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In this paper we propose a general methodology, based on multiple
testing, for testing that the mean of a Gaussian vectd@®’inbelongs to a
convex set. We show that the test achieves its nominal level, and characterize
a class of vectors over which the tests achieve a prescribed power. In the
functional regression model this general methodology is applied to test some
qualitative hypotheses on the regression function. For example, we test that
the regression function is positive, increasing, convex, or more generally,
satisfies a differential inequality. Uniform separation rates over classes of
smooth functions are established and a comparison with other results in the
literature is provided. A simulation study evaluates some of the procedures
for testing monotonicity.

1. Introduction.

1.1. The statistical framework. We consider the following regression model:
(2) Y =F(x;) +os¢, i=1...,n,

where x; < x2 < --- < x, are known deterministic points if0, 1], o is an
unknown positive number an¢;);=1,.., IS a sequence of i.i.d. unobservable
standard Gaussian random variables. From the observatign=0{Y1, ..., Y,)’,
we consider the problem of testing that the regression fundfidrelongs to one
of the following functional sets':

2) K>o0={F:[0,1] — R, F is nonnegativg

3) K ~={F:[0,1] = R, F is nondecreasirg

4) K_ ={F:[0,1] — R, Fisnonconcave

6 Hun={F0.0- R Vre[0.1, T RWFI20)
xr
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In the above definition ofK, g, r denotes a positive integer aritl a smooth,
nonvanishing function frorf0, 1] into R. Choosing the functio® equal to 1 leads

to test that the derivative of orders positive. Taking = 1 and choosing a suitable
function R leads to test that a positive functidhis decreasing at some prescribed
rate. It is also possible to test th&tbelongs to some classes of smooth functions.
These testing hypotheses will be detailed in Section 3.

The problem is therefore to test some qualitative hypothesig oie shall
show that it actually reduces to testing that the mean of the Gaussian Yector
belongs to a suitable convex subsetR®sf. Denoting by(-, -) the inner product
of R”, this convex subset takes the form

e={feR", Vje{l,...,p}(fv;) <0},

where the vectorgvy, ..., v,} are linearly independent iR". The aim of this
paper is to present a general methodology for the problem of testinfjliblings

to € and to characterize a class of vectors over which the tests achieve a
prescribed power. This general methodology is applied to test that the regression
function F belongs to one of the sef§. For the procedures we propose, the least-
favorable distribution under the null hypothesis is achievedfer 0 ando = 1.
Consequently, by carrying out simulations, we easily obtain tests that achieve their
nominal level for fixed values of. Moreover, we show that these tests have good
properties under smooth alternatives.

For the problem of testing positivity, monotonicity and convexity, we obtain
tests based on the comparison of local means of consecutive observations.
A precise description of these tests is given in Section 2. For the problem of
testing monotonicity, our methodology also leads to tests based on the slopes of
regression lines on short intervals, as explained in Section 3.1. These procedures,
based on “running gradients,” are akin to those proposed by Hall and Heckman
(2000). For the problem of testing that belongs to.X, g with a nonconstant
function R we refer the reader to Section 3.2. We have delayed the description of
the general methodology for testing thabelongs toC to Section 4. Simulation
studies for testing monotonicity are shown in Section 5. The proofs are postponed
to Sections 6—-9 and the Appendix.

1.2. An overview of the literature. In the literature tests of monotonicity have
been widely studied in the regression model. The test proposed by Bowman, Jones
and Gijbels (1998) is based on a procedure described in Silverman (1981) for
testing unimodality of a density. This test is not powerful when the regression
is flat or nearly flat, as emphasized by Hall and Heckman (2000). Hall and
Heckman (2000) proposed a procedure based on “running gradients” over short
intervals for which the least-favorable distribution under the null, wheis
known, corresponds to the case wheéres identically constant. The test proposed
by Gijbels, Hall, Jones and Koch (2000) is based on the signs of differences
between observations. The test offers the advantage to not depend on the error
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distribution when it is continuous. Consequently, the nominal level of the test
is guaranteed for all continuous error distributions. In the functional regression
model with randonyx;’s, the procedure proposed by Ghosal, Sen and van der Vaart
(2000) is based on a locally weighted version of Kendall's tau. The procedure uses
kernel smoothing with a particular choice of the bandwidth, and as in Gijbels, Hall,
Jones and Koch (2000) depends on the signs of the quariities Y; ) (x; — x;).

They show that for certain local alternatives the power of their test tends to 1.
Some comments on the power of our test under those alternatives can be found
in Section 3.3. In Baraud, Huet and Laurent (2003b) we propose a procedure
which aims at detecting discrepancies with respect td g, )-distance where
Un=n"1 Y718y This procedure generalizes that proposed in Baraud, Huet and
Laurent (2003a) for linear hypotheses. A common feature of the present paper with
these two lies in the fact that the proposed procedures achieve their nominal level
and a prescribed power over a set of vectors we characterize. In the Gaussian white
noise case, Juditsky and Nemirovski (2002) propose to test that the signal belongs
to the cone of nonnegative, nondecreasing or nonconcave functions. For a given
r € [1, +o0[, their tests are based on the estimation ofltliedistance between

the signal and the cone. However, this approach requires that the signal have a
known smoothness under the null. In the Gaussian white noise model, other tests
of such qualitative hypotheses are proposed by Dimbgen and Spokoiny (2001).
Their procedure is based on the supremum over all bandwidths of the distance
in sup-norm between a kernel estimator and the null hypothesis. They adopt a
minimax point of view to evaluate the performances of their tests and we adopt the
same in Sections 2 and 3.

1.3. Uniform separation rates and optimalityComparison of the perfor-
mances of tests naturally arises in the problem of hypothesis testing. In this paper,
we shall mainly describe the performances of our procedures in terms of uniform
separation rates over classes of smooth functions. Gévan 10, 1[, a class of
smooth functionsf” and a “distance’A(-) to the null hypothesis, we define the
uniform separation rate of a tedtover ¥, denoted by (®, F, A), as the small-
est numbelp such that the test guarantees a power not smaller thag for all
alternativesF’ in & at distancep from the null. More precisely,

6) p(@, F,A)=inf{lo>0, VFe¥F, A(F)>p=Pr(drejects) > 1— g}.

In the regression or Gaussian white noise model, the word “rate” refers to the
asymptotics ofo (@, F, A) = p. (P, F, A) with respect to a scaling parameter

(the number of observationsin the regression model, the level of the noise in
the Gaussian white noise). Comparing the performances of two tests of the same
level amounts to comparing their uniform separation rates (the smaller the better).
A test is said to be optimal if there exists no better test. The uniform separation
rate of an optimal test is called theinimax separation rateln the sequel, we

shall enlarge this notion of optimality by saying that a test is rate-optimal over
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F if its uniform separation rate differs from the minimax one by a bounded
function of . Unfortunately, not much is known about the uniform separation
rates of the tests mentioned in Section 1.2. The only exception we are aware
of concerns the tests proposed by Diimbgen and Spokoiny (2001) and Juditsky
and Nemirovski (2002) in the Gaussian white noise model (with1/,/n), and
Baraud, Huet and Laurent (2003b) in the regression model. The rates obtained
by Juditsky and Nemirovski (2002) are established for the problem of testing that
F belongs toX N #, where # is a class of smooth functions. In contrast, in
the papers by Baraud, Huet and Laurent (2003b) and Dimbgen and Spokoiny
(2001), the null hypothesis is not restricted to those smooth functions belonging
to K. For the problem of testing positivity and monotonicity, Baraud, Huet and
Laurent (2003b) established separation rates with respect b?ie,)-distance

to the null. For the problem of testing positivity, monotonicity and convexity,
Dumbgen and Spokoiny (2001) considered the problem of detecting a discrepancy
to the null in sup-norm. For ang > 0, their procedures are proved to achieve the
optimal rate(L log(n)/n)Y/3 over the class of Lipschitz functions

H1(L) ={F, Vx,y €[0,1], [F(x) = F(y)| = LIx — y[}.

The optimality of this rate derives from the lower bounds established by Ingster
[(1993), Section 2.4] for the more simple problem of testing- 0 againstF’ # 0

in sup-norm. More generally, it can easily be derived from Ingster’s results (see
Proposition 2) that the minimax separation rate (in sup-norm) over Hélderian balls

- Hs(L) ={F, Vx,y€[0,1], |[F(x) — F(y)| < L|x — y|’}
with s €]0, 1]

is bounded from below (up to a constant) b&Y*log(n)/n)*/A*+2), In the
regression setting, we propose tests of positivity, monotonicity and convexity
whose uniform separation rates ov# (L) achieve this lower bound whatever
the value ofs €]0,1] and L > 0. In this paper, we discuss the optimality in
the minimax sense over Hdélderian balls with regulasitin 10, 1] only. To our
knowledge, the minimax rates over smoother classes of functions are unknown. It
is beyond the scope of this paper to describe them.

For the problem of testing monotonicity or convexity, other choices of distance
to the null are possible, for example, the distance in sup-norm between the first
(resp. the second) derivative &f and the set of honnegative functions. For such
choices, Dimbgen and Spokoiny also provided uniform separation rates for their
tests. In the regression setting, the uniform separation rates we get coincide with
their separation rates on the classes of functions they considered. We do not know
whether these rates are optimal or not either in the Gaussian white noise model or
in the regression model.



218 Y. BARAUD, S. HUET AND B. LAURENT

2. Tests based on local means for testing positivity, monotonicity and
convexity. We consider the regression model given by (1) and propose tests of
positivity, monotonicity and convexity for the functian. We first introduce some
partitions of the design points and notation that will be used throughout the paper.

2.1. Partition of the design points and notationWe first define an almost
regular partition of the set of indicd4, ..., n} into ¢, sets as follows: for each
in{l,...,4,} we set

k—1 i
Jk:{ie{l,...,n}, L }
Ly n n

and define the partition as

g = (I, k=1{1,..., 0}

Then for eache € {1, ..., ¢,}, we make a partition ofl,...,n} into £ sets by
gathering consecutive sefg. This patrtition is defined by

(8) gE:{sz U Jk,jzl,...,e}.

(j_l)/z<k/en§j/e
We shall use the following notation.

(a) We use a bold type style for denoting the vectorR'6fWe endowR” with
its Euclidean norm denoted by ||.

(b) ForveR", let|V]oo = Maxi<i<n |vil.

(c) Foralinear subspadéof R”, [Ty denotes the orthogonal projector oo

(d) Fora € Ry, D € N\{0} and u € [0,1], ®~1(u) and ,',(u) denote
the 1— u quantile of, respectively, a standard Gaussian random variable and a
noncentraly 2 with D degrees of freedom and noncentrality paramefter

(e) Forx € R, [x] denotes the integer part of

(f) For eachR”"-vectorv and subset/ of {1,...,n}, we denote by the
R"-vector whose coordinates coincide with those oh J and vanish elsewhere.
We denote by, the quantityd ;. ; vi/|J].

(g) We denote byl the R"-vector (1, ...,1)" and bye; theith vector of the
canonical basis.

(h) We defineV, cste as the linear span ofly, J € g}. Note that the
dimension ofV, csteequalst,,.

() The vectore denotes a standard Gaussian variabl&’in

(J) We denote byPs , the law of the Gaussian vector R" with expectatiorf
and covariance matrix?2I,, wherel, is then x n identity matrix. We denote
by Pr ., the law ofY under the model defined by (1).

(k) The levelx of all our tests is chosen iy, 1/2].
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2.2. Test of positivity. We propose a level- test for testing thatF belongs
to Ko defined by (2). The testing procedure is based on the fact that if
F is nonnegative, then for any subsgtof {1,...,n} the expectation ol is
nonnegative. Fof € {1, ..., ¢,}, let T (Y) be defined as

TLHY) = —VITTY, NV n—g,,

[ ”Y an cgteY”

and letgy (¢, u) be the 1— u quantile of the random varlabléf(s). We introduce
the test statistic
whereu, is defined as

.....

We reject thatF belongs taX > if Ta,l is posmve.

COMMENT. When¢ increases from 1 té,, the cardinality of the set$ g‘f
decreases. We thus take into account local discrepancies to the null hypothesis for
various scales.

2.3. Testing monotonicity. We now consider the problem of testing that
F belongs toX » defined by (3). The testing procedure relies on the following
property: if  andJ are two subsets dfL, 2, ..., n} such that/ is on the left of/
andif F € X », then the expectation of the dlfferen‘ée Y, is nonpositive. For
Lef{2,...,4,}, let T2 (Y) be defined as

V=Y,

T{(Y)= max Nf——9 _/n—1,,

I<i<j=<t Y ||Y HV” csteY”

=\ Ton)
CNVZIRRV

and letg»>(¢, u) be the 1— u quantile of the random variabléze(e). We introduce
the test statistic

(11) Tuz=, max (TE(Y) — q2(8, w)),

where

whereu,, is defined as

(12) Uy = Sup{u €]0, 1], IP’( {Tax {T2 (&) —q20l,u)} > 0) < a}.

,,,,, n

We reject that” belongs taX - if T, > is positive.
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2.4. Testing convexity. We now consider the problem of testing tlfabelongs
to X _ defined by (4). The testing procedure is based on the following property: if
I, J andK are three subsets ¢1, 2, ..., n} such that/ is between andK and
if F e X_,thenwe find a linear combination ¥, Y ; andY g with nonpositive
expectation. Lex = (x1,...,x,) andforeack € {3,...,¢,},1<i < j <k <¢,
let

X0 —X
s Jt Jf
JjETE
and
1 , 1\
Nk( b 0L £ (=) ) .
Y Vi |J‘| SV

Forte {3, ...,¢,}, let

- e - e  /
Ti(Y) max N Yo Y g = A RV
3V Tacicj<r=e R Y =1y, oY I/ =€,

and letgs(¢, u) be the 1— u quantile of the random variablli(f(e). We introduce
the test statistic

(13) Ty3= o zn {T3 (Y) — q3(t, uq)},

whereu,, is defined as

(14)  ug= Sup{u €10, 1], P(ée{@%n}{Tf(e) —q3(t,u)} > o) < a}.
We reject thatF belongs taX_ if T, 3 is positive.

2.5. Properties of the proceduresin this section we evaluate the perfor-
mances of the previous procedures under the null and under smooth alternatives.

ProPoOSITION 1.  Let (T, X) be either (T, 1, K>0) or (Ty2, K ) or
(To.3, KX_). We have

SUp supPr,(Ty > 0) =c.
c>0FeX

Assume now that; =i/nforalli =1,...,n and¥, =[n/2]. Let us fixg €10, 1[
and define for each€]0,1] andL > 0

1 1/(1+25) ("2 log(n) )s/(st)
Pn = — -
n
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Then forn large enough there exists some constardepending onw, 3, s only
such that for allF € F¢,(L) satisfying

(15) A(F) = GIQ]‘K [F = Glloo > Kkpn

we have

]P)F,O‘(Tot >0) > 1_,8-

CoMMENT. This result states that our procedures are of aiz&loreover,
following the definition of the uniform separation rate of a test given in Section 1.3,
this result shows that the tests achieve the uniform separatiop,réitesup-norm)
over the Holderian balk (L). In the following proposition, we show that this rate
cannot be improved at least in the Gaussian white noise model for testing positivity
and monotonicity. The proof can be extended to the case of testing convexity but
is omitted here.

PropPoOSITION2. LetY be the observation from the Gaussian white noise
model

(16) dY(t)=F(@t)dt + idW(t) fort €0, 1],
N

whereW is a standard Brownian motio.et X be either the sef>o or X » and
let ¥ be some class of functionsor the distanceA(-) to X given by(15), we
define

IOVI(O’ 37) = Infp(cb’ ‘{/?7 A)a

wherep(®, £, A) is given by(6) and where the infimum is taken over all tedtef
level 3« for testing” F = 0.” We define, (KX, &) similarly by taking the infimum
over all testsd of levela for testing” F € KX.” The following inequalities hotd

@) If X =XKso,then
pn(K, F) = pn(0, F).

If X =X », then for some constartdepending ore and 8 only
e o L - o
oK, F) = é[pn(o,f)—xﬁ]
(i) In particular, if ¥ = #(L), for n large enough there exists some
constantc’ depending omx, 8 ands only such that

|Og(n) )S/(1+2Y)

(17) (K, F) = 1LY (1+25>(
n
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The proof of the first part of the proposition extends easily to the regression
framework. The second part (ii), namely (17), derives from (i) and the lower bound
on p, (0, ) established by Ingster (1993).

For the problem of testing the positivity of a signal in the Gaussian white noise
model, Juditsky and Nemirovski (2002) showed that the minimax separation rate
with respect to thd.”-distance £ € [1, +oo[) is of the same order gs, up to a
logarithmic factor.

3. Testing that F satisfies a differential inequality. In this section, we
consider the problem of testing that belongs to.X, z defined by (5). Several
applications of such hypotheses can be of interest. For example, by takirlg
and R(x) = —exp(ax) (for some positive number), one can test that a positive
function F is decreasing at rate epax), that is, satisfies

Vxel0,1] 0< F(x) < F(0)exp(—ax).

Other kinds of decay are possible by suitably choosing the fun@ioAnother
application is to test that belongs to the class of smooth functions

[F:[0,1] >R, |[F"| <L}

To tackle this problem, it is enough to test that the derivatives of ard#rthe
functions F1(x) = —F(x) + Lx"/r! and F>(x) = F(x) + Lx"/r! are positive.
This is easily done by considering a multiple testing procedure based on the data
—Y; + Lx] /r! for testing thatFy is positive, and orY; 4 Lx] /r! for testing that
F» is positive.

In Section 3.1 we consider the case where the funcfiorquals 1. The
procedure then amounts to testing that the derivative of erdeF is nonnegative.
We turn to the general case in Section 3.2.

We first introduce the following notation.

(a) Forw e R", we denote byR » w the vector whoséth coordinate R x w);
equalsk (x;)w;.

(b) Fork e N\ {0}, we denote byw* the R"-vector (wf, ..., wk), and we set
w0 = 1 by convention.

(c) For J c {1,...,n}, let us defineX;; as the space spanned hy, X,

r—1
e Xy T

3.1. Testing that the derivative of orderof F is nonnegative. In this section
we takeR(x) = 1 for all x € [0, 1]. The procedure relies on the idea that if the
derivative of order of F is nonnegative, then on each subgetf {1, 2, ..., n},
the highest degree coefficient of the polynomial regression of dedraged on the
pairs{(x;, F(x;)),i € J} is nonnegative. For example, under the assumption that
F is nondecreasing, the slope of the regression based on the{pairg (x;)),
i € J} is nonnegative.
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Let ¢, = [n/(2(r + 1))], let V,, be the linear span dfL;, x,, ..., X}, J € g},
and foreach/ Cc {1, ...,n}
_ Xy — M, X}
X, — T, X ||

* __
J=

Foreacht € {1, ..., ¢,}, let T*(Y) be defined as

(Y, t*)
18 Tt Y :maxijw/n—d
(18) ) segt IY =Ty, Y| "

and letg (¢, u) denote the 1 u quantile of the random variabl&®(e). We
introduce the following test statistic:

_ Loy
(19) Ty _ee{T%n}{T (YY) —q(€, uq)},
whereu, is defined as
(20)  ug= Sup{u €10, 1], IP’( max {T%(e)—qt, u)} > o) < a}.
tefl, ... 0,)

We reject the null hypothesis 1, is positive.

COoMMENT. Whenr = 1, the procedure is akin to that proposed by Hall
and Heckman (2000) where for all, g(¢,u,) is the 1— a quantile of

3.2. Extension to the general caseThe ideas underlying the preceding
procedures extend to the case whirg 1. In the general case, the test is obtained
as follows.

Let ¢, be such that the dimensiak) of the linear space

(21) Vo, =Sparil;, Xs, ..., X5, Rx1s,..., R}, J € '}
is not larger tham /2. We define for eacll c {1, ...,n}
_R*(er — I, X})

(22) ty= ” wherey; = ||R * (X; — T, X))l

We reject thatF belongs toX,  if T, defined by (19) is positive.

3.3. Properties of the tests.In this section we describe the behavior of the
procedure. We start with some notation.

(a) Let us define the function(F) as

r

AP ) = -

[R(x)F(x)],
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and letw be its modulus of continuity defined for d@l> 0 by

w(h)=| SulphIA(F)(X)—A(F)(y)I-
X—y <

(b) For J € U, g%, let us denote byx; (resp. x}) the quantities
min{x;, i € J} (resp. maxx;, i € J}) and seti; = x} —x7.

(c) Letf =(F(x1),..., F(x,)) andforeack =1,...,¢, andB €]0, 1[, let

ql,uy) [__
(23) Vﬁ(f, ﬂ) = (m Xn_ldnvllf_nvnf”

(d) Foreactp > 0, let

202 812+ B7HB2))o

En.r(p) = {F 0.1 >R, F e #(L), — inf F(x) > p}.
x€[0,1]
We have the following result.

ProPOSITION3. LetT, be the test statistic defined in Sect®f. We have

sup sup Prs(Ty > 0) =«.
o0>0FeX, r

For eachp €10, 1[ we have
PF,O’(TOI >0>1- B,

if forsomel € {1, ..., ¢,} there exists a sef glz such that either

i rlys
24 — fA F i > f’ h ,
(24) inf A(F)(xi) = ve(f, B) ||X,]_ij)<,J||2+c¢)( )
or
; rlys
25 inf —AF)(x) > v(f, .
(25) L (F)(x) > ve( 'B)IIXG—Hx,X’JIIZ

Moreoverif R = 1, then there exists some constantlepending om, 8, s andr
only such that fon large enough and for alF € &, ,(p,.,) With

2 s/(A4+2(s+7r))
o<log(n
Pnr=KkK (#) L(1+2r)/(1+2(s+r))

we have
]P)F,O'(T(X >0 >1- B.
CoMMENT 1. In the particular case wher@ = 1, let us give the orders

of magnitude of the quantities appearing in the above proposition. Under the
assumption thaff — anf||2/n is smaller tharno2, one can show that, is of
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order./log(n) (see Section 9.2). Whek = 1, we havey; = ||X; — I1x, X/ || and
it follows from computations that will be detailed in the proofs that

rlys — ¢ | Jogm)
U T2 = 142
X} — T, X nh;t

(26) ve(f, B)

for some constant which does not depend ohor .

COMMENT 2. In the particular case where= 1, (26) allows us to compare
our result to the performance of the test proposed by Ghosal, Sen and van der
Vaart (2000). For eache 10, 1/3[, they give a procedure (depending&rthat is
powerful if the functionF is continuously differentiable and satisfies that forall
in some interval of length =%, F/(x) < —M /Tog(n)n~1=39/2 for someM large
enough.

By using (25) and the upper bound in (26) with of ordern—?, we deduce
from Proposition 3 that our procedure is powerful too over this class of functions.
Note that by considering a multiple testing procedure based on various gcales
our test does not depend érand is therefore powerful for adl simultaneously.

COMMENT 3. Forr =1 (resp.r = 2) ands = 1, Dimbgen and Spokoiny
(2001) obtained the uniform separation ratg,. for testing monotonicity (resp.
convexity) in the Gaussian white noise model.

COMMENT 4. For the problem of testing monotonicity £ 1 andR = 1),
it is possible to combine this procedure with that proposed in Section 2.3. More
precisely, consider the test which rejects the null at levelf2ne of these two
tests rejects. The so-defined test performs as well as the best of these two tests
under the alternative.

4. A general approach. The problems we have considered previously reduce
to testing thaf = (F(x1), ..., F(x,))" belongs to a convex set of the form

(27) e={feR", Vjefl,...,p}(f,vj) <0},

where the vectorf/y, ..., v, } are linearly independent iR . For example, testing
that the regression functiofi is nonnegative or nondecreasing amounts to testing
that the mean oY belongs, respectively, to the convex subsetR’df

(28) Co={feR", Vie(l,...,n} f; >0}
and

(29) C ={feR" Vie{l....n—1} fis1— f; >0}
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Clearly, these sets are of the form given by (27) by taking, respectivelys,
v;=—ejandp=n—1,v; =e; —e;;1. The following proposition extends this
result to the general case. Note that one can also define titeaset

where thel;’s are p independent linear forms. We shall use this definitio® aff
the following.

PrROPOSITION4. Foreachre{l,...,n—1}andi e{l,...,n—r} let¢;,
be the linear form defined fav € R” by

1 x - xir_l w;
r—1
xi PR X wl
¢ w)=det| ~ T L T
1 Xigr oo X0 wig
If F belongs toK_, thenf = (F(x1),..., F(x,)) belongsto
(30) C_={feR" Vie{l,....n—2}, ¢i2(f)>0}.

If F belongs toX, g, thenf belongs to
@VyR = {f ERH, Vie {1, ..., n —I’}, ¢l"r(R*f) > 0}

With the aim of keeping our notation as simple as possible, we omit the
dependence of the linear forms, onr when there is no ambiguity. The remaining
part of the section is organized as follows. In the next section we present a general
approach for the problem of testing thfabelongs to€. In the last section we
show how this approach applies to the problems of hypothesis testing considered
in Sections 2 and 3.

4.1. Testing thaff belongs toC. We consider the problem of testing that the
vectorf = (f1, ..., fn) involved in the regression model

(31) Yi=fi +og, i=1...,n,

belongs ta@ defined by (27). Our aim is twofold: first, build a test which achieves
its nominal level, and second, describe for eachclass of vectors over which this
test is powerful.

The testing procedure.The testing procedure relies on the following idea:
since under the assumption tHdielongs toC, the quantitiesf, Zlekjvj) are
nonpositive for all nonnegative numbexs, ..., 1, we base our test statistic on
random variables of the foriY, Z’/.’Zl A;Vv;) for nonnegative sequencesiofs.
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We denote by the subset oR” defined by

4
(32) TZ{t:ZAjvj, Ith=1, A; >0, Vj:l,...,p}.
j=1

Let 7,, be a finite subset of” such that there exists some linear spage
with dimensiond,, < n containing the linear span df,. Let {gi(@),t € 7} be
a sequence of numbers satisfying

(33) IP’[SUp(x/n — dnL — qt(a)) > 0} =a.
teT, le — Iy, el
We reject the null hypothesis if the statistic
(34) Ty = SUp(w« - dnwi’t> - qt(oe))
teT, 1Y — Iy, Yl
is positive.

Properties of the test.For all 8 €10, 1[ and each € 7, let

@) wt.p)=(a@ = 2102812+ SN2 )

1
fn—d. \/ Xn—dy |1ty fI
The order of magnitude ofy(f, B) is proved to be./log(n)o under the
assumption thal f — Iy, f||%/n is smaller thanr? as is shown in the proof of
Proposition 1.
We have the following result.

THEOREM1. LetT, be the test statistic defined t84). We have

(36) supsupPs , (T, > 0) =Po 1(7T, > 0) = «.
o>0feC

Moreovey if there existg € 7, such that(f, t) > v (f, 8), then

Pto(Ta >0 =1-8.

CoMMENT. The values of thet(«)’s that satisfy (33) can be easily obtained
by simulations undelPq 1. This property of our procedure lies in the fact that the
least-favorable distribution under the nullfs 1. Note that we do not need to use
bootstrap procedures to implement the test.

4.2. How to apply these procedures to test qualitative hypothedesthe
sequel, we give the choices ©f andV,, leading to the tests presented in Sections
2 and 3.
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For the test of positivity described in Secti@dr2 We take7, = 7.1, with
Toa=U, T ‘1, Where foralle € {1, ..., ¢,}

.y
T = e,Jegl

We takeV,, = Vj, cste NoOte thatV, csteis also the linear span &, 1.

For the test of monotonicity described in SectihB. Let us define for each
Le{2,....¢4,}and 1<i < j <,

@ =y ( o e el

il 2 i 1512 )
Note thatN/; is such that|e[; | = 1. We takeT;, = 7;, 2, with 7, 2 = Ui 2T,
where

and we také/, = V,, cste Note thatVn containsr;, 2.

For the test of convexity presented in Sectd. Let us define for each
Lef{3,.... 0}, 1<i<j<k=<l{,

1
, ¢
(38) & = ”k(l €| Zel z]k| ZI E € — )Lijk)ukel E ez).
I

leJ[ le]é eJ‘

Note thathk is such that|e!, il = 1. We takeT,, = 7, 3, with 7, 3 = Ui, Tts,
where

eejk, l<i<j<k<li}

and we také/, =V, cste Note thatV,, contains7;, s.

For the test ofF € X, g presented in Sectic® We take
tn
=7 whereT,! ={t}, J g

andV,, =V, 4 defined by (21). Note that, contains7;, 4.

We justify these choices &f, by the following proposition proved in Section 7.

PROPOSITIONS. LetC and7;, be either(C=o, 75,,1), (C ~, T5,2), (C_, T7.3)
or (Cr,r, Tn,4). There existy, ..., v, for which € is of the form given b{27) and
for which 7 defined by(32) contains7,.
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5. Simulation studies. In this section we describe how to implement the
test for F € X » and we carry out a simulation study in order to evaluate the
performances of our tests both when the errors are Gaussian and when they are
not. We first describe how the testing procedure is performed, then we present the
simulation experiment and finally discuss the results of the simulation study.

5.1. The testing proceduresWe carry out the simulation study for the two
testing procedures described in Sections 2.3 and 3.1. In the sequel, the procedure
based on differences @dcal meansaind described in Section 2.3 is called LM and
the procedure based tocal gradientsdefined below (from the test statistic given
in Section 3.1 withr = 1) is called LG.

In the case of the procedure LM, we gty = 7,2 defined in (11). For each
the quantilesy»(¢, u,) are calculated as follows. Farvarying among a suitable
grid of valuesus, ..., u,,, we estimate by simulations the quantity

plu) =B(  max (T5(e) ~ gatt.u) > 0).

& being am-sample ofV (0, 1), and we taker, as maXu;, p(u;) < «}. Note that
uy doesnotdepend am;,i =1,..., n), but only on the number of observations

In the case of the procedure LG, the test statistic is defined as follows. For each
¢=1,...,¢, and forJ € g¢, we take

. _ xj1l; =Xy
VTR

The spacé/,, reduces td/, jin, the linear space of dimensio,2generated by
{1.%s,J € g

The test statistid,, takes the form

Tic =Toya= Max {T;(Y) = qa(t, ua)},

where foreaclt € {1, ..., ¢,},
(Y, t5)

”Y - HVnJinY” '

TS (Y) = maxy/n — 2¢,
Jegt
andq4(¢, uy) denotes the + u quantile of the random variablef(e).
The procedure for calculatings(¢, uy) for £ =2,...,¢, is the same as the

procedure for calculating the (£, uy)’s.

5.2. The simulation experiment.The number of observations equals 100,
xi=i/(n+1),fori=1,...,n,and{, is either equal to 15 or 25.

We consider three distributions of the errars with expectation zero and
variance 1.
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(o

. The Gaussian distribution; ~ A (0, 1).

2. The type | distributiong; has density fx (i + sx), where fx (x) = exp{—x —
exp(—x)} and whereu and s2 are the expectation and the variance of a
variable X with density fx. This distribution is asymmetrical.

3. The mixture of Gaussian distributions:is distributed asr X; + (1 — 7) X5,

wherer is distributed as a Bernoulli variable with expectatiofl,X; and X»

are centered Gaussian variables with variances, respectively, equéti@d

255, andm, X1 and X2 are independent. The quantitys chosen such that the

variance ofe; equals 1. This distribution has heavy tails.

We consider several functiorfsthat are presented below. For each of them, we
simulate the observatios = F(x;) + o ;. The values o062 and of the distance
in sup-norm betweel and.X ~» are reported in Table 1:

doo(F, X -)=3% sup (F(s)— F(1)).

O<s<t<l1
Let us comment on the choice of the considered functions.

(&) Fo(x) = 0 corresponds to the case for which the quantijég u,) are
calculated.

(b) The functionFy (x) = 151, <g5(x — 0.5)% 4 0.3(x — 0.5) — exp(—250(x —
0.25)%) presents a strongly increasing part with a pronounced dip around/4
followed by a nearly flat part on the intenvd!/2, 1].

(c) The decreasing linear functidi»(x) = —ax, the parametat being chosen
such thatt = 1.50.

(d) The function F3(x) = —0.2exp—50(x — 0.5)?) deviates fromFy by a
smooth dip while the functio’4(x) = 0.1 cog6m x) deviates fromFg by a cosine
function.

(e) The functionsFs(x) = 0.2x + F3(x) and Fg(x) = 0.2x + F4(x) deviate
from an increasing linear function in the same wayasnd F,; do from Fp.

TABLE 1
Testing monotonicitysimulated
functionsF, values of2 and distance
in sup-norm betweeR and X

F o2 doo(F, X )
Fo(x) 0.01 0

F1(x) 0.01 025
Fa(x) 0.01 0073
F3(x) 0.01 01
Fa(x) 0.01 01
F5(x) 0.004 Q06

Fg(x) 0.006 Q08
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Let us mention that it is more difficult to detect thaf (resp.Fs) is nonincreasing
than to detect thaFs (resp. Fy) is. Indeed, adding an increasing function to a
function F' reduces the distance in sup-norm betweemand X ~. This is the
reason why the values of are smaller in the simulation study when we consider
the functionsFs and Fg.

In Figure 1 we have displayed the functiofisfor £ =1, ..., 6 and for each of
them one sample simulated with Gaussian errors. The corresponding values of the
test statisticsi m andTig for @« = 5% and¢,, = 25 are given. For this simulated
sample, it appears that the test based on the stafigideads to rejection of the
null hypothesis in all cases, while the test basediafirejects in all cases except
for functionsF> and Fj.

The results of the simulation experiment based on 4000 simulations are
presented in Tables 2 and 3.

5.3. Comments on the simulation studyAs expected, the estimated level of
the test calculated for the functidip(x) = O is (nearly) equal tae when the errors
are distributed as Gaussian variables.

When ¢, = 25, the estimated levels of the tests for the mixture and type |
distributions are greater than(see Table 2). Let us recall that whénis large,
we are considering statistics based on the average of the observations on sets
J with small cardinality. Therefore, reducing, improves the robustness to a
non-Gaussian error distribution. This is what we get in Table 2¢foe 15. It
also appears that the method based on the local means is more robust than the
method based on the local gradients, and that both methods are more robust for
the type | distribution that is asymmetric but not heavy tailed, than for the mixture
distribution.

Except for the functionFy, the estimated power is greater for the procedure
based on the local means than for the procedure based on the local gradients (see
Table 3). For both procedures the power of the test is largeréyith 25 than with
¢, = 15. However, except for the functiafy, the loss of power is less significant
for the procedure based on the local means.

TABLE 2
Testing monotonicityevels of the tests based @py and 7, g

L, =15 =25
Errorsdistribution Tim Vile Tim T g
Gaussian 0.049 0.050 0.046 0.051
Type | 0.048 0.072 0.064 0.085

Mixture 0.064 0.117 0.093 0.180
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F1 TLM=0.65 TLG=2.3 F2 TLM=1.4 TLG=1.5 F3 TLM=2.1 TLG=-0.42

0.0
L

-0.5

-1.0

-1.5

-2.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.8 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x x X

F4 TLM=0.98 TLG=0.034 F5 TLM=2.3 TLG=-0.07 F6 TLM=1.2 TLG=0.34

0.3
L

0.2

0.1

0.0

-0.1
.

-0.2
.

N
<

-0.2
L

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

x x x

Fic. 1. For each functionFy, £ =1, ..., 6, the simulated dat&; = Fy(x;) +o¢; fori=1,...,n
are displayed The errorsg; are Gaussian normalized centered variabl&he values of the test
statisticsTi m and T g, with @ = 5%, are given for each example
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TABLE 3
Testing monotonicitypowers of the tests based on
Tim and T g when the errors are Gaussian

£, =15 =25

F T m Tic Tim I g
Fy 0.85 0.99 ™9 1

F> 0.96 0.96 ™9 099
F3 0.99 0.73 1 ®8
Fy 0.89 0.71 ™9 094
Fs5 0.99 0.69 ™9 087
Fg 0.87 0.79 (02} 093

5.4. Comparison with other work.As expected, the power of our proce-
dure Ti ¢ for the function F1 is similar to that obtained by Hall and Heckman
(2000).

The decreasing linear functiof>(x) = —ax has already been studied by
Gijbels, Hall, Jones and Koch (2000) with= 30. They get an estimated power
of 77%.

Gijbels, Hall, Jones and Koch (2000) studied the functid®i’bF3/0.2 with
o = 0.025 and obtained a simulated power of 98%. With the same function and
the samer, we get a power equal to 1, for both procedures and foe 15 and
£, =25.

Gijbels, Hall, Jones and Koch (2000) and Hall and Heckman (2000) calculated
the power of their test for the functiafiy(x) = 1 + x — a exp(—50(x — 0.5)2) for
different values of: ando. Whena = 0.45 ando = 0.05, we get a power equal
to 1 as Gijbels, Hall, Jones and Koch (2000) do. When 0.45 ando = 0.1, we
get a power equal to 76% when using the procedukg with ¢,, = 25 or¢,, = 15.
Gijbels, Hall, Jones and Koch (2000) got 80% and Hall and Heckman (2000) a
power larger than 87%.

6. Proof of Theorem 1.

Level of the test. We first prove that for alt € 7;,, gt(«) > 0. Indeed, thanks
to (33), we have

(e, 1)
IP)|: n—d,——— — (a)>0]
le—Tyel T
t
< P[sup( n —dnL _Qt(a)) > 0}
teT, le — Iy, el
1
<a<-=.

2
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Since the random variablgn — d, (e,t)/|le — Iy, e| is symmetric (distributed
as Student witle — d,, degrees of freedom), we deduce thak) is positive. In
the sequel let us set

on =Y =Ty, Y|/vVn —d,.
Since forallf e ¢ andj € {1, ..., p}, (f,v;) <0, we have that for all € 7,
P Ai(f v
<f7t>:z J J

ST )
SIS il

Hence (Y, t) = {f,t) + o (e, t) <o (e, t) and therefore for all € € ando > 0,

Pf,(r[Ta > 0] < Pf,(f |: SUp( e, U - CIt(Ol)> > O:|

teT, Gn/o

. t
S]P)f’(;[ﬁ < sup<€ >]
o te, qt(@)

We now use the following lemma for noncentsed-random variables.

LEMMA 1. Forallu>0,feR"ando >0

Pf,o[(}n <ou] < PO,1[6n <ul.

This lemma states that a noncentg&trandom variable is stochastically larger
than ay 2-random variable with the same degrees of freedom. For a proof we refer
to Lemma 1 in Baraud, Huet and Laurent (2003a).

Since7,, C V,, the random variable&, t) for t € 7,, are independent &, and
thus by conditioning with respect to tlie, t)’'s and using Lemma 1 we get

Jt
supsupPs [Ty > 0] < P0,1|:6n < sup (e q
o>0feC te7, qt(a)

=Po1[Ty > 0] =0.

The reverse inequality being obvious, this concludes the proof of (36).

Power of the test. For anyf € R" ando > 0
Pto(Ty <0) =Pt o (Yt € T, (Y, 1) < qi(a)Sn).
Setting

x(f, ) = o 2/52(B/2).

o
fo—d, N Kn—du IT=TLy, ]

we have

IP)f,a (&n > x, (1, ,3)) =pB/2
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It follows that for allf € R” ando > 0,
Pt o (Ty <0) < tien?t Pt o ((Y, 1) < gt(@)xn(f, B)) + B/2

=< Inf Pt o (o (e, t) < gr(@)xa(f, B) — (f, 1)) + B/2.

t

Since||t|| = 1, (e, t) is distributed as a standard Gaussian variable, and therefore
Pt » (T, < 0) < B as soon as there existg 7, such that

qr(@)x, (F, B) — (f. 1) < —o @ 71(B/2).
This concludes the proof of Theorem 1.

7. Proofsof Propositions4 and 5. Let us denote by, the set of increasing
sequences of + 1 indices in{1, ..., n}, that is,

(39) 4, = {(il, cesdry1), 1 <co- <y, i (L, n}}
Fori=(i1,...,ir41) € 4, andv € R" we set

1 x; - xl-rl_l Viy

1 x, - x7t oy
(40) giv)=det| ~ " T

: : : :_1

1 xir+l e x;;_u_ vir+l

Fori=(,...,i +r), ¢i(v) = ¢;(v), where ¢;(v) is defined by (30). For
wl, ..., w4, g vectors ofR”, we set

Gramw?, ..., w?) = det(G) whereG = (W', Wj))lsi,ij'
Let us define
(41) Crr={feR", Vied,, ¢i(Rxf)>0}.
The proofs of Propositions 4 and 5 rely on the following lemma.

LEMMA 2. The following equalities hold-irst,

(42) ér,R = Gr,R-

Assume thaff = (F(x1),..., F(x,)), where F is such thatRF is r times
differentiable Then for each € {, there exists somg € |x;,, x;, ;[ such that

(@3 aiRxt)= 20D gy

For J C {L.....n} lett’ be defined by22).We have

(44) —(f =Nt Y i (RxF)Gi(X),
ied,NJr+l

whereN; = Gram(1;, Xy, ..., X; Hy;.

The proof of the lemma is delayed to the Appendix.
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7.1. Proof of Propositiomt. The result concerning_ is clear as a functiol
is nonconcave ofD, 1] if and only if for all x, y, z in [0, 1] with x < y < z one has

1 x F)
det(l y F(y)) >0.
1 z F(2)

Let us now turn to the seK, g. First note that the: — r linear formsf —
¢i.r(R =) are independent since the linear space

[feR", Vie{l,....,n—r}, ¢i(Rxf)=0},
which is generated by

1

—*l,l*x,...,i*xr_l,

R R R
is of dimensionr. Second, the fact thdt belongs toér,R is a straightforward
consequence of (43) since under the assumptionRh&atK, g, A(F)(x) > 0O for
all x, and since the Vandermonde determinaitg”) are positive for all € {,.

7.2. Proof of Propositiorb. The result is clear in the case whe?eg. For the
other cases we use the following lemma.

LEMMA 3. Let W be the orthogonal complement of the linear space
generated by the;'sfor j =1, ..., p. If t* ¢ W satisfies for alf € C

(t" — Tyt f) <0,

then
t* — MMy t*
— €
[t* — TTwt*||

PrOOF The vectort* — TITyt* belongs to the linear space generated by
the v;’s and thus one can writg* = t* — IIyt* = Zlekjvj. It remains to
show that the\ ;'s are nonnegative. Let us fij € {1, ..., p} and choosé” in R”
satisfying(f/o, v;) =0 forall j # jo and (f/o, Vj,) < 0. Such a vector exists since
thev;’s are linearly independent iR". Clearly f/° belongs toC and therefore
(f/0,g*) =1, (f/0, vj,) <0 which constrains j, to be nonnegative. This concludes
the proof of Lemma 3. [

Let us consider the case whe€e= C ». We apply Lemma 3. In this case
W is the linear space generated bywe get that for all¢ € {2,...,¢,} and
1<i<j<{¢, efj satisfiesnwefj =0. Moreover||efj|| =1 and

viee,  (f.e;)=Ny(f; —fr) <0.
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Let us consider the case whefe= C_. In this casep =n — 2 and for all
j:l,...,n—Z,
= (xj41—xj42)€ + (Xj42 — Xx;)€ 41+ (x; — Xj+1)€j12.
Slnce||e€ k|| =1, by Lemma 3 it is enough to prove that:

(i) forall few, (f, efjk) =0,

(ii) forall fe e, (f, &) <0,
First note that for alf ¢ R”,
(45) <f’ l]k l]k(f]l ijkf]f -- )‘fjk)fjkl)'

Clearly if f =1 or f = x, {f, efjk = 0 and since by definition of_, W is the
linear space generated lyandx, (i) holds true. Let nowf € C_. There exists
some convex functior mapping[x1, x,] into R such thatF (x;) = f; for all

i =1,...,n (take the piecewise linear function verifying this property, e.g.). Let
i <j<kandl e J;. We set

Note that O< !, <1 and that
X = /’Lf'k)_(jf +a- :U“ék))_(],f‘
SinceF is convex onx1, x,], we have for all € J¢,
F(x) < MﬁkF()_(Jf) +(1- Mfk)F()_(ﬂ) = :“*gkfﬂ +d- Mék)fﬂ'

Note thatZleﬂ ;Lﬁk/lJ‘ﬂ = We derive from the above inequality that

ljk
fre= ¥ Z| Z FOa) < fpe+ Q=250 fre

leJ!
which, thanks to (45), leads to (ii).

Let us consider the case wher® = G, g. By Lemma 2 we know that
ér,R = G, g and therefore for eadhe {,, the linear fornt — ¢;(R xf) is a linear
combination of the linear formfa— ¢; (Rxf) withi =1, ..., n —r. Consequently,
if we W, then for alli € 4,, ¢i(R »w) = 0. For each/ C {1,...,n}, t defined
by (22) satisfieg|t’; || = 1. By applying (44) withf = w, we get(w, t’;) <0 for all
w e G, g and(w, t}) =0 for allw e W. Consequently, by Lemma 8; belongs
toT

8. Proof of Proposition 1.

8.1. Proof for (Ty, C) = (Ty.1, C>0). We prove the proposition by applying
Theorem 1. We decompose the proof into six steps.
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Step 1. For all integer N > 1, let Tgl(u) denote thel — u quantile of a
Student random variable witN degrees of freedonwe have for alk €10, 1,

46) Tyl <1+ C{Iogl/“(l) + '091/2(9 exp(% 'OQG))}

for some absolute consta@t> 0.

PROOF. Let Fl_k,(u) denote the - u quantile of a Fisher variable with one
andN degrees of freedom. Then

Tyt w) = FLy ).
It follows from Lemma 1 in Baraud, Huet and Laurent (2003a) that for all
uel]01,N>1,

N(u)<1+2x/_logl/2(l)+37N{exp( Iog(l))—l}.

Using the inequality exgx) — 1 < x exp(x) which holds for allx > 0, we obtain

Fyy@) <1+2f|ogl/2< >+6Iog< )exp(%log(%)),

and since/a + b < /a + /b forall a > 0 andb > 0,

m <1+ C{Iogl/“( ) + IOQ”(%) exp(% Iog(%»}

for some absolute constagit> 0. [

STEP2. Forall£efl,....¢,), te ‘fn‘fl, we have
47) gt(@) = q1(€, ug) < C(a)vlog(n).

PROOFE On the one hand, by definition gf (¢, ),

Ln

a=Po1(To,1>0) < Y P(T{(e) — q1(¢, ug) > 0) < Lyuq,
=1

and thus
(48) Ug > o /ly.

On the other hand, foralle {1,...,¢,} andJ € gﬁ, the random variables

_Ziejgi n—dy
le —Ty,ell\y |J]

Uj=
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being distributed as Student variables with- d,, degrees of freedom, we have
that

w0 H{ro(l)= Er(o- () =

Jegt

and thusgy (€, ug) < Tn__ldn (ue/|4%D). This inequality together with (48) and (46)
leads to (47), agf‘| < €, <n/2andn —d, =n — £, >n/2. O

STEP3. Forall f= (F(x1), ..., F(xy)) with F € #,(L),

f—1I f[|2
(50) || Vn,cste ” S C(S)LG—zs
n
ProOOFE Note that the vector
~ en
=Y F(x;)1y
k=1

belongs toV, csteand therefore

Hf l_Ivncst ” <”f ||

= Z Yo (FO) = F(7))°

k=lieJi

Noting that¢,, = d,, > n/4, we get (50). O

STEP4. Assuming that > (L /o), there exists some constafdepending
ons and B only such that

-1
X dn Hf nvn cst “2/0.2(13/2)

<C.

(51) —

PrROOF Using the inequality due to Birgé (2001) on the quantiles of
noncentraly 2, we have that

L (B)2) <n—dy +a +2)(n — dy +2a%)l0g(2/B) + 210g(2/B).

nda

Settinga = ||f — Iy, Cstef||/a and using (50), we derive that
(52) 2(B/2)/(n —dn) < C (B, 5). O

nda
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STeP5. Under the assumption of Stdpfor all t € 7;,,
u(f, B) < k*vlog(n)o,

for some constant* depending o, 8 ands only.

PrRoorE We recall that

. ) = (@) - 2102812+ 57112 )

\/n%—dn\/ Kn—dy, =Ty, )

We conclude by using the elementary inequality
®~H(B/2) < 2log2/p),

and by gathering (47) and (51)O

We conclude the proof with this final step.

STEP 6. There exists a constartdepending onx, 8 ands only, such that if
n is large enough and’ satisfies

53 min F(x) < —kpy,
(53) 2el0.1] (x) < —Kkpn

then there exists* € 7;, such that
(54) (f,t*) > v (f, B).
PrROOF Since F € J¢,(L), under Assumption (53) there exisjse {1, 2,
...,n} such that
F(j/n) < —«kpp+ Ln"".

Forn large enoughlL.n™ < «kp, /2, henceF (j/n) < —kp,/2.
Let us takec satisfying

4 9

wherex* is defined at Step 5.
Let us define

w=[(%)"]

andJ as the element of ‘™ containing;. Note that forn large enough{(n) €
(L., 0,).
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Now, for allk € J, sinceF e #(L),
Jie=F () =—F(xj)+ F(xj) + F(xp)
< —kpn/2+ L|xg — xjI°
< —Kkpn/2+ LE(n)™*

—Kpn/4
and thus, by taking* € 7, 1 as

IA

=

- Zela
v tGJ
we derive that
—VII1fs
= |J|K,0n/4-

By construction of the partition of the data, we have for all positive integers
p <gq <rthat

£J<ta=[s]

Forallje{l,....,.¢m)}, J = Jf(”) [see (8)] is a union otlj ‘o] = n/E()]
disjoint sets of cardlnallty at leapt/¢,]. Hence

oz ]l
- L(n)]~ 4e(n)
since[x] > x/2 for all x > 1. Therefore we get

1/s
n n( pn
(57) |J |Z4Z(n) z4< E)
using (55).

This implies that

1/(25)
(f,t*) > % (%) Kkpp > k0 /log(n)

by definition ofx. O

8.2. Proof for (7, C) = (Ty,2, C »). We follow the proof of Theorem 1 for
(Ta, C) = (Ty.1, C>0): the results of Steps 1-5 still hold. The proof of Step 2
differs in the following way: (49) becomes

(T4 (2

P> IP><||e nv,f:jﬂ)/(n—m T"11"<|Jtaz|>)<”

I<i<j<t
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We conclude the proof of Step 2 by noticing that for@a# {1, ..., ¢,}, |7f,2| is
bounded from above by?/4.

STEP6. Forn large enoughunder the assumption that

58 inf ||F — >
(58) N IF = Glloo = o,

there exists* € 7, 2, such that(t*, f) > v (f, B).

PROOF Let us first remark that

o IF = Glloo < sup (F(x) — F(y)).

O=<x=<y=<1
Indeed, letlG* € X ~ be defined as
G*(y)= sup F(x).

O<x<y
Then
inf |IF —Glloo <IF —G*lc= sup (F(x)—F()).
GEJC/V

O=<x=y<1

Hence, under (58), there exisis< y such thatF(x) — F(y) > kp,. Since
F e Hy(L),if |x; —x| <1/nand|x; —y| <1/n, then

F(x;j) — F(x;) > kpy —2Ln"° > kp,/2

for n large enough. Hence, there exists 1 < j < n such thatF (x;) — F(x;) >

Kpn/2.
8L \'*
w-[()")
KPn

Let us set
which belongs to{1, ..., ¢,} at least forn large enough. Lef and J be the
elements off ‘™ satisfyingi € I andj € J.

Arguing as in Step 6 of Section 8.1, sinEes J, (L),

fr=F(x)—Lem)™ and f; < F(x;)+ Len)™*

and we deduce that
fr — f1 = kpn/2—2LLn) " > kp, /4.

This implies that there exists 4 i* < j* < £(n) with I = J.
such that

£(n) ﬁ(n)

andJ = J

)pn
4

£ Z L
€, f)= NS = ) = N
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Using (56), and sincé, = [n/2], we have that for alk € g¢®,

L, 4,
2[£(n)} <|Kl= 3([@(:1)} * 1]’

N = [V o [ b
v 11+ [J]—  VE@n)

; L(n)
We now conclude as in the proof of Step 6 by takifig= el.*;f*. O

which implies that

8.3. Proof of Theorent for (7,, C) = (T3, C_). We follow the proof of
Theorem 1 for the cas@y, C) = (.1, C>0): the results of Steps 1-5 still hold.
Nevertheless, the proof of Step 2 differs in the following way: (49) becomes

P(Tf(e) > 7L (”—j))
"\I7, 3l

- u
< ]P’( > Til (—a>) <Uy.
2 le — Ty, e ll/(n — £2) ~ """\ |71y *

I<i<j<k<t n,

We conclude the proof of Step 2 by noticing that forak {1, ..., ¢,}, |’J‘,f3| is
bounded from above by®/8.

STEP6. Forn large enoughunder the assumption that

59 inf ||F —Glloe > ,
(59) N IF = Glloo > Ky
there exists* € 7, 3 such that
(t*, f) = v (f, B).
PROOF We decompose the proof into three parts.

PART 1. Forn large enoughand all F € #(L) satisfying(59), we have
inf [If — glloec > kpn/4,
geCe

withf = (F(x1), ..., F(xn)).

PROOF  We first prove the following inequality:

(60) oM NF = Glloo <2Ln " + 392%[ If — Gllco-

Part 1 derives obviously from this inequality.
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For allg € C_, we consider the functioty € X _ defined as the piecewise
linear function such that for all, Gg(x;) = g; and such thatGy is affine on the
interval [0, x2]. Then inGex_ IF — Gllo < IIF — Gglloo. Moreover, by setting
xo =0 andgo = Gg4(0),

|F — Gglloo
= sup  sup |F(x)— Gg()|

ie{l,...n} x€lx;_1,x;]

< sup  sup |F(x)— F(x;) + F(x;) — Gg(x;) + Gg(x;) — Gg(x)]
ie{l,...n} x€[xj_1,xi]

<Ln” +If —gllo+ SUP [gi-1— gil,

ie{l,...,n}

since SUPc(y,_, 1 1Gg(xi) — Gg(x)| = |Gg(xi) — Gg(xi-1)| (G is linear on
[x;—1, x;]). In addition, noticing thatg: — go| = |g2 — g1l,

<2|f —glloc + Ln"".
This concludes the proof of (60) .

PART 2. Forall f e R",

. X — X X;i — X;
61)  inf If —gle < max (fj— L? P ’fk> ,
geC_ 1 +

<i<j<k<n Xk — Xi Xk — Xi

where forx € R, (x)4+ = x1,-0 denotes the positive part of

PROOF. Letus defingg* € C_ as follows:g; = frand fori=1,...,n -1,

fi —&f
Xk — Xj

gf+1:g;k+inf{ , k>i}(xi+1—xi).

In words, if Fji, denotes the piecewise linear function pn, x,] taking the

value f; at x;, theng* is the vector(Gy (x1), ..., G}, (x,))’, whereGj;, is the
largest convex function satisfying for alle [x1, x,] G}, (u) < Fiin (). Note that

the functionGj;, is also piecewise linear and satisfies that forjadt {1,...,n}

such thatFiin (x;) — Gji,,(x;) > 0, there exist ki < j < k <n such that
k—Xj Xj— X

x
Fiin(xj) — Gjin(xj) = fj — X — X; Ji— Xx _X‘fk'

Consequently,

Xk — Xj Xj—Xi
< _max_(fi- - fi) - .
I<i<j<k<n Xk — Xi Xk — Xi +
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PART 3. Letkx’ =«/4.We set

6L \1/°
E(n)=1+[( / ) ]
K" Pn

If there existl <i < j < k < n such that

Xk — X X;i—X;
fi— L — " fi >k pu,
Xk — Xi Xk — Xi

then there exist = J.\", J = JZ(") and K = 7. with i* < j* < k*, such that

- XK —XJ = X7 —
(62) fJ—ji_ijfl—x;_ fx =« pu/b.
PrROOFE Note that
1/s
(63) ) > (:L )
On

and that fom large enoughi(n) € {1, ..., £,}.
In the sequel, we shall use the following inequalities:

1
YVEe{l,J, K} max|x1—xl/|<— and

L(n
(64) (1)
max — <—
|xi — XE| < 2
and the following notation:
=200 KT A= i - A- Dk
Xk — Xi XK —XI

We boundA from below as follows:
A=fi=rfi — Q=2 fi
+fr = fi M= A+ Q=0 fi — L= 0 fx
> Ko+ f1 = fi+ =0 fi =2(f1 = fi) + G = 1) fi = Q=D (fx = fo)
> kpn — 2maX| f1 = fil, 1fs = fil. | fx = filk = 1A = X1 fi = fil-
Let us now bound from above the quantities
|fi = Sl maX|fr = fil.1fs = fil 1 fk = fillls A=Al
SinceF e #,(L), we have that
(65) |fi — fil = |F(x;) — F(x)| < Llxg — x|,
and by using (64) that
(66) max(| f1 — fil. 1 f1 — fil. | fxk — ful} < Le@n)™.



246 Y. BARAUD, S. HUET AND B. LAURENT

Foreach!, E) € {(, I), (j, J), (k, K)}, let
hi=Xxg — x;.
We have
Xk —Xj+hi—h;j
Xp — Xi +hg — h;
:)L(1+ (hi —hj)/(xk —xj))
1+ (hg — hi)/ (xx — xi)

(hik —hj)/(xk —x;j) — (hi — hi) /(e — x;)

1+ (hg — hi)/(xk — xi) )
and as from (64) ma¥a, — hjl, |hx — hil} < 2(n)~1, we deduce that

A=

—i(1+

o g = | L) = O R0 )
(67) k i)/ (Xk — X;
25

<—7

114
where

1

68 .
) £ lxx — xi|

In order to bound from above, note that sincé € #¢,(L),
K'on < fij—Mi — A= 2) fr
= MF(xj) = F(xp)) + L= (F(xj) — F(xx))
< Lmax{|x; —x;|°, |xx — x;[*}
and therefore

|xx — xi| = maxX{|x; — x;|, [xx — xj|}

K sy11/s
={maxX|x; — x;|*, |xx — x;|°}} /

/ 1/s
- (K /On> '
“\ L
Thus, we deduce by (63) and the fact that] 0, 1] that
LYs 1

0 ———— < —.
= Wt ~ 6
By gathering (65)-(67), we get

(69)

A>«'p, —2Le(n)~* = 2L

|S

)
1_8|xk_xi



TESTS FOR CONVEX HYPOTHESES 247

By using (68), (69) and (63) we finally get

/ —Ss ) 81_S
A=«x'p, —2LL(n)"" —2LL(n)"" 13

Z/c/,on{l— %(1+ 1—11/6)}

> k' pn /4. O

Let us now conclude the proof of Step 6. Under the assumption that
inf If — glloc >« pn
geCo

we know from (61) that there exisis< j < k such that

xk—xj xj—x,-
fi— fi— fx =« pn,
Xk — X; Xk — X;

and from (62) that there exist = JZ(”)

Jj* < k* such that

J =7 and K = 1" with i*

L(n)
fe e(n) O U 7 gl 7 Nl*]*k*K Pn
(f.e *k*>_ Ni*j*k*(ff = A e J1 — ( _)‘i*j*k*)fK) z — 4

Noting that for allE € {I, J, K}

n £y n
B2 = =
L(n) L(n) — 4e(n)
£(n)

and thatie;.’}.;- 12 < 1/11] + 1/1J| + 1/|K|, we have that

NEm 1 > n
PPN 4+ g 4 K T 120(n)”

As £(n) < 2(12L/(x'pn))Y* at least fom large enough, we deduce that
en) [n(k’ pn)Y/s
Consequently, we get

(f. e = \/ (' D) 1H25) /s

> «*,/log(n) o,

for «’ suitably chosen. It remains to take= e("ik* € 7,3 to complete the proof.

O

121/s 128L1/5
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9. Proof of Proposition 3. The proof of Proposition 3 is divided into two
parts. In Section 9.1 we show that if (24) or (25) holds, then (7, > 0) > 1— 8.
The second part of the proposition is shown in Section 9.2.

9.1. Proof of the first part of Propositiod. We only prove the result under
(24), the proof under (25) being almost the same. By combining (43) and (44)
we obtain that if F is such thatRF is rth times differentiable, then for all
J C {1,...,n} there exists a sequende;, i € 4, N J" 1} verifying both ¢; €
Iminjey x;, max;e; x;[ and

_ A(F)(ci) ,
(70) —(f =Nt Y fw?(x ),
ied,NJr+l )
whereN; = Gram(1,,x;, ..., X, Yy, Leti* € J such that

inj A(F)(xi) = A(F) (xix).

We have for alk € ]x;, x 1,
A(F)(c) = A(F)(xix) +w(hy).
Besides, by takin§= (x]/R(x1), ..., x},/R(x,))" in (44) we get that
1 X"
Y st =14
J ied,NJr+1 v
Now, by using (70) and (24) we deduce that
" AF)(xix) +w(h 1 "
(f.t5) > — (F)rir) + J)<N— Z ¢i2(x ))

r!
J ied, NJr+1

-
— I, X

2
I

2
X — T, X] |l

)/]r!

= —(A(F)(xi+) + w(hy))

> vy (F, B),
and we conclude thanks to Theorem 1.

9.2. Proof of the second part of Propositid In order to prove this second
part, we apply the first part of Proposition 3.

Evaluation ofu: (f, 8). Let us prove that for aly e Ui, 9@,

ves (f, B) < «*/log(n)o,

where «* depends ony, 8,s and r only. We use Steps 1-5 in the proof of
Proposition 1. For Steps 1, 2 and 5 the proof is similar to the proof of Proposition 1.
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Step3. Forall f=(F(x1),..., F(x,)) with F©) e #,(L),

If — Ty, f|1?

(71) < C(s,r)L°n=26+"),

PROOF We recall thalv,, is the linear space generated by
{1;,%X7,..., X'}, J e gZ"}.
Note that the vector
n r D (%
- _ FY(x;) - l
f= Z(F(Xjk)ljk + Z Tk(xlk —Xjkljk)
k=1 =1
belongs toV,,. Hence, using thak ") e (L),
2
|f =Ty, f]
<|f =12

3y

k=licJ, \U1=%y

Xi

ux Ur-1 2
/ / (FOuy) — F(x)) duy - 'dul)
ug=xy, Ur=xy,

Ln

k=lieJ;
S C(S, r)LGl—Z(r+S)

sincel, > n/(4(r + 1)) using thatix] > x/2forx >1. O

STEP 4. Assuming thatn > (L/o)Y/0+%), there exists some constaft
depending on, r and 8 only such that

-—1
Xnay 1=, 1202 B2

(72) ol <

C.

The proof is similar to the proof of Step 4 in Proposition 1 by using (71).

Evaluation ofy;. Let us prove that there exists some constardepending
onr only such that, fo/ such thafJ| >r + 1,

|J|2r+1

2
>
vy = c an

Since for alli, x; =i /n, by translation
2 r r 2
vi =[x — T, x|

|/

1
. . . )
=— min i"—apg—ayi —---—ar_q1i" .
7 M aH;( 0o—al r—1i’ )
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By setting forallj € {0, ...,r — 1} a; = b;|J|"~/, we have

|J]
mln Z(z —ap—ay —---—ay_1l

77777 arl

r—l)Z

|/

it . 1 i\’ i r—1\ 2
= min =Y (L) —bo— b))
bo,..., br*ll]li:l |J| |J|

. 1 M oy c o r—1\ 2
min  — ((l—) _bO_"'_br—1<l_> )
bobr—y [ I \\ /| /1

converges ag/| — oo toward

Since

.....

which is positive, we obtain that there exists some congfantO such that forJ|
large enough,

2r+1
2>C|]| r+
j = 2r

n

Moreover, since fotJ| > r+1, yJZ > 0, the above inequality holds fof| > r + 1,
possibly enlarging”.

Evaluation ofw(hy). LetJ e $®. SinceF") e #,(L), and since:; defined
in Theorem 3 satisfiesQ hy < 1/¢,

why) = sup |[FOx)—F7 )
|x—y|<hy

< L{~5.

Conclusion. Let us prove in conclusion that if
73 inf FO(x) < ,
( ) el0.1] (x) =< —Pn,r

then (24) holds for somé € ., .

SinceF") e #,(L) under (73), there existse {1, ..., n} such that
F(r)(xj) < —POnr+ Ln™* < _:On,r/2

for n large enough.
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Let

. B L2n 1/(1+2r+2s)
0=|Gogw)

For n large enough{(n) € {1, ...,¢,}. Let J be the element of */) contain-
ing j. Note that|J| > n/(2¢(n)) at least fom large enough. This implies that, for
n large enough,

142
|1+

yi=C > C(rn(tn) 2.

n2r

It follows that

r! K*r! (£(n)) 1/2 s
Ut’;(ﬂ ﬂ); +w(hy) < C(r)a\/ |09(W)T + L(£(n))

2
< KL(1+2r)/(1+2r+2s)(U log(n)

s/(14+25+2r)
)

for some constant depending onw, 8, s andr. This concludes the proof of the
proposition.

APPENDIX
A.1. Proof of Lemma 2.

PROOF OF(42). Clearly, one haér,R C Cr.r- We proveC, g C ér,R by using
repeatedly the following claim.

CLAaM 1. LetO<ui <up < -+ <u1<ure2 <1 be an increasing

sequence of + 2 points of[0, 1]. Letvy, ..., v.42 be real numbers verifying that
1 wu - ug_l V2
r—1
us “e u v3
_1 3
D1(1, Up42, ..., M:+2, Vpy2) = det . . >0
: : : L :
1 upy2 - M:+2 Ur+42
and
1 wu - u’l_l v1
r—1
us “en u V2
D, 2 =det 2 > 0.
r‘—l

1 w1 - Uoy1 U+l



252 Y. BARAUD, S. HUET AND B. LAURENT

Thenforallj €{2,...,r + 1}

1 wu - url_l U1

: » :

1 w1 - u Vi1

-1 J -1 Yj
DJ (1, Upg2,yoovy M:+2, Vpy2) = det 1 ,{_1 > 0.

Uj+1 Ujyr Ui+l

: : : 3 :

1 upy2 - M:+2 Ur42

PrROOF Forreal numbers, ..., we denote by vand,, ..., ) the Vander-
monde determinant

1 0 - [{ 1
vandry, ..., t,)=det| : : ,

1 - [rr*l
andforj=1,...,r +2 we denote by; the vector(1,u;, ..., u;_l, vj). Letus
fix j €{2,...,r +1}. By expanding the determinant

D](lv ur+27 LR} u::‘%’ Ur+2)
by its last column, we getthat jfe {2, ..., r},
Dj(la Mr+27 cee u;;%7 Ur+2)
= vr+2vand’/ll, L] I/lj_]_, Mj+1a L] “r—i—l) + Dj(la M}’+29 e r+2’ 0)
andifj=r+1,
Dr—l—l(l, Ur42, ..., M:_T_%, vr+2)
=vppovandus, ..., u;) + Drp1 (L upqo, ... r+2’ 0).

Since theu;’s are increasing, the Vandermonde determinants are positive and
thereforeD; (1, u, 42, ..., u;;%, vy12) is increasing with respect tg.,»>. On the
other hand, since by assumption

-1
D1(L ttri2, ..., u, 5, Uri2)
=v,povanduy, ..., u,41) + D1(L, u, 42, ... ,+2, 0=>0
we have that

Dl(17 Ur42, ... r+2’ O) U*
vandug, ..., ur+1)

Vrg2 = —
and deduce that

-1
D](lv Mr+2a "'9M:+2’ Ur+2) 2 DJ(]-, Mr+2» .. r+27 v )
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It remains to show thaD; (1, u,,2, . ..,u;;%, V12, v*) > 0. Whenv, ;2 = v*,
we have thatDq(1, ur+2,...,u:;%, v*) = 0 and thereforeu* = (1, uy42, ...,
u;jr%, v*)" is a linear combination ofiy,...,u,1. Let us denote by, the
coordinate olu* onu,. By Cramér’s formula we have that fére {3, ..., r}

)\,k _ Vand”Z» e Up—1, Uk, ..., ur+2)
vanduy, ..., Ug—1, Uk+1, - - - » Ur41, Uk)
_ (_1),_k+1vandu2, e k=1, ULy - Ur D)
vanduz, ..., ur+1)

hp = (_1),_1vanctu3, cey Upy2)

vanduz, ..., ur11)

and
vandua, ..., