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GENERALIZED BOOTSTRAP FOR ESTIMATING EQUATIONS

BY SNIGDHANSU CHATTERJEE ANDARUP BOSE
University of Minnesota and Indian Statistical Institute, Kolkata

We introduce a generalized bootstrap technique for estimators obtained
by solving estimating equations. Some special cases of this generalized
bootstrap are the classical bootstrap of Efron, the delgeekknife and
variations of the Bayesian bootstrap. The use of the proposed technique
is discussed in some examples. Distributional consistency of the method
is established and an asymptotic representation of the resampling variance
estimator is obtained.

1. Introduction. One of the most popular ways of obtaining estimators
for parameters in statistics is by solving “estimating equations.” Examples are
abundant in the contexts of quasi-likelihood methods, time series, biostatistics,
stochastic processes, spatial statistics, robust inference, survey sampling and
other areas. Godambe (1991) and Basawa, Godambe and Taylor (1997) contain
extensive discussions on estimating equations. In this paper we introduce a
generalized bootstrap technique for estimators obtained by solving estimating
equations.

We use the following framework: Suppo&g,;(Z,;, 8), 1 <i <n, n > 1} is
a triangular sequence of functions taking value® {Z,;} being a sequence of
observable random variables afice 8 C R”. Assume thatE¢,;(Z,;, Bo) = 0,
1<i <n, n>1for some uniqugy € B. The “parameter’fy is unknown, and
its estimatorp, is obtained by solving (often uniquely) the estimating equations

n
(11) prni(zni’ IB) =0.
i=1
Typically, {¢,; (Z,;, Bo)} form a triangular array of martingale differences.
The major objective of this paper is to estimate the sampling distribution and
the asymptotic variance ¢f, by a new approach to resampling. We define our
resampling estimatgfp as the solution of

(12) Z Wyi Pni (Zni, B) =0,

i=1
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where {w,;,1 <i < n,n > 1} is a triangular sequence of random variables,
independent ofZ,,;}. These are the “bootstrap weights.” Note that essentially the
same algorithm computg, and the Monte Carlo samples 8. This makes the
proposed bootstrap software friendly.

The normal equation$_ X,; (v, — x,{l.ﬁ) = 0 for the least squares estima-
tor (LSE) in linear regression is a special case of (1.1). Withy, ..., wu,) ~
Multinomial(n, 1/n,...,1/n) we get the paired bootstrap (PB) estimator
from (1.2). Other choices oiv,;'s yield the delete? jackknives, the Bayesian
bootstrap, thern-out-of-n bootstrap and variations of these. Hence we refer to re-
sampling by (1.2) as thgeneralized bootstrap (GBS). Origins of the concept of
resampling equations may be traced back to Freedman and Peters (1984) and Rao
and Zhao (1992), where the bootstrap was carried out using equations, as distin-
guished from resampling observations or residuals. Note that the GBS technique
is different from the bootstraps suggested by Lele (1991) and Hu and Kalbfleisch
(2000) for estimating equations.

In Section 2.1 we state the conditions on GBS weights. In Section 2.2 we briefly
discuss some examples of GBS schemes. Since every choice of distributions of the
bootstrap weights corresponds to a different GBS technique, it is of interest to
compare their relative performances. A theoretical comparison of different GBS
techniques is under study, and some preliminary results may be found in Bose and
Chatterjee (2002). Section 2.3 contains examples to illustrate the implementation
of GBS. The standard GBS schemes, obtained by taking i.i.d. or multinomial
weights, appear to perform competitively in a variety of problems, although there
is some model and sample size dependent performance variation.

In Section 3.1 we assumg = 1 and establish asymptotic linearizations of
B, and Bg. The distributional consistency of the GBS follows easily from these.

In Section 3.3 we consider models with increasing dimension by lefting oo
asn — oo and establish similar results.

For the distribution of linear regressidd-estimators, our results in this paper
imply that the GBS is consistent even when regressors are random, errors are
heteroscedastic or parameter dimension is increasing with sample size. This may
be compared with Lahiri (1992), where a nonnaive residual bootstrap (RB) was
found to be second-order accurate when covariates are nonrandom, errors are i.i.d.
and the parameter dimension is fixed. While first-order consistency of GBS is
achieved under relaxed assumptions, the GBS is second-order accurate only after
a complicated bias correction and Studentization.

In Section 3.2 for dimensiop = 1, we obtain an asymptotic representation
for the GBS variance estimator, similar to the work of Liu and Singh (1992) and
Hu (2001). Our result implies that for the asymptotic variance of linear regression
M-estimators the GBS is consistent even when the errors are heteroscedastic, and
yet can have greater asymptotic efficiency than some resampling schemes that are
consistent only under homoscedasticity.
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The technical framework used here is for estimating equations similar to
M-estimation problems. However, the underlying principle of GBS may be
applicable to a much wider class of statistical problems.

2. GBS weights: conditions and examples. In this section we spell out the
technical conditions needed on the GBS weights and give examples of classes of
weights which satisfy these conditions. We also illustrate the implementation of
GBS through a few examples.

2.1. Conditions on bootstrap weights. Let {w,;; 1<i <n, n>1} be a
triangular array of nonnegative random variables such that foreatke weights
wni, - .., Wy, are exchangeable. These are to be used as weightseardp the
suffix n from the notation. Pg and Eg, respectively, denote bootstrap probability
and expectation conditional on the data. Let

V(w;) =02, Wi=(w; — /oy,

" 1/2
Cijk-=EWIW/Wr...) and a,= [ sup ZE(CT¢ni)2] .
lell=1;=1
In the conditions belowyp is the dimension of the parameter space, which is
allowed to tend to infinity with data sizein Section 3.3.
The first set of conditions is fairly universal and is satisfied by all known
examples of bootstrap weights.

