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In this paper we propose a general methodology, based on multiple
testing, for testing that the mean of a Gaussian vector inR

n belongs to a
convex set. We show that the test achieves its nominal level, and characterize
a class of vectors over which the tests achieve a prescribed power. In the
functional regression model this general methodology is applied to test some
qualitative hypotheses on the regression function. For example, we test that
the regression function is positive, increasing, convex, or more generally,
satisfies a differential inequality. Uniform separation rates over classes of
smooth functions are established and a comparison with other results in the
literature is provided. A simulation study evaluates some of the procedures
for testing monotonicity.

1. Introduction.

1.1. The statistical framework.We consider the following regression model:

Yi = F(xi) + σεi, i = 1, . . . , n,(1)

where x1 < x2 < · · · < xn are known deterministic points in[0,1], σ is an
unknown positive number and(εi)i=1,...,n is a sequence of i.i.d. unobservable
standard Gaussian random variables. From the observation ofY = (Y1, . . . , Yn)

′,
we consider the problem of testing that the regression functionF belongs to one
of the following functional setsK :

K≥0 = {F : [0,1] → R, F is nonnegative},(2)

K↗ = {F : [0,1] → R, F is nondecreasing},(3)

K� = {F : [0,1] → R, F is nonconcave},(4)

Kr,R =
{
F : [0,1] → R, ∀x ∈ [0,1], dr

dxr
[R(x)F (x)] ≥ 0

}
.(5)
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In the above definition ofKr,R , r denotes a positive integer andR a smooth,
nonvanishing function from[0,1] into R. Choosing the functionR equal to 1 leads
to test that the derivative of orderr is positive. Takingr = 1 and choosing a suitable
functionR leads to test that a positive functionF is decreasing at some prescribed
rate. It is also possible to test thatF belongs to some classes of smooth functions.
These testing hypotheses will be detailed in Section 3.

The problem is therefore to test some qualitative hypothesis onF . We shall
show that it actually reduces to testing that the mean of the Gaussian vectorY
belongs to a suitable convex subset ofR

n. Denoting by〈·, ·〉 the inner product
of R

n, this convex subset takes the form

C = {f ∈ R
n, ∀ j ∈ {1, . . . , p} 〈f,vj 〉 ≤ 0

}
,

where the vectors{v1, . . . ,vp} are linearly independent inRn. The aim of this
paper is to present a general methodology for the problem of testing thatf belongs
to C and to characterize a class of vectors over which the tests achieve a
prescribed power. This general methodology is applied to test that the regression
functionF belongs to one of the setsK . For the procedures we propose, the least-
favorable distribution under the null hypothesis is achieved forF = 0 andσ = 1.
Consequently, by carrying out simulations, we easily obtain tests that achieve their
nominal level for fixed values ofn. Moreover, we show that these tests have good
properties under smooth alternatives.

For the problem of testing positivity, monotonicity and convexity, we obtain
tests based on the comparison of local means of consecutive observations.
A precise description of these tests is given in Section 2. For the problem of
testing monotonicity, our methodology also leads to tests based on the slopes of
regression lines on short intervals, as explained in Section 3.1. These procedures,
based on “running gradients,” are akin to those proposed by Hall and Heckman
(2000). For the problem of testing thatF belongs toKr,R with a nonconstant
functionR we refer the reader to Section 3.2. We have delayed the description of
the general methodology for testing thatf belongs toC to Section 4. Simulation
studies for testing monotonicity are shown in Section 5. The proofs are postponed
to Sections 6–9 and the Appendix.

1.2. An overview of the literature. In the literature tests of monotonicity have
been widely studied in the regression model. The test proposed by Bowman, Jones
and Gijbels (1998) is based on a procedure described in Silverman (1981) for
testing unimodality of a density. This test is not powerful when the regression
is flat or nearly flat, as emphasized by Hall and Heckman (2000). Hall and
Heckman (2000) proposed a procedure based on “running gradients” over short
intervals for which the least-favorable distribution under the null, whenσ is
known, corresponds to the case whereF is identically constant. The test proposed
by Gijbels, Hall, Jones and Koch (2000) is based on the signs of differences
between observations. The test offers the advantage to not depend on the error
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distribution when it is continuous. Consequently, the nominal level of the test
is guaranteed for all continuous error distributions. In the functional regression
model with randomxi ’s, the procedure proposed by Ghosal, Sen and van der Vaart
(2000) is based on a locally weighted version of Kendall’s tau. The procedure uses
kernel smoothing with a particular choice of the bandwidth, and as in Gijbels, Hall,
Jones and Koch (2000) depends on the signs of the quantities(Yj − Yi)(xi − xj ).
They show that for certain local alternatives the power of their test tends to 1.
Some comments on the power of our test under those alternatives can be found
in Section 3.3. In Baraud, Huet and Laurent (2003b) we propose a procedure
which aims at detecting discrepancies with respect to theL

2(µn)-distance where
µn = n−1∑n

i=1 δxi
. This procedure generalizes that proposed in Baraud, Huet and

Laurent (2003a) for linear hypotheses. A common feature of the present paper with
these two lies in the fact that the proposed procedures achieve their nominal level
and a prescribed power over a set of vectors we characterize. In the Gaussian white
noise case, Juditsky and Nemirovski (2002) propose to test that the signal belongs
to the cone of nonnegative, nondecreasing or nonconcave functions. For a given
r ∈ [1,+∞[ , their tests are based on the estimation of theL

r -distance between
the signal and the cone. However, this approach requires that the signal have a
known smoothness under the null. In the Gaussian white noise model, other tests
of such qualitative hypotheses are proposed by Dümbgen and Spokoiny (2001).
Their procedure is based on the supremum over all bandwidths of the distance
in sup-norm between a kernel estimator and the null hypothesis. They adopt a
minimax point of view to evaluate the performances of their tests and we adopt the
same in Sections 2 and 3.

1.3. Uniform separation rates and optimality.Comparison of the perfor-
mances of tests naturally arises in the problem of hypothesis testing. In this paper,
we shall mainly describe the performances of our procedures in terms of uniform
separation rates over classes of smooth functions. Givenβ in ]0,1[, a class of
smooth functionsF and a “distance”�(·) to the null hypothesis, we define the
uniform separation rate of a test� overF , denoted byρ(�,F ,�), as the small-
est numberρ such that the test guarantees a power not smaller than 1− β for all
alternativesF in F at distanceρ from the null. More precisely,

ρ(�,F ,�) = inf{ρ > 0, ∀F ∈ F , �(F ) ≥ ρ ⇒ PF (� rejects) ≥ 1− β}.(6)

In the regression or Gaussian white noise model, the word “rate” refers to the
asymptotics ofρ(�,F ,�) = ρτ (�,F ,�) with respect to a scaling parameterτ

(the number of observationsn in the regression model, the level of the noise in
the Gaussian white noise). Comparing the performances of two tests of the same
level amounts to comparing their uniform separation rates (the smaller the better).
A test is said to be optimal if there exists no better test. The uniform separation
rate of an optimal test is called theminimax separation rate. In the sequel, we
shall enlarge this notion of optimality by saying that a test is rate-optimal over
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F if its uniform separation rate differs from the minimax one by a bounded
function of τ . Unfortunately, not much is known about the uniform separation
rates of the tests mentioned in Section 1.2. The only exception we are aware
of concerns the tests proposed by Dümbgen and Spokoiny (2001) and Juditsky
and Nemirovski (2002) in the Gaussian white noise model (withτ = 1/

√
n ), and

Baraud, Huet and Laurent (2003b) in the regression model. The rates obtained
by Juditsky and Nemirovski (2002) are established for the problem of testing that
F belongs toK ∩ H , whereH is a class of smooth functions. In contrast, in
the papers by Baraud, Huet and Laurent (2003b) and Dümbgen and Spokoiny
(2001), the null hypothesis is not restricted to those smooth functions belonging
to K . For the problem of testing positivity and monotonicity, Baraud, Huet and
Laurent (2003b) established separation rates with respect to theL

2(µn)-distance
to the null. For the problem of testing positivity, monotonicity and convexity,
Dümbgen and Spokoiny (2001) considered the problem of detecting a discrepancy
to the null in sup-norm. For anyL > 0, their procedures are proved to achieve the
optimal rate(L log(n)/n)1/3 over the class of Lipschitz functions

H1(L) = {F, ∀x, y ∈ [0,1], |F(x) − F(y)| ≤ L|x − y|}.
The optimality of this rate derives from the lower bounds established by Ingster
[(1993), Section 2.4] for the more simple problem of testingF = 0 againstF �= 0
in sup-norm. More generally, it can easily be derived from Ingster’s results (see
Proposition 2) that the minimax separation rate (in sup-norm) over Hölderian balls

Hs(L) = {F, ∀x, y ∈ [0,1], |F(x) − F(y)| ≤ L|x − y|s}
(7)

with s ∈]0,1]
is bounded from below (up to a constant) by(L1/s log(n)/n)s/(1+2s). In the
regression setting, we propose tests of positivity, monotonicity and convexity
whose uniform separation rates overHs(L) achieve this lower bound whatever
the value ofs ∈]0,1] and L > 0. In this paper, we discuss the optimality in
the minimax sense over Hölderian balls with regularitys in ]0,1] only. To our
knowledge, the minimax rates over smoother classes of functions are unknown. It
is beyond the scope of this paper to describe them.

For the problem of testing monotonicity or convexity, other choices of distance
to the null are possible, for example, the distance in sup-norm between the first
(resp. the second) derivative ofF and the set of nonnegative functions. For such
choices, Dümbgen and Spokoiny also provided uniform separation rates for their
tests. In the regression setting, the uniform separation rates we get coincide with
their separation rates on the classes of functions they considered. We do not know
whether these rates are optimal or not either in the Gaussian white noise model or
in the regression model.
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2. Tests based on local means for testing positivity, monotonicity and
convexity. We consider the regression model given by (1) and propose tests of
positivity, monotonicity and convexity for the functionF . We first introduce some
partitions of the design points and notation that will be used throughout the paper.

2.1. Partition of the design points and notation.We first define an almost
regular partition of the set of indices{1, . . . , n} into 
n sets as follows: for eachk
in {1, . . . , 
n} we set

Jk =
{
i ∈ {1, . . . , n}, k − 1


n

<
i

n
≤ k


n

}

and define the partition as

J
n = {Jk, k = {1, . . . , 
n}}.
Then for each
 ∈ {1, . . . , 
n}, we make a partition of{1, . . . , n} into 
 sets by
gathering consecutive setsJk . This partition is defined by

J
 =
{
J 


j = ⋃
(j−1)/
<k/
n≤j/


Jk, j = 1, . . . , 


}
.(8)

We shall use the following notation.

(a) We use a bold type style for denoting the vectors ofR
n. We endowR

n with
its Euclidean norm denoted by‖ · ‖.

(b) Forv ∈ R
n, let ‖v‖∞ = max1≤i≤n |vi |.

(c) For a linear subspaceV of R
n, �V denotes the orthogonal projector ontoV .

(d) For a ∈ R+, D ∈ N\{0} and u ∈ [0,1], �̄−1(u) and χ̄−1
D,a2(u) denote

the 1− u quantile of, respectively, a standard Gaussian random variable and a
noncentralχ2 with D degrees of freedom and noncentrality parametera2.

(e) Forx ∈ R, [x] denotes the integer part ofx.
(f ) For eachR

n-vector v and subsetJ of {1, . . . , n}, we denote byvJ the
R

n-vector whose coordinates coincide with those ofv onJ and vanish elsewhere.
We denote bȳvJ the quantity

∑
i∈J vi/|J |.

