [see Asgharian, M’Lan and Wolfson J. Amer.
Statist. Assoc. 97 (2002) 201-209], which is often of prime interest in a preva-
lent cohort study. Our results generalize those given by Vardi and Zhang
[Ann. Statist. 20 (1992) 1022-1039] under multiplicative censoring, which
we show arises as a degenerate case in a prevalent cohort setting.

1. Introduction. Left truncated, right censored data have been extensively
studied in the statistics literature. (See [4] for a list of references.) Their impor-
tance stems from the common use of prevalent cohort study designs to estimate
survival from onset of a specified disease (e.g., [13, 25, 26]). In such studies pa-
tients are identified with prevalent disease at some instant in calendar time through
a cross-sectional survey. Those so identified are then followed forward in time un-
til failure or censoring. Since the possibly censored observed survival times are
generated from prevalent cases, they are left truncated. Failure to account for left
truncation can lead to substantial overestimation of the survivor function. Indeed,
Wolfson et al. [28] showed that survival with dementia from onset had almost cer-
tainly been overestimated because of the failure to take left truncation into account.
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In fact, their adjusted (for left truncation) estimated median survival time was 3.3
years versus 6.6 years for the unadjusted estimated median survival.

When the left truncation time distribution is not specified, the approach to es-
timating the unbiased survival function is to condition on the observed truncation
times (e.g., [1, 27]). However, when there is good reason to assume that the ini-
tiation times follow a stationary Poisson process which implies more structure on
the truncation times (the so-called stationarity assumption, [2]), this special struc-
ture may be exploited. Under stationarity, it is not necessary to condition on the
observed truncation times and, instead, the natural estimator is the unconditional
nonparametric maximum likelihood estimator (NPMLE) [4]. Wang [25] had sug-
gested that an unconditional NPMLE of the unbiased survivor function is more
efficient than its conditional counterpart, under stationarity. This improvement in
efficiency was later confirmed by Asgharian, M’Lan and Wolfson ([4], Figures
3 and 4, but note the incorrect captions). We shall, in the sequel, reserve the termi-
nology “length-biased” for left truncation under the stationarity assumption.

Several authors have discussed maximum likelihood estimation in the presence
of length-biased data [10, 11, 21, 22]. The latter two papers treated the question in
the general setting of selection bias, though without allowing for censoring.

This paper establishes the asymptotic properties of the nonparametric maximum
likelihood estimator (NPMLE) of the length-biased survival function when the ob-
served data are length-biased and right censored. Now, while the length-biased sur-
vival function is itself of little direct interest, the unbiased survival function, which
is simply related, is of central importance in a survival analysis based on prevalent
cohort data. By exploiting the mapping which relates the length-biased with the
unbiased survival function, one may use the results established here to obtain the
asymptotic properties of the NPMLE of the unbiased survival function [4]. That
is, we present here, for the first time, the foundation upon which the asymptotic
inference described in Asgharian, M’Lan and Wolfson rests. It should be pointed
out though, that the definition of §, given above equation (8) in [4] is erroneous,
though with only minor effect on the main result. This error is corrected here.

A subtlety missed by several authors is that the Kaplan—Meier estimator is not
suitable as the NPMLE of the length-biased survival function since the right cen-
soring induced by the sampling scheme is informative; in order to be censored,
one’s failure time must be longer than one’s truncation time, that is, be observable.
(See [4] for further details.)

Our line of attack is similar to that of Vardi [23] and Vardi and Zhang [24],
who derived the NPMLE of the length-biased survival function and established
its asymptotic properties under multiplicative censoring. They pointed out that the
likelihood obtained under multiplicative censoring has the same form as the likeli-
hood obtained from prevalent cohort study data with follow-up, when the station-
arity assumption holds. Importantly, Vardi [23] noted that although the maximum
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likelihood estimates obtained from these common likelihoods are the same, the as-
ymptotic properties depend on the sampling mechanism that gives rise to the data
and must be established afresh in each setting.

It is therefore instructive to place multiplicative censoring in the context of
prevalent cohort studies in order to underscore the differences between the two
schemes. We also derive the likelihood conditional on the number of censored ob-
servations, not because such conditional inference is carried out in practice, but
merely to contrast this with the unconditional likelihood. Consider, therefore, the
following three situations:

(i) The number of subjects identified at recruitment is k. All subjects who
are not lost to follow-up are followed until the end of the study period. Those
subjects who are lost to follow-up or survive to the end of the study are right
censored, the remainder having failed in this time period. It is assumed that the
censoring of the residual life times (also called the forward recurrence times) is
random. That is, the times from recruitment until failure are randomly censored.
If M denotes the (random) number of uncensored subjects at the end of the study
period, then N =k — M denotes the number of censored observations.

(i1) The scenario is the same as that of (i) except that M and N are fixed at the
observed values, m and n, respectively, and analyses are carried out conditionally.

(iii) The number of subjects identified at the cross-sectional stage is k = m +n.
At this stage, a fixed number n are immediately censored. The remaining m are
followed until failure. It is easily seen that this sampling scheme is equivalent to
that of multiplicative censoring.

The setup described by (i) occurs in practice most frequently, and is the focus
of this paper. In fact, in Section 7 we show explicitly how sampling scheme (iii)
arises as a particular, although degenerate, case of scheme (i). Under (iii) censor-
ing is precluded after recruitment, which is clearly an unrealistic assumption in
a prevalent cohort study with follow-up. See [23] though for examples of multi-
plicative censoring in different contexts. Section 7 contains further discussion on
schemes (ii) and (iii).

The above generalities are perhaps better understood through The Canadian
Study of Health and Aging (CSHA), a large prevalent cohort study with follow-
up conducted to investigate, primarily, various aspects of dementia in the elderly
Canadian population.

Briefly, during a six-month period in 1991 roughly 10,000 Canadians over the
age of 65 were recruited and screened for prevalent dementia. Dementias consid-
ered included mainly probable Alzheimer’s disease, possible Alzheimer’s disease
and vascular dementia. At the time of diagnosis, age at onset was ascertained from
the patient’s caregiver. Those subjects diagnosed with dementia in 1991 were fol-
lowed until censoring or death. Follow-up ended in 1996, and subjects who were
still alive were deemed to have been right censored. Very few subjects were lost
to follow-up (also considered to be right censored) between 1991 and 1996. Times
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of death from any cause, or of censoring, were recorded for all subjects diagnosed
with dementia. (See [28] for further details.)

One of the many aims of the CSHA was to estimate the unbiased survival func-
tion of subjects with incident dementia, where the origin was date of onset and the
endpoint was death from any cause. The data available for this estimation problem
had several features: (a) They were left truncated because subjects with dementia
were identified as prevalent rather than incident cases. (b) The underlying process
that generated the onset times of dementia was thought to have been roughly sta-
tionary in the sense that the intensity function of the initiation process was con-
stant; the basis for this assumption is discussed by Asgharian, M’Lan and Wolfson
([4], Figure 5 (note the incorrect caption)) and Asgharian, Wolfson and Zhang [2].
The observed survival times were, therefore, length-biased. (c) The interval from
onset to recruitment, the current life time (also called the backward recurrence
time), as well as the minimum of the interval from recruitment to death, the resid-
ual life time and censoring, were recorded. That is, there was more information
than that contained in the length-biased, possibly censored, survival times alone.
(d) The censoring of the residual life times was random.

Inference about the length-biased survival function from onset with dementia
could be based on the current life times together with their possibly randomly
censored residual life times, as was done by Asgharian, M’Lan and Wolfson [4].
Alternatively, with the same data, though less conventionally, one could have con-
ditioned on the observed number of censored subjects and those who died, so that
all ensuing inference would have been conditional [see (ii)].

It is of interest to note that length-biased sampling also arises when a renewal
process is sampled at some point ¢. The interval surrounding ¢ has the density
g(x) =xf(x)/ux, where f is the density and ux the (finite) mean of the so-
journ time distribution. See [2] for the differences between the two settings and
a characterization of stationarity. Other sampling schemes have been discussed in
the literature and can be depicted using the Lexis diagram [7, 17, 18], and it is
possible to carry out inference from a prevalent cohort study under appropriate
restrictions when there is no follow-up [15, 16, 20].

The layout of the paper is as follows: In Section 2 we present the likelihoods
for the different sampling schemes. Thereafter, we focus on sampling scheme (i).
A general overview of the proofs is given in Section 3. In Section 4 we establish
uniform consistency of the NPMLE, and in Section 5 we discuss weak conver-
gence of the NPMLE. Asymptotic efficiency of the NPMLE is presented in Sec-
tion 6. In Section 7 we return briefly to schemes (ii) and (iii), expanding on their
relationships to scheme (i). Section 8§ summarizes our results and contains some
concluding comments.

2. Preliminaries and the likelihoods for different sampling schemes.

2.1. Preliminaries. While “stationarity” refers to the pattern of chronologi-
cal cross-sectional sampling, all of the notation below relates to current-age (cur-
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rent life time), failure and censoring durations for the individual subjects sam-
pled. Suppose that associated with each subject in a target population we have
a triple (X', T', C’), where X’ represents the failure time, 7’ the truncation time
and C’ the censoring time. Often a reasonable assumption is that X’ is indepen-
dent of (T’, C’), while P(C" > T') =1 [25]. In a cross-sectional survey subjects
are observed only if X’ > T’. Under the stationarity assumption, the survival time
density of the observed subjects, the length-biased density, say g, is related to fx,
the unbiased density, through the equation
800 = frxap xlx' = 7)) = X,
nx

We give, initially, the likelihoods derived under (i), (ii) and (iii), in order to
emphasize the differences between the three situations. Although the likelihoods
are similar, the appearance of the random censoring indicator under scheme (i)
(M random) requires special treatment in the derivation of the large sample prop-
erties of the maximum likelihood estimator. These properties are established in
Sections 4, 5 and 6 under scheme (i).

