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DEPTH WEIGHTED SCATTER ESTIMATORS

BY Y1IJUN Zuo! AND HENGJIAN CuI?
Michigan Sate University and Beijing Normal University

General depth weighted scatter estimators are introduced and investi-
gated. For general depth functions, we find out that these affine equivariant
scatter estimators are Fisher consistent and unbiased for a wide range of mul-
tivariate distributions, and show that the sample scatter estimators are strong
and ,/n-consistent and asymptotically normal, and the influence functions
of the estimators exist and are bounded in general. We then concentrate on
a specific case of the general depth weighted scatter estimators, the projec-
tion depth weighted scatter estimators, which include as a special case the
well-known Stahel-Donoho scatter estimator whose limiting distribution has
long been open until this paper. Large sample behavior, including consis-
tency and asymptotic normality, and efficiency and finite sample behavior,
including breakdown point and relative efficiency of the sample projection
depth weighted scatter estimators, are thoroughly investigated. The influence
function and the maximum bias of the projection depth weighted scatter
estimators are derived and examined. Unlike typical high-breakdown com-
petitors, the projection depth weighted scatter estimators can integrate high
breakdown point and high efficiency while enjoying a bounded-influence
function and a moderate maximum bias curve. Comparisons with leading es-
timators on asymptotic relative efficiency and gross error sensitivity reveal
that the projection depth weighted scatter estimators behave very well over-
all and, consequently, represent very favorable choices of affine equivariant
multivariate scatter estimators.

1. Introduction. The sample mean vector and sample covariance matrix have
been the standard estimators of location and scatter in multivariate statistics. They
are affine equivariant and highly efficient for normal population models. They,
however, are notorious for being sensitive to unusual observations and susceptible
to small perturbations in dataf -estimators [Maronna (1976)] are the early robust
alternatives which have reasonably good efficiencies while being resistant to small
perturbations in the data. Like their predecessorsMhestimators unfortunately
are not globally robust in the sense that they have relatively low breakdown
points in high dimensions. The Stahel-Donoho (S-D) estimator [Stahel (1981) and
Donoho (1982)] is the first affine equivariant estimator of multivariate location and
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scatter which attains a very high breakdown point. The estimator has stimulated
extensive research in seeking affine equivariant location and scatter estimators
which possess high breakdown points. Thoyghconsistent [Maronna and Yohai
(1995)], the limiting distribution of the S—D estimator remained unknown until
very recently. This drawback has severely hampered the estimator from becoming
more prevalent and useful in practical inference. The limiting distribution of the
S-D (and general depth weightet)cation estimator(s) has recently been
discovered by Zuo, Cui and He (2004). Establishing the limiting distribution (and
studying other properties) of general depth weighted and (particularly) the S-D
scatter estimators is one goal of this paper.

In addition to the S-D estimator, affine equivariant estimators of multivariate
location and scatter with high breakdown points include the minimum volume
ellipsoid (MVE) and the minimum covariance determinant (MCD) estimators
[Rousseeuw (1985)] and-estimators [Davies (1987) and Lopuhad (1989)].

A drawback to many classical high breakdown point estimators though is the
lack of good efficiency at uncontaminated normal models. Estimators which can
combine good global robustness (high breakdown point and moderate maximum
bias curve) and local robustness (bounded influence function and high efficiency)
are always desirable. Proposing (and investigating) a class of such estimators is
another goal of this paper.

Breakdown point serves as a measure of global robustness, while the influence
function captures the local robustness of estimators. In between the two extremes
comes the maximum bias curve. A discussion of the maximum bias curve of scatter
estimators at population models (with unknown location), seemingly very natural
and desirable, has not yet been seen in the literature, perhaps partially because of
the complication and difficulty to derive it. Providing an account of the maximum
bias of projection depth weighted scatter estimators is the third goal of this paper.

To these ends, general depth weighted estimators are introduced and studied.
The S-D estimator is just a special case of these general estimators. The paper
investigates the asymptotics of the general depth weighted scatter estimators.
Sufficient conditions for the asymptotic normality and the existence of influence
functions of the general estimators are presented. They are satisfied by common
depth functions including Tukey halfspace [Tukey (1975)] and Liu simplicial [Liu
(1990)] depth. The paper then specializes to the projection depth weighted scatter
estimators and examines their large and finite sample behavior. The asymptotic
normality of the S—D scatter estimator follows as a special case. The influence
function (together with the asymptotic relative efficiency) of the projection depth
weighted scatter estimators is compared to those of some leading estimators.
To fulfill the third goal of the paper, the maximum bias (under point-mass
contamination) of the projection depth weighted scatter estimators for elliptical
symmetric models is derived.

Findings in the paper reveal that the S-D and the projection depth weighted
scatter estimators possess good robustness properties locally (high efficiency and
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bounded influence function) and globally (high breakdown point and moderate
maximum bias) and behave very well overall compared with the leading competi-
tors and, thus, represent favorable choices of scatter estimators.

The empirical process theory approach in the paper is useful for other depth
applications. The treatment of the maximum bias of scatter estimators here sets a
precedent for similar problems.

The rest of the paper is organized as follows. Section 2 introduces general depth
weighted scatter estimators and investigates their Fisher consistency, asymptotics
and influence functions. Section 3 is devoted to a specific case of the general
depth weighted scatter estimators, the projection depth weighted scatter estimators.
Here, sufficient conditions introduced in Section 2 for asymptotics and influence
functions are verified and the corresponding general results are also concretized.
Furthermore, the asymptotic relative efficiency, the influence function and the
gross error sensitivity of the estimators are derived and compared with those of
leading estimators. The maximum bias curve (under point-mass contamination)
of the estimators is also derived and examined. Finally, the finite sample
behavior of the estimators, including breakdown point and relative efficiency,
is investigated. Simulation results with contaminated and uncontaminated data
confirm the validity of the asymptotic properties at finite samples. The paper ends
in Section 4 with some concluding remarks. Selected (sketches of) proofs and
auxiliary lemmas are saved for the Appendix.

2. General depth weighted scatter estimators. Depth functions can be
employed to extend the univariatefunctionals {-statistics) to the multivariate
setting [Liu (1990) and Liu, Parelius and Singh (1999)]. For example, one can
define a depth-weighted mean based on a given depth funBiienF) as follows
[Zuo, Cui and He (2004)].

1) L(F)=/xw1(D(x,F))dF(x)/f w1(D(x, F))dF (x),

wherew1(+) is a suitable weight functionuf; and D are suppressed ih(-) for
simplicity]. Subsequently, a depth-weighted scatter estimator basdd(onF’)
can be defined as

S(F)= /(x — L(F))(x — L(F))'
(2)
x wz(D(x,F))dF(x)//wz(D(x,F))dF(x),

where wa(-) is a suitable weight function that can be different fram(.).
L(-) andS(-) include multivariate versions of trimmed means and covariance ma-
trices. The latter are excluded in later discussion though for technical convenience.



384 Y. ZUO AND H. CUI

To ensure well-defined (F) andS(F), we require

/wi(D(x, F))dF(x) >0,
3) |
/||x||’w,~(D(x,F))dF(x)<oo, i=12,

where|| - || stands for the Euclidean norm. The first part of (3) holds automatically
for typical weight and depth functions and the second part becomes trivial if
E|X|? < oo or if w;, i = 1,2, vanishes outside some bounded set. Replacing
F with its empirical versiorF;,, we obtainL (F,) andS(F,) as empirical versions

of L(F) and S(F), respectivelyL(-) andS(-) distinguish themselves from other
leading estimators such as MVE- and MCI3-, M- and CM-estimators in the
sense thaL(-) is defined independently &f(-). They are also different from the
ones in Lopuhaé (1999) since no prior location and scatter estimators are needed
to define themselves. With the projection depth func®(., -) (see Section 3),

L(-) andS() include as special cases the well-known Stahel-Donoho location and
scatter estimators, respectively.

In addition toPD(-, -), common choices oD(., -) include the Tukey (1975)
halfspace depth functio{D(x, F) = inf{P(H): H a closed halfspace € H},
and the Liu (1990) simplicial depth functio®) (x, F) = P(x € S[X1, ..., Xa+1]),
whereX1, ..., X411 is a random sample fro andS[x1, ..., x411] denotes the
d-dimensional simplex with verticesy, ..., xz+1. Weighted or trimmed means
based on the latter two depth functions were considered in Liu (1990), Dimbgen
(1992) and Massé (2004). For all these depth functidris, and S(-) are affine
equivariant, that is,L(Fax+p) = AL(F) + b, andS(Fax1») = AS(F)A’ for any
d x d nonsingular matrixA and vectom € R?. In fact, this is true for anwffine
invariant D(-,-) [i.e., D(Ax + b, Fax+») = D(x, F)]. With such D(-, -) and for
F centrally symmetric about € R? [i.e., Fx_g(-) = Fo—_x(-)], L(F) is Fisher
consistent [L(F) = 6] and L(F},) is unbiased for 6 if EX < oo [Zuo, Cui and He
(2004)]. This turns out to be true also f8fF) and S(F,). That is, for a broad
class of symmetric distributions (including as special cases elliptically symmet-
ric F) with E||X||? < 400, S(F) = k Cov(X) and E(S(F,)) = «, Cov(X), for
some positive constantsandxk;, (with k, — x asn — 00).