(g) We denote by1 the R
n-vector (1, . . . ,1)′ and byei the ith vector of the

canonical basis.
(h) We defineVn,cste as the linear span of{1J , J ∈ J
n}. Note that the

dimension ofVn,csteequals
n.
(i) The vectorε denotes a standard Gaussian variable inR

n.
( j) We denote byPf,σ the law of the Gaussian vector inRn with expectationf

and covariance matrixσ 2In, whereIn is the n × n identity matrix. We denote
by PF,σ the law ofY under the model defined by (1).

(k) The levelα of all our tests is chosen in]0,1/2[.
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2.2. Test of positivity. We propose a level-α test for testing thatF belongs
to K≥0 defined by (2). The testing procedure is based on the fact that if
F is nonnegative, then for any subsetJ of {1, . . . , n} the expectation of̄YJ is
nonnegative. For
 ∈ {1, . . . , 
n}, let T 


1 (Y) be defined as

T 

1 (Y) = max

J∈J


−√|J | ȲJ

‖Y − �Vn,csteY‖
√

n − 
n,

and letq1(
, u) be the 1− u quantile of the random variableT 

1 (ε). We introduce

the test statistic

Tα,1 = max

∈{1,...,
n}{T



1 (Y) − q1(
, uα)},(9)

whereuα is defined as

uα = sup
{
u ∈]0,1[,P

(
max


∈{1,...,
n}{T


1 (ε) − q1(
, u)} > 0

)
≤ α

}
.(10)

We reject thatF belongs toK≥0 if Tα,1 is positive.

COMMENT. When
 increases from 1 to
n, the cardinality of the setsJ ∈ J


decreases. We thus take into account local discrepancies to the null hypothesis for
various scales.

2.3. Testing monotonicity. We now consider the problem of testing that
F belongs toK↗ defined by (3). The testing procedure relies on the following
property: ifI andJ are two subsets of{1,2, . . . , n} such thatI is on the left ofJ
and ifF ∈ K↗, then the expectation of the differenceȲI − ȲJ is nonpositive. For

 ∈ {2, . . . , 
n}, let T 


2 (Y) be defined as

T 

2 (Y) = max

1≤i<j≤

N


ij

ȲJ 

i

− ȲJ 

j

‖Y − �Vn,csteY‖
√

n − 
n,

where

N

ij =

(
1

|J 

i | + 1

|J 

j |
)−1/2

,

and letq2(
, u) be the 1− u quantile of the random variableT 

2 (ε). We introduce

the test statistic

Tα,2 = max

∈{2,...,
n}{T



2 (Y) − q2(
, u)},(11)

whereuα is defined as

uα = sup
{
u ∈]0,1[,P

(
max


∈{2,...,
n}{T


2 (ε) − q2(
, u)} > 0

)
≤ α

}
.(12)

We reject thatF belongs toK↗ if Tα,2 is positive.
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2.4. Testing convexity. We now consider the problem of testing thatF belongs
to K� defined by (4). The testing procedure is based on the following property: if
I , J andK are three subsets of{1,2, . . . , n} such thatJ is betweenI andK and
if F ∈ K�, then we find a linear combination ofȲI , ȲJ andȲK with nonpositive
expectation. Letx = (x1, . . . , xn)

′ and for each
 ∈ {3, . . . , 
n}, 1≤ i < j < k ≤ 
,
let

λ

ijk =

x̄J 

k

− x̄J 

j

x̄J 

k

− x̄J 

i

and

N

ijk =

(
1

|J 

j | + (λ


ijk)
2 1

|J 

i | + (1− λ


ijk)
2 1

|J 

k |
)−1/2

.

For 
 ∈ {3, . . . , 
n}, let

T 

3 (Y) = max

1≤i<j<k≤

N


ijk

ȲJ 

j

− λ

ijkȲJ 


i
− (1− λ


ijk)ȲJ 

k

‖Y − �Vn,csteY‖/√n − 
n

,

and letq3(
, u) be the 1− u quantile of the random variableT 

3 (ε). We introduce

the test statistic

Tα,3 = max

∈{3,...,
n}{T



3 (Y) − q3(
, uα)},(13)

whereuα is defined as

uα = sup
{
u ∈]0,1[,P

(
max


∈{3,...,
n}{T


3 (ε) − q3(
, u)} > 0

)
≤ α

}
.(14)

We reject thatF belongs toK� if Tα,3 is positive.

2.5. Properties of the procedures.In this section we evaluate the perfor-
mances of the previous procedures under the null and under smooth alternatives.

PROPOSITION 1. Let (Tα,K) be either (Tα,1,K≥0) or (Tα,2,K↗) or
(Tα,3,K�). We have

sup
σ>0

sup
F∈K

PF,σ (Tα > 0) = α.

Assume now thatxi = i/n for all i = 1, . . . , n and
n = [n/2]. Let us fixβ ∈]0,1[
and define for eachs ∈]0,1] andL > 0

ρn = L1/(1+2s)

(
σ 2 log(n)

n

)s/(1+2s)

.
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Then forn large enough there exists some constantκ depending onα,β, s only
such that for allF ∈ Hs(L) satisfying

�(F) = inf
G∈K

‖F − G‖∞ ≥ κρn(15)

we have

PF,σ (Tα > 0) ≥ 1− β.

COMMENT. This result states that our procedures are of sizeα. Moreover,
following the definition of the uniform separation rate of a test given in Section 1.3,
this result shows that the tests achieve the uniform separation rateρn (in sup-norm)
over the Hölderian ballHs(L). In the following proposition, we show that this rate
cannot be improved at least in the Gaussian white noise model for testing positivity
and monotonicity. The proof can be extended to the case of testing convexity but
is omitted here.

PROPOSITION 2. Let Y be the observation from the Gaussian white noise
model

dY (t) = F(t) dt + 1√
n

dW(t) for t ∈ [0,1],(16)

whereW is a standard Brownian motion. LetK be either the setK≥0 or K↗ and
let F be some class of functions. For the distance�(·) to K given by(15), we
define

ρn(0,F ) = inf ρ(�,F ,�),

whereρ(�,F ,�) is given by(6) and where the infimum is taken over all tests� of
level3α for testing“F = 0.” We defineρn(K,F ) similarly by taking the infimum
over all tests� of levelα for testing“F ∈ K .” The following inequalities hold:

(i) If K = K≥0, then

ρn(K,F ) ≥ ρn(0,F ).

If K = K↗, then for some constantκ depending onα andβ only

ρn(K,F ) ≥ 1

2

[
ρn(0,F ) − κ

σ√
n

]
.

(ii) In particular, if F = Hs(L), for n large enough there exists some
constantκ ′ depending onα,β ands only such that

ρn(K,F ) ≥ κ ′L1/(1+2s)

(
log(n)

n

)s/(1+2s)

.(17)
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The proof of the first part of the proposition extends easily to the regression
framework. The second part (ii), namely (17), derives from (i) and the lower bound
onρn(0,F ) established by Ingster (1993).

For the problem of testing the positivity of a signal in the Gaussian white noise
model, Juditsky and Nemirovski (2002) showed that the minimax separation rate
with respect to theLr -distance (r ∈ [1,+∞[) is of the same order asρn up to a
logarithmic factor.

3. Testing that F satisfies a differential inequality. In this section, we
consider the problem of testing thatF belongs toKr,R defined by (5). Several
applications of such hypotheses can be of interest. For example, by takingr = 1
andR(x) = −exp(ax) (for some positive numbera), one can test that a positive
functionF is decreasing at rate exp(−ax), that is, satisfies

∀x ∈ [0,1] 0< F(x) ≤ F(0)exp(−ax).

Other kinds of decay are possible by suitably choosing the functionR. Another
application is to test thatF belongs to the class of smooth functions{

F : [0,1] → R,
∥∥F (r)

∥∥∞ ≤ L
}
.

To tackle this problem, it is enough to test that the derivatives of orderr of the
functionsF1(x) = −F(x) + Lxr/r! and F2(x) = F(x) + Lxr/r! are positive.
This is easily done by considering a multiple testing procedure based on the data
−Yi + Lxr

i /r! for testing thatF1 is positive, and onYi + Lxr
i /r! for testing that

F2 is positive.
In Section 3.1 we consider the case where the functionR equals 1. The

procedure then amounts to testing that the derivative of orderr of F is nonnegative.
We turn to the general case in Section 3.2.

We first introduce the following notation.

(a) Forw ∈ R
n, we denote byR � w the vector whoseith coordinate(R � w)i

equalsR(xi)wi .
(b) For k ∈ N \ {0}, we denote bywk theR

n-vector(wk
1, . . . ,w

k
n), and we set

w0 = 1 by convention.
(c) For J ⊂ {1, . . . , n}, let us defineXJ as the space spanned by1J ,xJ ,

. . . ,xr−1
J .

3.1. Testing that the derivative of orderr of F is nonnegative. In this section
we takeR(x) = 1 for all x ∈ [0,1]. The procedure relies on the idea that if the
derivative of orderr of F is nonnegative, then on each subsetJ of {1,2, . . . , n},
the highest degree coefficient of the polynomial regression of degreer based on the
pairs{(xi,F (xi)), i ∈ J } is nonnegative. For example, under the assumption that
F is nondecreasing, the slope of the regression based on the pairs{(xi,F (xi)),

i ∈ J } is nonnegative.
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Let 
n = [n/(2(r + 1))], let Vn be the linear span of{1J ,xJ , . . . ,xr
J , J ∈ J
n},

and for eachJ ⊂ {1, . . . , n}

t∗J = − xr
J − �XJ

xr
J

‖xr
J − �XJ

xr
J ‖ .

For each
 ∈ {1, . . . , 
n}, let T 
(Y) be defined as

T 
(Y) = max
J∈J


〈Y, t∗J 〉
‖Y − �VnY‖

√
n − dn(18)

and let q(
,u) denote the 1− u quantile of the random variableT 
(ε). We
introduce the following test statistic:

Tα = max

∈{1,...,
n}{T


(Y) − q(
,uα)},(19)

whereuα is defined as

uα = sup
{
u ∈]0,1[,P

(
max


∈{1,...,
n}{T

(ε) − q(
,u)} > 0

)
≤ α

}
.(20)

We reject the null hypothesis ifTα is positive.

COMMENT. When r = 1, the procedure is akin to that proposed by Hall
and Heckman (2000) where for all
, q(
,uα) is the 1− α quantile of
max
∈{1,...,
n} T 
(ε).

3.2. Extension to the general case.The ideas underlying the preceding
procedures extend to the case whereR �≡ 1. In the general case, the test is obtained
as follows.

Let 
n be such that the dimensiondn of the linear space

Vn = Span{1J ,xJ , . . . ,xr
J ,R � 1J , . . . ,R � xr

J , J ∈ J
n}(21)

is not larger thann/2. We define for eachJ ⊂ {1, . . . , n}

t∗J = −R � (xr
J − �XJ

xr
J )

γJ

whereγJ = ‖R � (xr
J − �XJ

xr
J )‖.(22)

We reject thatF belongs toKr,R if Tα defined by (19) is positive.

3.3. Properties of the tests.In this section we describe the behavior of the
procedure. We start with some notation.

(a) Let us define the function�(F) as

�(F)(x) = dr

dxr
[R(x)F (x)],
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and letω be its modulus of continuity defined for allh > 0 by

ω(h) = sup
|x−y|≤h

|�(F)(x) − �(F)(y)|.

