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DECISION THEORY RESULTS FOR ONE-SIDED MULTIPLE
COMPARISON PROCEDURES!

BY ARTHUR COHEN AND HAROLD B. SACKROWITZ
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A resurgence of interest in multiple hypothesis testing has occurred
in the last decade. Motivated by studies in genomics, microarrays, DNA
sequencing, drug screening, clinical trials, bioassays, education and psychol-
ogy, statisticians have been devoting considerable research energy in an effort
to properly analyze multiple endpoint data. In response to new applications,
new criteria and new methodology, many ad hoc procedures have emerged.
The classical requirement has been to use procedures which control the strong
familywise error rate (FWE) at some predetermined levdlhat is, the prob-
ability of any false rejection of a true null hypothesis should be less than or
equal tow. Finding desirable and powerful multiple test procedures is difficult
under this requirement.

One of the more recent ideas is concerned with controlling the false
discovery rate (FDR), that is, the expected proportion of rejected hypotheses
which are, in fact, true. Many multiple test procedures do control the FDR.

A much earlier approach to multiple testing was formulated by Lehmann
[Ann. Math. Satist. 23 (1952) 541-552 an@8 (1957) 1-25]. Lehmann’s
approach is decision theoretic and he treats the multiple endpoints problem
as a 3 finite action problem when there akeendpoints. This approach is
appealing since unlike the FWE and FDR criteria, the finite action approach
pays attention to false acceptances as well as false rejections. In this paper we
view the multiple endpoints problem as % fhite action problem. We study
the popular procedures single-step, step-down and step-up from the point of
view of admissibility, Bayes and limit of Bayes properties. For our model,
which is a prototypical one, and our loss function, we are able to demonstrate
the following results under some fairly general conditions to be specified:

(i) The single-step procedure is admissible.

(i) A sequence of prior distributions is given for which the step-down
procedure is a limit of a sequence of Bayes procedures.

(i) For a vector risk function, where each component is the risk for an
individual testing problem, various admissibility and inadmissibility results
are obtained.

In a companion paper [Cohen and Sackrowarnn. Satist. 33 (2005)
145-158], we are able to give a characterization of Bayes procedures and
their limits. The characterization yields a complete class and the additional
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useful result that the step-up procedure is inadmissible. The inadmissibility
of step-up is demonstrated there for a more stringent loss function. Additional
decision theoretic type results are also obtained in this paper.

1. Introduction. A resurgence of interest in multiple hypothesis testing has
occurred in the last decade. Motivated by studies in genomics, microarrays, DNA
sequencing, drug screening, clinical trials, bioassays, education and psychology,
statisticians have been devoting considerable research energy in an effort to
properly analyze multiple endpoint data. In response to new applications, new
criteria and new methodology, many ad hoc procedures have emerged. The
classical requirement has been to use procedures which control the strong
familywise error rate (FWE) at some predetermined levdlhat is, the probability
of any false rejection of a true null hypothesis should be less than or equal to
Finding desirable and powerful multiple test procedures is difficult under this
requirement. Two useful tools for the construction of such multiple levelsts are
the closure principle [see Marcus, Peritz and Gabriel (1976), as well as Hochberg
and Tamhane (1987)] and the partitioning principle [see Stefansson, Kim and Hsu
(1988) and Finner and Strassburger (2002)]. These tools can be used to generate
large classes of multiple test procedures satisfying the FWE criterion.

One of the more recent ideas is concerned with controlling the false discovery
rate (FDR), that is, the expected proportion of rejected hypotheses which are,
in fact, true. Many multiple test procedures do control the FDR. See, for
example, Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001),
Efron, Tibshirani, Storey and Tusher (2001) and Sarkar (2002). This criterion
is particularly appealing if the number of endpoints is large. In some modern
applications this number can be in the thousands. A summary of studies on
multiple endpoint methods used with microarray data is given in Dudoit, Shaffer
and Boldrick (DSB) (2003).

The closure and partitioning principles tend to be linked to the step-down
approach described in Hochberg and Tamhane (1987) and studied extensively in
the literature. FDR was initially linked to the step-up approach. See Hochberg
(1988). More recently, step-down and combined step-down with step-up methods
have been viewed from an FDR point of view. Sarkar (2002) notes: “While
the FDR has been receiving increasing attention by researchers in different
fields of statistics, theoretical progress has not been made at a similar pace.”
Sarkar's remark applies to the entire area of multiple endpoint testing. Finner
and Strassburger (2002) say: “Further and in general difficult problems are
the comparison of different multiple test procedures and the related questions
concerning admissibility.” They go on to say: “A serious issue is optimality and
admissibility of multiple decision procedures.” DSB (2003) remark “Optimality of
multiple tests is an interesting research avenue to pursue from both a theoretical
and a practical point of view.”
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A much earlier approach to multiple testing was formulated by Lehmann
(1952, 1957). Lehmann’s approach is decision theoretic and he treats the multiple
endpoints problem as & Zinite action problem when there akeendpoints. The
formulation as a %2 action problem is particularly appealing since in terms of
what is desired, one wishes to decide whether to accept or reject for each of the
k hypotheses posed. This approach entails the specification of losses, which
can be quite general. Lehmann (1952, 1957) was able to demonstrate some
optimality properties for the single-step procedure and step-down procedure in
two-dimensional problems for some hypotheses and for some restricted classes of
procedures. Methods developed through the years to further the theory of testing a
single hypothesis (a two-action problem) do not extend easily to multiple actions
and little progress has been made for this model. Nevertheless, the potential and
importance of this approach are compelling since the evaluation of methodologies
and procedures is wanting and necessary in this subject. Little is known about
properties of the various procedures and rigorously studying the underpinnings of
the methodologies is essential. Furthermore, unlike the FWE and FDR criteria, the
finite action approach pays attention to false acceptances as well as false rejections.