None of the three likelihoods below depends explicitly on the residual and cur-
rent life times separately. However, the derivations of these likelihoods depend
explicitly on knowledge of the current life times, as well as the randomly right
censored residual life times. These are the data typically observed in a prevalent
cohort study with follow-up, when the times of onset are known.

Associated with each observed subject in a prevalent cohort study, we have a
triple,

(Ai, Ri NCi, ), i=1,2,...,k,

where A;, R; and C; are, respectively, the current-age, the residual life time and
the residual censoring time for the ith observed subject. The indicator function §;
is the censoring indicator, that is,

5 — 1, if the ith subject is not censored (R; < C;),
7o, otherwise.

It is reasonable in many applications to assume that C; is independent of (A;, R;).
We adopt this assumption in the sequel. The vectors (A;, Ri A Ci,6;), i =
1,2, ..., k, are also assumed to be independent.

Note that the failure time and censoring time associated with each observed
subject are, respectively, X’ = A + R and Y’ = A + C. One can therefore eas-
ily show that, in general, if C is independent of (A, R), then Cov(X,Y) =
aﬁ[l + oA, ROR/0A], Where aﬁ = Var(A), 01% = Var(R) and pq g = corr(A, R).
Thus, except for trivial cases, failure times and censoring times are positively cor-
related under stationarity, since stationarity implies A is conditionally Unif(0, X")
given X', so that 04 = ox/_4 = og. This then implies that the censoring mecha-
nism in the setting under study is informative.
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Under the stationarity assumption,

fx(a+r) £ 0
2.1) far@r={" ., ~ "T&r7Y

0, otherwise,
which corresponds to the well-known expression for the joint density of the current
and residual life times, respectively, of a renewal process (see [9, 23]). In the sequel
we use fy for fx/, where U in the subscript stands for “unbiased.” Using (2.1), one
can easily derive the distribution function, say G, of X = A + R, the length-biased
survival time, whose density is

(2.2) g(x) =
Let

xfu(x)

Hu

G.(t)=P(A+R<t|§=1),
with density function g.(¢). We then have

1 t
gu(t) = — / Far(t —r.r)Sc(r)dr
— /fU(t)S r)dr
fU(f)/ Sc(r)dr

g()
= ?,/0 SC(I’) dl’,

where p=P(l=1)=P(R<C)and Sc(r)=1—Fc(r)=1—-P(C <r).
Suppose Fy(t) = P(A+ C <t|§ =0), with density function f.(¢). Then

1 t oo
f*(z>=q/0/c Far(t — ¢ rydrdFe(e)

1 L roo fyt+r—oc)
_—l—p/o/c TS drdFe(o)

(2.3)

(2.4) 1 o
- F,
T | | wanaree
_ Su@Fc) _ fOFc®
pu(l—p) l—p
where
Fi) = Sy (1) waZ_IdG(Z)
1224 t

is the residual lifetime density. We turn now to the derivation of the likelihoods
under the schemes (i), (ii) and (iii) of Section 1.
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2.2. Random censoring (M random). This is the case in which M and N =
k — M are random and arises under situation (i) of Section 1. The observations
comprise

(Ai,R,'/\C,',5,'), i=1,2,...,k.

Let UC and C denote, respectively, the sets of indices of the uncensored and
censored observations. Let a;, r; and ¢; denote, respectively, the realized values of
Ai,R;and C;,and let x; =a; +r;, yj =aj +cj,and z=a; +r, fori € UC and
Jj € C. The likelihood is

Lg = (l_[fA,R(ai,ri))<l_[dP(aj,RjZCj))

ieUC jee
using (2.1 ( B dG(x,))( B fula; +r) dr)
icue jee’ci=r KU
(2.5)
= ( I1 dG(x,J)(l_[f z_la'G(z)>
ieue jee Vi=t

1-6;
! dG(z)) ,

E[l(dG(x,-))af ( /y

which has a form different from the likelihood that leads to the Kaplan—Meier es-
timator in the presence of randomly right censored data. (See, e.g., [14], page 15.)

i =2

2.3. Random censoring (conditional on M). Here the data arise as in Sec-
tion 2.2, but all analyses are carried out conditionalon M =m and N =k —m = n.
The “effective” observations comprise, therefore,

(Ai, Ri) ~ faA,Rl5=1, i=1,2,...,m,

and

(Aj,Cj) ~ fa.cls=0, j=12,...,n
The likelihood contributions are

Jar(A=a,R=r|d=1)= far(arlR=C)

1
=—S8c(r)fa,r(a,r)
p

_ Sc(r) fula+r)
P Hu
_ Sc(r)

= pa+nt@t”
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and
fac(A=a,C=cl6=0)= fac(a,c|IR>C)
0
~fe@ / Far(a,rydr
fc(C) * fula +r)
S l-p Ku
= e ( 1 dG ().
1 —p Jate=z
Thus, the likelihood

OCJ—(l_[dG( )SC(rl )(1—[/ —ldG( )fC( ;))

i=1

<]‘[dG(x, )(]‘[fy}<Z —ldG(z)).