L(F) and L(F,) have been studied in Zuo, Cui and He (2004) and Zuo, Cui
and Young (2004) with respect to robustness and large and finite sample behavior.
This current paper focuses 6tiF) andS(F,). Throughout the paper, we assume
that 0< D(x, F) <1 andD¢(.,-) is continuous inc and translation invariant, that
is, D(x + b, Fx4») = D(x, F) for the givenF and for anyb € R¢.

+/n-consistency and asymptotic normality. Define
H, () =/n(D(-, Fy) = D(-, F)), | Hnllooc = SUP [Hp(x)].

xeRd
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For a givenF, denoteD, = {x:D(x,F) >r} for 0<r < 1. Let w,.(l) be the
derivative ofw; for i = 1,2. A function g(-) on [a, b] is said to be Lipschitz
continuous if there is somé€ > 0 such that|g(s) — g(¥)| < C|s — t] for any
s,t € [a, b]. For 0< rg < 1, define the conditions:

(A1) |Hnlloo = Op(1) and supep, lIxIl1Hn(x)] = Op(D).
(A2) w;(r), i = 1,2, is continuously differentiable of0, 1] and 0 on[0, arg]
for somea > 1, w;%) is Lipschitz continuous o0, 1], wgl) (0) =0, and
I, I llIws” (D (e, FDIAF (x) < oo.
In light of Vapnik—Cervonenkis classes and the CLT for empirical processes
[Pollard (1984) and van der Vaart and Wellner (1996)], it is seen that the first

part of (A1) holds for commomD(-, -) such aHD(-, -) andD(-, -). The first part
of (A2) holds automatically for smooti; such as

w; (r) = ((exp(—K (1= (r/C)%)?) — exp(—K)) /(1 — exp(—K))) I (r < C)
+1(r>0),

(4)

with parameters & C < 1 andK > 0 and indicator functiord (-) (hererg = 0),

i = 1,2, which will be used later. Note that (A2) excludes the trimmed means
and covariance matrices with indicator functionsuas This, however, allows us

to impose fewer and less severe conditionsfoand D(-, -). The second part of
(A1) or (A2) holds with anyg > 0 for common depth functions, in virtue of their
“vanishing at infinity” property [Liu (1990) and Zuo and Serfling (2000a, b)], that
i, limjyj—o0c D(x, F) = 0. In Section 3 we show that (A1) and (A2) hold for
PD(., -) with ro =0.

THEOREM2.1. Under (Al) and (A2), S(F,) — S(F) = 0,(1//n).

The (strong) consistency of(F,) can be established similarly based on
corresponding conditions. Hereafter, we omit the (strong) consistency discussion.
To establish the asymptotic normality 8fF;,), we need the following conditions.
Denotev, (-) = /n(Fy(-) = F(")).

(A3) [p,, IxIZ (i (D(x, F))2AF(x) < 00, [p, IxlT|w;” (Dx, F))dF(x) <
00, i=1,2.

(A4) H,(x) = [h(x,y)dv,(y) + 0,(1) uniformly onS, C Dy, P{Dy, — Sy} =
o(1), for somen and [ (f Iy ' [w™ (D (y, F))h(y, x)|dF (y))?d F (x) < 00,
i=1,2,and{h(x,-):x € S,} is a Donsker class.

Note that with a positiverg, (A3) holds automatically for depth functions
vanishing at infinity. (A4) holds foHD and SD with any positiverg [Dimbgen
(1992) and Massé (2004)] and other depth functions. For details on a Donsker
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class of functions, see van der Vaart and Wellner (1996). In Section 3 we show that
(A3)—(A4) hold forPD with rog = 0 and smoothw; [such as those in (4)],= 1, 2.

Let vedq-) be the operator which stacks the columns ofpax g matrix
M = (m;;) on the top of each other, that is, &f) = (m11,..., mp1, ...,
Mmig, ..., mpq) . Let M1 ® M> be the Kronecker product of matricé, and M>.
Letks(-, F) = (- — L1(F))(- — L1(F)) — S(F). Define fori =1, 2,

[ xw;(D(x, F))dF(x)
Jwi(D(x, F))dF(x) ’

®) Li(F)=

Ki(x, F) = { [0 = L) (D0, PG, dF )

©) (v = Li(F)wi (DG, F))}

x {/w,-(D(x, F))dF(x)}_l
and
Ki(x, F)

) [kG, Pwe’ (DG, )G, x)dF () + ks(x, Fwa(D(x, F))
Jw2(D(x, F))dF(x) '

THEOREMZ2.2. Under (A1)-(A4), we have

12 1
S(Fy) — S(F) = ;Z(K(Xi) — E(K(X)))) +0p< )

i=1 n

where K (-) = K (-, F) = K1(-, F)(L2(F) — L(F)) — (L2(F) — L(F))(K1(-, F))'".
Hence,

JA(VedS(F,)) — vedS(F))) > N2(0, V),
where V isthe covariance matrix of vea K (X)).

The main ideas and the outline of the proof are as follows. The key problem is
to approximate

A ( [ hiowi (D, Fp)dF o)

—/h,-(x)w,-(D(x,F))dF(x)), i=12

whereh1(x) =x — L(F) or 1 andha(x) = kg(x, F) or 1. The difficulty lies in
the first integrand—it depends af,. By differentiability of w;, there is0;,(x)
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betweenD(x, F) andD(x, F,) such that
Iy = f hi (0w (D(x, F)) dvg(x) + / hi () w® (61 () Hy (x) d Fy (x).

The CLT takes care of the first term on the right-hand side. Call the seconderm
Then by (Al) and (A2),

_ /h,-(x)wi(l) (D(x, F))Hy(x) d Fy(x) +0,(1).

Now by virtue of (A3) and (A4) (and, consequently, asymptotic tightnesd,Qf
and Fubini’'s theorem,

2= ( [ Hiue® D6, P ) dF(x)) dva(y) + 0p(D).

The desired results in Theorem 2.2 follow from the above arguments. See the
Appendix for details.

Influence function. Now we study the influence function ¢f-). For a given
distribution F in R? and ane > 0, the version of contaminated by an amount
of an arbitrary distributiorG in R? is denoted by (e, G) = (1 — ¢)F +&G. The
influence function of a functionalT” at a given poink € R for a givenF is defined
as [Hampel, Ronchetti, Rousseeuw and Stahel (1986)]

IF(e: 7. F) = lim (T(F(e.8:)) = T(F))/e.

wheres, is the point-mass probability measurexat R?. IF(x; T, F) describes
the relative effect (influence) ofi of an infinitesimal point-mass contamination
at x, and measures the local robustness7TofAn estimator with a bounded
influence function (with respect to a given norm) is therefore robust (locally, as
well as globally) and very desirable. Define for ang R?,

He(x,y) = (D(x, F(e,8y)) — D(x, F))/e, [ He (D) lloo = sup |He(x, y)I.

xeR

If the limit of H.(x,y) exists ase — 0T, then it is IF(y; D(x, F), F). In
the following, we assume thafE(y; D(x, F), F) exists. The latter is true for
the halfspace [Romanazzi (2001)], the projection [Zuo, Cui and Young (2004)], the
weightedL? [Zuo (2004)] and Mahalanobis depth (MD) functions. To establish
the influence function of(-), we need the following condition, a counterpart
of (Al). Denote byO,(1) a quantity which may depend oy but is bounded
ase — 0.

(AL) IHe(9)lloo = Oy(1) and supp, llxll|He (x, y)| = Oy (D).
Condition (AX) holds forHD and weightedL? depth with a positive.g and
for PD andMD with rg = 0. Replaceh(y x) in (6) and (7) byiF(x; D(y, F), F)

and call the resulting functionk; (x, F), i = 1,2, andK,(x, F), respectively. We
have the following:
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THEOREM2.3. Under (Al’) and (A2),
IF(y; S, F) = Ky (y, F) — K1(y, F)(L2(F) — L(F))’
— (La(F) — L(F))(K1(y, F))'.

For smoothw;, i = 1,2, the gross error sensitivity of S: y*(S,F) =
sup,cge 1 F(y; S, F)II, where (and hereafter)|* ||” stands for a selected matrix
norm, is bounded ifg > 0. If rg =0, it is also bounded if SURRda ly!w; (D(y,

F))|| < oo, i =1, 2. The latter is true foPD and MD and suitablew;, i =1, 2
[such as those in (4)].

Note that the setD,, in this section could be replaced by any bounded
set containingD,, or the whole spac®?, depending on the application. The
latter case corresponds tg = 0. Whenrg > 0, by (A2), w;(r) =0,i =1, 2,
for r in a neighborhood of 0, corresponding to a depth trimmed (and weighted)
L(F) andS(F) and a bounded,, for any D(-, -) vanishing at infinity.

This section provides a general mechanism for establishing the asymptotics
and the influence function of general depth weighted scatter estimators. Some
of the sufficient conditions presented here might be slightly weakened in some
minor aspects (e.g., fapy Lipschitz continuity suffices). Also note that results
in Theorems 2.2 and 2.3 become much simplepif= wy or if F is centrally
symmetric sincd.o(F) = L(F) in these cases.

3. Projection depth weighted and Stahel-Donoho scatter estimators. This
section is specialized to the specific case of the general depth weighted scatter
estimators, the projection depth weighted or Stahel-Donoho scatter estimators.

Let © and o be univariate location and scale functionals, respectively. The
projection depth of a pointx € R? with respect to a given distributiof’ of a
random vectorX € R?, PD(x, F), is defined as [Zuo and Serfling (2000a) and
Zuo (2003)]

(8) PD(x, F)=1/(1+ O(x, F)),

where theoutlyingness O (x, F) = sup, =1 (u'x — u(F,))/o(F,), andF, is the
distribution of u’X. Throughout our discussions ando are assumed to exist
for the univariate distributions involved. We also assume thaénd ¢ are
affine equivariant, that is(Fsyic) = su(Fy) + ¢ and o (Fyyic) = |s|o (Fy),
respectively, for any scalarsand ¢ and random variabl¢ € R. ReplacingF
with its empirical versior¥;,, based on a random sampta, ..., X,, an empirical
versionPD(x, F;,) is obtained. Withu ando being the median (Med) and the
median absolute deviation (MAD), respectively, Liu (1992) first suggested the use
of PD(x, F,) as a depth function. For motivation, examples and related discussion
of (8), see Zuo (2003).

To establish the asymptotics and influence function of the projection depth
weighted scatter estimators, some conditionsyuoand o are needed. Denote
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by F,, the empirical distribution function ofu’X;,i = 1,...,n} for any unit
vectoru € R?.

(B1) supy=1ln(Fu)| < 00, supy, =10 (F,) < oo and infy, =10 (F,) > 0.
(BZ) Surﬂuu:llﬂ(Fnu) - M(Fu)l = Op(l/\/ﬁ)1 Sun|u||:1|G(Fnu) - G(Fu)| =
0, (1//n).

Conditions (B1) and (B2) hold for common choices(pf o) and a wide range
of distributions; see Remark 2.4 of Zuo (2003) for a detailed discussion [also see
Zuo, Cui and He (2004)].

3.1. Large sample behavior and influence function.
3.1.1. General distributions.

/n-consistency and asymptotic normality. Denote byPWS(-) a PD weighted
scatter estimator. To establish thg:-consistency ofPWS(F,), we need the
following lemma [Zuo (2003)]:

LEMMA 3.1. Under (B1l) and (B2), supcre«(1 + [x|)IPD(x, F,) —
PD(x, F)| = 0,(1//n).

By the lemma, (A1) holds foPD with ro = 0 under (B1) and (B2). For smooth
w;, i = 1,2, (A2) also holds since sypg. [|x||PD(x, F) < oo under (B1) [see
the proof of Theorem 2.3 of Zuo (2003)] ar}ﬂ||x||w§1)(PD(x, F)dF(x) <
C [||x||PD(x, F)dF (x) < oco. These and Theorem 2.1 lead to the next theorem.

THEOREM 3.1. Assume that wil)(r) is continuous and wél)(r) is Lip-

schitz continuous on [0, 1], wi(l)(r) = O(r") for small r >0, and [ w;(PD(x,
F))dF(x) > 0, i = 1,2. Then under (B1) and (B2), PWS(F,) — PWS(F) =
0p(1/y/n).

Maronna and Yohai (1995) showed thg:-consistency of the S—D scatter
estimator, a special case BWS(F,) (and with w1 = w2). In Theorem 3.1
w®(r) = 0(+) for smallr > 0 can be relaxed ta; (0) = 0 andws" (0) =0,

i =1, 2. Note thatw; in (4) can serve as; in Theorem 3.1.

For smoothw;, i = 1,2, in Theorem 3.1, it is readily seen that (A3) holds
with ro = 0 under (B1). To establish the asymptotic normalityRyWWS(F;,), we
need to verify (A4). For any let u(x) be the set of unit vectorsg satisfying
O(x,F)=u'x — n(F,))/o(F,). If u(x) is a singleton, we also usgx) as the
unique direction. IfX is a continuous random variable, nonuniqueness (@
may occur at finitely many points. Define the following conditions:
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(C1) u(F,) ando (F,) are continuous im, o (F,) > 0, andu(x) is a singleton
except for pointsc € A ¢ R? with P(A) =0.

(C2) The asymptotic representatiopg F,,,,) — u(F,) = %Zl’.’zl fi(X;,u) +
0p(1/y/n) and o (Fu) — o (F,) = 3 X0y f2(Xi,u) + 0p(1/y/n) hold
uniformly for u, the graph set of f; (X, u) : lu|| = 1} forms a polynomial
set class WithE (f; (X, u)) =0 for any/|lu|l =1,

E[ sup ff(x,u)] < +00
lull=1

and

E[ sup | fj(X,u1) — fj(x,uz)ﬂ -0 ass—0,j=12
lug—uz|<é

For details on polynomial set classes, see Pollard (1984). (C1) and (C2) hold for
generalM -estimators of location and scale and a wide range of distributions; see
Zuo, Cui and He (2004) for further discussion. Under these conditions we obtain
the following [Zuo, Cui and He (2004)].

LEMMA 3.2. Under conditions (C1) and (C2), there exists a sequence of
sets S, C R? such that 1 — P{S,} = o(1) and H, (x) = [ h(x, y)dv,(y) + 0,(1)
uniformly over S, with

©9) h(x,y)=(00x, F) fo(y, u(®) + fa(y, u())) /(0 (Fuw) (1 + O(x, F))?).

Hence, for smoothw;, i =1, 2, in Theorem 3.1, (A4) holds fd?D under (B1)
and (C1) and (C2) withrg = 0 [see Section 2.10.2 of van der Vaart and Wellner
(1996) for the verification of a Donsker class]. In light of Theorem 2.2 for general
depth weighted scatter estimators, we have the following:

THEOREM 3.2. For w;, i =1,2,in Theorem 3.1 and under (B1) and (B2)
and (C1)and (C2),

12 1
PWS(F,) — PWS(F) = = " K (X)) +o,,( )
i=1

n

where K (x) = K(x, F) — K1(x, F)(L2(F) — L(F))" — (L2(F) — L(F)) x
(K1(x, F))'. Hence

Jr(Veo(PWS(E,)) — ved PWS(F))) > N(0, V),

where V isthe covariance matrix of veq K (X)).
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Influence function. Now we derive the influence function of the projection
depth weighted scatter matrices. First we need the following lemma [Zuo, Cui
and Young (2004)].

LeEmMmA 3.3. Assume that (C1) holds and the influence functions IF(u'y;
w, F,) and IF(uy; o, F,) exist and are continuous for agiven y € R at u = u(x)
which isa singleton. Then

IF(y; PD(x, F), F)

(10) _ O F)IF((x))'y: 0. Fug) +1F(@x)'y; . Fuer))
G(Fu(x))(l+ O(X,F))z ‘

Condition (B1) holds automatically under the conditions of this lemma and,
consequently, it can be shown that (Abolds withrg = 0. By Theorem 2.3 we
have the next theorem.

THEOREM 3.3. Under the conditions of Lemma 3.3 and for smooth wj;,
i=1,2,in Theorem3.1,

IF(y; PWS, F) = K, (y, F) — K1(y, F)(L2(F) — L(F))’
— (L2(F) — L(F))(K1(y, F)) .

The influence functionF (y; PWS F) in Theorem 3.3 can be shown (details
skipped) to be uniformly bounded ine R? (with respect to a matrix norm). Thus,

y*(PWS F) < o0.

3.1.2. Elliptically symmetric distributions. Now we focus on elliptically
symmetric F and (i, 0) = (Med, MAD). X ~ Fy x is dliptically symmetric
about6 with a positive definite matrixz associated if for any unit vectoru,

u' (X —0) 4 Ju'ZuY with Y 4 —Y, where “d» stands for “equal in distribution.”
First we have this lemma:

LEMMA 3.4. Let MAD (Y) = mg and the density p(y) of Y be continuous
with p(0) p(mg) > 0. Then u(x) isasingleton except at x =6, and (B1) and (B2)
and (C1)and (C2) hold with

f1lx,u) = V' Su(3 — ' (x — 6) < 0})/p(0),
fo(x,u) = \/M/Eu(% — I{u'(x — )| <movVu'Zu})/2p(mo).
The main part of the proof is largely based on Cui and Tian (1994) and the
details are skipped. Asymptotic normality (and consistencyYWS(F;,) follows

immediately from this lemma and Theorem 3.2. The covariance mé&trix
Theorem 3.2 can be concretized.
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Asymptotic normality. Note thatZ = =~Y2(X — 0) ~ Fgy is spherically
symmetric about the origin and/ = (U, ...,Uy) = Z/||Z| is uniformly
distributed on the unit sphergx € R?; ||x|| = 1} and is independent ofZ||
[Muirhead (1982)]. Define

so(x) =1/(1+ x/mo),
sitx) = E(U2 Vsign(Us|x —mo)),  i=1,2,
co= Ewa(so(|Z])),
c1= E(|Z|Pwa(so(l Z1)))/ (dco),
cj = E(1ZI% 331 21w’ (so(1 ZI))) / (4mEp(mo)),  j=2.3,
11(x) = e3(s2(x) — (s1(x) — 52(0))/(d = D) + x*w2(s0(x)),
12(x) = c3(s1(x) — 52(x))/(d — 1) — c1cas1(x) — crw2(so(x)),
where(s1(x) — s2(x))/(d — 1) is defined to be 0 whed = 1.

COROLLARY 3.1. Under the condition of Lemma 3.4and for w;,i =1, 2,in
Theorem 3.1,

n

10 1
PWS(F,) — PWS(F) = - > K (X)) +op< >
i=1

with K (X) = 2Y2((1Z)UU’ + t2(1 Z ) 11) =2 /e and

Ji(Veo(PWS(F,)) — vedPWS(F))) > N(0, V)
with V = o01(I;2 + K4.0)(Z ® X) + o2vedX) ved ), where o1 = 1/(d(d +
A ERZ(|Z]), 02 = 01 + éE(tl(IIZII)tz(IIZII)) + C—%Et%(nznx and K, 4 isa

d? x d?-block matrix with (i, j)-block being equal to 8, 8,; isa d x d-matrix
whichislatentry (j,i) and O everywhereelse, i, j =1,...,d.

Asymptotic relative efficiency. With asymptotic normality established above,
we now are in a position to study the asymptotic relative efficiency of the
scatter estimatoPWS(F,). We shall focus on its estimation of the “shape”
of X, that is, its “shape component”; see Tyler (1983) and Kent and Tyler
(1996) for detailed arguments. For a given shape meaguig(¢; PWS, F) =
»(=~12PWS(F)=~1/2) measures the shape (or bias)RWVS(F) with respect
to X. It clearly is affine invariant. One example @fis the likelihood ratio test
statisticpp measuring the ellipticity (sphericity) of any positive definite[see
Muirhead (1982), also see Maronna and Yohai (1995)],

¢o(T) = (tracaT)/d)" / de(T).

For this¢g, nlog(H (¢o; PWS, F,,)) has a limiting distribution. More generally, we
have the following:
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THEOREM 3.4. Assume that scatter functional S(-) is affine equivariant and
for elliptically symmetric Fy 5, S(F) = ¢X for somec > 0and /n(vedS(Fy)) —
ved S(F))) 4 NQO,V)withV =s1(I2+ Kg.4)(EQ® ) +s2veqX) vedx)’, for
somes; > 0,i =1, 2. Then

_ _ d S1
nlog(éo(E~YV2S(FNE ) 5 Sxfy nwsaye @m0,

The details of the proof are skipped, but the main ideas are as follows.
By affine equivariance ofS(-), assumeX = I;. Then we can writeS(F,) =
c(ly +n~Y2Z/c) with N(0, V) as the asymptotic distribution of v&€), where
Z = (z;;). Now expand: log(¢o(X ~ Y28 (F,) = ~1/2)) and write

nlog(go(= Y28 (F,) = ~Y?)) = (tracg Z?) — (tracgZ))*/d)/(2c®) + 0, (n~?)
=7'B7/c? + 0,(n"V/?),

With Z = (211/v/2, . .., 2da /N2, 212, - - -+ 21d+ 223, - - - 2@d-14) andB = diag(l; —
11'/d, Ia—1)/2), Wwherel = (1)4x1. Let A be the asymptotic covariance matrix
of Z. ThenBAB = 51 B. The desired result follows since the rank®fs (d — 1) x

(d + 2)/2. For related discussion see Muirhead (1982).

In light of Theorem 3.4, foPWS(F},), s; = 0;,i =1, 2, andc = ¢1 are given in
Corollary 3.1; for the sample covariance mat@©V (F,), c=1ands; =1+«
if Fy.s has kurtosis 8 [Tyler (1982)]. Clearly, the rati@?(1 + «)/o1 measures
the asymptotic relative efficiency (ARE) 8WS(F),) with respect taCOV (F),) at
the given modelFy ». The same idea was employed in Tyler (1983) to compute
AREs of scatter estimators. At the multivariate normal modek, 0, hence the
ratio c2/o1 is the ARE ofPWS(F,) with respect taCOV(F,).

Considerw;, i = 1,2, in (4). They are selected to meet the requirements in
Theorem 3.1 and to down-weight exponentially less deep points to get better
performance of PWS. Also, appropriate tuning@®fand K can lead to highly
efficient (and robust) PWS [see Zuo, Cui and He (2004) for related comments].
The behavior otw; is depicted in Figure 1 witld = 0.32 andK = 0.2.
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FIG. 1. Thebehavior of wo(r) with C =0.32and K = 0.2. Left: wo(r). Right: wél) r).
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TABLE 1
The asymptotic relative efficiency of PWS versus the dimension d

1 1 1 1
C=ajeoiGa C= Liiaje1G/a C=tva C=tva
d K=2 K=3 K=2 K=3
2 0.922 Q883 Q904 Q862
3 0.957 Q933 Q945 Q918
4 0.976 Q959 Q969 Q945
5 0.980 Q974 Q979 Q965
6 0.989 Q980 Q983 Q974
7 0.990 Q986 Q986 Q980
8 0.993 Q991 Q991 Q985
9 0.994 Q992 Q992 Q987
10 0995 Q993 Q994 Q980
15 0998 Q998 Q996 Q995
20 100 0999 Q999 Q997
30 100 100 100 0999

Table 1 reports the AREs dPWS(F,,) [with respect toCOV(F,)] versus
the dimensiond and selected” and K at N(0, I;) with w»> above. Here we
selectC’s that are close to Ma&®D(X, F)) to get better performance of PWS.
It is seen thaPWS(F,,) possesses very high ARE for suitalleand C, which, in
fact, approaches 100% rapidly as the dimensidncreases. Note that the ARE
of PWS(F;,,) here does not depend on that of the underlying projection depth
weighted meanfPWM). The ARE of the latter depends am, and behaves like
that of PWS(F;,) [Zuo, Cui and He (2004)].

Influence function. Under the condition of Lemma 3.4, it can be shown that

/ I==Y2
IF(M(X) y, Med, Fu(x)) = m3|gr‘)€ p3 y),
==Y _ _
IF(u(x)'y, MAD, Fy(x)) = 2o 15 5x] sign(|x’ =~ ty| — mol| =~ 2x|)).

These functions are continuousidlc) almost surely. By Lemmas 3.4 and 3.3 we
have

IF(x; PD(y, F), F)
_ sgUE 2yl
mo
5 <||2—1/2y||sigr(|y/2—1x| — mol| =2y sign(y’x—lx>>
dmop(mo) 2p(0)
By virtue of Theorem 3.3, we have the next corollary.
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COROLLARY 3.2. Under the condition of Lemma 3.4and for w;,i =1, 2,in
Theorem 3.1,

IF(x; PWS, Fo 1) = (t1(||96||)xx//IIXII2 + t2(l|x11)12)/co,
IF(x; PWS, Fp.x) = SY2(IF(Z7Y2(x — 0); PWS, Fo,1,))SY2.

Figure 2 indicate$F (x; PWS, Fy ) is uniformly bounded inx € R relative to
a matrix norm.

Maintaining a good balance between high efficiency and a bounded influence
function is always a legitimate concern for estimators. Many existing high
breakdown estimators fail to do so though. CM- [Kent and Tyler (1996)] and
7- [Lopuhad (1999)] estimators are among the few exceptions. In light of these
papers, we consider a gross error sensitivity index for the shape of the scatter
estimators,

G2(S, F) = GESS, F)/((1+2/d)(1 — 1/d)"/?),

where GES$S, F) is the gross-error-sensitivity df(F)/tracgS(F)), the shape
component of the scatter function&{F). In our case it is seen thai,(PWS,

F) = sup.-qt1(r)/(co(d +2)). Table 2 reports the ARE andr, of scatter
estimators (along with those of the corresponding location estimators listed in
parentheses; in the location cage= y*) for d = 2,5 and 10.

Table 2 lists only the ARE andi, for t- and PWS estimators. The
corresponding indices for the CM-estimators are omitted since they are almost
the same as those of theestimators. The indices for(CM)-estimators are
obtained by optimizingG, of the corresponding location estimators based on
Tukey's biweight function [Kent and Tyler (1996) and Lopuha& (1999)]. The
weight functionw, in (4) is employed in our calculation for the indices of PWS
[and w1 in (4) for PWM] with K = 3 andC = 1/(1 + /€;d ), where&; = 2.3,

& = 1.2 and &0 = 0.9 for PWS [andé; = 1.2 for PWM]. The values ofC
here are slightly different from those in Table 1 to get (nearly) optimal ARE
and G2 simultaneously. Inspecting Table 2 reveals that, compared with leading

R
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FiG. 2. Thebehavior of IF(x; PWS, Fp f,) with wp in (4). Left: —(1, 1) entry. Right: —(1, 2) entry.
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TABLE 2
The ARE and the gross error sensitivity index G, of
scatter (location) estimators

d  Esimator ARE Go

2 7(CM)- 0.8670 (0.9057) 1.415 (1.861)
PWS  0.8810 (0.9152) 1.318 (1.818)
5 7(CM)- 0.9099 (0.9354) 1.275 (2.588)
PWS  0.9180 (0.9516) 1.057 (2.546)
10  t(CM)-  0.9505 (0.9606) 1.224 (3.425)
PWS  0.9620 (0.9734) 0.979 (3.421)

competitors, the projection depth weighted scatter estimator PWS behaves very
well overall.

Maximum bias. Define themaximum bias of a scatter matrixS under ane
amount of contamination & asB(e; S, F) = sug; [|S(F (e, G)) — S(F)|I, where
G is any distribution inR?. The contamination sensitivity of S at F is defined
as y(S, F) = lim._ o4 sup; I(S(F(e, G)) — S(F))/ell; see He and Simpson
(1993) for a related definition for location estimatoBge; S, F) is the maximum
deviation (bias) ofS under ane amount of contamination akf, and measures
mainly the global robustness 6t y (S, F) indicates the maximum relative effect
on S of an infinitesimal contamination &, and measures the local, as well as
global, robustness of. The minimum amount* of contamination atF which
leads to an unboundeBl(s; S, F) is called the (asymptotid)reakdown point (BP)
of S atF, thatis,e* =min{e: B(g; S, F) = oco}.

In many cases, the maximum bias is attained by a point-mass distribution;
see Huber (1964), Martin, Yohai and Zamar (1989), Chen and Tyler (2002) and
Zuo, Cui and Young (2004). In the following, we derive the maximum bias
and contamination sensitivity of the shape component of PWS under point-mass
contamination. We conjecture that our results hold for general contamination. For
any 0<e¢ < 1/2 andc € R, defined; =dy(¢), m;(c,¢),i =1, 2, by

1
P(Y <di(e)) = 508"
1-2¢
P(Y —el < mae,e)) = 5.
1
P(|Y —c| <ma(c,e)) = 215

(assume thatly, m1, mo are well defined). Fox € R?, write x’ = (x1, x5) with
x1=x11€ R andxz = (x21, ..., x2-1)) € R¥~L. Likewise, partition the unit
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vectoru € R?. For anyr > 0, define

1—u?||xoll + lurxs — fau, 7, dy)|
filx,r,e) = sup ’
O<up<1 Sfa(ua,r,d1)

- d
Fre)= sup luir — fa(us,r, 1)|’
o<u;<1  J3(u1,r,d1)
with f3(u1, r, d1) being the median ofm1( fa(u1, r, d1), &), lur1r — fa(us,r,d1)l,
mz(f4(u1, r, dl),s)}, f4(u1,r, dl) being the median Of{—dl,ulr, dl} (8 is
suppressed irf3 and f4). Define, fori =1, 2,

#ie)=1-) [ xlwi( )dFo(x>,

1+ fa(x,r,e)

vty =a-e [ xflwz( )dFo<x>,

1+ fi(x,r,¢e)

1
ni(r,e) =(1— S)fwi<m>d170(x)7
Yi(r, €) :8wi(;>,

1+ fo(r,e)
by(r. ) = YL &) — V20 &) + y2(r, er? | (¢a(r,e) + yi(r, e)r)?
o n2(r. ) + ya(r.€) (n1(r, €) 4 y1(r, £))?

_ 101 )2, £) + (P10, ) ya(r. €) + da(r. £)ya(r, £))r
(m(r, &) + y1(r, £))(n2(r, €) + ya(r, €))

yi(r, €)ya(r, e)r?
(n1(r, &) + ya(r, ©)) (n2(r, &) + y2(r, )’
ba(r, &) = Yra(r, &)/ (n2(r, €) + y2(r, €)) — c1.
For anyy € R?, denotej = ©~1/2(y — 6). We have the next theorem:

THEOREM 3.5. Under the condition of Lemma 3.4 and for any ¢ > 0 and
y e RY,

PWS(F (¢, 8y)) — PWS(F) = ZY2(b1(II51l, &)75' /1711 + b2(II31l, ) 1a) =2,

For weight functionsw;, i = 1, 2, in Theorem 3.1, it can be shown that for any

e < 1/2, trac&€PWS(F (¢, §,)) — PWS(F)) is uniformly bounded with respect to
y € R%. Hence we have the following:

COROLLARY 3.3. Under the condition of Lemma 3.4 and for weight functions
wi, i =1,2,inTheorem 3.1,e*(PWS, F) =1/2.
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Focusing again on the shape component of PWS and based on the result in
Theorem 3.5, we can define in a straightforward fashion a gross error sensitivity
index (GESI), a maximum bias index (MBI) and a contamination sensitivity index
(CSI), respectively, as follows:

’

GESKPWS, F) = supm lim ba(I51l, ) 2G5 /151D Y2 e
yeRd e—0

MBI (e; PWS, F) = sup [lb1 (I3 &) TV2G /151922,
yeR

CSIPWS F) = lim_sup [Iba(lI 71l ) Z72GF5/IF1H /el
V" yeR

In view of Corollary 3.2, it can be seen that GEBNS F) = A1 x
Sup.-glf1(r)|/co, Which is < CSI(PWS, F), where 1 is the largest eigenvalue
of . Note that under point-mass contamination the only difference between CSI
and GESI is the order in which the suprema and the limits are taken in their respec-
tive definitions above. This might tempt one to believe that these two sensitivity
indices are the same if it is taken for granted that the order in which the supremum
and the limit are taken is interchangeable. Unfortunately, this is not always the
case [see, e.g., Chen and Tyler (2002)]. In the following, we prove that for PWS,
the ordeiisinterchangeable and C®WS, F) is the same as GERWS, F). The
proof and the derivation of the following result, given in the Appendix, is rather
technically demanding and has no precedent in the literature.

THEOREM 3.6. Under the condition of Lemma 3.4 and for w;, i = 1,2, in
Theorem 3.1:

(@) MBI(e; PWS, F) = A18Up.~oba(r, ¢) and
(b) CSKPWS, F) = GESIKPWS, F) = A1SUpq|f1(r)]/co.

The behavior of MBle; PWS, N(O, I2)) [and B(e; PWS, N (0, I2))], together
with that of the (explosion) maximum bias of MAD &f(0,1) — B(e; MAD,
N(0, 1)) (note that no separate shape and scale components correspond to MAD,
a univariate scale measure), as functions & revealed in Figure 3. The slopes
of the tangent lines at the origin represent the CSh(oof PWS and MAD. From
the figures we see that the maximum bias (index) of PWS is quite moderate (and
slightly larger than that of the univariate scale measure MAD) and it increases
very slowly as the amount of contaminatierincreases and jumps to infinity as
0.45 < ¢ — 3, confirming that the asymptotic breakdown point of PW$.is

3.2. Finite sample behavior. In this section the finite sample robustness and
relative efficiency oPWS(F;,) are investigated. Finite sample results in this section
confirm the asymptotic results in the last section.
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FiG. 3. The behavior of the maximum bias (index) of PWS and MAD. Left: maximum bias indices
of PWSand MAD. Right: maximum biases of PWSand MAD.

3.2.1. Finite sample breakdown point. Let X" ={X4,..., X,,} be a sample of
sizen from X in R? (d > 1). The replacement breakdown point (RBP) [Donoho
and Huber (1983)] of a scatter estimatoiat X" is defined as

RBP(V, X") = min{ﬁ tracgV(XH)VXH) L vxmHTlv(xh)) = oo},
n

whereX” is a contaminated sample resulting from replagingoints of X with
arbitrary values.