Our approach will be to regard the problem a aéion problem. We carefully
distinguish between what is known as the global problem and multiple endpoints
problem. We are very precise about what null hypotheses and what alternative
hypotheses are to be considered. Several notions of monotonicity of procedures
and monotonicity of risk functions have been introduced and studied in Cohen
and Sackrowitz (CS) (2004). In this paper Bayes procedures, limits of Bayes
procedures and admissibility results of procedures are studied. In particular we
examine single-step, step-down and step-up procedures. We note that DSB (2003)
classify the 18 procedures they study as single step, step-down or step-up. We
consider loss functions that are sums of losses for the individual endpoints.

We confine our study to a simple but prototypical model, although many of the
results would remain true for other models. The model assumed is that we observe
a (k x 1) random vectoZ which is assumed to be-variate normal with mean
vectoru and known covariancE. Among the results are the following:

REsSuULT 1.1. Suppose the covariance matkixis of the intraclass type, that
is, all variances equal, all covariances equal. Then under some mild conditions the
single-step procedure is admissible. The approach used to prove admissibility is
somewhat new.

RESULT 1.2. If £ =021, the step-down procedure studied is shown to be a
limit of a sequence of Bayes procedures.

REsSULT 1.3. Supposex is intraclass, antp is the common correlation
coefficient between any pair of variables. Consider a vector risk (VRI) where the
components of the vector are the risks for the individual testing problems. Then
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the single-step procedure is admissible for arly< p < 1. The step-down and
step-up procedures are admissible if and only # 0. As a corollary it follows
that forp < 0, step-up and step-down are inadmissible for the loss function which
sums the losses for the individual component problems.

In Section 2 we state the models, distinguish between global test problems
and multiple endpoint testing problems, introduce the loss functions, describe the
various properties of procedures and give other preliminaries. In Section 3 we
describe the single-step, step-down and step-up procedures. In Sections 4 and 5
we state properties of these procedures. All proofs are given in the Appendix.

2. Modelsand preliminaries.

2.1. Models. LetZ be a(k x 1) random vector which ig-variate normal with
mean vectop and known covariancE. One global one-sided hypothesis testing
problem is

(2.1) HO:p=0 vs K©:p>0\{n=0}

that is,u; >0,i =1,2,...,k, with at least oneu; > 0. Such a problem is
distinguished from a one-sided multiple endpoints problem in which one tests

(22) Hi:u;=0 vs K;:.u; >0, i=12,...,k.

That is, the latter problem is & &ction problem where one selects an action to
either accept or rejedtl;, i = 1,2, ... k.
Note that another form of the one-sided multiple endpoints problem is

(2.3) H':ni <0 vs K;:p;>0.

In the multiple endpoints literature there are ample instances of bott; thed H;*
problems. We mention both since from a decision theory point of view we will see
that sometimes different results ensue depending on whéther H;* is being
tested. In connection with distinguishing betwedp and H;* we mention two
practical situations where the multiple endpoints scenario arises.

(I) Consider the problem of comparirigtreatments with a control assuming
(often realistically) that the treatment mean will be at least as large as the control
mean. [This model is called the tree order model in Robertson, Wright and Dykstra
(1988).] Then ifZ; represents the difference between a reading oitthteeatment
and the controlZ; has meam; wherey; > 0. Assuming all treatment and control
observations are normal, independent, with variances 1, Zhenmultivariate
normal with mean vectop and covariance matrix. The covariance matri
is (k x k) and

1 12 ... 1/2

2 2
(2.4) g2t Y

1/2 1
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The appropriate multiple hypotheses in this case are those in (2.2).

Note that the(k x k) covariance matrixX in (2.4) is a special case of a
class of covariance matrices which are called intraclass. That is, a covariance
matrix ¥ = (o0j;) is intraclass ifo;; are the same for all=1,2,...,k, ando;;,
i=1...,k,j=1,...,k, i # j, are the same. WheR is intraclass, then the
normal variables are exchangeable. Note also that a special case of intraclass is
when allo;; are the same and adl;; =0, i # j. In this latter case the; are
independent. Another special case of intraclass is viher2, ando11 = o22. The
intraclass matrixz> may be written as

1 p PR p

1 ...
(2.5) s =o2|” P
o e e 1

with p restricted to the intervat1/(k — 1) < p < 1. See, for example, Krishnaiah
and Pathak (1967).