2.4. Multiplicative censoring. The scenario described in (iii) of Section 1 is
equivalent to Vardi’s [23] scheme of multiplicative censoring. In the context of a
prevalent cohort study, multiplicative censoring is induced by defining the distrib-
ution function of C, the residual censoring time, as

0, if t <0,
(2.6) Fct)=11-p, if0<r<r,
1, ift>r,

where T = inf{z : G(¢) = 1}. If the residual censoring distribution is given by (2.6),
then f, = f and g, = g. Vardi and Zhang [24] considered a sequence of { F/ é} with
pr = m/ k, so that they essentially conditioned on the censoring proportion.

3. Asymptotics: general overview and master equation. The discussion in
Sections 3, 4, 5 and 6 is restricted to sampling scheme (i). Let G be the maximizer
of the likelihood L& [see (2.5)] with respect to G. In this section we present the
master equation, and outline the main steps in establishing the uniform strong con-
sistency of G and show that Uy n, defined below, converges weakly to a Gaussian
process. The details are given in Sections 4, 5 and the Appendix.

Define

Um,n = ‘/%(G - G),
WX,m == \/%(Gm - G*)
and

WY,n = \/E(Fn - F
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where m = Zf»‘zl 8; and n = k — m are realized values of M and N, respectively,

and G, and F,, are the respective empirical distribution functions of xi, ..., x;,
and yi,...,ys. Let p = py = 7 and let t; < --- < 1, be the distinct values of
X1, .-y Xmand yi, ..., yu.

The derivation of the asymptotics begins with the score equation derived from
the likelihood £ %. The NPMLE must satisfy the score equation

an(y)
7~ 1dG(z)

y=z

(3.1)  dG@t)=pdGn,(t)+ (1 —ﬁ)/o =1 dG (@),

<y=<t

subject to Z’}Zl d@(tj) =1land dG(tj) >0, j=1,...,h ([23], page 754). Inte-
grating both sides of (3.1), we obtain

~ Fn — -~
(32) G@t)=pGm(t) + (1= p) [/ aE () }x LdG(x),
O<x<tLJO<y=<x fy

-.271dG(2)
where the final integrand is defined to be O for x > .

Our first objective is to use (3.2) to provide an explicit linear mapping on a func-
tion space DglO0, ¢] (see Section 4 for precise definitions) expressing an explicit
linear functional of U,, , approximately as a linear functional of Wy ,,, Wy, and
p — p. The linear functional of U,, , is shown to be boundedly invertible, and the
resulting expression for U,, , is used to prove uniform consistency and efficiency
for G and weak distributional convergence for U, ,.

LEMMA 1 (Master equation). Let

foy= / 16,

3.3)
A 1
()= P P Wy, 1 — 512 ) (A )
W)= P Wm0+ = 9200 [ Wrard(
and
172 Vk(p—p)
34) V() = Wy n(6) + <L) G.(t) — G(1) Y=L P
3.4) a(t) a)+p - (G«(n) (l))m
Then
(ﬁ;p)Um,n(ﬂ
l—p
pP—p
- ()]
gx(x)
3.5 X {p/(‘kxgz s dUp 5 (x)
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e ([, a2 )5

= Vm,n(t),
wheremsz;lSi,n:k—m and p=P6=1)=P(R<C).

PROOF. See the Appendix. [J

Lemma 1 relates U, , to the empirical processes Wy ,, and Wy ,, which are
indexed by the realized values of the random integers M and N. Equation (A.5)
shows that the process V,,, ,(¢), given by (3.4), can be expressed as the image of a
linear operator applied to U, ,. To see this, define

1 p \
(3.6) 9k,1(u)<r)=p(—p> /0 D 1)

I—p/ Jo<x<t gx)
1—p
6200 (1) = (1 - p)(l—)
4
(3.7 o
u(z) ) [(f(t) )f*(y)}
—dz)d||——1
) /0<y§t y(/ysz 2 S J»)
and
(3.8) ) (1) = (’1’ —p )um.
4
Define
Gk = Gk,1 + G2
and express ¥ as
Fie = Hi + Gk
Then we may write
(3-9) E(Um,n) - Vm,n-

It is clear that G 1, k.2, Hk and, thus, F, are linear operators.