(b) For J ∈ ⋃
n


=1 J
, let us denote byx−
J (resp. x+

J ) the quantities
min{xi, i ∈ J } (resp. max{xi, i ∈ J }) and sethJ = x+

J − x−
J .

(c) Let f = (F (x1), . . . ,F (xn))
′ and for each
 = 1, . . . , 
n andβ ∈]0,1[, let

ν
(f, β) =
(

q(
,uα)√
n − dn

√
χ̄−1

n−dn,‖f−�Vn f‖2/σ2(β/2) + �̄−1(β/2)

)
σ.(23)

(d) For eachρ > 0, let

En,r (ρ) =
{
F : [0,1] → R, F (r) ∈ Hs(L),− inf

x∈[0,1]F
(r)(x) ≥ ρ

}
.

We have the following result.

PROPOSITION3. LetTα be the test statistic defined in Section3.2.We have

sup
σ>0

sup
F∈Kr,R

PF,σ (Tα > 0) = α.

For eachβ ∈]0,1[ we have

PF,σ (Tα > 0) ≥ 1− β,

if for some
 ∈ {1, . . . , 
n} there exists a setJ ∈ J
 such that either

− inf
i∈J

�(F )(xi) ≥ ν
(f, β)
r!γJ

‖xr
J − �XJ

xr
J ‖2 + ω(hJ ),(24)

or

inf
x∈]x−

J ,x+
J [

−�(F)(x) ≥ ν
(f, β)
r!γJ

‖xr
J − �XJ

xr
J ‖2 .(25)

Moreover, if R ≡ 1, then there exists some constantκ depending onα,β, s and r

only such that forn large enough and for allF ∈ En,r (ρn,r ) with

ρn,r = κ

(
σ 2 log(n)

n

)s/(1+2(s+r))

L(1+2r)/(1+2(s+r))

we have

PF,σ (Tα > 0) ≥ 1− β.

COMMENT 1. In the particular case whereR ≡ 1, let us give the orders
of magnitude of the quantities appearing in the above proposition. Under the
assumption that‖f − �Vnf‖2/n is smaller thanσ 2, one can show thatν
 is of
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order
√

log(n) (see Section 9.2). WhenR ≡ 1, we haveγJ = ‖xr
J − �XJ

xr
J ‖ and

it follows from computations that will be detailed in the proofs that

ν
(f, β)
r!γJ

‖xr
J − �XJ

xr
J ‖2 ≤ C

√√√√ log(n)

nh1+2r
J

(26)

for some constantC which does not depend onJ or n.

COMMENT 2. In the particular case wherer = 1, (26) allows us to compare
our result to the performance of the test proposed by Ghosal, Sen and van der
Vaart (2000). For eachδ ∈]0,1/3[, they give a procedure (depending onδ) that is
powerful if the functionF is continuously differentiable and satisfies that for allx

in some interval of lengthn−δ , F ′(x) < −M
√

log(n)n−(1−3δ)/2 for someM large
enough.

By using (25) and the upper bound in (26) withhJ of ordern−δ , we deduce
from Proposition 3 that our procedure is powerful too over this class of functions.
Note that by considering a multiple testing procedure based on various scales
,
our test does not depend onδ and is therefore powerful for allδ simultaneously.

COMMENT 3. For r = 1 (resp.r = 2) ands = 1, Dümbgen and Spokoiny
(2001) obtained the uniform separation rateρn,r for testing monotonicity (resp.
convexity) in the Gaussian white noise model.

COMMENT 4. For the problem of testing monotonicity (r = 1 andR ≡ 1),
it is possible to combine this procedure with that proposed in Section 2.3. More
precisely, consider the test which rejects the null at level 2α if one of these two
tests rejects. The so-defined test performs as well as the best of these two tests
under the alternative.

4. A general approach. The problems we have considered previously reduce
to testing thatf = (F (x1), . . . ,F (xn))

′ belongs to a convex set of the form

C = {f ∈ R
n, ∀ j ∈ {1, . . . , p} 〈f,vj 〉 ≤ 0

}
,(27)

where the vectors{v1, . . . ,vp} are linearly independent inRn. For example, testing
that the regression functionF is nonnegative or nondecreasing amounts to testing
that the mean ofY belongs, respectively, to the convex subsets ofR

n

C≥0 = {f ∈ R
n, ∀ i ∈ {1, . . . , n} fi ≥ 0

}
(28)

and

C↗ = {f ∈ R
n, ∀ i ∈ {1, . . . , n − 1} fi+1 − fi ≥ 0

}
.(29)
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Clearly, these sets are of the form given by (27) by taking, respectively,p = n,
vj = −ej andp = n − 1, vj = ej − ej+1. The following proposition extends this
result to the general case. Note that one can also define the setC as

C = {f ∈ R
n, L1(f ) ≥ 0, . . . ,Lp(f ) ≥ 0},

where theLi ’s arep independent linear forms. We shall use this definition ofC in
the following.

PROPOSITION4. For eachr ∈ {1, . . . , n − 1} and i ∈ {1, . . . , n − r} let φi,r

be the linear form defined forw ∈ R
n by

φi,r (w) = det




1 xi · · · xr−1
i wi

1 xi+1 · · · xr−1
i+1 wi+1

...
...

...
...

...

1 xi+r · · · xr−1
i+r wi+r


 .

If F belongs toK�, thenf = (F (x1), . . . ,F (xn))
′ belongs to

C� = {f ∈ R
n, ∀ i ∈ {1, . . . , n − 2}, φi,2(f ) ≥ 0

}
.(30)

If F belongs toKr,R , thenf belongs to

Cr,R = {f ∈ R
n, ∀ i ∈ {1, . . . , n − r}, φi,r (R � f ) ≥ 0

}
.

With the aim of keeping our notation as simple as possible, we omit the
dependence of the linear formsφi,r onr when there is no ambiguity. The remaining
part of the section is organized as follows. In the next section we present a general
approach for the problem of testing thatf belongs toC. In the last section we
show how this approach applies to the problems of hypothesis testing considered
in Sections 2 and 3.

4.1. Testing thatf belongs toC. We consider the problem of testing that the
vectorf = (f1, . . . , fn)

′ involved in the regression model

Yi = fi + σεi, i = 1, . . . , n,(31)

belongs toC defined by (27). Our aim is twofold: first, build a test which achieves
its nominal level, and second, describe for eachn a class of vectors over which this
test is powerful.

The testing procedure.The testing procedure relies on the following idea:
since under the assumption thatf belongs toC, the quantities〈f,∑p

j=1 λj vj 〉 are
nonpositive for all nonnegative numbersλ1, . . . , λp we base our test statistic on
random variables of the form〈Y,

∑p
j=1 λj vj 〉 for nonnegative sequences ofλj ’s.
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We denote byT the subset ofRn defined by

T =
{

t =
p∑

j=1

λj vj , ‖t‖ = 1, λj ≥ 0, ∀ j = 1, . . . , p

}
.(32)

Let Tn be a finite subset ofT such that there exists some linear spaceVn

with dimensiondn < n containing the linear span ofTn. Let {qt(α), t ∈ Tn} be
a sequence of numbers satisfying

P

[
sup
t∈Tn

(√
n − dn

〈ε, t〉
‖ε − �Vnε‖ − qt(α)

)
> 0
]

= α.(33)

We reject the null hypothesis if the statistic

Tα = sup
t∈Tn

(√
n − dn

〈Y, t〉
‖Y − �VnY‖ − qt(α)

)
(34)

is positive.

Properties of the test.For allβ ∈]0,1[ and eacht ∈ Tn let

vt(f, β) =
(
qt(α)

1√
n − dn

√
χ̄−1

n−dn,‖f−�Vn f‖2/σ2(β/2) + �̄−1(β/2)

)
σ.(35)

The order of magnitude ofvt(f, β) is proved to be
√

log(n)σ under the
assumption that‖f − �Vnf ‖2/n is smaller thanσ 2 as is shown in the proof of
Proposition 1.

We have the following result.

THEOREM 1. LetTα be the test statistic defined by(34).We have

sup
σ>0

sup
f∈C

Pf,σ (Tα > 0) = P0,1(Tα > 0) = α.(36)

Moreover, if there existst ∈ Tn such that〈f, t〉 ≥ vt(f, β), then

Pf,σ (Tα > 0) ≥ 1− β.

COMMENT. The values of theqt(α)’s that satisfy (33) can be easily obtained
by simulations underP0,1. This property of our procedure lies in the fact that the
least-favorable distribution under the null isP0,1. Note that we do not need to use
bootstrap procedures to implement the test.

4.2. How to apply these procedures to test qualitative hypotheses. In the
sequel, we give the choices ofTn andVn leading to the tests presented in Sections
2 and 3.
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For the test of positivity described in Section2.2. We takeTn = Tn,1, with
Tn,1 =⋃
n


=1 T 

n,1, where for all
 ∈ {1, . . . , 
n}

T 

n,1 =

{
− 1√|J |

∑
j∈J

ej , J ∈ J


}
.

We takeVn = Vn,cste. Note thatVn,cste is also the linear span ofTn,1.

For the test of monotonicity described in Section2.3. Let us define for each

 ∈ {2, . . . , 
n} and 1≤ i < j ≤ 
,

e

ij = N


ij

(
1

|J 

i |
∑
l∈J 


i

el − 1

|J 

j |
∑
l∈J 


j

el

)
.(37)

Note thatN

ij is such that‖e


ij‖ = 1. We takeTn = Tn,2, with Tn,2 =⋃
n


=2 T 

n,2,

where

T 

n,2 = {e


ij , 1≤ i < j ≤ 
},
and we takeVn = Vn,cste. Note thatVn containsTn,2.

For the test of convexity presented in Section2.4. Let us define for each

 ∈ {3, . . . , 
n}, 1≤ i < j < k ≤ 
,

e

ijk = N


ijk

(
1

|J 

j |
∑
l∈J 


j

el − λ

ijk

1

|J 

i |
∑
l∈J 


i

el − (1− λ

ijk)

1

|J 

k |
∑
l∈J 


k

el

)
.(38)

Note thatN

ijk is such that‖e


ijk‖ = 1. We takeTn = Tn,3, with Tn,3 =⋃
n


=3 T 

n,3,

where

T 

n,3 = {e


ijk, 1 ≤ i < j < k ≤ 
},
and we takeVn = Vn,cste. Note thatVn containsTn,3.

For the test ofF ∈ Kr,R presented in Section3. We take

Tn,4 =

n⋃


=1

T 

n whereT 


n = {t∗J , J ∈ J
}

andVn = Vn,4 defined by (21). Note thatVn containsTn,4.

We justify these choices ofTn by the following proposition proved in Section 7.

PROPOSITION5. Let C andTn be either(C≥0,Tn,1), (C↗,Tn,2), (C�,Tn,3)

or (Cr,R,Tn,4). There existv1, . . . ,vp for whichC is of the form given by(27)and
for whichT defined by(32) containsTn.
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5. Simulation studies. In this section we describe how to implement the
test for F ∈ K↗ and we carry out a simulation study in order to evaluate the
performances of our tests both when the errors are Gaussian and when they are
not. We first describe how the testing procedure is performed, then we present the
simulation experiment and finally discuss the results of the simulation study.

5.1. The testing procedures.We carry out the simulation study for the two
testing procedures described in Sections 2.3 and 3.1. In the sequel, the procedure
based on differences oflocal meansand described in Section 2.3 is called LM and
the procedure based onlocal gradientsdefined below (from the test statistic given
in Section 3.1 withr = 1) is called LG.

In the case of the procedure LM, we setTLM = Tα,2 defined in (11). For each
,
the quantilesq2(
, uα) are calculated as follows. Foru varying among a suitable
grid of valuesu1, . . . , um, we estimate by simulations the quantity

p(uj ) = P

(
max

l=1,...,
n

{T 

2 (ε) − q2(
, uj )} > 0

)
,

ε being ann-sample ofN (0,1), and we takeuα as max{uj ,p(uj ) ≤ α}. Note that
uα does not depend on(xi, i = 1, . . . , n), but only on the number of observationsn.

In the case of the procedure LG, the test statistic is defined as follows. For each

 = 1, . . . , 
n and forJ ∈ J
, we take

t∗J = x̄J 1J − xJ

‖x̄J 1J − xJ ‖ .

The spaceVn reduces toVn,lin , the linear space of dimension 2
n generated by

{1J ,xJ , J ∈ J
n}.
The test statisticTα takes the form

TLG = Tα,4 = max

=1,...,
n

{T 

4 (Y) − q4(
, uα)},

where for each
 ∈ {1, . . . , 
n},

T 

4 (Y) = max

J∈J


√
n − 2
n

〈Y, t∗J 〉
‖Y − �Vn,lin Y‖ ,

andq4(
, uα) denotes the 1− u quantile of the random variableT 

4 (ε).

The procedure for calculatingq4(
, uα) for 
 = 2, . . . , 
n is the same as the
procedure for calculating theq2(
, uα)’s.

5.2. The simulation experiment.The number of observationsn equals 100,
xi = i/(n + 1), for i = 1, . . . , n, and
n is either equal to 15 or 25.

We consider three distributions of the errorsεi , with expectation zero and
variance 1.
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1. The Gaussian distribution:εi ∼ N (0,1).
2. The type I distribution:εi has densitysfX(µ + sx), wherefX(x) = exp{−x −

exp(−x)} and whereµ and s2 are the expectation and the variance of a
variableX with densityfX. This distribution is asymmetrical.

3. The mixture of Gaussian distributions:εi is distributed asπX1 + (1 − π)X2,
whereπ is distributed as a Bernoulli variable with expectation 0.9, X1 andX2
are centered Gaussian variables with variances, respectively, equal to 2.43s and
25s, andπ,X1 andX2 are independent. The quantitys is chosen such that the
variance ofεi equals 1. This distribution has heavy tails.

We consider several functionsF that are presented below. For each of them, we
simulate the observationsYi = F(xi) + σεi . The values ofσ 2 and of the distance
in sup-norm betweenF andK↗ are reported in Table 1:

d∞(F,K↗) = 1
2 sup

0≤s≤t≤1

(
F(s) − F(t)

)
.

Let us comment on the choice of the considered functions.

(a) F0(x) = 0 corresponds to the case for which the quantilesq(
,uα) are
calculated.

(b) The functionF1(x) = 151x≤0.5(x − 0.5)3 + 0.3(x − 0.5) − exp(−250(x −
0.25)2) presents a strongly increasing part with a pronounced dip aroundx = 1/4
followed by a nearly flat part on the interval[1/2,1].

(c) The decreasing linear functionF2(x) = −ax, the parametera being chosen
such thata = 1.5σ .

(d) The functionF3(x) = −0.2exp(−50(x − 0.5)2) deviates fromF0 by a
smooth dip while the functionF4(x) = 0.1cos(6πx) deviates fromF0 by a cosine
function.

(e) The functionsF5(x) = 0.2x + F3(x) and F6(x) = 0.2x + F4(x) deviate
from an increasing linear function in the same way asF3 andF4 do fromF0.

TABLE 1
Testing monotonicity: simulated

functionsF , values ofσ2 and distance
in sup-norm betweenF andK↗

F σ 2 d∞(F,K↗)

F0(x) 0.01 0
F1(x) 0.01 0.25
F2(x) 0.01 0.073
F3(x) 0.01 0.1
F4(x) 0.01 0.1
F5(x) 0.004 0.06
F6(x) 0.006 0.08
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Let us mention that it is more difficult to detect thatF5 (resp.F6) is nonincreasing
than to detect thatF3 (resp.F4) is. Indeed, adding an increasing function to a
function F reduces the distance in sup-norm betweenF and K↗. This is the
reason why the values ofσ are smaller in the simulation study when we consider
the functionsF5 andF6.

In Figure 1 we have displayed the functionsF
 for 
 = 1, . . . ,6 and for each of
them one sample simulated with Gaussian errors. The corresponding values of the
test statisticsTLM andTLG for α = 5% and
n = 25 are given. For this simulated
sample, it appears that the test based on the statisticTLM leads to rejection of the
null hypothesis in all cases, while the test based onTLG rejects in all cases except
for functionsF2 andF4.

The results of the simulation experiment based on 4000 simulations are
presented in Tables 2 and 3.

5.3. Comments on the simulation study.As expected, the estimated level of
the test calculated for the functionF0(x) = 0 is (nearly) equal toα when the errors
are distributed as Gaussian variables.

When 
n = 25, the estimated levels of the tests for the mixture and type I
distributions are greater thanα (see Table 2). Let us recall that when
n is large,
we are considering statistics based on the average of the observations on sets
J with small cardinality. Therefore, reducing
n improves the robustness to a
non-Gaussian error distribution. This is what we get in Table 2 for
n = 15. It
also appears that the method based on the local means is more robust than the
method based on the local gradients, and that both methods are more robust for
the type I distribution that is asymmetric but not heavy tailed, than for the mixture
distribution.

Except for the functionF1, the estimated power is greater for the procedure
based on the local means than for the procedure based on the local gradients (see
Table 3). For both procedures the power of the test is larger with
n = 25 than with

n = 15. However, except for the functionF1, the loss of power is less significant
for the procedure based on the local means.

TABLE 2
Testing monotonicity: levels of the tests based onTLM andTLG

�n = 15 �n = 25

Errors distribution TLM TLG TLM TLG

Gaussian 0.049 0.050 0.046 0.051
Type I 0.048 0.072 0.064 0.085
Mixture 0.064 0.117 0.093 0.180
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FIG. 1. For each functionF
, 
 = 1, . . . ,6, the simulated dataYi = F
(xi) + σεi for i = 1, . . . , n

are displayed. The errorsεi are Gaussian normalized centered variables. The values of the test
statisticsTLM andTLG, with α = 5%,are given for each example.
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TABLE 3
Testing monotonicity: powers of the tests based on

TLM andTLG when the errors are Gaussian

�n = 15 �n = 25

F TLM TLG TLM TLG

F1 0.85 0.99 0.99 1
F2 0.96 0.96 0.99 0.99
F3 0.99 0.73 1 0.98
F4 0.89 0.71 0.99 0.94
F5 0.99 0.69 0.99 0.87
F6 0.87 0.79 0.98 0.93

5.4. Comparison with other work.As expected, the power of our proce-
dure TLG for the functionF1 is similar to that obtained by Hall and Heckman
(2000).

The decreasing linear functionF2(x) = −ax has already been studied by
Gijbels, Hall, Jones and Koch (2000) witha = 3σ . They get an estimated power
of 77%.

Gijbels, Hall, Jones and Koch (2000) studied the function 0.075F3/0.2 with
σ = 0.025 and obtained a simulated power of 98%. With the same function and
the sameσ , we get a power equal to 1, for both procedures and for
n = 15 and

n = 25.

Gijbels, Hall, Jones and Koch (2000) and Hall and Heckman (2000) calculated
the power of their test for the functionF7(x) = 1+ x − a exp(−50(x − 0.5)2) for
different values ofa andσ . Whena = 0.45 andσ = 0.05, we get a power equal
to 1 as Gijbels, Hall, Jones and Koch (2000) do. Whena = 0.45 andσ = 0.1, we
get a power equal to 76% when using the procedureTLM with 
n = 25 or
n = 15.
Gijbels, Hall, Jones and Koch (2000) got 80% and Hall and Heckman (2000) a
power larger than 87%.

6. Proof of Theorem 1.

Level of the test. We first prove that for allt ∈ Tn, qt(α) > 0. Indeed, thanks
to (33), we have

P

[√
n − dn

〈ε, t〉
‖ε − �Vnε‖ − qt(α) > 0

]

≤ P

[
sup
t∈Tn

(√
n − dn

〈ε, t〉
‖ε − �Vnε‖ − qt(α)

)
> 0
]

≤ α <
1

2
.
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Since the random variable
√

n − dn 〈ε, t〉/‖ε − �Vnε‖ is symmetric (distributed
as Student withn − dn degrees of freedom), we deduce thatqt(α) is positive. In
the sequel let us set

σ̂n = ∥∥Y − �VnY
∥∥/√n − dn.

Since for allf ∈ C andj ∈ {1, . . . , p}, 〈f, vj 〉 ≤ 0, we have that for allt ∈ Tn,

〈f, t〉 =
p∑

j=1

λj 〈f, vj 〉
‖∑p

j=1 λjvj‖ ≤ 0.

Hence,〈Y, t〉 = 〈f, t〉 + σ 〈ε, t〉 ≤ σ 〈ε, t〉 and therefore for allf ∈ C andσ > 0,

Pf,σ [Tα > 0] ≤ Pf,σ

[
sup
t∈Tn

( 〈ε, t〉
σ̂n/σ

− qt(α)

)
> 0
]

≤ Pf,σ

[
σ̂n

σ
< sup

t∈Tn

〈ε, t〉
qt(α)

]
.

We now use the following lemma for noncentralχ2-random variables.

LEMMA 1. For all u > 0, f ∈ R
n andσ > 0

Pf,σ [σ̂n < σu] ≤ P0,1[σ̂n < u].
This lemma states that a noncentralχ2-random variable is stochastically larger

than aχ2-random variable with the same degrees of freedom. For a proof we refer
to Lemma 1 in Baraud, Huet and Laurent (2003a).

SinceTn ⊂ Vn, the random variables〈ε, t〉 for t ∈ Tn are independent of̂σn and
thus by conditioning with respect to the〈ε, t〉’s and using Lemma 1 we get

sup
σ>0

sup
f∈C

Pf,σ [Tα > 0] ≤ P0,1

[
σ̂n < sup

t∈Tn

〈ε, t〉
qt(α)

]

= P0,1[Tα > 0] = α.

The reverse inequality being obvious, this concludes the proof of (36).

Power of the test. For anyf ∈ R
n andσ > 0

Pf,σ (Tα ≤ 0) = Pf,σ
(∀ t ∈ Tn, 〈Y, t〉 ≤ qt(α)σ̂n

)
.

Setting

xn(f, β) = σ√
n − dn

√
χ̄−1

n−dn,‖f−�Vn f‖2/σ2(β/2),

we have

Pf,σ
(
σ̂n > xn(f, β)

)= β/2.



TESTS FOR CONVEX HYPOTHESES 235

It follows that for allf ∈ R
n andσ > 0,

Pf,σ (Tα ≤ 0) ≤ inf
t∈Tn

Pf,σ
(〈Y, t〉 ≤ qt(α)xn(f, β)

)+ β/2

≤ inf
t∈Tn

Pf,σ
(
σ 〈ε, t〉 ≤ qt(α)xn(f, β) − 〈f, t〉)+ β/2.

Since‖t‖ = 1, 〈ε, t〉 is distributed as a standard Gaussian variable, and therefore
Pf,σ (Tα ≤ 0) ≤ β as soon as there existst ∈ Tn such that

qt(α)xn(f, β) − 〈f, t〉 ≤ −σ�̄−1(β/2).

This concludes the proof of Theorem 1.

7. Proofs of Propositions 4 and 5. Let us denote byIr the set of increasing
sequences ofr + 1 indices in{1, . . . , n}, that is,

Ir = {(i1, . . . , ir+1), i1 < · · · < ir+1, ij ∈ {1, . . . , n}}.(39)

For i = (i1, . . . , ir+1) ∈ Ir andv ∈ R
n we set

φi(v) = det




1 xi1 · · · xr−1
i1

vi1

1 xi2 · · · xr−1
i2

vi2

...
...

...
...

...

1 xir+1 · · · xr−1
ir+1

vir+1


 .(40)

For i = (i, . . . , i + r), φi(v) = φi(v), where φi(v) is defined by (30). For
w1, . . . ,wq , q vectors ofRn, we set

Gram(w1, . . . ,wq) = det(G) whereG = (〈wi ,wj 〉)1≤i,j≤q .

Let us define

C̃r,R = {f ∈ R
n, ∀ i ∈ Ir , φi(R � f ) ≥ 0}.(41)

The proofs of Propositions 4 and 5 rely on the following lemma.

LEMMA 2. The following equalities hold. First,

C̃r,R = Cr,R.(42)

Assume thatf = (F (x1), . . . ,F (xn))
′, where F is such thatRF is r times

differentiable. Then for eachi ∈ Ir there exists someci ∈]xi1, xir+1[ such that

φi(R � f ) = �(F)(ci)

r! φi(xr ).(43)

For J ⊂ {1, . . . , n} let t∗J be defined by(22).We have

−〈f, t∗J 〉 = N−1
J

∑
i∈Ir∩J r+1

φi(R � f )φi(xr ),(44)

whereNJ = Gram(1J ,xJ , . . . ,xr−1
J )γJ .

The proof of the lemma is delayed to the Appendix.
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7.1. Proof of Proposition4. The result concerningK� is clear as a functionF
is nonconcave on[0,1] if and only if for all x, y, z in [0,1] with x < y < z one has

det


1 x F(x)

1 y F(y)

1 z F (z)


≥ 0.

Let us now turn to the setKr,R . First note that then − r linear formsf �→
φi,r (R � f ) are independent since the linear space{

f ∈ R
n, ∀ i ∈ {1, . . . , n − r}, φi,r (R � f ) = 0

}
,

which is generated by

1

R
� 1,

1

R
� x, . . . ,

1

R
� xr−1,

is of dimensionr . Second, the fact thatf belongs toC̃r,R is a straightforward
consequence of (43) since under the assumption thatF ∈ Kr,R , �(F)(x) ≥ 0 for
all x, and since the Vandermonde determinantsφi(xr ) are positive for alli ∈ Ir .

7.2. Proof of Proposition5. The result is clear in the case whereC≥0. For the
other cases we use the following lemma.

LEMMA 3. Let W be the orthogonal complement of the linear space
generated by thevj ’s for j = 1, . . . , p. If t∗ /∈ W satisfies for allf ∈ C

〈t∗ − �W t∗, f〉 ≤ 0,

then

t∗ − �W t∗

‖t∗ − �W t∗‖ ∈ T .

PROOF. The vectort∗ − �W t∗ belongs to the linear space generated by
the vj ’s and thus one can writeg∗ = t∗ − �W t∗ = ∑p

j=1 λj vj . It remains to

show that theλj ’s are nonnegative. Let us fixj0 ∈ {1, . . . , p} and choosefj0 in R
n

satisfying〈fj0,vj 〉 = 0 for all j �= j0 and〈fj0,vj0〉 < 0. Such a vector exists since
the vj ’s are linearly independent inRn. Clearly fj0 belongs toC and therefore
〈fj0,g∗〉 = λj0〈fj0,vj0〉 ≤ 0 which constrainsλj0 to be nonnegative. This concludes
the proof of Lemma 3. �

Let us consider the case whereC = C↗. We apply Lemma 3. In this case
W is the linear space generated by1; we get that for all
 ∈ {2, . . . , 
n} and
1≤ i < j ≤ 
, e


ij satisfies�W e

ij = 0. Moreover‖e


ij‖ = 1 and

∀ f ∈ C↗ 〈f, e

ij 〉 = N


ij

(
f̄J 


i
− f̄J 


j

)≤ 0.
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Let us consider the case whereC = C�. In this case,p = n − 2 and for all
j = 1, . . . , n − 2,

vj = (xj+1 − xj+2)ej + (xj+2 − xj )ej+1 + (xj − xj+1)ej+2.

Since‖e

ijk‖ = 1, by Lemma 3 it is enough to prove that:

(i) for all f ∈ W , 〈f, e

ijk〉 = 0,

(ii) for all f ∈ C�, 〈f, e

ijk〉 ≤ 0.

First note that for allf ∈ R
n,

〈f, e

ijk〉 = N


ijk

(
f̄J 


j
− λ


ijkf̄J 

i

− (1− λ

ijk)f̄J 


k

)
.(45)

Clearly if f = 1 or f = x, 〈f, e

ijk〉 = 0 and since by definition ofC�, W is the

linear space generated by1 and x, (i) holds true. Let nowf ∈ C�. There exists
some convex functionF mapping[x1, xn] into R such thatF(xi) = fi for all
i = 1, . . . , n (take the piecewise linear function verifying this property, e.g.). Let
i < j < k andl ∈ J 


j . We set

µl
ik =

x̄J 

k

− xl

x̄J 

k

− x̄J 

i

.

Note that 0≤ µl
ik ≤ 1 and that

xl = µl
ikx̄J 


i
+ (1− µl

ik)x̄J 

k
.

SinceF is convex on[x1, xn], we have for alll ∈ J 

j ,

F(xl) ≤ µl
ikF
(
x̄J 


i

)+ (1− µl
ik)F

(
x̄J 


k

)≤ µl
ik f̄J 


i
+ (1− µl

ik)f̄J 

k
.

Note that
∑

l∈J 

j
µl

ik/|J 

j | = λ


ijk . We derive from the above inequality that

f̄J 

j

= 1

|J 

j |
∑
l∈J 


j

F (xl) ≤ λ

ijkf̄J 


i
+ (1− λ


ijk)f̄J 

k
,

which, thanks to (45), leads to (ii).
Let us consider the case whereC = Cr,R . By Lemma 2 we know that

C̃r,R = Cr,R and therefore for eachi ∈ Ir , the linear formf �→ φi(R � f ) is a linear
combination of the linear formsf �→ φi(R � f ) with i = 1, . . . , n−r . Consequently,
if w ∈ W , then for alli ∈ Ir , φi(R � w) = 0. For eachJ ⊂ {1, . . . , n}, t∗J defined
by (22) satisfies‖t∗J ‖ = 1. By applying (44) withf = w, we get〈w, t∗J 〉 ≤ 0 for all
w ∈ Cr,R and〈w, t∗J 〉 = 0 for all w ∈ W . Consequently, by Lemma 3,t∗J belongs
to T .

8. Proof of Proposition 1.

8.1. Proof for (Tα,C) = (Tα,1,C≥0). We prove the proposition by applying
Theorem 1. We decompose the proof into six steps.
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STEP 1. For all integer N ≥ 1, let T̄ −1
N (u) denote the1 − u quantile of a

Student random variable withN degrees of freedom. We have for allu ∈]0,1[,

T̄ −1
N (u) ≤ 1+ C

{
log1/4

(
1

u

)
+ log1/2

(
1

u

)
exp
(

2

N
log
(

1

u

))}
(46)

for some absolute constantC > 0.

PROOF. Let F̄−1
1,N (u) denote the 1− u quantile of a Fisher variable with one

andN degrees of freedom. Then

T̄ −1
N (u) =

√
F̄−1

1,N (u).

It follows from Lemma 1 in Baraud, Huet and Laurent (2003a) that for all
u ∈]0,1[ , N ≥ 1,

F̄−1
1,N (u) ≤ 1+ 2

√
2 log1/2

(
1

u

)
+ 3N

2

{
exp
(

4

N
log
(

1

u

))
− 1
}
.

Using the inequality exp(x) − 1 ≤ x exp(x) which holds for allx > 0, we obtain

F̄−1
1,N (u) ≤ 1+ 2

√
2 log1/2

(
1

u

)
+ 6 log

(
1

u

)
exp
(

4

N
log
(

1

u

))
,

and since
√

a + b ≤ √
a + √

b for all a > 0 andb > 0,√
F̄−1

1,N (u) ≤ 1+ C

{
log1/4

(
1

u

)
+ log1/2

(
1

u

)
exp
(

2

N
log
(

1

u

))}

for some absolute constantC > 0. �

STEP 2. For all 
 ∈ {1, . . . , 
n}, t ∈ T 

n,1, we have

qt(α) = q1(
, uα) ≤ C(α)
√

log(n).(47)

PROOF. On the one hand, by definition ofq1(
, ·),

α = P0,1(Tα,1 > 0) ≤

n∑


=1

P
(
T 


1 (ε) − q1(
, uα) > 0
)≤ 
nuα,

and thus

uα ≥ α/
n.(48)

On the other hand, for all
 ∈ {1, . . . , 
n} andJ ∈ J
, the random variables

UJ = −∑i∈J εi

‖ε − �Vnε‖

√
n − dn

|J |
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being distributed as Student variables withn − dn degrees of freedom, we have
that

P

(
T 


1 (ε) > T̄ −1
n−dn

(
uα

|J
|
))

≤ ∑
J∈J


P

(
UJ > T̄ −1

n−dn

(
uα

|J
|
))

≤ uα(49)

and thusq1(
, uα) ≤ T̄ −1
n−dn

(uα/|J
|). This inequality together with (48) and (46)
leads to (47), as|J
| ≤ 
n ≤ n/2 andn − dn = n − 
n ≥ n/2. �

STEP 3. For all f = (F (x1), . . . ,F (xn))
′ with F ∈ Hs(L),

‖f − �Vn,cstef‖2

n
≤ C(s)L2n−2s .(50)

PROOF. Note that the vector

f̃ =

n∑

k=1

F(x̄Jk
)1Jk

belongs toVn,csteand therefore∥∥f − �Vn,cstef
∥∥2 ≤ ‖f − f̃‖2

=

n∑

k=1

∑
i∈Jk

(
F(xi) − F

(
x̄Jk

))2

≤

n∑

k=1

∑
i∈Jk

L2
−2s
n

= nL2
−2s
n .

Noting that
n = dn ≥ n/4, we get (50). �

STEP4. Assuming thatn ≥ (L/σ)1/s , there exists some constantC depending
on s andβ only such that

χ̄−1
n−dn,‖f−�Vn,cstef‖2/σ2(β/2)

n − dn

≤ C.(51)

PROOF. Using the inequality due to Birgé (2001) on the quantiles of
noncentralχ2, we have that

χ̄−1
n−dn,a2(β/2) ≤ n − dn + a2 + 2

√
(n − dn + 2a2) log(2/β) + 2 log(2/β).

Settinga = ‖f − �Vn,cstef‖/σ and using (50), we derive that

χ̄−1
n−dn,a2(β/2)/(n − dn) ≤ C(β, s).(52) �
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STEP 5. Under the assumption of Step4, for all t ∈ Tn,

vt(f, β) ≤ κ∗√log(n)σ,

for some constantκ∗ depending onα,β ands only.

PROOF. We recall that

vt(f, β) =
(
qt(α)

1√
n − dn

√
χ̄−1

n−dn,‖f−�Vn f‖2/σ2(β/2) + �̄−1(β/2)

)
σ.

We conclude by using the elementary inequality

�̄−1(β/2) ≤ √
2 log(2/β),

and by gathering (47) and (51).�

We conclude the proof with this final step.