BW (Basic conditions):

(2.1) Ew; =1,
(2.2) 0<o?=o(min(@2p~1,n)),
(2.3) c11=0m™".

Schemes like the classical bootstrap and the delejaekknife satisfy
i qws = C, for some nonrandom sequen¢€,}. This implies thatcyy =
—1/(n — 1) and thus (2.3) is satisfied.

Additional assumptions required for distributional consistency are:

CLTW (Conditions for GBS CLT):
(2.4) coo— 1, Cc4 < 00.

For variance estimation, we need the basic conditions, (2.5), (2.6) and either
part (a) or part (b) of (2.7) stated below.

Let C*™ C (0, o0) be a compact set, and [# be the set on which at least of
the weights are greater than some fixed constant O.
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VW (Conditions for GBS variance):
(2.5) Pe[W]=1-0p(n™h,

k
(2.6) Cirigiy = O "o, ™Y Viyip, ... ig satisfying Y i; =3,
=1

k
@oc2eCt;  cip = O(MIN(@ ™2, 1)) Vig, ... i with Y i =4,
2.7) o
(b) 52 — 0; Cigeig = O ™K F2) Vi, . i with Y i =4,
j=1

In (2.6) and (2.7) the;’s are positive integers. In the following we refer to
conditions (2.5), (2.6) and (2.7)(a) as VW(a) and to conditions (2.5), (2.6) and
(2.7)(b) as VW(b).

2.2. Examples of GBS weights. We now list some common resampling
techniques that are special cases of GBS.

(@) Supposew,, = (wu1, ..., Wy,) ~ Multinomial(n; 1/n,...,1/n). These
weights can be interpreted as simple random sampling with replacement of the
functionals to minimize and essentially correspond todlassical bootstrap of
Efron (1979). Apart from BW, these weights also satisfy CLTW and VW(a).

Suppose instead that we seleat data points out ofn where typically
m — oo andm/n — 0. If the selection is with replacement, the weights are an
appropriately rescaled random sample from Multinogmall/n, ..., 1/»r). This
scheme is usually called the-out-of-n bootstrap. If the selection is without
replacement, the scheme can be identified withdddete-(n — m) jackknife. For
either situation, BW and CLTW hold.

See Praestgaard and Wellner (1993) for other variations and adaptations of the
classical bootstrap.

(b) TheBayesian bootstrap [Rubin (1981)] and its variations [see Zheng and
Tu (1988) and Lo (1991)] essentially uag ~ Dirichlet(c, ..., «). Theweighted
likelihood bootstrap of Newton and Raftery (1994) is also a variation, where
¢ni (+) has a log-likelihood interpretation. The conditions BW, CLTW and VW(a)
are satisfied.

(c) The jackknives are specially geared towards estimation of bias and
variance. Supposeé, is an estimator based on observations and we wish to
estimate its variance.

In its simplest form, the delete-1 jackknife estimator is obtained as follows:
Drop theith observation and recompute the estimator,tay on the basis of the
remainingn — 1 observations. Then the jackknife estimator of the variance-s
(n—1n1 Yo (Oni— 6,)2. To visualize the delete-1 jackknife as coming from a
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sequence of random weights, consider all vectprd <i < n, of lengthn where
theith coordinate ofy; is zero and the restare 1. LB{w,, = n(n — 1) 1n;) = 1/n
for 1 <i < n. The above estimator is then obtained after appropriate averaging
over this uniform weight distribution.

The deleted jackknife deletesd observations at a time and has a similar
interpretation. Ifn — d — oo, then BW holds. Ifd/n — ¢ € (0, 1), then CLTW
and VW(a) hold. Ifd/n — 0, then VW(b) holds.

Thedownweight-d jackknife is a variation of the above. Fordd < n consider
the n-dimensional vectors, . ;, ;,,....;, where thejth coordinate ofy,:;, . i, is
d/nif jisone ofiy, ..., i4, elseitis(n + d)/n. The resampling weights vector
is a random sample from the setppfThe asymptotic properties of these weights
are similar to the deletg-jackknives. However, since no observation is assigned a
weight zero, model assumptions like (3.16) are not needed.

2.3. Examples on implementation of GBSin some models. We consider three
examples in this section. Important non-GBS techniques such as the RB and the
wild bootstrap (WB) are also included for comparison.

EXAMPLE 2.1. Heteroscedastic time series: Consider the following model:

X, =¢X;—1+e,t =1 ...,n where Xo =0, and {¢;} is a sequence of
independent, normal, mean-zero random variables with= o2 if ¢ is odd and
Ee? = 022 if ¢ is even. Suppose that the unknownis estimated by the LSE
¢=Y X, X,—1/ Y X2 ;. LetV,, = E(\/n($ — ¢))? be the quantity of interest to
be estimated using resampling techniques. In ge@eraf andaz2 are unknown.
For simulation purposes we l¢t= 0.2, 0? = 1 ando = 100.

We study the wild bootstrap (WB) [Wu (1986) and Mammen (1992)],
GBS(1) with Multinomialn, 1/n,...,1/n) weights and GBS(2) with i.i.d.
Uniform(0.5, 1.5) weights. For simplicity, we use i.i.dv (0, 1) weights for the
WB in all examples in this section. We used 10,000 simulations and bootstrap
sample size of 1000 on each of the four resampling techniques.