(IN) Let X;, i =1,2, be independent normal with mean vecbprand known
covariancex;. X1 corresponds to & x 1) vector of measurements made on a
control subjectX2 corresponds to & x 1) vector of measurements made on
a treatment subject. Considér= X, — X1 and noteZ is multivariate normal with
mean vectomu = v — vy and covariance matrix = X1 + Xo. If one feels that
the treatment cannot decrease, i = 1, 2, ..., k, then this is the classic multiple
endpoints problem with (2.2) as the multiple hypotheses. If one feels that the
treatment can reducg; as well as increasey;, then this is the classic multiple
endpoints problem with (2.3) as the hypotheses.

2.2. Preliminaries. A 2F finite action problem has actioas= (a1, ap, ..., ax)’
whereq; equals 0 or 1 foi =1,..., k. An action wheray; = 1 means thaty; is
rejected, where if; = 0, H; is accepted. Thus, for examples= (1, ..., 1)’ means
all H; are rejected. It will be convenient to define

F={u:u=(uy,...,ur),u; =0o0r1 alli}.

Note thatl" can be used to represent the totality of all actions. Howevejll
serve other purposes as well.

Decision ruleg (-|z) are probability mass functions @hwith the interpretation
thatd (a|z) is the conditional probability of actiomgivenz is observed. For each
a nonrandomized decision rule chooses a single elemdntvath probability 1
and assigns all other actions probability 0. Each decisionsrdketermines a set of
test functions for the individual testing problems. These test functions are given
by ¥(2) = (V1(2), ..., ¥x(2)) where y;(2) is the probability of rejectingH,;.
A decision proceduré(alz) determines a set qﬁf(z), i=1,...,k, as follows:

(2.6) Y@= 8@z => ad@?),

acA; ael’
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where A; = {a € I':ahasalinthéth positior}. Whereas §(ajz) deter-
mines ¥ (z), the reverse is not true. I§#(z) is nonrandomized it uniquely
determines somé&(a|z). Thed(alz) determined is nonrandomized.

For problem (2.2), we partition the parameter sp&e- {u:u; > 0,i =1,
..., k}into 2 setsQy, ve ', whereQy = {: pt = (1, o, ..., ux)’, andu; >0
if y=1andu; =0if v; =0,i =1,...,k}. For problem (2.3)Q = R¥ and
we have a similar partition but; = 0 meansu; < 0. Also for problem (2.2) let
QO ={u:pe, u =0}

A loss function is a function of the action taken and the true state of nature. We
will take the loss function to be additive over the individual component problems
and for each component problem we choose the loss as follows: zero loss for a
correct decision; a loss of 1 for rejectirgy when it is true and a loss df for
acceptingH; when it is false. The loss function for the finite action problem can
be expressed as

k k
(2.7) L@apw =) al-v)+)y bl—apvi, pey,
i=1 i=1

with 0 < b. This loss function reflects the property that the loss is additive over the
losses for the component problems.
The risk function for a decision procedurés

(2.8) R, p)=Ey ) L(a p)3(@2).
ael’

For the above loss function (2.7) it follows from (2.6) that the risk depends on
only throughyr, so we can write (2.8) as

k
(2.9) R, ) =) Riy(Wi, n),
i=1
where
Envi(2), ui =0,
2.10 Ry, w=1"
(2.10) (Wi 1) {b(l—Eﬂwi(z)), ui > 0.

The risk function (2.9) can be written as
(2.11) E (v A—=Vv)+b1—9)V),

wherel=(1,...,1).

A decision procedurgf is said to be inadmissible if there exists another
procedurey ™ such thatR(¢¥*, ) < R(y¥, ) for every u with strict inequality
for somep. Otherwisey is admissible.

As previously noted we can view the multiple endpoints problem as one
involving k£ endpoints in whichy;(2),i =1, ...k, is a test function for théth
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endpoint. In this scenario one may wish to consider a vector risk approach where
the risk consists of & x 1) vectorR = (R, ..., R))', Rt = R(Yi, p) given

in (2.10). In this formulation any procedure which has an admissible test for each
single component is admissible in the vector risk formulation. For general results
concerning vector risks, see Cohen and Sackrowitz (1984).

3. Some procedures for multiple endpoint problems. We focus on three
special cases of the most frequently discussed procedures, namely single-step,
step-down and step-up. The three procedures are considered in Hochberg and
Tamhane (1987) and Shaffer (1995). In all that follows we assume without loss
of generality that the variance of eaéh is 1. Furthermore, for now for step-
up and step-down we limit our discussion to procedures which are symmetric in
the variablesZ, ..., Z;, that is, procedures that are permutation equivariant. The
normal model, with intraclass covariance matrix, represents the most general case
of permutation invariance.