In the following discussion of the RBP of the projection depth weighted scatter
estimators(u, o) = (Med, MAD ), where MAD; is a modified MAD which can
lead to a slightly higher RBP. Similar ideas of modifying MAD to achieve higher
RBP were used in Tyler (1994) and Gather and Hilker (1997). Here MAD =
Med, ({|lx1 — Med(x™)|. ... [x, — Med(x")|}), with Med(x") = (x(|u-+k)/2)) +
X(l(n+14k)/2)))/2, for 1 <k <n, andx) < --- < x(,) being ordered values of
X1,...,%, in R (note MAD; = MAD). Denote by PWSK the corresponding
scatter estimator.

A random sampl&™” is said to ban general position if there are no more than
d sample points ok” lying in any (d — 1)-dimensional subspace. Lgt| be the
floor function. We have the next theorem.

THEOREM 3.7. Let (u,0) = (Med, MAD) and PD(x, F) be the depth
function. Let w;(r) be continuous on [0,1] and positive and < M;r! on
(0,1] for some M; > 0,i =1,2. Then for X" in general position (n > 2d),
RBP(PWS:, X") =min{|(n — k +2)/2|/n, |(n +k +1—2d)/2]/n}.

Whenk =d ord + 1, RBRPWS, X") = | (n — d + 1)/2] /n, the upper bound
of RBP of any affine equivariant scatter estimators; see Davies (1987). The
RBP of the Stahel-Donoho scatter estimator, a special caBsV8f, has been
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given in Tyler (1994). Note that for the smooth in (A2), w;(r) < M;r’ holds
automatically; = 1, 2. The result in Theorem 3.7 holds true for anyando that
share the RBPs of Med and MADrespectively.

3.2.2. Finite sample relative efficiency. We generate 400 samples from the

model (1 — ¢)N (0, I2) + €51000) With ¢ = 0%, 10% and 20% for sample sizes
n =100,200 ...,1000. An approximate algorithm with time complexi®y(n®)
(for d = 2) is utilized for the computation of theD, (X;), i =1,...,n, and the
projection depth weighted scatter matrix, o) = (Med, MAD) and the weight
functions w; () defined in (4), withC = 1/(1 + +/2/®~1(3/4)) ~ 0.323 and
K =2, are used in our simulation.

We calculate for a scatter estimatdf, the mean of the likelihood ratio
test (LRT) statistic LRTV,) = = ¥"_; ¢o(V;) with m = 400 andV; being
the estimate for thgth sample. In the case with= 0% (no contamination),
the mean of the:log likelihood ratio test (LLRT) statistic with LLR{@V,) =
%ZTzlnlog(¢0(Vj)) is calculated. The finite sample relative efficiency (RE)
of V,, ate = 0% is then obtained by dividing the LLRT of the sample covariance
matrix by that ofV,, [Maronna and Yohai (1995) used the same measure for finite
sample relative efficiency]. Some simulation results are listed in Table 3.

The finite sample RE oPWS(F,,) related to the sample covariance matrix at
N (0, I) increases from about 80% far= 20 to 91% forn = 100 and is around
90%-93% and very stable far = 100, 200,..., 1000 [and is very close to its
asymptotic value 92% (listed in Table 1)]. In the contamination cases, the results
in Table 3 indicate thdWS(F,,) is very robust, whered3OV (F,,) is very sensitive
to outliers. For the special case BWS,, the Stahel-Donoho estimator, a related
simulation study was conducted by Maronna and Yohai (1995).

TABLE 3
Mean of the likelihood ratio test statistic and relative efficiency

PWS COV PWS COV PWS CovVv RE
n e=0% e =10% & =20% (e =0%)

100 1.022 1.021 1.110 234.09 1.523 420.80 0.913
200 1.011 1.010 1.109 231.03 1.534 407.10 0.911
300 1.007 1.006 1.106 230.04 1528 405.72 0.900
400 1.006 1.005 1.105 227.79 1.539 404.13 0.903
500 1.004 1.004 1.103 227.18 1.555 404.43 0.901
600 1.004 1.003 1.105 227.26 1560 404.78 0.917
700 1.003 1.003 1.103 227.37 1545 403.20 0.930
800 1.003 1.002 1.104 226.28 1.555 404.00 0.932
900 1.002 1.002 1.103 226.27 1549 401.45 0.923
1000 1.002 1.002 1.102 226.19 1.543 401.75 0.926
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Though alternatives exist, the, we select results in a very good performance
of PWS, and satisfies all the requirements in the previous sections. Note that
smallerC can lead to a higher RE #WS, under no contamination, while largér
can lead to a better performanceRS, under contamination. The same is true
for the parametek . Moderate values of andK thus are recommended (and are
used in our simulation); see Zuo, Cui and He (2004) for related discussion.

4. Concluding remarks. General depth weighted scatter estimators are
introduced and studied. The estimators possess nice properties. In a very general
setting, consistency and asymptotic normality of the estimators are established
and their influence functions are derived. These general results are concretized
and demonstrated via the projection depth weighted scatter estimators. The latter
estimators include as a special case the Stahel-Donoho estimator, the first one
constructed which combines affine equivariant and high breakdown point, but has
an unknown limiting distribution until this paper.

Frequently high breakdown point affine equivariant estimators suffer from a low
asymptotic relative efficiency and an unbounded influence function. The projection
depth weight scatter estimators are proven to be exceptions. They combine the
best possible breakdown point and a moderate maximum bias curve (global
robustness) and a bounded influence function (local robustness) and possess, in
the meantime, a very high asymptotic relative efficiency at multivariate normal
models. Simulations with clean and contaminated data sets reveal that the global
robustness and high efficiency properties hold at finite samples.

Finally, we comment that the; in this paper do not include indicator functions.
This allows us to treat general depth and distribution functions. To cover trimmed
means (with indicator weight functions), one has to impose more conditions on
these functions (but the efficiency will be lower).

APPENDIX: SELECTED (SKETCHES OF) PROOFS AND
AUXILIARY LEMMAS

PROOF OF THEOREM 2.1. Denote byl1(F) andi>(F) the numerator and
the denominator ofL(F), respectively, and1(F) and s>(F) those of S(F),
respectively. Write

(11) L(Fw) — L(F) = ((h(F) = 11(F)) = L(F) (l2(Fy) — 12(F))) /12(Fn),

S(Fy) — S(F) = ( [ xx'wa(Dx, F)dFao)

- /xx/wz(D(x, F))dF(x))/sz(Fn)

(12) — So(F)(s2(Fy) — s2(F))/s2(Fy)
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— (L2(Fy) — L2(F))(L(Fy))' = La(F)(L(F,) — L(F))’

— (L(F))(L2(Fy) — L2(F))’

— (L(Fy) = L(F))(L2(Fy))’

+ (L(Fy) — L(F))(L(Fy) + L(F)(L(F,) — L(F))',
with So(F) = [xx'wa(D(x, F))dF(x)/s2(F). We now show that under
(Al) and (A2),

Iin= / Il fwi (D(x, Fp)) — wi (D(x, F))|d Fy(x)

= 0,(1//n), i=1,2

By (A2), there exists &;,(x) betweenD(x, F,,) and D(x, F) such that for
i=1,2,

(13)

Iin < f Ix 1 [w® (6in () — wP(D(x, F))] 'Hj/g N a0
+/ Ixlf w®P(D(x, F)) 'H:’/g)| dF,(x).

Call the two terms in the right-hand sidgl) and Il.(nz), respectively. Let; = aro.
By (A1), D(x, F) + SUp,cga |D(x, Fy) — D(x, F)| = D(x, F) + 0,(1/J/n) =
0;»(x). This and (A2) and (Al) lead to

D / i1, @p. D | Hp (x)]
7 = x||'w; ™ (6in(x)) — w7 (D(x, F))|——=—dF,(x
m {Oi,,(x)>r1}U1)rl ” ” ’ ! ( ' ( )) ! ( ( ))| ﬁ n( )

SC/ ||x||l'<|H”(x)|>idF,,(x):op<<i>i)
{D(x,F)+0,(1//n)>r1)UD;, N N

and

1 Hn 1
Ii(f)=/D el w®(Der, P \/(g)'an(x):op(ﬁ),
o]

Hencel;, = 0,(1/+/n). Likewise we can show that

(14) /wi(D(x, Fy))dF,(x) —fwi(D(x,F))dF(x): 0,(1/+/n).

Let h(x) = xx’, x or 1. It follows from displays (13) and (14) and the CLT that
/h(x)wi(D(x, F)dFy(x) — fh(x)wi(D(x, F))dF(x) = 0,(1/vn).