In Table 1 the first column indicates the sample size. The valug afepends
onn, butis approximately @1 for all threen values reported. The second column
has the average overof Vg, the residual bootstrap estimate of the variancg of
for thekth simulation run. The variance @(58 is given in parentheses. The figures
in columns three to five have similar interpretation for WB, GBS(1) and GBS(2).

From Table 1, it can be seen that RB, as expected, fails since it is not adapted
for heteroscedasticity. GBS(1) is better, but is erratic at low sample sizes, a fact
reflected in the high variance value of4@. WB does reasonably well, but
is consistently outperformed by GBS(2). However, for larger sample sizes the
difference between the latter three is nominal.

EXAMPLE 2.2. Generalized linear models: SupposdY;;, j=1,..., N;} are
independent Bernoulli;(8)) random variables with p;(8) = [1 +
exp(r;)]~Lexp(;) andsy; = fo+ 1 X; fori=1,...,n.
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TABLE 1
Mean (and variance) of estimates of V;, from heteroscedastic AR(1) process
(see Example 2.1) for residual bootstrap (RB), wild bootstrap (\WB),
GBS with multinomial weights [GBS(1)], GBSwith Uniform(0.5, 1.5)
weights [GBS(2)] over 10,000 simulation runs

n RB WB GBS(1) GBS(2)

15  0.891 (0.013)  0.151 (0.008)  0.555 (0.466)  0.126 (0.007)
30  0.904 (0.006) 0.146 (0.007)  0.229 (0.021)  0.131 (0.005)
50  0.928 (0.004)  0.124 (0.002)  0.161 (0.005)  0.121 (0.002)

The first column denotes the sample size. Resample size is 1000.

We use{(N;, X;),i =1,...,n =10} from the data relating to effectiveness of
ethylene oxide as a fumigant [Myers, Montgomery and Vining (2002), page 129].
Analysis of the actually observey = Z?’;l Y;; values reported in those data
yields maximum likelihood estimates17.90 for 8o and 628 for 81. We use
these values as the true parameter values and simulaig;theccording to the
model described above, and obtain estim@gand A1 of o and 81 by solving
the likelihood equation.

We study the WB and two GBS techniques in this example N.et > ; N;.

We use(wi, ..., wy) from Multinomial(N; 1/N, ..., 1/N) for GBS(1) andw;’s

i.i.d. Exponentiall) for GBS(3). The WB is based on residuals, for which there
are several choices. In the present example, we degfine: (Y;; + 6)/(1 + 26)

as the observed proportion of success. The congtan0.001 is used to avoid
computational pathologies arising from the observed proportions being O or 1. Let
f;j =log(pij/(1— pij)) be the “observed logit,” whilg = Bo+ B1X; is the “fitted
logit.” Definer;; = 7;; — ; as the jth residual, and; = fi +U;jrij whereU;;'s are

i.i.d. N(O, 1) random variables.

For each “true logit’;; = —17.90+ 6.28X;,i =1, ..., n, we obtain percentile
based 95% confidence intervals using the three resampling schemes. Resampling
size taken i3 = 1000. This exercise is repeatée= 1000 times, and in Table 2 we
report the average confidence interval length and coverage percentage over these
1000 replications of the experiment. The WB performs poorly in this example,
sincer;; depend ord and carry little information on the variability of the data. The
GBS techniques perform excellently in comparison.

Note that the likelihood is a function of the sufficient statistigs= Z?’;l Yij,
and sometimes only thi’s, and not the individuat;;'s, are available data. There
we may useY; +8)/(N; + 25) as the “observed proportion of success” associated
with theith covariate. This improves the performance of the WB;ik are large,
and if Y;'s are not close to zero a@v;. However, in many problems; > 1 may not
be an available option.
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TABLE 2
Observed |ogit, average confidence interval length and
coverage percentage fromwild bootstrap (WB), GBS
with multinomial weights [GBS(1)]and GBSwith
independent exponential weights [GBS(3)] for each
of the 10 data points from Example 2.2

Case (L ogit) WB GBS(1) GBS(3)

1 (2264 096 (0.1) 1.27(964) 1.25(96.4)
2 (2213 094 (01) 1.25(964) 1.23(96.4)
3 (L79) 084 (0.1) 1.07(963) 1.05(96.4)
(1.2200 0.70 (0.1) 0.85(952) 0.83(951)
(1.099 0.67 (0.1) 0.80(952) 0.79 (950
(0.321) 0.61(948) 0.66(928) 0.66 (919)

7(-0.182 069 (997) 0.75(97.0) 0.74(97.2)

8(-0.567 0.76 (57.1) 0.83(958) 0.83(95.8)

9(-1.020 0.85 (9.6) 0.97 (948) 0.96 (94.9)
10(—2.956 133 (0.3) 1.79(952) 176 (947

o 01 b~

The nominal coverage is 95%. Resample size is 1000.

ExAmMPLE 2.3. Nonlinear regression: We consider the isomerization data
from Huet, Bouvier, Gruet and Jolivet [(1996), page 11]. The reaction rate of
the catalytic isomerization aof-pentane to isopentane depends on partial pressure
at various stages. The model for thé reaction ratey; is y; = f(X;,0) + ¢,
where f (X;,0) = (22052 and X; = (H;, P;, I;)" are the corresponding
partial pressure values. The’s are i.i.d. random variables. The parameter
0 = (61,02,03,04)7 is estimated by minimizing¥, (9) = >"'_; (i — f(Xi,0))?
with the resulting estimaté = (35.9193 0.07085830.03773850.1671667 .

The analysis in Huet, Bouvier, Gruet and Jolivet (1996) includes an RB using
Studentized quantities for eadh, and the resulting 95% equal-tail confidence
interval does not include zero for any of thés.