4. Uniform consistency of G. To study the properties of F, we first need to
determine the space on which £ acts. Let Dg|O0, ¢] be the space of all cadlag func-
tions u(-) on [0, ¢] that vanish at 0. The space Dg[0, ] endowed with the uniform
topology, the topology induced by the uniform norm, ||u|| = supy<,, |lu(s)|, is a
Banach space. This implies that L£(Dg[0, ¢], Dg[O0, ¢]), the space of bounded linear
operators on Dg[0, 7], is a Banach algebra. The other fact about Dy[0, ], endowed
with the uniform topology, that we need in the sequel is that cadlag functions have
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countably many jumps [19]. This guarantees that cadlag functions are Riemann
integrable on bounded intervals.
Define T = inf{r: G(t) = 1}. Let T < oo and

1=lr=e (o ma)r 1)

gx (1)
g()

where

1 t
a(t):—/ Sc(s)ds = and B =Fc(0)>0.
tJo

We note that «e(¢) is a decreasing function with lim;_,ga(¢) = 1— 8. Thus, 8 < 1/2
if t € 4. It is also easy to see that a sufficient condition for t € § is Fc(t) < 1/2,
since «(t) > Sc(¢). For the interpretation of this condition, see [4]. The condition
on ¢ is somewhat less restrictive than that given in [4]. See also Section 8 for further
comments.

LEMMA 2. Ift € 4, then a.s. for all sufficiently large k,

(a) Fr is a bounded linear operator on Dy|0, t], and

A 1— %
4.1 |7 < 2= 1P
l—p 1-p
(b) Fi is an invertible linear operator on Dyl0, t], and
A(t)
4.2) IF7 <
L=2®)p—pl/(1=p)
where

(1=p)/d = p)Q2/a(t) —1/(1 = B))

MO = T ety — 1/ = BB

PROOF. (a) Define Ak(u)(S) = f(s)f()s V< 5 2

and, therefore, |G 2] < ,8 1_ , via (2.4). On the other hand usmg integration by
parts and since

a(x) =

p&x(x) N 1— 28, asx — 0,
(x) 0, as x — oo,

we have [|Gi.1]l < (1 — /3)1 . This completes the proof of part (a).
(b) We have that G ; is 1nvert1ble and

l—p g(x)
— P Jo<x<s pg«(x)

G 1 ()(s) = 1 du(x).
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Using integration by parts and as «(x) is a decreasing function, we have || 9,:11 | <
t—g(% — ﬁ) a.s. Since L(Dg[0, ], Do[0, ¢]) is a Banach algebra, G is invert-
ible a.s. for large k. In fact,
G = Gu1 (I + G5 19.2)
and thus
G =+ 90192 G-
which implies that
G 1 < I + G192 G 1

_ @ =p)/A=pNQ/a@) =1/ = p))
- 1= Q/at) =1/(1—=p))B

since p — p a.s. as k gets large. Having established the invertibility of G, we have
Fio=Gu (I + G ' H0).

Using the strong consistency of p and the fact that «£(Dy[0, t], Dy[0, t]) is a Ba-
nach algebra, we obtain once again

:X(t) a.s.,

Fl=Ud+9'#07'9" as

and also

IA

T+ G2 #o g il

[l - A(0)
L= 1p = pl/A=p) ~ 1=A®)|p — pl/(1 — p)
This completes the proof for part (b). [

—1
1

A

Theorem 1 below and its corollary prove the uniform strong consistency of G.

THEOREM 1. Let G be the NPMLE of the continuous lifetime distribution
function G,and t € §. Then

~ ~ loglogk
(4.3) |G — Glloc = sup |G(s) —G(s)|=0 a.s.

0<s<t k

PROOF. Using Lemma 2 and (3.9),

_ Vi
16 = Glloo < |17, 1||H mon |
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On the other hand,

as k — oo.

limsup || F || < A(r) = 2/a(t) —1/(1—B)
koo 1= 2/a@) —1/(1—B)B

It therefore suffices to show that
|% loglog k
H - =0 O£08 a.s.
S k

m,n
Vk
Next, using (3.3), we have

[Wonn (O] < 2 Wxm (] + (1 = P [ Wynlloo-
On the other hand, using the law of the iterated logarithm (LIL),

logl
=0< 8 ng) a.s.
k
o0

4.4

A

)4 p—PD
T NG.) - G)) =L
,,< I—p >( 0 -60) Za=p

To complete the proof, we need to show that

loglogk
(4.5) 1Gm — Gilloo = O p as.
and

loglogk
(4.6) ||Fn—F*||oo=0< gkg ) as.

To establish (4.5), one may either use the Kolmogorov exponential bounds and
Borel-Cantelli lemma or, by using the LIL, argue as follows. Splitting one of the
sums into two parts, we have that

1 loglogk
I1Gm — Giplloo = — | Ilkp] —m|+mO :
kp k

which implies

loglogk
4.7 1Gm — Gipllo = O P a.s.,
where Gy, is the empirical distribution function of xy, x2, ..., X(xp). Now, using
the triangle inequality,
(4.8) 1Gm — Gilloo < ||Gm_ka||oo+||ka_G*”oo-
Thus, (4.5) follows from (4.7), (4.8) and the fact that
loglogk
1Gip — Gulloo = 0( = ) as.