By (11), the boundedness df(F) and I>(F), and the fact that>(F,) =
Io(F) + 0,(1/y/n), we haveL(F,) — L(F) = 0,(1/y/n). Likewise we have
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Lo(F,) — L(F) = 0,(1//n). These, (12) and the boundednesS®(fF), so(F),
L(F) andLy(F) yield S(F,) — S(F) = 0,(1//n). O

PROOF OF THEOREM 2.2. Employing the notation in the proof of Theo-
rem 2.1, write

ﬁ(/ xx'wa(D(x, Fp))dFy(x) — /xx/wz(D(x, F)) dF(x))

/xx/w§> 02 (X)) H (x) d Fyy (x) +/xx w2(D(x, F))dv, (x),

wheref,, (x) is a point betweerD(x, F,) and D(x, F). Following the proof of
Theorem 2.1 and by (A1)—(A4) (and, consequently, the asymptotic tightnégs of
on S,), we can show that

/xx/w; ) (624 (x)) Hy (x) d Fyy (x)
/xx'wgb D(x, F))H,(x) d Fy(x) + 0,(1)

/xx/wgb D(x, F))H,(x)dF(x) + 0,(1).

Therefore,
ﬁ(/ xx'wa(D(x, Fp))dFy(x) — /xx'wz(D(x, F)) dF(x))

/xx’wgl) D(x, F))H, (x)dF(x)—I—/xx w2(D(x, F))dvy (x) + 0,(1).

By (A4) and Fubini’s theorem, we have
ﬁ(/ xx'wa(D(x, Fp))d Fy(x) — /xx/wz(D(x, F)) dF(x))

o o ( [ 33w (DG, P x)dF ) + xx'wa(Dx, F))) dvy(x)

+o0,(D).
Likewise, we can show that
Vn(s2(Fy) — s2(F))
= ﬁ(/ w2(D(x, Fp))dF,(x) — / w2 (D(x, F))dF(x))

(16)
_/(/ (1) D(y F))h(y x)dF(y)+w2(D(x F)))dvn(x)

+0[)(l)7
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and fori =1, 2 [see the proof of Theorem 2.1 of Zuo, Cui and He (2004)],
Vn(Li(Fy) — Li(F))

N {/(/(y — Li(F))wY (D(y, F)h(y, x)dF (y)

17
a7 +(x—Li(F))wi(D(x,F)))dvn(x)}

X {/wi(D(x, F))}_l—}—op(l).

Note thatsa(F,) = s2(F) +0,(1) andL;(F,) = L;(F) +o0,(1),i =1, 2 (see the
proof of Theorem 2.1). By (12) and (15)—(17), we have

Vn((S(Fn) — (S(F)))
1s) = / (Ks(x, F) — K1(x, F)(La(F) — Ly(F))

— (L2(F) — L1(F))(K1(x, F))") dva(x) + 0, ().
Note that vetad’) = b ® a for anya, b € R?. The desired result now follows from
the CLT. O

PrROOF OFTHEOREMZ2.3. The proof follows closely that of Theorem 2.2 and
is thus omitted. O

PrROOF OF COROLLARY 3.1. By Theorem 3.2K(x) = K,(x, F) since
L;(F) =26 for i =1, 2. Assume without loss of generality thét= 0. For the
given F and(u, o), it follows that

u@) == x/I27 ], (x#£0),
0 (Fu)) =movu(x)Zu(x),  O(x, F)=|=~Y2x||/mo.
Letu =z/||z||. Observe that
Jxx'wa(PD(x, F))dF _ SY2(] zz'wa(so(|1z])) d Fo) =/
JSw2(PD(x, F))dF Jwa(so(l1zI) d Fo

PWS(F) =

- E(||Z||2wz(so<||zn>))21/2( / u’udFo)zl/Z/cozclz

by, for example, Lemma 5.1 of Lopuhada (1989). By Lemma 3.4, it follows that for
anyx,y eR?,

5> ) e
flx,u(y) = %SIQM > 1),

/E .
Fa(x, u(y)) = Vurzuy) sign(ly' = "tx| — mo|| =2y ]).

4p(mo)
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Note thatf1(x, u(y)) is an odd function of. By Lemma 3.2, we have
coKs(x, F)
= [y = aDu (o2 D)h(y, ) dF ()
+ (ex” = e1Dwa(so(| 52y 1))

- 0y = eaD)ws so(IZ~2y 1) Oy, F) falx, u(y))
o (Fu) 1+ 0(y, F))?

+ (xx’ — 1 D)wa(so(I Z7Y2x])).

dF(y)

Leti =X Y2, 5 =22y 5/|I5| =u = (u1, ..., ug) andT be an orthogonal
matrix with x /|| x| as its first column. We have

coKs(x, F) — (xx’ — c1 Z)wa(so(| =~ Y2x])))

/(yy — a1 D) w§” so(IFIN I1FIsEF1) sign(| (3)'F| — mollill)dF(y)

4m3p(mo)
=x1? / {55 = culoywy? (soIFID)IF 1T ) sign(| () & — moll 31}
x {4mGp(mo)} 1 d Fo(3) 21/
= 2”sz{@/||&||&//||&||||&||2— c1la)
x wi? (so(IFID) 1735 1) sign(juea] IF1] — mo)}
x {4m§p(mo)} "t d Fo(5)T' =2
- zl/zT(cs [ sign(iusl 31— mo) dFo5) - clczsl(uxn)ld)T 212
by Theorem 1.5.6 of Murihead (1982). Note that
Tea [ un sign(usl ]~ mo) d Fo() T’

= Tczdiag(s2(|IX]), S2(I1 1D, - - ., Ez(nfu))T’
HIEk

wheres (1) = fu%sign(luﬂt —mo)dFo(y) = (s1(¢) — s2(¢))/(d — 1). Therefore,
we have

= c352(|7 1) g + ea(s2(IF 1) — 52015 D)) -

1 1 X X
K(X)=K;(X, F —2 (| X)) —
(X) = Ky (X, F) = (1<|| DT

+ z<||X||)1d)21/2
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Now invoking Lemmas 5.1 and 5.2 of Lopuhaa (1989), we obtain the desired
result. [J

PrROOF OFTHEOREM3.5. We need the following lemma. Its proof is skipped.
Note thatF (e, §,) = (L — &) F + &6, and F, (e, §y) = (1 — &) F, + €6, for any
unit vectoru.

LEMMA 5.1. Supposethat X ~ F is elliptically symmetric about the origin
with a positive definite matrix ¥ associated. Let a(u) = ~/u'Xu. Then:

1. Med(F, (e, 8,)) = Med{—a(u)d1(e), u'x, a(u)da(e)}, and
2. MAD(F, (e, 8;)) = Med{a)m1(Med(F, (¢, 8x))/a(u), &), [u'x — Med(F,(e,
S )|, awyma(Med(Fy (e, 8x))/a(u), ¢)}.

We now turn to the proof of Theorem 3.5. By Lemma 5.1, for anyR¢, we
have that

1(Fy (e, 8y))/a(u) = Med{—a(u)dy, u'y, a(u)di}/a(u)
= Med{—d1(e), (ZY2u) Ja@) =2y, di(e)},
0 (Fule.8y)) _ d{ml(uwu(s, 5) 8>,
a(u) a(u)
(V2 gy, _ HFue.5)) ‘
a(u) a(u) ’

(A5, )|

Let v = 224 /a(u), § = Y2y and¥ = £~Y2x. Then all the mappings are
one-to-one andlv|| = 1. Denotefs(u, x, d1) = Med{—d1, u'x, d1}. Then

O(x, F(e,8y))
— sup v'E — f5(v,§,d1)
[[v]|l=1 Med{ml(fS(U, 5}’ d1)7 8)9 Iv/y - f5(va y’ dl)la mZ(fS(Uv y’ dl)» 8)} .