We study the RB, WB, GBS(1) and GBS(3) here. Note thaty,

..., wy) ~ Multinomial(n; 1/n,...,1/n) for GBS(1) and thew;’s are i.i.d.
Exponentiall) for GBS(3). Figure 1 represents the density histograms from
RB and GBS(1) overlaid on each other. Notice that for egcthe resampling
densities have two prominent modes, one near the estithaad the other
near 6* = (33.343956 —1.84281206—1.0338937 —4.31406116” . Note that

v, (0*) = 3.26, a value quite close ¥, (6) = 3.23. The results from GBS(3) are
similar to those of GBS(1), while in WB the peak@tis slightly less prominent.

The estimate8 ando* represent two substantially different chemical processes.
This being real data, it is not knowndfor 6* is closer to. However, the presence
of 6* is not revealed in the analysis of Huet et al. The bimodal curves in Figure 1
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Fic. 1. Plots of GBSwith multinomial weights [GBS(1)] (solid line) and residual bootstrap (RB)
(broken line) densitiesfor the four parametersin Example 2.3.Plot i correspondsto6;,i =1, 2, 3, 4.
Resample sizeis 1000.

suggest that convex confidence intervals make a bad summarization in the present
problem. A less sensitive bootstrap such as GBS may thus be useful in revealing

features in data that theoretically superior but sensitive resampling techniques may

miss.
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3. Main results. In Section 3.1 we assumg = 1 and obtain asymptotic
representations oB, and Bz in Theorems 3.1 and 3.2. This establishes the
consistency of the GBS for estimating the distribution. In Section 3.3 we consider
generalp, including the case where — oo asn — oo and obtain similar results
in Theorems 3.4 and 3.5.

In Section 3.2 we focus on the variance estimation problem. We assume that
the ¢,;, 1 <i < n, are independent ang = 1. In Theorem 3.3 we establish an
asymptotic representation of the GBS variance estimator, thereby generalizing part
of the work of Liu and Singh (1992) and Hu (2001). All proofs are only sketched
and complete details are available from the authors.

We discuss specific model conditions in the respective Sections. We introduce
some of the notation here: throughokitand K, with or without suffix, are used
as generic constants. Two conventions are used: any condition stated for a random
function is assumed to hold almost surely unless otherwise stated; and “fr all
always means for a in an open neighborhood @b.

Write ¢ni(Zni, B) = @i (B) = @niyy(B). - .. nip(B))T . Thus theath co-
ordinate ofg,; IS ¢ni@w), a =1,..., p. Let ¢, (B) = ¢, (B) and fork > 0,
P+ i (@) (B) = 35Pkni(@)(B)- Let Prni(a) = bani(a) (Bo)- FOr €achyia)(8), we
assume that the following Taylor series expansion holds:

B1)  PuiwyB+1D =i (B) + briay (Bt + 27T Honia) (B

for 81 = B + ct and for some G< ¢ < 1.

3.1. Asymptotics and bootstrap for p =1. Whenp =1, we simplify notation
by suppressing the last index and this:(Z,;, B) = ¢ni1)(B), $oni (B) = ¢ni (B),
P+ 1ni (B) = %¢kni (B) anddini = Prni (Bo). We then write (3.1) agy; (8 +1) =

Gni (B) + D10 (B)t + 27 L2, (B1)1? for 1 = B + ct and for some G ¢ < 1.
Let

n J
Vo =a,2 Y E¢ui.  Sij= oui.
i=1 i=1
Assume that, = [Y/_; E¢21Y? — oo.

Assumptions for Section 3.1 Assume that for every, there is a sequence of

o-fields #,1 C --- F,n, such that{S,;, F,;,1 < j < n} is a martingale. Further,
with 77, = max(c?, 1),

3.2 E¢,; =0 foralll<i<n, n=>1,
(3.3) 0 < k2 < y1n,

2
B4)  E[X (@i — E¢ri)| =oain).
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There exisbg > 0 andMy,; such that
" 2
(3.5) sup ¢z (B)| < M2,; and E(ZMZni> = o(adn, D).
|8—Bol<do i=1

The triangular sequence,; = (X7_; E¢2)~Y2¢,,; satisfies

n
(3.6) Y x2 51, E(max|X,,,-|> 0.
i=1 '

THEOREM 3.1. Under (3.2)—(3.5)there exists a sequence {B,} of solutions
of (1.1)such that

3.7) an(Bn — Bo) = Op(D),

(38) an)/ln(,én —Bo) = _0;12¢ni + 1y,
i=1

where r, = op(1). In addition, if (3.6) holds, then [3"7_; E¢1,,,-]1/2(/§,, — Bo) £©>
N0, 1).

Before we give the proof, we note that in general a sequence of solutions
need not be measurable. See, for example, Ferguson (1996). However, there are
enough assumptions in our model to guarantee this measurability. We omit these
arguments here and also for the subsequent results.

PROOF OF THEOREM 3.1. Fix anye > 0. By Chebyshev’s inequality and
(3.2), there exists & > 0 such that

(3.9) Prob[ anty " ui

i=1

Define S, (t) = a; 1 X1 [¢ni (Bo + a; 1t) — ¢ni(Bo)] — yint. Using a Taylor
series expansion a@f,; () aboutBg and (3.4)—(3.5), we can show that, given any
constantC > 0, for all largen,

> K] <eg/2.