3.1. Sngle-step. The single-step procedure we study is:
PrROCEDURE3.1. RejectH; if and only if Z; > C;.

The constantg’; are typically chosen so that the strong familywise error rate
(FWE) is less than or equal to

3.2. Sep-down. The step-down procedure we study is as follows:

PROCEDURE3.2. LetZ) <Zp) <--- < Zx) be the order statistics for the
set(Z1, Zo, ..., Zx) and letC; be a strictly increasing set of critical values:

(i) If Zx) > Cx, rejectHg,. Otherwise accept alti;.
(i) If Hg, is rejected, rejecH—1) if Z—1) > Cr—1. Otherwise accept all
Hig—1, ..., Hy.
(i) In general, at stagej, if Z > C;, reject H;). Otherwise accept
Hjy, ..., Hgyy.

The critical values may be chosen so that:

OuTcoME 3.3. P{Zy) < Ci} =1— « when all H; are true;P{Zx_1) <
Ci—1} =1 — «a, with Z, excluded, andd(y), ..., Hy—1) are true. That is, after
one of the hypotheses is rejected, we consider a new problem wittk thel)
remaining variables that correspond to those parameters not rejected at step 1.
P{Z ) < Cj} =1—a,when(k — j) variables and their corresponding hypotheses
are excluded andf(y), ..., H;) are true. This choice of constants leads to control
of the strong FWE.
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The step-down procedure results by applying the closure method. See Hochberg
and Tamhane [(1987), Chapter 2, Section 4.1] for a description of this method. The
method is used by Marcus, Peritz and Gabriel (1976). Finner and Roters (2002)
note that this method strongly controls the FWE and they call such a testing method
a multiple levele test procedure. The step-down method rejects nifyie than
the single-step procedure for the samé he single-step procedure would usSg
forCj,all j=1,..., k.

REMARK. Procedure 3.2 is one type of step-down procedure. Another type,
used, for example, by Marcus, Peritz and Gabriel (1976), uses a likelihood ratio test
in applying the closure method. This results in a different step-down procedure.

3.3. Sep-up. The step-up procedure we study is as follows:

PROCEDURE3.4. LetZa) < Zp <--- < Zy be the order statistics for the
set(Zy, ..., Zy) and letC; be a strictly increasing set of critical values.

() If Z¢1y) < Cq, acceptH 1. Otherwise reject alH; .

(i) If Hqay is accepted, acceptp if Zpp < Co. Otherwise reject
Hpoy, ..., Hy.

(i) In general, at stagej, if Z;) < C;j, acceptH(;). Otherwise reject
H(j),...,H(k).

The critical value<; are sometimes chosen so that:

OuTCcOME3.5. P{Z1)<C1,Z<C2, ..., Z(=<Cj}=1-a(1<j<k)
whenallu; =0,i =1, ... k.

This choice of constants enables control of the strong FWE. The step-up
procedure is credited to Hochberg (1988).

4. Properties of single-step. Recallb» > 0 and for ¥ intraclass,—1/(k —
1) <p.

THEOREM 4.1. For problems (2.2) and (2.3), suppose X is intraclass.
Suppose the loss function is (2.7). Then the single-step procedure is admissible
if p>—1/b.

For the proof see Appendix A.1.
REMARK 4.2. The proof that the single-step procedure is admissible under

the given conditions is accomplished by demonstrating it is uniquely locally
admissible in some sense. In a one-dimensional, one-sided hypothesis testing
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problem Lehmann (1986) describes a unique locally best test as one whose
derivative of the power function evaluated at the null point is largest among all
size a tests. For the multivariate global testing problem (2.1) a test is uniquely
locally best in a direction if it has a similar property as in the one-dimensional
case. Marden (1982) utilizes the notion of local admissibility for global testing
problems. For our finite action problem we introduce a notion of unique local
admissibility and demonstrate that the single-step procedure has this property. As
in the global testing problem the focus is on the pgint 0 and is linked to the
derivative of a function of the risk evaluatedgat= 0.

Note that the theorem applies to the tree order model since in thapcage

The admissibility result is particularly interesting in light of a result in CS
(2004). There it is stated that when> 0, no nontrivial Bayes test can be type-|
monotone for problem (2.2). See CS (2004) for the definition of type-I monotone.
The single-step procedure is type-l monotone, so a first guess might be that it is
inadmissible. The result indicates that the first guess is incorrect.

Next we have:

THEOREM4.3. For problems (2.2) and (2.3), suppose X = I (independence
case). Suppose the loss function is (2.7). Then the single-step procedure is proper
Bayes.

For the proof see Appendix A.1.

This result should also be contrasted with the result in CS (2004) which states
that the single-step procedure cannot be Bay&sig intraclass withp > 0:

Our final result of this section is:

THEOREM 4.4. For problems (2.2) and (2.3), suppose X is intraclass.
Suppose the risk function for each component problemis (2.10). Then the single-
step procedure is admissible for the vector risk VRI described in Result 1.3.

For the proof see Appendix A.1.

Although the single-step procedure has the above desirable properties, many
feel that single-step procedures are too conservative. That is, they do not detect
significant effects often enough while controlling the FWE. Single-step procedures
are somewhat akin to some simultaneous confidence bound procedures which are
highly conservative, making it difficult to declare significance for an individual
endpoint.

5. Properties of step-down and step-up. In this section the loss function
is (2.7).
We establish the following theorems:
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THEOREM 5.1. For problems (2.2) and (2.3) for X = I, there exists a
sequence of prior distributions for which the step-down procedure is a limit of
a sequence of Bayes procedures.

REMARK 5.2. In Theorem 4.1 it is shown that the single-step procedure has a
limiting “local” optimality property. The limit point i€. In Theorem 5.1, however,
it is shown that the step-down procedure has a limiting optimality property, but
now the limiting parameter points receiving weight tendo

THEOREM 5.3. For problem (2.3), X =1, k =2, b = 1, the step-down
procedure is admissible.

THEOREM 5.4. For problems (2.2) and (2.3) suppose X is intraclass. Then
the step-down procedure is admissible for vector risk VRI if and only if p > O.

For the proof see Appendix A.2.

Theorems 5.3 and 5.4 and the proofs of these theorems also apply to the step-up
procedure given in Procedure 3.4. The most interesting properties for step-up are
given in the companion paper CS (2005).

APPENDIX

A.l. Proofs of Theorems 4.1, 4.3 and 4.4. In order to prove Theorem 4.1,
we need a definition and theorem. First the definition.

For eachv € T, let Qy be the closure of2,. Let Ry (¥, p), for u € Qy, be the
continuous extension Ak (¢, i) for u € Qy. Note that the poin® e Qy for all
v € I'. Since the risk function is continuous on ed&el, it follows that if ¢* is
better thany, thenRy(¥*, p) < Ry(¥, p) for all u € Qy. In particular,y* better
thany impliesRy(¢*,0) < Ry(¢,0) forallveT.

The next theorem is useful when comparing decision procedures under the
assumptions of this paper. That is, assume normality and assume the risk function
is (2.11). In the casé& = 1 (which is the usual one-sided hypothesis testing
problem), the theorem reduces to the well-known result that ifs better thany,
then their risks at zero (size of the test) must match.

THEOREMA.1. If ¢* isbetter than ¥, then Ry(¥*,0) = Ry(¥,0),allveT.

PROOF The assumption that™* is better thany implies thatR, (¢*,0) <
Ry(¥,0) for all v € I'. SupposeRo(¥*,0) < Ro(¥,0). Since Ro(¥,0) =
EoY*_1vi(2) and Ry(¥,0) = kb — EoY_*_; ¥:(2), it follows that Ry(¢, 0) <
R1(¢*,0). This is a contradiction. A similar contradiction is reached if it is
assumed thak1 (¥ *, 0) < R1(¥, 0).
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Now suppose for somee',,r=1,...,k—1, Ry(¥*,0) < Ry (¥, 0), where
[, ={vel:Y* v =r}. Then from (2.11)

(A1) Y R0 =) Eoly'(1—V)+b(1—9)V].

vel', vel',

Now recognize thap . V= (fj)l and collect terms so that (A.1) equals

(A2) bk(’r‘j>+[(k;1)—b(Zj)]Eo:lei(z).

IF (71 = b(E2H1> 0, thenEo X per, Ry(¥*,0) < Eo Yyer, Rv(¥,0) implies
EoX¥_1 v (2) < EoX¥_; ¥i(2). This in turn implies thaRy (¥, 0) < R1(¥*, 0).
This is a contradiction. If(“ %) — 5(;_7)] < 0 or equals 0, a similar contradiction
is reached. Thus the theorem is proved]

To prove Theorem 4.1 we need to study the behavior of linear combinations
of the Ry functions. WhenX is assumed to be intraclass we may wriie=
o2((1 = p)I + p11). In this case

» 1= (021 - p) "t - G1Y,
where
G=p/(1+ (k—-Dp).
As earlier we take? = 1 without loss of generality.

PROOF OF THEOREM 4.1. Lety™ be the single-step procedure. Suppose
¥ is better thamy*. Then Theorem A.1 impliegr cannot be uniformly better
than the single-step procedure Gtthat is, there does not existya such that
Ry(¥,0) < R, (y¥*, 0) for all v, with strict inequality for some.

Therefore we need only consider procedugesuch that

(A.3) Ry(¥,0) = Ry(¥™*,0) forallver.

For ¢ satisfying (A.3) we study>_ AyRy(¥, u), where, are coefficients that
can depend omu, for v e I' and whereRy (¥, n) is evaluated atu = Av,
A > 0. In this case wWritg . AvRv(¥, ) = yer Av(A) Ry (¥, AV). Amongy
satisfying (A.3), we show tha$* is the unique procedure that minimizes the
derivative with respect taA of > .- Av(A)Ry(¥, Av), evaluated atd. This
demonstrates the admissibility ¢f*.