2122 M. ASGHARIAN AND D. B. WOLFSON

Likewise, one can establish (4.6). This completes the proof. [l

Equation (4.3), established by Theorem 1, tells us how fast G converges to G
in the supnorm topology. Strong consistency of G may therefore be stated as a
corollary to Theorem 1.

COROLLARY 1. Suppose Fy is a continuous lifetime distribution function.
Let G be the length-biased distribution function of Fy given by (2.2) and t € §.
Then G, the NPMLE of G based on data collected according to sampling
scheme (i), is uniformly strongly consistent on [0, t].

5. Weak convergence of Uy, ,. To establish the weak convergence of Uy, ,
to a Gaussian process, we first need to prove the following lemma.

LEMMA 3. Ift € g, then

|Fr(@) — F W) |loo = 0 a.s.Yu € Dyl0, 1],

where

(5.1) F =41+ %2,

(5.2) G1(u)(s) = p D) 1)
O<x<s g(x)

and

(5.3)  G2w)(s)=(1—-p) 0eyes y(fySZ gdz) d[(;g; B 1) ?8;}

PROOF. Using the law of large numbers and the bound

|p — pl

J0. || <
196 < =—

a.s.,

we have || #|| — 0 a.s. as k — oo. It is also easily seen that

1—
||9k,1—91||5‘ﬁ—1‘—>0 a.s. as k — oo.

To complete the proof, we need to show that
1Gk,2m) — G2()]loc — 0 a.s. as k — oo

for all u € DglO0, t]. This can be done along the lines of Lemma 2 of [24]. We
therefore omit the proof. [J
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THEOREM 2. Suppose Fy is a continuous life time distribution function. Let
G be the length-biased distribution function of Fy given by (2.2) and let G be the
NPMLE of G. Then forany t € §,

Unn=vVk(G—-G)SU=F""(V)  inDo0,1],

where F 1 is the inverse of F given by (5.1), (5.2) and (5.3),

1
V(s) = p'/?Bi(Gi(s)) + (1 — p)l/zf(s)fO Bz(F*(y))dm
<y=s

» \'2

(1) (6= 6wz,
1—p

Z ~ N(0, 1), and where By and B> are independent Brownian bridge processes,

independent of Z.

PROOF. We first need to show that ¥ is invertible. This is done using a sim-

ilar argument to that used in Lemma 2. It is also easy to see that || F <),
— _@Q/a()-1/1-p)) ;

v'vhe':r.e A() = =2 =1/0=B)B" In view of Theorem 7.3.2 and 7.3.3 of [8], the

limiting processes of W, , and Wiy (k(1—p)] are the same. Hence, we need only

find the limiting process of Wiy, (1-p1 () + p(725)/2(Go(s) - G(s))f%.

Theorem 2 of [24] may now be used to complete the proof. [

6. Asymptotic efficiency of G. It transpires that, under scheme (i), G is as-
ymptotically efficient in the class of regular estimators whose finite-dimensional
limiting laws are continuous in G. This result is perhaps not unexpected, given that
Vardi and Zhang [24] have established the asymptotic efficiency of G under mul-
tiplicative censoring, which we show in Section 7 is a special case of scheme (i).
Since the proof under scheme (i) mimics that of Vardi and Zhang, we omit the de-
tails. A systematic account of asymptotic efficiency and the convolution theorem
can be found in [6, 12]. Here we follow the approach taken by Vardi and Zhang [24]
and confine our attention to regular estimators whose finite-dimensional limiting
laws are continuous in G.

Let H (-) be a stochastic process in Dg[0, t]. The distribution of H (-) in Dy[0, 7]
and the k-dimensional joint distribution of (H (s1), ..., H (sr)) under the probabil-
ity Pg will respectively be denoted by L(H; G) and L(H; G, s1,...,5%). Let v
be a measure on [0, co) with respect to which the distribution G has a density g.
Let ¥ (v) denote the set of all densities with respect to v. Let C(g, ¢) be the set of
all sequences of densities {gx € F (v)} such that

. 1/2
(6.1) Jim (161252 — g% — ¢l =0,
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where ¢ € Ly(v) and || - |2 is the Ly(v) norm. The limit in (6.1) implies in a
standard way that ¢ 1 g!'/%. Let C(g) = Ucer,),c1¢1/2 C(8 5)-

Suppose {gi} € C(g) is an arbitrary sequence with corresponding c.d.f.s {Gg}.
Following Beran [5], we say that a sequence of estimators Gy, is regular at g if

L(VK(Gr —Gp): Gy) =3 L(WU;G)  in Dyl0, 7],

where £(U; G) depends only on g and not on the choice of the sequence
{gkr} € C(g) which determines the sampling scheme. Theorem 3 below establishes
superiority of the NPMLE over all regular estimators whose finite-dimensional
limiting laws are continuous. The proof is similar to the proof of Theorem 3 of [24]
and, therefore, is omitted.

THEOREM 3. Let p > 0 and G be a sequence of regular estimators with a
limiting law c,C(U G) whose finite-dimensional laws £(U G,s1,...,8) are con-
tinuous in G under the supnorm topology for G. Then there exists a stochastic
process H(-) in DylO, t],t € &, such that

LU:; G)=L(H:; G)* L(U;G),

where U is as in Theorem 2 and “x” denotes the convolution.

7. The other sampling schemes. This section has two purposes: the first is
to indicate briefly how the asymptotics might be established under scheme (ii),
so that the case of random M and fixed M = m may be contrasted. The second
is to demonstrate explicitly how multiplicative censoring [scheme (iii)] may be
regarded as a special case of scheme (i).

Sampling scheme (ii): Random censoring (conditional on M). Under sam-
pling scheme (ii), the proportion of uncensored observations is fixed. Assuming
that p = p, that is, conditioning on the proportion of uncensored observations, Fx
given by (3.8) vanishes, G 1 given by (3.6) reduces to §; given by (5.2), while
Gk,2 given by (3.7) remains unchanged. Also, the second term on the left-hand
side of (A.5) vanishes when we condition on the proportion of uncensored obser-
vations. We therefore obtain the following master equation for scheme (ii):

TI<(Um n) = m ns
where
T =41+ G&,2,

and Wy, » is given by (3.3). It then follows from the results in Sections 4 and 5
that, under sampling scheme (ii), G is uniformly strongly consistent and

Unn 2 U="""(W)  inDo[0,£]Vt €9,
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where

1
W) =p'PBIG) + (1= )P [ BaF)d =
O<y<s F)
and Y ! is the inverse of Y = G| + §», where §; and §, are, respectively, given
by (5.2) and (5.3).

Sampling scheme (iii): Multiplicative censoring. Having assumed (2.6) as the
residual censoring distribution and by conditioning on the censoring proportion,
H vanishes, while G 1(u)(¢) and Gk 2(u)(¢), respectively, reduce to py/ and (1 —
Pr)A 7 where [ is the identity map and

R u(z) 1
" _ u(z) _ )
f(u)(t) [ O<y§ty(./y§z 72 dz>d(f(y)>

Putting the above reduced forms together, we obtain the following master equation
for sampling scheme (iii):

lIIk(Um,n) == Wm,n’

where Wy = prl + (1 — pr)A 7 It then follows from the results in Sections 4 and 5
that, under the multiplicative censoring scheme [scheme (iii)], G is uniformly
strongly consistent and

Upn—U=W"YW)  in Dyl0,1],

where

1
W0 =p'BUGE) +(1=p) S [ BFODd
<y=<s

and W~! is the inverse of W = pI + (1 — p)Ay, if p = limg_00 px > 0.59.

8. Concluding remarks. We have proved that, for length-biased right cen-
sored prevalent cohort survival data with follow-up, the NPMLE of the length-
biased (i.e., prevalent case) survival function is strongly uniformly consistent,
converges weakly to a Gaussian process, and is asymptotically efficient. It can be
shown [4] that the NPMLE of the unbiased (i.e., incident case) survival function
inherits these properties. The approach taken here is based on that used by Vardi
and Zhang [24], although their methods do not carry over to the current more gen-
eral setting without substantial modification, owing to the random censoring of the
residual lifetimes. An apparently essential condition imposed for establishing the
asymptotic results in Sections 4, 5 and 6 is that ¢ € . This condition is not restric-
tive since, in practice, 8, the mass of the residual censoring distribution at 0, would
be very small. For instance, if 8 = 0.01, then a sufficient condition for t € ¢ is that
Fc(t) <0.98.
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In view of the fact that the current and residual lifetimes are equally distributed
under stationarity, 8 represents the proportion of uncensored observations with
missing onset time. This then means that the results presented here address three
of the four possible cases, that is, censored/uncensored and with/without onset
time, in the setting considered in this paper.

If we allow an arbitrary unspecified incidence process, then the model becomes
nonidentifiable and nonparametric estimation must be conditional on the trunca-
tion times, an approach that is commonly used because of its robustness against
departure from stationarity of the incidence process. Wang [25], however, points
out that this approach is only justified as conditional maximum likelihood if all
censoring times are known, even for those who fail before they are censored. When
the intensity of the incidence process is known, one can mimic the proofs given
here to establish asymptotic results. This, however, entails a new master equation
and, therefore, new subsequent steps.

APPENDIX

PROOF OF LEMMA 1 (The master equation). Let A = [pUy, »(t) — Wy n(1)1/
Vk, where p = 7~ Thus

560 -0 -0 [ (1) + b0 -
=p(G(t) — Gu(1)) p f(l)fo Wyan(y)d o) + p(G+(t) = G(1)).