STEP 6. There exists a constantκ depending onα,β and s only, such that if
n is large enough andF satisfies

min
x∈[0,1]F(x) ≤ −κρn,(53)

then there existst∗ ∈ Tn such that

〈f, t∗〉 ≥ vt∗(f, β).(54)

PROOF. Since F ∈ Hs(L), under Assumption (53) there existsj ∈ {1,2,

. . . , n} such that

F(j/n) ≤ −κρn + Ln−s .

Forn large enough,Ln−s ≤ κρn/2, henceF(j/n) ≤ −κρn/2.
Let us takeκ satisfying

κ

4
= (2κ∗)2s/(1+2s),

whereκ∗ is defined at Step 5.
Let us define


(n) =
[(

4L

κρn

)1/s]
,(55)

andJ as the element ofJ
(n) containingj . Note that forn large enough,
(n) ∈
{1, . . . , 
n}.
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Now, for all k ∈ J , sinceF ∈ Hs(L),

fk = F(xk) = −F(xj ) + F(xj ) + F(xk)

≤ −κρn/2+ L|xk − xj |s
≤ −κρn/2+ L
(n)−s

≤ −κρn/4

and thus, by takingt∗ ∈ Tn,1 as

t∗ = − 1√|J |
∑
i∈J

ei ,

we derive that

〈f, t∗〉 = −√|J |f̄J

≥ √|J |κρn/4.

By construction of the partition of the data, we have for all positive integers
p ≤ q ≤ r that [

r

q

]
≤ |I r

p,q | ≤
[
r

q

]
+ 1.(56)

For all j ∈ {1, . . . , 
(n)}, J = J

(n)
j [see (8)] is a union of|I 
n

j,
(n)| ≥ [
n/
(n)]
disjoint sets of cardinality at least[n/
n]. Hence∣∣J 
(n)

j

∣∣≥ [ n


n

][

n


(n)

]
≥ n

4
(n)

since[x] ≥ x/2 for all x ≥ 1. Therefore we get

|J | ≥ n

4
(n)
≥ n

4

(
κ

ρn

4L

)1/s

(57)

using (55).
This implies that

〈f, t∗〉 ≥
√

n

8

(
κρn

4L

)1/(2s)

κρn ≥ κ∗σ
√

log(n)

by definition ofκ . �

8.2. Proof for (Tα,C) = (Tα,2,C↗). We follow the proof of Theorem 1 for
(Tα,C) = (Tα,1,C≥0): the results of Steps 1–5 still hold. The proof of Step 2
differs in the following way: (49) becomes

P

(
T 


2 (ε) > T̄ −1
n−dn

(
uα

|T 

n,2|
))

≤ ∑
1≤i<j≤


P

( 〈ε, e

ij 〉

‖ε − �Vn,csteε‖/(n − 
n)
> T̄ −1

n−dn

(
uα

|T 

n,2|
))

≤ uα.
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We conclude the proof of Step 2 by noticing that for all
 ∈ {1, . . . , 
n}, |T 

n,2| is

bounded from above byn2/4.

STEP 6. For n large enough, under the assumption that

inf
G∈K↗

‖F − G‖∞ ≥ κρn,(58)

there existst∗ ∈ Tn,2, such that〈t∗, f 〉 ≥ vt∗(f, β).

PROOF. Let us first remark that

inf
G∈K↗

‖F − G‖∞ ≤ sup
0≤x≤y≤1

(
F(x) − F(y)

)
.

Indeed, letG∗ ∈ K↗ be defined as

G∗(y) = sup
0≤x≤y

F (x).

Then

inf
G∈K↗

‖F − G‖∞ ≤ ‖F − G∗‖∞ = sup
0≤x≤y≤1

(
F(x) − F(y)

)
.

Hence, under (58), there existsx < y such thatF(x) − F(y) ≥ κρn. Since
F ∈ Hs(L), if |xi − x| ≤ 1/n and|xj − y| ≤ 1/n, then

F(xi) − F(xj ) ≥ κρn − 2Ln−s ≥ κρn/2

for n large enough. Hence, there exists 1≤ i < j ≤ n such thatF(xi) − F(xj ) ≥
κρn/2.

Let us set


(n) =
[(

8L

κρn

)1/s]
,

which belongs to{1, . . . , 
n} at least forn large enough. LetI and J be the
elements ofJ
(n) satisfyingi ∈ I andj ∈ J .

Arguing as in Step 6 of Section 8.1, sinceF ∈ Hs(L),

f̄I ≥ F(xi) − L
(n)−s and f̄J ≤ F(xj ) + L
(n)−s

and we deduce that

f̄I − f̄J ≥ κρn/2− 2L
(n)−s ≥ κρn/4.

This implies that there exists 1≤ i∗ < j∗ ≤ 
(n) with I = J

(n)
i∗ andJ = J


(n)
j∗ ,

such that 〈
e
(n)
i∗j∗, f

〉= N

(n)
i∗j∗ (f̄I − f̄J ) ≥ N


(n)
i∗j∗

κρn

4
.



TESTS FOR CONVEX HYPOTHESES 243

Using (56), and since
n = [n/2], we have that for allK ∈ J
(n),

2
[


n


(n)

]
≤ |K| ≤ 3

([

n


(n)

]
+ 1
]
,

which implies that

N

(n)
i∗j∗ =

√
|I ||J |

|I | + |J | ≥ C

√

n


(n)
.

We now conclude as in the proof of Step 6 by takingt∗ = e
(n)
i∗j∗ . �

8.3. Proof of Theorem1 for (Tα,C) = (Tα,3,C�). We follow the proof of
Theorem 1 for the case(Tα,C) = (Tα,1,C≥0): the results of Steps 1–5 still hold.
Nevertheless, the proof of Step 2 differs in the following way: (49) becomes

P

(
T 


3 (ε) > T̄ −1
n−dn

(
uα

|T 

n,3|
))

≤ ∑
1≤i<j<k≤


P

( 〈ε, e

ijk〉

‖ε − �Vn,csteε‖/(n − 
n)
> T̄ −1

n−dn

(
uα

|T 

n,3|
))

≤ uα.

We conclude the proof of Step 2 by noticing that for all
 ∈ {1, . . . , 
n}, |T 

n,3| is

bounded from above byn3/8.

STEP 6. For n large enough, under the assumption that

inf
G∈K�

‖F − G‖∞ ≥ κρn,(59)

there existst∗ ∈ Tn,3 such that

〈t∗, f 〉 ≥ vt∗(f, β).

PROOF. We decompose the proof into three parts.

PART 1. For n large enough, and allF ∈ Hs(L) satisfying(59),we have

inf
g∈C�

‖f − g‖∞ ≥ κρn/4,

with f = (F (x1), . . . ,F (xn))
′.

PROOF. We first prove the following inequality:

inf
G∈K�

‖F − G‖∞ ≤ 2Ln−s + 3 inf
g∈C�

‖f − g‖∞.(60)

Part 1 derives obviously from this inequality.
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For all g ∈ C�, we consider the functionGg ∈ K� defined as the piecewise
linear function such that for alli, Gg(xi) = gi and such thatGg is affine on the
interval [0, x2]. Then infG∈K� ‖F − G‖∞ ≤ ‖F − Gg‖∞. Moreover, by setting
x0 = 0 andg0 = Gg(0),

‖F − Gg‖∞
= sup

i∈{1,...,n}
sup

x∈[xi−1,xi ]
|F(x) − Gg(x)|

≤ sup
i∈{1,...,n}

sup
x∈[xi−1,xi ]

|F(x) − F(xi) + F(xi) − Gg(xi) + Gg(xi) − Gg(x)|

≤ Ln−s + ‖f − g‖∞ + sup
i∈{1,...,n}

|gi−1 − gi |,

since supx∈[xi−1,xi ] |Gg(xi) − Gg(x)| = |Gg(xi) − Gg(xi−1)| (G is linear on
[xi−1, xi]). In addition, noticing that|g1 − g0| = |g2 − g1|,

sup
i∈{1,...,n}

|gi − gi−1| ≤ sup
i∈{2,...,n}

|gi − fi + fi − fi−1 + fi−1 − gi−1|

≤ 2‖f − g‖∞ + Ln−s .

This concludes the proof of (60).�

PART 2. For all f ∈ R
n,

inf
g∈C�

‖f − g‖∞ ≤ max
1≤i<j<k≤n

(
fj − xk − xj

xk − xi

fi − xj − xi

xk − xi

fk

)
+
,(61)

where forx ∈ R, (x)+ = x1x>0 denotes the positive part ofx.

PROOF. Let us defineg∗ ∈ C� as follows:g∗
1 = f1 and fori = 1, . . . , n − 1,

g∗
i+1 = g∗

i + inf
{
fk − g∗

i

xk − xi

, k > i

}
(xi+1 − xi).

In words, if Flin denotes the piecewise linear function on[x1, xn] taking the
valuefi at xi , theng∗ is the vector(G∗

lin(x1), . . . ,G
∗
lin(xn))

′, whereG∗
lin is the

largest convex function satisfying for allu ∈ [x1, xn] G∗
lin(u) ≤ Flin(u). Note that

the functionG∗
lin is also piecewise linear and satisfies that for allj ∈ {1, . . . , n}

such thatFlin(xj ) − G∗
lin(xj ) > 0, there exist 1≤ i < j < k ≤ n such that

Flin(xj ) − G∗
lin(xj ) = fj − xk − xj

xk − xi

fi − xj − xi

xk − xi

fk.

Consequently,

‖f − g∗‖∞ = max
j=1,...,n

(
Flin(xj ) − G∗

lin(xj )
)

≤ max
1≤i<j<k≤n

(
fj − xk − xj

xk − xi

fi − xj − xi

xk − xi

fk

)
+
. �
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PART 3. Letκ ′ = κ/4. We set


(n) = 1+
[(

6L

κ ′ρn

)1/s]
.

If there exist1≤ i < j < k ≤ n such that

fj − xk − xj

xk − xi

fi − xj − xi

xk − xi

fk ≥ κ ′ρn,

then there existI = J

(n)
i∗ , J = J


(n)
j∗ andK = J


(n)
k∗ with i∗ < j∗ < k∗, such that

f̄J − x̄K − x̄J

x̄K − x̄I

f̄I − x̄J − x̄I

x̄K − x̄I

f̄K ≥ κ ′ρn/4.(62)

PROOF. Note that


(n) ≥
(

6L

κ ′ρn

)1/s

(63)

and that forn large enough,
(n) ∈ {1, . . . , 
n}.
In the sequel, we shall use the following inequalities:

∀E ∈ {I, J,K} max
l,l′∈E

|xl − xl′ | ≤ 1


(n)
and

(64)
max
l∈E

|xl − x̄E| ≤ 1

2
(n)
,

and the following notation:

λ = xk − xj

xk − xi

, λ̄ = x̄K − x̄J

x̄K − x̄I

, � = f̄J − λ̄f̄I − (1− λ̄)f̄K.

We bound� from below as follows:

� = fj − λfi − (1− λ)fk

+ f̄J − fj + λfi − λ̄f̄I + (1− λ)fk − (1− λ̄)f̄K

≥ κρn + f̄J − fj + (λ − λ̄)fi − λ̄(f̄I − fi) + (λ̄ − λ)fk − (1− λ̄)(f̄K − fk)

≥ κρn − 2max{|f̄I − fi |, |f̄J − fj |, |f̄K − fk|} − |λ − λ̄||fi − fk|.
Let us now bound from above the quantities

|fi − fk|, max{|f̄I − fi |, |f̄J − fj |, |f̄K − fk|}, |λ − λ̄|.
SinceF ∈ Hs(L), we have that

|fi − fk| = |F(xi) − F(xk)| ≤ L|xk − xi |s,(65)

and by using (64) that

max{|f̄I − fi |, |f̄J − fj |, |f̄K − fk|} ≤ L
(n)−s .(66)
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For each(l,E) ∈ {(i, I ), (j, J ), (k,K)}, let

hl = x̄E − xl.