Now we consided . Av(A) Ry (¥, Av), which using (2.11) is

k
(A.4) f/{z 3 (AL @ +bv) — L+ D)PVIf(@VA) | dz,

s=0vely
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where f (z]vA) is obtainable from
f@zip) = (1/(2ﬂ)k/2|2|1/2)6—(1/2)(2—10'2_1(Z—LL)'

For a chosen set ofy(A) we seek ay, among the class of procedures
satisfying (A.3) that minimizes the derivative of (A.4) with respecitcevaluated
atA =0.

Recall withe?=1,x"1= 1 - p)~1(1 - G11).

Now we choose.y, v e T, as follows:

LetC = (C1,...,Cy), where(; is given in Procedure 3.1.

Lete; =(0,...,1,0,...,0), that is, a vector with all zeros except 1 in thh
position. Lety = [(1 — Gk) + (1 + b)G]/b(1 — Gk) = (1L + bp)/b(1 — p), and
note thaty > 0 if and only if (1 + bp) > 0. Letaig(A) = 1, A1(A) = ye~CT 114,
A(A) =eCZ VA forv—g; i=1,....k andiy(A) = O otherwise.

The derivative of (A.4) with respect ta evaluated ai = 0 is expressed as

k
/f{z Y d(A(A) f(ZIVA)) /d Al a=o

s=1verly
x 1 +bv) — 1+ b)df’v]} dz

(A.5) k
:(1/(1-,;))/.../!Z[l’(-/wrbei) — A+ b)y'e;)
i=1

x e.(I —G11')(z—C)
+ybk — ' Dkl — Gk)(z — C)}f(z|0) dz.

We will chooseyr (z) to minimize the integrand in (A.5) for eaah Toward this
end we evaluate the bracketed term on the right-hand side of (A.5), which becomes

¥k — C) —k?G(Z — O)] + blk(Z — C) —k°G(Z — C)]
—A4+b)¥'2-C)+ 1A+ bkGy'1z - O)
+yb(k — ¥ Dk(1— Gk)(z —C)
=—1+b)yY'(z-0C)
+ 9’1k — O){(1 — Gk) + (1+b)G — yb(1 — Gk)}
+ bk(z — O)[(1 — G) + yk(1— Gk)].

(A.6)

At this point we recognize that by substituting the selected valug @i the
bracketed term on the right-hand side of (A.6), the term becomes 0. Hence to
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minimize (A.6) we choos&;(z) =1 if z; > C; and choose);(2) =0 if z; < C;.

This is the single-step procedure. Thus the single-step procedure is admissible for
problem (2.2) [and for problem (2.3), since the same proof appligshif0. But

y > 0if (1+ bp) > 0 which amounts to the given part of the theorerl

In order to prove Theorem 4.3 we will need the following definition and
theorem.
A decision procedurgs* is Bayes with respect to a prior distributigu) if

EcROP™ ) =inf E<R(H. o).

In connection with Bayes procedures, dgtv|z) denote the posterior probability
of the subsetw € 2, given z. Then the following theorem describes a Bayes
procedure.

THEOREM A.2. Consider the risk function in (2.9). The Bayes procedure is
V=g, ), where

. 1, if ¢(QYV|2) <b/(b+ 1),
Wi = .
0, otherwise.

PrROOF Since the loss function is additive, the sum of expected risks for the
individual components is minimized by minimizing the expected risk
for the individual components. The theorem follows by the same argument used
for a single testing problem. See, for example, Mood, Graybill and Boes [(1974),
page 417]. O

PrROOF OFTHEOREM 4.3. Choose a prior distribution such that, ..., ux
are independent. Thep(22)|z) depends only on;. Furthermoreg(Q®|2) is
a decreasing function aof;. Use Theorem A.2 and the fact that the prior can be
chosen so thaj(Q"|z) < b/(b + 1) is equivalent taZ; > C;. [

PrROOF OF THEOREM 4.4. We need only show that the procedure is
componentwise admissible. That is, we need only prove that the test for each
H;:nui =0vsK;:u; >0 is admissible. It suffices to show that > C1 is an
admissible test forH;: 1 = 0 vs K1:u1 > 0. To prove this we note that the
multivariate normal density is proportional to

(A7) e—(1/2)2’2—128—(1/2)u/>:-1ueu/>:-1z.
Lettingy = 1z, (A.7) can be written in exponential family form as

KBty = h(y)B(p)e tha+Eizgini,
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A result of Matthes and Truax (1967) implies that any testFaf. u1 = 0 vs
K1:u1 > 0 which is monotone iny1 for fixed (yo, ..., yr) is admissible. Here
monotone means if; < y; and the test rejects foy;, then it must also reject
for y{ whenys, ..., y; are fixed.

Now note that the single-step procedure is of the form reject #f C1. Since
Z= Xy, this can be expressed as

k

(A.8) yi+p) yj>Cr
i=2

From (A.8) we see that the test féf; is monotone iny; for fixed (yo, ..., yi).
O

A.2. Proofsof Theoremsb5.1, 5.3 and 5.4.