Let U be an orthogonal matrix witly/| 7| as its first column, and/’v = v.
Then f5(v, y, d1) = Med{—d1, v1[|3 ||, d1} = fa(v1, [7]l,d1) and O (x, F' (e, 8y))
becomes

sup{0'U'x — fa(v1, I3, d1)}
loll=1

x {Med{ma(fa(@1, I7]l. d1), €),

101151 — fa(On, 151, d)], ma(fa@a, 1511, do), €)})

= ”§|l|J_IOl(5'U')E — fa(@1, I91l, d)/ 301, 71l dv).
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It follows that

/xx’wz(PD(x, F(e,8y)))dF (x)

. v'U'X — fa(vg, I31l, d1)
= [ V255w <1 (1+ sup > Ehats ))21/2de
/ ? / ||ﬁ||:pl f3(vg, IV, do) 0

'x — ) y 9dl)
_ 21/2Uxx’w2(1 (1+ sup = fatus, 1 ))U/El/ZdFo(x).
/ / =1 f3(u1, Iy, d1)

Observe that

'x — v, d
sup u'x f4(u1~, 191, d1)
luj=1  JS3(ua, Iy, d1)

uspxg +urxy — fa(ug, |31, dr)

= Su Su =
P P Faur, 151, dD)

—1<up<1 2
=M= gl =y/1-uf

s 1—ufllxall + Jurvs — fa(u, 151, )
O<uy<1 f3(ug, Iyl d1)
= fi(x, Iyl &),
which is an even function of,. Hence,

/xx/wz(PD(x, F(e,8y)))dF(x)
=/21/2Uxx/w2(1/(1+ AGL T 0)U'SY2d Fo(x)

L@)El/;

:21/2<¢2(||9||,s>1d+(wn&u,e)—vfz(n&n,e)) e
ENE

Likewise, we can show that

/xwi (PD(x, F(e,8y)))dF (x)

= /150 / xrwi (/L + filx, 151, €))) d Fo(x).
Thus
L,~(F(8, 8y))

_ {(y/nm((l— o) [ wawi (/14 fatx. 151, ) dFo)

+ el Fllwi (/1 + L35, 8))))}
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x {(1—e> [ @@+ ac. 151 o) R

-1
+ewi(1/(1+ L0315, s>)>}
and
PVVS(F(‘C:’ 8}’))

3 . . y oy
== 1_ P} 2 ) - ) ~ o~
{( s)(wz(nyn o5 + (a5l &)~ Y0151 ) ”y”)

T )
1+ 20050 /131yl

<ja-o fua(g f1<x1, ||y||,e>>dF°(’“)

1 -1
+‘””2(1+ fz(||&||,e>>}
— L1(F (e, 8y))(L2(F (¢, 8y))) — La(F (&, 8y)) (L1(F (¢, 8y)))’

+ L1(F (e, 8y))(L1(F (¢, 8y))) .

The desired result follows.O

+s||&||2wz(

PROOF OF THEOREM 3.6. (a) is trivial. We now show (b). Assume,
w.l.o.g. thatd = 0. Since CSIPWS, F) > GESKPWS, F), we need to show that
CSI(PWS, F) < GESKPWS, F). Following the proof of Theorem 2.3 and noting
thatL;(F (e, 8,)) = L;(F)+o0(1),i=1,2, we can show that

(PWS(F (e, 8,)) — PWS(F)) /e
- ( / xx'w (PD(x, F))He(x, y) F(dx) + yy' w2 (PD(y. F)))
« (/ wa(PD(x, F))F(dx))l
— PWS(F) ( f wi? (PD(x, F))He (x, y) F(dx) + w2(PD(y, F)))
x (/ wa(PD(x, F))F(dx)>_l+0(1),

whereo(-) is in the uniform sense with respect foc R¢. Following the proof
of Theorem 3.5 of Zuo, Cui and Young (2004) and letty@, u, F) = (u, x —
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w(Fy))/o(Fy), we have
( / xx'ws (PD(x, F))He (x, y) F(dx) 4+ yy'w2(PD(y, F)))

X (/ w2(PD(x, F))F(dx))_1

g(x’ M(X), F) - g(x’ M()C), F(S’ Sy))
e(14 0(x, F))?

= {/ xx/wél) (PD(x, F)) dF(x)
S(x,M)

+ yy'w2(PD(y, F))}

-1
X {/ w2(PD(x, F))dF(x)} +I5(M, y, &) +0(1),

where S(x,M) = {x:1/M < |27 Y% < M} for a fixed M > 0,
SUR,cRrd c<05 1 I5(M, y, &)Il — 0 asM — oo ando(-) is in the uniform sense in
y € RY. Note thatu(x) = =7 1x /|| Z~2x|| ando (Fy ) = mol| =~ Y2x /|1 Z2x ||
for x # 0, (Fyry) = 0andO(x, F) = | =~Y2x | /mo. By Lemma 5.1 we see that
w(F (e, 8y)) is odd iny. Therefore,

(/ xx'ws? (D (x, F))He(x, y) F(dx) + yy'w2(D(y, F)))

X (/ wz(D(x, F))F(dx)>_1

1 _ —_
={ / xx'ws (so(I =~ Y2x ) 1= x|
Sx,M)

O‘(Fu(x)(gv Sy)) - O(Fu(x))
% m2e(1+ O(x, F))?
0 9

dF (x) + yy'wz(PD(y, F))}

-1
X {/wz(PD(x,F))dF(x)} +Is(M, y, &)+ 0(1),

whereo(-) is in the uniform sense with respectja R?. Call the first term in the
right-hand side of the last equalify = Is(M, v, ¢). By Lemma 5.1,

0 (Fux) (8, 8y)) — 0 (Fu(x))

_ =Y Med{m1<M(F(8’ 8y)) 8)

1= =1x| a(u(x))
ey u(Fesy) mz(u(F(e,ay» 8)}
I=Y2x  ax) [ ax) )
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where w(F(e,8y))/a(m(x)) = Med{—d1, x'2~1y/|27Y2x|,d1}. Let ¥ =

¥ 12y, 3 = Y2y and T be an orthogonal matrix witty/| 7| as its first
column. Note that’ X < X. Denotel"'% /||| = u = (u1, . .., ug)'. Changing vari-
ables § = ©~1/2x) and then taking an orthogonal transformation (with maff)x

and taking advantage of the independencgXof andX /|| X || [see Lemma 5.1 of
Lopuhaa (1999)], we have

oo (@ i - T7(u, y, e) -
Is = {21/2T CF WS (soUIF D) IFIsEIF ) ~——5—— d Fo(X)
1M<|E|<M mée

x T'SY2 4 yy'wa(so(I71))

-1
x { [ walsotliin) ot}
={21/2T CIEIPwE? (soUIEID)sEIE N d Fo(E)
M<|xl=M

A7 (U1, y,€)
uun ——— —"

x / > dFo()Z)T/El/Z}
1M<|F|<M mée

x { / wz(soupfn))dFooz)}_1

+ 3/ walsoll710) / [ walsoC71D) dFo(i),

wherel7(u1, y, ¢) = Med{m1(Ig(u1, y, €), €), lur||yll — Ig(uz, y, €)|, ma(Ig(uy, y,
), &)} —moandlg(uy, y, ) = Med{—d1, u1||y|, d1}. It can be shown (details are
skipped) that

I7(u1, §, €) /e = sign(ua|[| 3]l — mo)/(4p(mo)) + o(D),

where o(1) — 0 uniformly in y € R? as ¢ — 0. Following the proof of
Corollary 3.1, we have

SVETea(M) f1jm <y <m 4 SIGN(ual 15| — mo) 7' 22
Jwa(so(I%11)) d Fo(%)

yy'wa(so(171))
Jwalso(IX1)) d Fo(X)

_ S 2e3(M) G201 511, M) La + (s201311, M) = S2(IF 1, M) F/IFIF /1T D2
Jwa(so(1X1)) d Fo(¥)

+ 3/ walso(1310) / [ walsolE1D) dFo() + o(2),

Ig =

+o(1)
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whereo(1) is in the same sense as before. Further,

— 3D =) <2011 2 .
c3(M) —A/MS;HS I%11°w3 " (so(IX D) sg (1% 1) d Fo(%),

sa(t, M) = uf sign(lualt — mo) d Fo(%),

/1/M§i||§M

S2(t, M) = _ubsign(lualt — mo) d Fo(%).
M=|xI=M
Therefore,
(PWS(F(e Sy)) — PWS(F))/e

"’/

—zl/zny (D (52151, M) = 5201131, M) + 11512 wz(so<||y||>)) nt/2

x ( / wz(so<||)z||))dFooz))_l

+I5(M. y.€) +o(1)
( ca(MD52(151. M)
J wa(so(lI 1) d Fo(%)
_ o J g (Dl PG, y)F(dX)+w2(D(y»F)))’
Jw2(D(x, F))F(dx)

where agaimw(1) — 0 uniformly iny € R? ass — 0. From the definition of CSI,
it follows that

CSI(PMS, F)
= lim, ;‘g\H (22571511 (ca(M) (s2(I 311, M) — S2(1I5 ]I, M)
+ 13 1Pwa(soIF 1)) 7 /15122
[ wz(so(llill))dFo(i)}_l +Is(M, v, £) +o<1)m
< lim U [(2Y25/15 11 (caM) (520151, M) — 5201151l M)

+ 15 12w2(s0(I17 D)5 /17 1122}

x { / wz(so(llill))dFo(f)}_l

+ Ilm sup ([Is(M, y, &)l

£— ye]R
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- 4C3<M)(sz<r, M) — 5a(r. M) + r?wa(so(r)
=A1SU = =
0 Jwaso(1€1)) d Fo(¥)

r=
+ lim sup|iis(M, y, &)l

£—> yGRd

Now letting M — oo, we get CS(PMS F) < A1sup.olta(r)|/co =
GESKPMS, F). O
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