We have

λ̄ = xk − xj + hk − hj

xk − xi + hk − hi

= λ

(
1+ (hk − hj )/(xk − xj )

1+ (hk − hi)/(xk − xi)

)

= λ

(
1+ (hk − hj )/(xk − xj ) − (hk − hi)/(xk − xi)

1+ (hk − hi)/(xk − xi)

)
,

and as from (64) max{|hk − hj |, |hk − hi |} ≤ 
(n)−1, we deduce that

|λ̄ − λ| = |λ|
∣∣∣∣(hk − hj )/(xk − xi) − (hk − hi)/(xk − xi)

1+ (hk − hi)/(xk − xi)

∣∣∣∣
(67)

≤ 2δ

|1− δ| ,
where

δ = 1


(n)|xk − xi | .(68)

In order to boundδ from above, note that sinceF ∈ Hs(L),

κ ′ρn ≤ fj − λfi − (1− λ)fk

= λ
(
F(xj ) − F(xi)

)+ (1− λ)
(
F(xj ) − F(xk)

)
≤ Lmax{|xj − xi |s, |xk − xj |s}

and therefore

|xk − xi | ≥ max{|xj − xi |, |xk − xj |}
= {max{|xj − xi |s, |xk − xj |s}}1/s

≥
(

κ ′ρn

L

)1/s

.

Thus, we deduce by (63) and the fact thats ∈]0,1] that

δ ≤ L1/s

(κ ′ρn)1/s
(n)
≤ 1

6
.(69)

By gathering (65)–(67), we get

� ≥ κ ′ρn − 2L
(n)−s − 2L
δ

1− δ
|xk − xi |s .
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By using (68), (69) and (63) we finally get

� = κ ′ρn − 2L
(n)−s − 2L
(n)−s δ1−s

1− δ

≥ κ ′ρn

{
1− 1

3

(
1+ 1

1− 1/6

)}

≥ κ ′ρn/4. �

Let us now conclude the proof of Step 6. Under the assumption that

inf
g∈C�

‖f − g‖∞ ≥ κ ′ρn

we know from (61) that there existsi < j < k such that

fj − xk − xj

xk − xi

fi − xj − xi

xk − xi

fk ≥ κ ′ρn,

and from (62) that there existI = J

(n)
i∗ , J = J


(n)
j∗ and K = J


(n)
k∗ with i∗ <

j∗ < k∗ such that

〈
f, e
(n)

i∗j∗k∗
〉= N


(n)
i∗j∗k∗

(
f̄J − λ


(n)
i∗j∗k∗ f̄I − (1− λ


(n)
i∗j∗k∗

)
f̄K

)≥ N

(n)
i∗j∗k∗κ ′ρn

4
.

Noting that for allE ∈ {I, J,K}

|E| ≥ 2
[


n


(n)

]
≥ 
n


(n)
≥ n

4
(n)
,

and that‖e
(n)
i∗j∗k∗‖2 ≤ 1/|I | + 1/|J | + 1/|K|, we have that

N

(n)
i∗j∗k∗ ≥

√
1

|I |−1 + |J |−1 + |K|−1 ≥
√

n

12
(n)
.

As 
(n) ≤ 2(12L/(κ ′ρn))
1/s at least forn large enough, we deduce that

N

(n)
i∗j∗k∗ ≥

√
n(κ ′ρn)1/s

8(12L)1/s
.

Consequently, we get

〈
f, e
(n)

i∗j∗k∗
〉≥
√

(κ ′ρn)(1+2s)/s
n

121/s128L1/s

≥ κ∗√log(n)σ,

for κ ′ suitably chosen. It remains to taket∗ = e
(n)
i∗j∗k∗ ∈ Tn,3 to complete the proof.

�
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9. Proof of Proposition 3. The proof of Proposition 3 is divided into two
parts. In Section 9.1 we show that if (24) or (25) holds, thenPF,σ (Tα > 0) ≥ 1−β.
The second part of the proposition is shown in Section 9.2.

9.1. Proof of the first part of Proposition3. We only prove the result under
(24), the proof under (25) being almost the same. By combining (43) and (44)
we obtain that ifF is such thatRF is r th times differentiable, then for all
J ⊂ {1, . . . , n} there exists a sequence{ci, i ∈ Ir ∩ J r+1} verifying both ci ∈
]minj∈J xj ,maxj∈J xj [ and

−〈f, t∗J 〉 = N−1
J

∑
i∈Ir∩J r+1

�(F)(ci)

r! φ2
i (xr ),(70)

whereNJ = Gram(1J ,xJ , . . . ,xr−1
J )γJ . Let i∗ ∈ J such that

inf
i∈J

�(F )(xi) = �(F)(xi∗).

We have for allc ∈]x−
J , x+

J [,
�(F)(c) ≤ �(F)(xi∗) + ω(hJ ).

Besides, by takingf = (xr
1/R(x1), . . . , x

r
n/R(xn))

′ in (44) we get that

1

NJ

∑
i∈Ir∩J r+1

φ2
i (xr ) = ‖xr

J − �XJ
xr
J ‖2

γJ

.

Now, by using (70) and (24) we deduce that

〈f, t∗J 〉 ≥ −�(F)(xi∗) + ω(hJ )

r!
(

1

NJ

∑
i∈Ir∩J r+1

φ2
i (xr )

)

= −(�(F)(xi∗) + ω(hJ )
)‖xr

J − �XJ
xr
J ‖2

γJ r!
≥ vt∗J (f, β),

and we conclude thanks to Theorem 1.

9.2. Proof of the second part of Proposition3. In order to prove this second
part, we apply the first part of Proposition 3.

Evaluation ofvt∗J (f, β). Let us prove that for allJ ∈⋃
n


=1 J(
),

vt∗J (f, β) ≤ κ∗√log(n)σ,

where κ∗ depends onα,β, s and r only. We use Steps 1–5 in the proof of
Proposition 1. For Steps 1, 2 and 5 the proof is similar to the proof of Proposition 1.
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STEP 3. For all f = (F (x1), . . . ,F (xn))
′ with F (r) ∈ Hs(L),

‖f − �Vnf‖2

n
≤ C(s, r)L2n−2(s+r).(71)

PROOF. We recall thatVn is the linear space generated by

{1J ,xJ , . . . ,xr
J , J ∈ J
n}.

Note that the vector

f̃ =

n∑

k=1

(
F
(
x̄Jk

)
1Jk

+
r∑

l=1

F (l)(x̄Jk
)

l!
(
xJk

− x̄Jk
1Jk

)l)

belongs toVn. Hence, using thatF (r) ∈ Hs(L),∥∥f − �Vnf
∥∥2

≤ ‖f − f̃‖2

=

n∑

k=1

∑
i∈Jk

(∫ xi

u1=x̄Jk

∫ u1

u2=x̄Jk

· · ·
∫ ur−1

ur=x̄Jk

(
F (r)(ur) − F (r)(x̄Jk

))
dur · · ·du1

)2

≤

n∑

k=1

∑
i∈Jk

L2
−2(r+s)
n

≤ C(s, r)L2n1−2(r+s)

since
n ≥ n/(4(r + 1)) using that[x] ≥ x/2 for x ≥ 1. �

STEP 4. Assuming thatn ≥ (L/σ)1/(r+s), there exists some constantC

depending ons, r andβ only such that

χ̄−1
n−dn,‖f−�Vn f‖2/σ2(β/2)

n − dn

≤ C.(72)

The proof is similar to the proof of Step 4 in Proposition 1 by using (71).

Evaluation ofγJ . Let us prove that there exists some constantC depending
on r only such that, forJ such that|J | ≥ r + 1,

γ 2
J ≥ C

|J |2r+1

n2r
.

Since for alli, xi = i/n, by translation

γ 2
J = ∥∥xr

J − �XJ
xr
J

∥∥2

= 1

n2r
min

a0,...,ar−1

|J |∑
i=1

(ir − a0 − a1i − · · · − ar−1i
r−1)2.
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By setting for allj ∈ {0, . . . , r − 1} aj = bj |J |r−j , we have

min
a0,...,ar−1

|J |∑
i=1

(ir − a0 − a1i − · · · − ar−1i
r−1)2

= |J |2r+1 min
b0,...,br−1

1

|J |
|J |∑
i=1

((
i

|J |
)r

− b0 − · · · − br−1

(
i

|J |
)r−1)2

.

Since

min
b0,...,br−1

1

|J |
|J |∑
i=1

((
i

|J |
)r

− b0 − · · · − br−1

(
i

|J |
)r−1)2

converges as|J | → ∞ toward

min
b0,...,br−1

∫ 1

0
(xr − b0 − · · · − br−1x

r−1)2 dx,

which is positive, we obtain that there exists some constantC > 0 such that for|J |
large enough,

γ 2
J ≥ C

|J |2r+1

n2r
.

Moreover, since for|J | ≥ r +1,γ 2
J > 0, the above inequality holds for|J | ≥ r +1,

possibly enlargingC.

Evaluation ofω(hJ ). Let J ∈ J(
). SinceF (r) ∈ Hs(L), and sincehJ defined
in Theorem 3 satisfies 0< hJ ≤ 1/
,

ω(hJ ) = sup
|x−y|≤hJ

∣∣F (r)(x) − F (r)(y)
∣∣

≤ L
−s .

Conclusion. Let us prove in conclusion that if

inf
x∈[0,1]F

(r)(x) ≤ −ρn,r ,(73)

then (24) holds for someJ ∈⋃
n


=1 J(
).

SinceF (r) ∈ Hs(L) under (73), there existsj ∈ {1, . . . , n} such that

F (r)(xj ) ≤ −ρn,r + Ln−s ≤ −ρn,r/2

for n large enough.
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Let


(n) =
[(

L2n

σ 2 log(n)

)1/(1+2r+2s)]
.

For n large enough,
(n) ∈ {1, . . . , 
n}. Let J be the element ofJ(
(n)) contain-
ing j . Note that|J | ≥ n/(2
(n)) at least forn large enough. This implies that, for
n large enough,

γ 2
J ≥ C

|J |1+2r

n2r
≥ C(r)n(
(n))−1−2r .

It follows that

vt∗J (f, β)
r!
γJ

+ ω(hJ ) ≤ κ∗r!√
C(r)

σ
√

log(n)
(
(n))r+1/2

√
n

+ L(
(n))−s

≤ κL(1+2r)/(1+2r+2s)

(
σ 2 log(n)

n

)s/(1+2s+2r)

for some constantκ depending onα,β, s andr . This concludes the proof of the
proposition.

APPENDIX

A.1. Proof of Lemma 2.

PROOF OF(42). Clearly, one has̃Cr,R ⊂ Cr,R . We proveCr,R ⊂ C̃r,R by using
repeatedly the following claim.

CLAIM 1. Let 0 ≤ u1 < u2 < · · · < ur+1 < ur+2 ≤ 1 be an increasing
sequence ofr + 2 points of[0,1]. Let v1, . . . , vr+2 be real numbers verifying that

D1(1, ur+2, . . . , u
r−1
r+2, vr+2) = det




1 u2 · · · ur−1
2 v2

1 u3 · · · ur−1
3 v3

...
...

...
...

...

1 ur+2 · · · ur−1
r+2 vr+2


≥ 0

and

Dr+2 = det




1 u1 · · · ur−1
1 v1

1 u2 · · · ur−1
2 v2

...
...

...
...

...

1 ur+1 · · · ur−1
r+1 vr+1


≥ 0.
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Then for allj ∈ {2, . . . , r + 1}

Dj(1, ur+2, . . . , u
r−1
r+2, vr+2) = det




1 u1 · · · ur−1
1 v1

...
...

...
...

...

1 uj−1 · · · ur−1
j−1 vj−1

1 uj+1 · · · ur−1
j+1 vj+1

...
...

...
...

...

1 ur+2 · · · ur−1
r+2 vr+2




≥ 0.

PROOF. For real numberst1, . . . , tr we denote by vand(t1, . . . , tr ) the Vander-
monde determinant

vand(t1, . . . , tr ) = det




1 t1 · · · t r−1
1

...
...

...
...

1 tr · · · t r−1
r


 ,

and forj = 1, . . . , r + 2 we denote byuj the vector(1, uj , . . . , u
r−1
j , vj )

′. Let us
fix j ∈ {2, . . . , r + 1}. By expanding the determinant

Dj(1, ur+2, . . . , u
r−1
r+2, vr+2)

by its last column, we get that ifj ∈ {2, . . . , r},
Dj(1, ur+2, . . . , u

r−1
r+2, vr+2)

= vr+2 vand(u1, . . . , uj−1, uj+1, . . . , ur+1) + Dj(1, ur+2, . . . , u
r−1
r+2,0),

and if j = r + 1,

Dr+1(1, ur+2, . . . , u
r−1
r+2, vr+2)

= vr+2 vand(u1, . . . , ur) + Dr+1(1, ur+2, . . . , u
r−1
r+2,0).

Since theui ’s are increasing, the Vandermonde determinants are positive and
thereforeDj(1, ur+2, . . . , u

r−1
r+2, vr+2) is increasing with respect tovr+2. On the

other hand, since by assumption

D1(1, ur+2, . . . , u
r−1
r+2, vr+2)

= vr+2 vand(u2, . . . , ur+1) + D1(1, ur+2, . . . , u
r−1
r+2,0) ≥ 0

we have that

vr+2 ≥ −D1(1, ur+2, . . . , u
r−1
r+2,0)

vand(u2, . . . , ur+1)
= v∗,

and deduce that

Dj(1, ur+2, . . . , u
r−1
r+2, vr+2) ≥ Dj(1, ur+2, . . . , u

r−1
r+2, v

∗).
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It remains to show thatDj(1, ur+2, . . . , u
r−1
r+2, vr+2, v

∗) ≥ 0. Whenvr+2 = v∗,

we have thatD1(1, ur+2, . . . , u
r−1
r+2, v

∗) = 0 and thereforeu∗ = (1, ur+2, . . . ,

ur−1
r+2, v

∗)′ is a linear combination ofu2, . . . ,ur+1. Let us denote byλk the
coordinate ofu∗ on uk . By Cramér’s formula we have that fork ∈ {3, . . . , r}

λk = vand(u2, . . . , uk−1, uk+1, . . . , ur+2)

vand(u2, . . . , uk−1, uk+1, . . . , ur+1, uk)

= (−1)r−k+1vand(u2, . . . , uk−1, uk+1, . . . , ur+2)

vand(u2, . . . , ur+1)
,

λ2 = (−1)r−1vand(u3, . . . , ur+2)

vand(u2, . . . , ur+1)

and

λr+1 = vand(u2, . . . , ur, ur+2)

vand(u2, . . . , ur+1)
.

Hence, the positivity of the Vandermonde determinants implies thatλj has the sign
of (−1)r−j+1. Sinceu∗ =∑r+1

k=2 λkuk , by linearity of the determinant

Dj(1, ur+2, . . . , u
r−1
r+2, v

∗) = λjDj (1, uj , . . . , u
r−1
j , vj )

= (−1)r−j+1λjDr+1

and thus, asDr+1 ≥ 0, Dj(1, ur+2, . . . , u
r−1
r+2, v

∗) ≥ 0. �

The proof of (42) is complete.�

PROOF OF(43). Forx ∈ [xi1, xir+1] let us set

h(x) = det




1 x · · · xr−1 R(x)F (x)

1 xi2 · · · xr−1
i2

R
(
xi2

)
F
(
xi2

)
...

...
...

...
...

1 xir+1 · · · xr−1
ir+1

R
(
xir+1

)
F
(
xir+1

)




− λdet




1 x · · · xr−1 xr

1 xi2 · · · xr−1
i2

xr
i2

...
...

...
...

...

1 xir+1 · · · xr−1
ir+1

xr
ir+1


 ,
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whereλ is such thath(x1) = 0. Sinceh is r-times differentiable and satisfies
h(xi1) = h(xi2) = · · · = h(xir+1) = 0, there exists someci ∈]xi1, xir+1[ such that

0= h(r)(ci) = det




0 0 · · · 0 �(F)(ci)

1 xi2 · · · xr−1
i2

R
(
xi2

)
F
(
xi2

)
...

...
...

...
...

1 xir+1 · · · xr−1
ir+1

R
(
xir+1

)
F
(
xir+1

)




− λdet




0 0 · · · 0 r!
1 xi2 · · · xr−1

i2
xr
i2

...
...

...
...

...

1 xir+1 · · · xr−1
ir+1

xr
ir+1


 ,

leading toλ = �(F)(ci)/r!. We get the result by substituting the expression ofλ

in the equalityh(x1) = 0. �

PROOF OF(44). We start with the following claim.

CLAIM 2. Let W be a linear subspace ofRk of dimensionq ∈ {1, . . . , k − 1}
and let{w1, . . . ,wq} be a basis ofW . Then for allu,v in R

k

Gram(w1, . . . ,wq)〈u, (I − �W )v〉

= ∑
i∈Iq+1

det




w1
i1

· · · w
q
i1

ui1

...
...

...
...

w1
iq+1

· · · w
q
iq+1

uiq+1




(74)

× det




w1
i1

· · · w
q
i1

vi1

...
...

...
...

w1
iq+1

· · · w
q
iq+1

viq+1


 ,

where

Gram(w1, . . . ,wq) = det(G) with G = (〈wi ,wj 〉)1≤i,j≤q .

We conclude thanks to Claim 2 by takingu = R � f, v = xr
J −�XJ

xr
J , W = XJ

andk = |J |.

PROOF OFCLAIM 2. Forz ∈ R
k , let B(z) thek × (q + 1) matrix

B(z) =



w1
1 · · · w

q
1 z1

...
...

...
...

w1
k · · · w

q
k zk


 .
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We obtain the result by computing

det
(
B(u)′B(v)

)= det




〈w1,w1〉 · · · 〈w1,wq〉 〈w1,v〉
...

...
...

...

〈wq,w1〉 · · · 〈wq,wq〉 〈wq,v〉
〈u,w1〉 · · · 〈u,wq〉 〈u,v〉




by two different ways. The first way is direct: since�W v is a linear combination
of thewj ’s we have

det
(
B(u)′B(v)

)

= det




〈w1,w1〉 · · · 〈w1,wq〉 〈w1, (I − �W)v〉
...

...
...

...

〈wq,w1〉 · · · 〈wq,wq〉 〈wq, (I − �W)v〉
〈u,w1〉 · · · 〈u,wq〉 〈u, (I − �W)v〉




= det




〈w1,w1〉 · · · 〈w1,wq〉 0
...

...
...

...

〈wq,w1〉 · · · 〈wq,wq〉 0
〈u,w1〉 · · · 〈u,wq〉 〈u, (I − �W)v〉




= Gram(w1, . . . ,wq)〈u, (I − �W)v〉.
The other way is to use the Cauchy–Binet formula [see Horn and Johnson (1991)]:
we calculate det(B(u)′B(v)) as a function of the(q + 1) × (q + 1) minors of the
matrixB(u) andB(v) which leads to the right-hand side of (74) and concludes the
proof. �

The proof of (44) is complete.�

A.2. Proof of Proposition 2.

CaseK = K≥0. Let PF be the law ofY under the model defined by (16).
Let � be a test of levelα of the hypothesisF ∈ K≥0. Let us define the test� of
the hypothesis “F = 0” against “F �= 0” which rejects the null if�(Y) = 1 or if
�(−Y) = 1. Since 0∈ K≥0 and since

P0
(
�(Y) = 1

)= P0
(
�(−Y) = 1

)≤ α,

the test� is of level 2α ≤ 3α. Letρn(�,F ) be the�-uniform separation rate of�
overF . It is enough to show that

ρn(�,F ) ≥ ρn(0,F ).

To do so, we show that the‖ ·‖∞-uniform separation rate of� overF is not larger
thanρn(�,F ), which means that for allF ∈ F such that‖F‖∞ ≥ ρn(�,F ) we
havePF (�(Y ) = 1) ≥ 1− β.
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Let F ∈ F . If ‖F‖∞ ≥ ρn(�,F ), then

either �(F) = sup
x∈[0,1]

(−F(x)1F(x)>0
)≥ ρn(�,F ) or �(−F) ≥ ρn(�,F ).

In the first case, by definition ofρn(�,F ) we havePF (�(Y ) = 1) ≥ 1 − β and
consequentlyPF (�(Y ) = 1) ≥ 1− β. Note that in the other case the same is true
since by symmetry of the law ofY − F

PF

(
�(−Y) = 1

)= P−F

(
�(Y) = 1

)
.

Case K = K↗. We argue similarly. Let� be a test of levelα of the
hypothesisF ∈ K↗. We also consider the test�′ of level α of “F = 0” against
“F �= 0” which rejects the null when

√
n|∫ 1

0 dY (t)| is large enough (namely, larger
than the 1−α quantile of a standard Gaussian random variable). Finally, we define
the test� of the hypothesis “F = 0” against “F �= 0” which rejects the null if
�(Y) = 1 or�(−Y) = 1 or�′(Y ) = 1. Since 0∈ K↗, we have that the so-defined
test� is of level 3α.

Some easy computations show that there exists some constantκ depending on
α andβ only such that�′ rejects the null with probability not smaller than 1− β

as soon as|∫ 1
0 F(t) dt | is larger thanκσ/

√
n (the sum of theβ and 1−α quantiles

of a standard Gaussian suits forκ). On the other hand, note that

�(F) = 1
2 sup

0≤s≤t≤1

(
F(s) − F(t)

)
and thus, by definition of the�-separation rate,ρn(�,F ), of � overF , � rejects
the null with probability not smaller than 1− β under all alternativesF ∈ F
satisfying

max{�(F),�(−F)} = 1
2 sup

0≤t,s≤1
|F(t) − F(s)| > ρn(�,F ).

Therefore, since

‖F‖∞ ≤ sup
t∈[0,1]

∣∣∣∣F(t) −
∫ 1

0
F(s) ds

∣∣∣∣+
∣∣∣∣
∫ 1

0
F(s) ds

∣∣∣∣
≤
∫ 1

0
sup

t∈[0,1]
|F(t) − F(s)|ds +

∣∣∣∣
∫ 1

0
F(s) ds

∣∣∣∣
≤ sup

t,s∈[0,1]
|F(t) − F(s)| +

∣∣∣∣
∫ 1

0
F(s) ds

∣∣∣∣,
� rejects the null with probability larger than 1− β under all alternativeF such
that

‖F‖∞ ≥ 2ρn(�,F ) + κσ/
√

n,

and the result follows.
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