PROOF OF THEOREM 5.1. A sequence of prior distributions will be put
on various points of2y. The amount of prior probability on each point will
be expressed as a ratio where the denominator is always expressgediag
D is the sum of numerator terms. The sequence of priors is as follows: On
..... o) the numerator of the prior probability is 1. G,0,...0) the numerator,
eM'1/2e=Cen’ is put onpug = nk; all other u's are zero. ON(oo....0.1.0....0),
where 1 is in theith position, the numeratoet #/2¢=Cin* s put on u; =
n*: all other u’s are zero. Onq,...0.1,0.....,0,1,0.....0), Where 1 is in theith
and jth positions, the numeratofl/2)et #/2e=Cin*=Ce1n""! ig put on the
points 11; = n*, u; = n*=1 and y; = n*=1, u; = n* (all other u’s zero). On
0...,0.1,0....0,1,0.....0,1,0,....0)» Where 1 is in theith, jth and£th positions, the
numerator (1/3!)ek #/2¢=Cin* =Cian™=Ci2n'"2 g put on six points, namely,

(i = n*, = nk=2 = nk=2), (i = nk, ;= n*=2, py = kb, (i =

n g =0k e =nt ), (i =0t g =0 R e =), (e =0t =

nk, e = n* Y, (i = nk72, u; = n*71 we = nk) (all other u’s are zero). In
general, ifv € Ty, then the numeratol/s!)et */2¢Xi-1 Cr1-in®D7 g put ons!
points where theu's are zero except faiw j,, . .., 1 j,) and all permutations where
Mjs -, 1j, correspond ta;,, ..., v; which are 1.

Next we indicate the numerators of posterior probabilities for eaghAll
posterior probabilities have the same denominator. We will note that for each
fixed z one of the posterior probabilities will tend to 1. This fact means that
the posterior risk will be minimized by choosing the action that corresponds to
the Qy whose posterior probability tends to 1. We will see that such a choice will
correspond to the step-down procedure. Here are the numerators of the posterior
probabilities denoted b§(2y|z). All denominators of the posterior probabilities
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are the same and the denominator is the sum of the numerators:

£(Q,..0l2) =1,

£(Q0..0l2) = G1=Con®
§(Qo..., 0l2) = (Zi—Ck)nk’
%_(Q(O,...,O,l, .0 |Z) (1/2) [e(zi_Ck)”k‘F(Zj—Ck,l)nkfl

+ @ Cn G —Crpn ™,

For an arbitrary € I'y,

N
(A9) &l =(/sh ) exp(Z(z”—ck+1_,-)n<k+l)-l>,
all permutations i=1
Ofvjl,.l.,vjs

where the indiceg, reflect a permutation of;,, ..., v;,.

At this point fixz. Say, for example, and without loss of generality; Crr1—i,
i=1,2,....,r,andz; < Cyy1-4, i =r +1,...,k. Then ifr = 0, the posterior
probability of (o,....0) denoted byy (Qo.....0)/2) tends to 1 as — oco. If r > 1,
theng(R2(1,...1,0,..,02), with r ones in(1,...,1,0,...,0), tends to 1 ag — oo.

This is true since (Q2y|z) tends tooo (except forQ2(o,...0) asn — oo, but the

ratio of£(2(1,...1,0.....012) /& (Q2v|2) wherev differs from(1,...,1,0,...,0) tends

to co asn — oo. Thus we have demonstrated that the step-down procedure is a
limit of a sequence of Bayes procedure§]

.....

PrROOF OF THEOREM 5.3. For problem (2.3) the risk is taken from (2.10)
and (2.11) except nowR; (y¥;, u) = E,(¥:(2)) whenp; < 0. Let the step-down
procedure be denoted Iy°°. Note that the risk function for an arbitrary procedure
¥ is as follows:

Foru1 >0, u2 > 0,

(A.10) R, p) =2—Eu(¥1(2) + ¥2(2)).
Forpy <0,u2 <0,

(A.11) RW,p) = Eu(¥1(2) + ¥2(2).
Forui >0, u2 <0,

(A.12) R(Y,mw)=1—Euv1(2) + Ep2(2).

Forpuy <0, u2 >0,
(A.13) R(W,p)=1— Euy2(2) + Epy1(2).
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Now if ¥SP is inadmissible from (A.10)—(A.13), then there existgawhich is
better, that is,

(A14)  Eu(yi@)+ ‘/’2 @) > E,(viP@ +v3°@).  p1>0,u2>0,
(A15)  Eu(viPR) +¥5°() = Eu(vi (@) + ¥5(2), n1<0, 12 <0,
(A16)  Eu(v5°2) — vi°@) > Eu(v3(2) — ¥i (), 1> 0, pu2 <0,
(A17) Eu(yP°@ — wf‘D(z)) > E, (V2 — 3 (2). n1<0,u2>0,

with at least one strict inequality for some By letting eitheru; — 0 orus — 0
or both uy — 0, u2 — 0 in (A.14)—(A.17) we have that (A.14)—(A.17) hold
wheneveruy > 0, u2 > 0; u1 <0, u2 <0; 1 >0, u2 <0; u1 <0, p2 >0,
respectively.