Now using the equation (from [24], page 1034)

f® ( > d(Fn(y) — F«(y)) .
\/_ O<y=t Yn(y)d f(y) /0<x<t/0<y<x _1dG(Z) dG( )

y<Z

obtained via integration by parts and a change of order of integration, we have

- )W)

_1 =~
—1ace” W

— -1 -
(G(t) Gm(®) = (1= p) 0<x<t/0<y<x

)’<Z
+ p(G«(t) — G(1)).
Using (3.2),
N n dFy(y) :| -1 4A
pG(t) +( P) O<x§t|:/0<y§x nyZZ_l dG(Z) X G(X)

—G(t) + p(G«(t) — G(1))

. dFi(y) } —1 A
=(1-— — —d dG
( P) O<x§t|:-/0<y5x fyiz Z_ldG(Z) s 0

+ p(G.() — G()).
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Utilizing (2.4), we obtain

bl )= L e -]

1 F) }
=— F —~dy—(1—p)dy]|.
1_p/0<y§x[ c(y)f(y) y—{—=p)dy

We also have

Fe)f») —A-p)fe)
fo

_FeO) fy<, 771 dG@ = (= p) [,z dG ()

- Jy<.21dG(2)

_ /yEZZ_IdUm,n(Z) _ Sc(y) fygz Z_ldG(Z) n
‘/EfySZ Z_lda(z) fyfz Z_ldé(z) b

Thus,

__(l—ﬁ)/(l—P)
A= JE

-1
2 dUpy p(2) ~
x/ |:/ fzz} A dy}x_ldG(x)
O<x<rLJO<y=<x fzzyz_ dG(Z)

+ { pG.(0)

(A1) I=»

X/ U Sc) fo5,271dG(2)
O<x<tLJO<y<x

~ dy|x~'dG }

Josy271dG(2) y]x 0
1—p ~

+p{—1 _ﬁG(r)—G(z)}

=14+10411.

We simplify the terms 1, 11, III in (A.1). First, as in [24], page 1035,
1—-p)/1 — A ! U, 1
I:—( P)/( P)f(t)f y/ m,r;(Z) dZd( _ )

vk 0 Jzzy 2 F)

Next, in /I, after substituting for G.(¢) = fé g«(x)dx, using (2.3) and replac-
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ing dG in the inner integral by dG — k=12 dUy ,, we have

_ t xﬁ _1
11—/0[/01 Sc(y)dy} 4G (x)

- iz b seord]t o

1 1-p /[ /XSc(y)fz>y 1 dUpa(2)
[1— oy 271dG(2)

dy]x—ldé(x),
while

. pﬁUnzn(t) 1—G(t)

Now, combining the above simplified forms for /, 11, I1l, we obtain

PUnn () = Wi n (1)

- {—%ﬁf(t)/otyfzzy UmZ’Z(Z) dzd(f(ly)>}

t X
{fl(” 2 [ / Sc<y)dy]x‘1dG<x)
— 0

1—p 1 b
1l = p{ p }

1_ t X
S [T seora ]t avne

L1-p / [ / Sc() ;227 dUp n(2)

1 4A
fz>y _ldG(z) dy}x dG(x)}

1— _
+P{1—p mn()_\/_(p p)G(t)}.
-p l—p
Thus,
uUmn(t)+—f(t>/ ] ’"”(Z) :
l—p f@)
Tl / [/ de)dy} L 4Up ()
(A.2)

i 1_1’5 t|;/x SC(y)fZZyZ_ldUm,n(Z)
L—plollo  [.,z71dG(2)

k() —
= WO P\/g (HOR G@)%_

dy}x_lda(x)
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Using the equation

d
—(y / 2 2 U (2) dz) =— / Unn()dz™" =y U n ()
dy >y >y

=/ Z_ldUm,n(Z),
zzy

the fourth term on the left-hand side of (A.2) can be simplified to

tropx Sc(y)fzzy Z_ldUm,n(Z) 1 4A
fo[/o fz>yZ_1d6(z) dy]x dG(x)

/[/ 1 dG(x ]SC(y)(d/dy)(yf&y) Uy () d2)
/( )SC()’)d( /KZZ_ZUm,n(Z)dz)
- (/yq Ve g2 (£ )scon)]

Substituting (A.3) into (A.2), we obtain

dy
(A.3)

p—r

- Um 2 (1) + 1—2/0 y(/zzy UmZ,Z(Z) dz) d[(;((;)) - 1)(1 - Sc()’)):|

1—p -1
) + =2 [ [ scras | atnaeo

k N
= Win(6) + p /%(G*m = G(z))%.

Using (2.3) and (2.4), one can simplify (A.4) further to the form
(52 )ttt
l—p
- (=)
l—p

gx(x)
(AS) x {p [ A av,0

wa-p [ ([ 2aac) [(;((; )75

k 5
= Wyn (1) + p /%(G*(I)—G(t))%- -
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