2
(3.10) E[Isuglsn(m] =o(1).
1<

Now note that
Agk{a;1f§:¢nxﬁo4-a;lﬂ}
(3.11) =t

> —C sup|S,(t)| + C?y1, — Ca™?
|t|=C

Z bni
i=1
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From (3.9)-(3.11) we have, choosinglarge enough,
Prob{ ilnfc{an_lt > ni(Bo+ a,,‘lt)} > O]
= i=1
n
> Prot{an‘1 > bni
i=1
n
—1- Prob[an_l > ¢ui
i=1
>1— Prob[an‘1

Z¢ni
i=1

+ sup|S, ()| < CVln]
lt|=C

+ sup S, (1)| > C)/lni|
|t|]=C

> Ck2/4} - Pro% sup |S, ()| > Ck2/4]
t|=C

>1—¢ for all n sufficiently large.

By the continuity of}"""_; ¢,; (B) in B, this means that, for fixee > 0 for all n
sufficiently large, there exists@ such that

Z(bni (Bo+ a;lt) =0 has aroot = Ty, in |¢| < C with probability > 1 — .
i=1

Defining B, = Bo + a;lTn when suchT, exists and as an arbitrary zero of
Y 1¢ai(B) = 0 otherwise, we get a solution to (1.1) which satisfies, for fixed
>0, Prot[anl,én — Bol = C]=1— ¢ for all n large enough. This shows (3.7).
Now with this C fixed, by arguments similar to those of (3.10), we obtain that
anyin(Bn — Po) = _an_lzlr'l:]_¢ni +rn, Wherer, = op(1).

The dependence ¢f, on the choice of may be taken care of as described in
Serfling [(1980), page 148]. Briefly, this is as follows:

Sincep, = ﬁn,g(w) LS Bo there is a subsequence along which the convergence
is with probability 1, and we may restrict attention to this subsequence only. Thus
in our definition ofﬁn,g(a)) above, for every > 0 there is anV, such that for
all n > N,, w belongs to a probability-1 s&2.. Then on the probability-1 set
Qo = k=1 21/k, Without loss of generality we have a nondecreasing sequence of
integersNi(w) < N1j2(w) < --- < Nyj(w).... Forn € [Ny (), N1jx+1)(@)),
we defineB, = f,.1/x(») and letB, = 0 otherwise. Then the new sequerigg}
has all the desired properties.

Further, assumption (3.6) ensures thatX,; = a; 151 ¢pi 2 N(0, 1) by
Theorem 5.4.2 of Borovskikh and Korolyuk (1997)]

Henceforth we work with that sequence of solutiof,} which satisfies
Theorem 3.1.
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The bootstrap estimator is obtained by solving (1.2). The next theorem is on its
asymptotic representation and consistency. Let

n 1/2
Fu(x) = PHZ Em,} (Bn — Bo) < x},
i=1

; 1/2
Fpn(x) =Pg |:Un_1<z¢lni (Bn)) (BB - /én) =< x:|-
i=1

THEOREM3.2. Assume (3.2)—(3.5)and that the bootstrap weights satisfy BW.
Then there exists a sequence {8p} of solutions of (1.2) such that

n 1/2 n
(3.12) ‘Tn_l{Z‘f’lm(Bn)} ('éB B B”) = _an_lei‘pni(Bn)‘ﬁni + 7B,

i=1 i=1

where Pg(|r,g| > €) = op (1) for any ¢ > 0. If in addition (3.6) and CLTW hold,
then

(3.13) SUp|Fp,(x) — F,(x)| - 0 in probability.

PROOF The technique used in proving (3.12) is similar to the proof of
(3.7) and (3.8), and we omit some of the details here. .

Definepr, = 4,2 /1 10 (Bn) and S, (1) = a; 1 Y1 g wilni (Ba + a, 1) —
éni (Bn)] — P1at. By arguments similar to those in the proof of Theorem 3.1 we
have

PB[ inf {an_lt > widni (B —I—an_lt)} > O]

[t|=Con i=1

ap ™y wigni (Bn)

zl—PE{
i=1

> C);lnan/zi|

—PB[ inf |Sn3<r>|>cman/2]
[t|=Con

=1-Uic — Uy say.

For givene > 0 and$ > 0, one can fixC large enough such that for ail
sufficiently large, we have Prol;c > ¢/2] <§/2,i =1, 2.

Then with some algebra it can be established that syp, [Su5(1)| = onrus,
wherePg(|r,g] > €) = op (1) for anye > 0; then it follows that;?lnon—la,,(BB —
Bo) = —a; 1" Wigni(Bn) + rag. This completes the proof of the first part. The
second part follows from Theorem 3.1, the first part, and Lemma 4.6 of Praestgaard
and Wellner (1993). We omit the detailsl]
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3.2. Asymptotics of the bootstrap variance estimator. The estimation of
the asymptotic variance of, is an important practical problem. In general,
distributional convergence and variance estimation are different problems. For
example, the deleté-jackknife @/n — 0) is not distributionally consistent but
is variance consistent for the i.i.d. sample mean. In this section we establish
consistency of the GBS variance estimator via an asymptotic representation.

Assumptions for Section 3.2 We assume that the parameter is real valued
(p =1), and that th¢¢,; } are independent. Also assume that

(3.14)  ¢ui(B 41 =i (B) + d10i (B + 27 Lp2ni (B)1% + Ryi (2, B)12,

where|R,; (¢, B)| < k|t|* for eachB for some O< o < 1.
Assume that with. = 8(1 + «):

n n n
(3.15) Y Elduil” + Y Eldrul” + Y Elgoul” = 0.
i=1 i=1 i=1
Supposeng is a specified integer, related to assumption (2.5) on the bootstrap
weights. For any intege in {mo, ..., n} consider the subsdt, = {i1, i2, ..., im}
of {1, 2,...,n}. We assume
(3.16) m Y 1 (B) > k1 >0
iedy,

for every such choice of subséf, of sizem from {1, 2, ..., n}, for everym in
[mg, n] andpg satisfying||8 — Boll < é foras > 0.

Resampling schemes like the PB and the delefackknives effectively select
subsets of the data in the resample, and the model assumption (3.16) is required to
hold on these subsets to make such resampling schemes feasible. See Wu (1986)
and its discussion for more details on this. Assumption (3.16) helps in showing
that under appropriate conditions the probability of a “bad” subset selection
by the bootstrap or jackknife mechanism is small; see Proposition 3.1 (proof
omitted). Some bootstrap clone methods and the downwdigatkknives do
not require assumption (3.16). The assumptions above are not the most general
for consistency. However, the stronger assumptions allow for more transparent
computations.

ProPOSITION3.1. Assume the ¢,; are independent satisfying (3.14) with
(3.2)—(3.5), (3.15pnd (3.16).Assume B, is a solution to (1.1) from Theorem 3.1.
Let A be the set on which m_lziezm b1ni (Bn) > k1/2 > O for every such choice
of subset {,, of size m from {1,2,...,n} and for every m in [mo,n]. Then
ProdA]>1— 0(n™?).
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For this section we define our bootstrap estimg@tgtto be the solution to (1.2)
on the set4 N W, and B, otherwise. This is to facilitate variance computations,
and the minor alteration in the definition is of negligible consequence in the
asymptotics. The se#4 is defined in Proposition 3.1, an® is defined in
Section 2. The GBS variance estimat®isss = 0, 2Eg (85 — B.)2. Note that the
asymptotic variance of*/2g1, (8, — fo)? isv, =n~1Y"_; E$Z,. In the statement
of the next theorem we have useddg1, ¢2, respectively, fokp,;, d1,i, P2ui- The
sums range from 1 to. Also letgy, =n=1Y E¢1, gon =n"1 Y E¢o.

THEOREM3.3. Assumethe ¢,; are independent satisfying (3.14)with (3.2)—
(3.5), (3.15)and (3.16). Assume S, is a solution to (1.1) from Theorem 3.1.
Suppose the weights satisfy BW and either VW(a) or VW(b). Then

ng2,(Voes — vn)

=n"1Y (¢? - E¢?) -

(3.17)

E¢1)

The terms on the right-hand side of (3.17) abg (n~*/?), so Theorem 3.3
shows in particular that the resampling variancedfs, ~1(B5 — B,) is consistent
for the asymptotic variance af/2(8, — ).

REMARK 1. The above asymptotic representation is actually that of the mean
squared error. However, the bias is of a negligible order compared to the variance,
and thus the same representation holds for the asymptotic variance.

REMARK 2. For the least squares estimator in linear regresspanis a
constant and consequeniy is zero. There, using expansions for resampling
variances, Liu and Singh (1992) classified resampling techniques in two groups:
some are consistent even if errors are heteroscedastic, thus they are “robust”
(R-class); others work only under homoscedasticity but have greater “efficiency”
(E-class) thamR-class techniques. Later, Bose and Kushary (1996) and Hu (2001)
showed that the above classification breaks down if some @thestimators are
used.

Representation (3.17) is the same [upip(n—1) terms] as theR-class repre-
sentation obtained for the PB for LSE in Liu and Singh [(1992), Theorem 2(ii)]
and for general regressiaif -estimators in Hu [(2001), Theorem 2.2(ii)]. Note,
however, representation (3.17) holds for a much broader class of problems than
regressionV -estimators.
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By computations similar to those in Hu (2001), it can be shown that
for particular choices of(-) the GBS can be simultaneously robust against
heteroscedasticity of errors as well as more efficient thaslass techniques.

PrROOF OF THEOREM 3.3. We omit some of the details of the algebra
involved in this proof. They are similar to those of Theorems 3.1 and 3.2.

Let us concentrate on the sgt N W only, since the contribution from the
complement of this set is negligible. Define

Unp(t) = Gn_ln_l/z Z w; [Pni (,én + Unn_l/zt) — Gni (En)]

i=1
n R n R
—n7 Y Wi (Ba) — 27 oun 2y wichoni (Bn).
i=1 i=1
Working along the lines of the proof of Theorem 3.2, we can show that

2
EB[ sup |Un3(t>|] — Op(n~ 1+,

[t|<Cop

Now, underA N W we may plug it = o, 2nY2(Bg — B,) in Unp(), and after
quite a lot of algebra we arrive at

—g10on (B — Bn)
=023 Wi =172t bui > Widnni
— 17201 G — Ed1ai) D Widhni
+n 22 bui y boui p Withui
+oun 2Lt Wit Y Wi

270, 2g,6.2(Y Widni ) + Rus
= Cn + Tln + T2n + T3n + T4n + T5n + RnB say,

whereEgR2; = Op(n~ (1),

Now it can be easily checked thBsC? = Op(1), andEgT?2 = Op(n~1), for
i =1,...,5. Inthe cross product, by direct computat®gC, T;, = Op(n~1) for
i=4>5, and hencezganGgsz EBC,g + 2EgC, (Thy, + T2, + T3,) + OP(n_l).
The rest of the proof follows by calculating the above momenis.
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3.3. Dimension asymptotics. In this section we generalize the results of

Section 3.1 to dimensions greater than 1 and also allow dimepsiop,, — oo as

the data sizea — oo. Dimension asymptotics has been a major aspect of the study
of resampling in the framework of linear regression [Bickel and Freedman (1983)
and Mammen (1989, 1993)]. The classical residual-based bootstrap has been
studied for the LSE [Bickel and Freedman (1983)] and for gensfradstimators
[Mammen (1989)] using nonrandom design matrices. The random design case and
resampling using PB and WB have been studied in Mammen (1993). This section
is an attempt to explore the high-dimensionality aspect in more general problems.

Assumptions for Section 3.3, The following notation will be used|c|| is the
Euclidean norm of a vectar, A7 is the transpose of the matrik, Amax(A) and
Amin(A) are, respectively, the maximum and minimum eigenvalué.of

Assume that

; 12
ay = [ sup ZE(chbm-)z} — 00  asn— oo.
llell=1;-1

Let

J n
Spj=> ¢ni and yi=a,2> E¢i.

Assume that for every there is a sequence effields #,1 C - -- C F,,, Such that
{Snj, Fuj, j =1,...,n}is amartingale sequence. Recall that= maX(an, 1).
Assume that

(3.18) E¢yi =0,

n p
(3.19) 33 E|$wi — Edwi | = olain, .
i=la=1

For the symmetric matrixdz,;,) in (3.1), for somesy > O there exists a
symmetric matrixMa,; ) such that

(3.20) SUp  Hazuia)(Po+1) < Moyj(a),
{t:l1t1<d0}
& 2 6 1 1 1
(3.21) Z Z Exmax(Moni@)) = o(a, p~n""n, 7).
i=1la=1

Let ¢1,;(B) be the(p x p) matrix, whoseath row is given by¢1Tm(a) 8,

fora=1,...,p. Let T, (B) = a; 2 Y"1 d10i (B). Let Gu, = a; 2 Y"1 Edani-
Assume
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Let {c =c¢, e R”" =R?, |c|| = 1} be a fixed sequence of vectors on the unit
balls of p = p,-dimensional Euclidean spaces. Let

oo () [t (o) ]

n -1 T n n -1
53=p‘2[(2¢1m<3n>> c} [Z%-(an,f,-(én)}[(Zasm(ﬁn)) c},
i=1 i=1 i=1
n -1 T
Xni=_sn_l|:<ZE¢lni> C} bni-
i=1

ThenX,,; is measurable with respect #,; and satisfies

n
(3.23) Soxz b, E(max|Xm~|> — 0.
i=1 !

THEOREM3.4. Under (3.18)—(3.22)here exists a sequence {4, } of solutions
of (1.1)such that if pa? — 0, then

(3.24) anp~ 2By — Bo)ll = Op (D),

n
(3.25) anp 2GL,(By — Bo) = —a; tp 72N i + 1
i=1

where ||r,|| = op(1). In addition, if (3.23)is satisfied, then sn‘lcT(ﬁn — Bo) L4
N(0,1).

REMARK 3. The conditions (3.18)—(3.22) are nearly the same as conditions
(C.1)—(C.3) of Lahiri (1992) except that he requires finite third moments for
deriving Edgeworth expansions. It may also be noted that in most applications the
¢1,;'s are uniformly almost surely bounded away from zero. Thus condition (3.22)
[and (3.3)] is easily satisfied.

PROOF OFTHEOREM 3.4. We first establish that given aay> 0,3K > 0
such that Profa;, 1p~2 %", ¢uill > K1 < &/2 using Chebyshev’s inequality,
(3.18) and thab""_; E(||pni %) = O(a?p). Let

Su(t) = a, p~ Y23 [ dni(Bo+ ay 1 p21) — pui (Bo)] — Gt
i=1

n p
My = > Y ($1ia — Ed1nia) @1nja — E1nja)" -

i,j=la=1
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Since p/a? — 0, for every fixeds eventually fo + a;*p'/?t lies in the set
{Bo+ x:|x|| < do}, and using (3.1) we have that

2
[ sup ||Sn<z>||] < 204 (M)
[t <C

n p
+ 2_1an_6pc4 Z Z )»max(MZni(a)))»maX(Man(a))'
i,j=la=1

Since M4y, is nonnegative definite, its maximum eigenvalue can be dominated by
its trace; from (3.19)—(3.21) it follows th#&[sup,,; ¢ 1S (?) 112 = o(1). Note that

inf {a VAT S G0+ 1/2r)}

l7|=C i1

Z¢ni

i=1

> —C sup ||S,(t)|| + C2y, — Ca;tp=Y2

|t|=C

’

where I, = Amin(2~1(G1, + GT 1)), which from (3.22) is positive. Then by
choosingC large enough, we have that

Prot{ inf {a p~ Y% Tz%z(ﬂo-i—an_lpl/zt)} > Oi|

i=1

>1— Prob[an‘lp‘l/2

— Prot{ sup IS, (0] > Ckz/z}

l7|=C

Z bni

i=1

> Ckz/Z]

>1—c¢ for all n sufficiently large.

On the set where inf—c t7 " ¢ni (Bo + a; 1 pY/?t) > 0, it then follows that
Y éni(Bo + a; pt/?) = 0 for somer € {r: ||| < C} from continuity of¢,;’s
and using Theorem 6.3.4 of Ortega and Rheinboldt (1970). Now (3.24) and (3.25)
follow with a little algebra. The asymptotic normality is proved as in Theorem 3.1.
]

Let F,(x) = Prot{sn—lcT(Bn — Bo) < x] and let ®(.) be the standard nor-
mal distribution function. Our model conditions are sufficient to argue that
det(¢p1,; (B,)) = 0 has asymptotically negligible probability. In practice, this case
is extremely unlikely. Hence define

=1l _ —1.T,5 &
Fpn(x) =Pals, “on " (Bs = Bn) = XM gegy,, Bu0) T PO (detgn,i (hi=0)

as the bootstrap distribution function estimator.
The next theorem is an analog of Theorem 3.2.
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THEOREM 3.5. Assume the conditionsA (3.18)—(3.22) and the bootstrap
weights satisfy BW. There exists a sequence {8} of solutions of (1.2) such that if
p/a,% — 0,

o p Y23 d1i (Bu) (B — Br)
(3.26) i=1 )
= —a;  p7Y2 > Withni (Bu) + rupi,
i=1

where ||r, g1l = op(1). In addition, if (3.23)holds and BW and CLTW hold, then
(3.27) sup|Fen(x) — F(x)| — 0 in probability.
X

A sketch of the proof of this theorem is given after Remark 4.

REMARK 4. Lahiri (1992) has shown the consistency (and second-order
accuracy) of an appropriate residual bootstrap for the uklaktimation model
with i.i.d. errors, known design and fixgel Theorem 3.5 implies only the first-
order consistency of the GBS and hence in particular of the PB, but for a much
larger class of models.

In general GBS is not second-order accurate. Fistand B are biased
for g and B,, respectively, and the biases are not negligible in the second
order. Further, as is known from the extensive literature on resampling, without
an appropriate Studentization no resampling plan can hope to be second-order
accurate. With appropriate bias correction and Studentization, the GBS can be
made to be second-order accurate.

Define

g2=n"1 Z¢3i (Bn) and gig=n"! > W22 (Bu).
The following turns out to be the appropriate bias corrected Studentized statistic:
Ty = D1y 2By — Bo)] — 27029 28 00, Vaes,
Tus = P1nd,glon n"*(Bs — Bu)]
+ 27 20,2, 5 Ponlon 02 (B — Bu) 1.
Chatterjee (1999) has shown tifaf; is second-order accurate ffy. However,

there is ample scope for improvement on the conditions assumed there.

PrROOF OFTHEOREM 3.5. Let us concentrate on the $¢f§n — Boll < 80/2},
since the complement of this set can be shown to have negligible contribution.
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There we have

Pg [Un—lp—l/Zan—l

> wini (B = K|

n n p
< kK—Zp—la;Z[Z pni 12+ 1180 — Boll® Y Y lidaniall®

(3.28) i=1 i=la=1

n P
+1Bs = Boll* Y ZAMMM)}

i=la=1
=K20p(1).
Thus for fixeds1, 2 > 0, by choosingk large enough we have
(3.29)  ProtfPs[on ~Lp 24, Y| 3" widhni (B)
Let

>K]>81]<82.

n
Snp(0) = 0n 20> wildni (Bu + 0up™2a M) — dui (B — T3, (Bt
i=1
On the set|z]| < C} N {||B» — Boll < 80/2}, we have for large

P n
1Su(1% < 20,,2a;4czxmax<2 > WiW,-¢>1nia<ﬂn)¢>1n,-a(ﬁn>T)

a=1i,j=1

2
p n
+ (7nzl7a,1_6C4 Z ( Z wi)»max(MZnia))

a=1\i=1
=T1+71> say.

With some algebra it can be shown t@§21 PelT; > K] =o0p(1), thus

2

PB[ SUp [1,5(1)]| > 2K} < S PsIT) > K1+ 0p(a; p?)
tlI<C i—1
(3.30) !

—op(D).

Now observe that

n
Inf. [an—lan‘lp‘l/ 2T " wichni (Bn + onay, *p 2t>}
- i=1

> widni (Bn)

i=1

> —C sup [|S,5(1)|| + C2%iy, — Co, La 1p~1/?
|t|]=C

El
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wherely, = Amin(2 (I, (B2) + 1 (B2))). Notice that'y, > k2/2 with probabil-
ity 1 — o(1), for the constank; from (3.22). By choosing large enough, from
(3.28), (3.29) and (3.30) we have that on the{d@t, — Boll < d0/2},

n
Ps [lliqucian_la;lp_l/th Z w;iPni (By + anan_lpl/zt)} > 0j|
- i=1

> widni

>1—Pp |:o,1_1an_1p_1/2
i=1

> Ckz/Z}

~Pe| U 15,11~ Ck2/2]-
L |f|=

Thus for fixeds1, 82 > 0, we have that fo€ large enough for all large,

Pro{PB [I i|nfC on Lo tp7 V2T
t=

n
X Y wini (Bn + Unan_lpl/zt)} > o} <1- 31}
i=1

> widni

< PrO{PB |:an_1an_1p_1/2
i=1

> Ckz/z} > 51/2}

+ PFOt{PB[ Sup 15, (1)1l > Ckz/z] . 61/2} + 0@y pY?)
lt]=C

< .

Onthe setinfi=c{o, ta; 1p~Y2tT S wigni (Bn +0ona; tp?t)} > 0, using
the continuity of > ; w;¢,;(-) and Theorem 6.3.4 of Ortega and Rheinboldt
(1970), we have thal?_; w;dni (Bn + ona; 1pY?t) = 0 has a roof, in |¢| < C.
Putting 8z = . + ona; 1 pY/?T,, we get a solution to (1.2) which satisfies, for
fixede, 8 > 0, ProlPglo, ~ta, p~ Y2z — Bull < C1 < 1—¢] < & for all n large
enough. Now notice that with this fixed, we have actually shown that with= T,

n
o0 tanp 2T 1 (Br) (Bs — Bu) = —a, %Y Wigni (Bu) + rupa,
i=1

where||r,p1|l = op(1). This shows (3.26). O
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