Consider parameter points of the fopm= (11, 0)’, 1 > 0. In this case (A.14)
and (A.16) hold. Adding these two inequalities yields

(A.18) E i@ > E P2,

Let W(2) = ¥ (2) — wa(z) and let ¢ (u) be the standard normal density.
Then (A.18) is

0< / / W@ (21— 1) (z2) dzadzy
(A.19) T

o0 0
- / / W (2)$ (z2)¢ (z1)e 1 1e™Co1eComte =112 4o 7y
—00 J —0OQ

Equivalently we have, for ajk; > 0,

0< / - / Y W@ ()b (1) Dr gz dzy
(A.20) T

< l+/coo /°° W(2)¢ (2 (z2)e DM dzpdzy.
2 —00

In the last integral of (A.20) whemy > Ca, ¥$°(z) = 1. Thus for anyy; (2)
W(z) <0forallzy > Ca. If W(2) < 0 on a set of positive Lebesgue measure, then
the last integral in (A.20) tends teoco asp1 — oo. This would be a contradiction
and soW (z) = 0 a.s. forzy > C,. Thus forzy > Co, ¥ (2) = ¥7P(2). This type of
argument, lettingt — oo so that (A.20)— oo, is due to Stein. See, for example,
Stein (1956).

In a similar fashion we show that

vi@ =v5P@2)  forzp> Co,
vi@=vP@2  forzi<Cy,
Vi@ =vy53P@2)  forza<Ca.



142 A. COHEN AND H. B. SACKROWITZ

Therefore y*(z) = ¥ (z2) whenever(z1 < C1,22 < C2), (z1 < C1,22 > C2),
(z1 > Co2,22 < C1) and (z1 > C2,z2 > C). That is, ¥*(2) = ¥ (2) unless
C1<z1<Co0rC1 < z2 < Co. Next return to (A.14) and consider= (1, 1)’
We have

(A.21) 0< E i@ +¥3@ — viP@ — ¥5°2).

Let V(2) = (V5@ + ¥3 @ — P2 — ¥3P(2). In the manner that (A.20)
followed from (A.19), we have that (A.21) yields

0< f . / T V@2 — DD dzydz,

(A.22) o +Cy

= 2+/c /c V(@) )¢ (22 — De D dzydzy.
2 1

When z1 > C> and z2 € [C1, C2] we haveV(z) < 0. As before, we have a
contradiction in (A.22) asu1 — oo unlessy*(z) =1 in {z:z1 > C2,C1 <
72 < Ca}.

Similarly it can be shown thag*(z) = ¥5?(2) for almost allz not lying in the
box

(A.23) {z:C1 =21 <C2,C1 <22 < C3}.

The final step is to show that*(z) = ¥SP(z) on (A.23). NowySP(z) = 1
on (A.23), so (A.15) would be violated when = 0 if ¥*(z) # 1 on a set of
positive measure in (A.23). This completes the prodil

PROOF OFTHEOREM 5.4. As in the case of the proof of Theorem 4.4 we
appeal to the Matthes and Truax (1967) theorem. We must show that the step-down
procedure is monotone iy for fixed (v, ..., y;) if and only if p > 0.

Now recognize that the step-down procedure is of the form rdjgedf z1 >
C(29), 2@ = (zo,...,zx), or in terms of the coordinates gfit is of the form
reject if

k k
yitpy yi> C(py1+yz+p2y,-,
(A.24) =2 =3

k k—1
POL+ YD)+ Y3+ P Y Yieoeip D Vi +yk>-
i=4 i=1

Note that the left-hand side of (A.24) is increasingyinfor fixed y», ..., yr. We

claim the right-hand side of (A.24) is nonincreasingyinfor fixed y», ..., yx as

long asp > 0. To see this, note that(z?) is a nonincreasing function of its
arguments. Thatis,asapy,i =2, ..., k, increases it becomes easier to rejé¢t

that is, the critical value in the step-down sequence can only remain the same
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or become smaller. For example, if all, i = 2, ..., k, are less tharCy, then
C(z?) = Cy. If exactly one ofzy, ..., zx is bigger tharCy, thenC (z2?) = Cy_1.
Thus the conditions of the Matthes and Truax theorem are met and the step-down
procedure (and step-up procedure) are admissible for VRI as lopg-d&

Next we show that ifo < 0, then the step-down (step-up) procedures are not
monotone on some sections (monotoneyirfor fixed yo, ..., yr) and therefore
can be improved on these sections. Toward this end recall that

(A.25) y=%"1z and z=3y.

Letr =(1p p---p) be the first column ok and define the points* andz**
as follows:

7" = ((Cx-1+Ci) /2, Cx, ..., Cy),
7 =7" —er.

The step-down procedure accepls whenz* is observed (it is a boundary point
of the acceptance region). Sinpe< 0 when 0O< ¢ is sufficiently small, the step-
down procedure will reject™*. It follows from (A.25) that

V'=SZ"=2Z" +er)=2Z" +e2r
=y +(,0,...,0).

Thus the step-down is not monotoneyin A similar argument works for step-up.
O
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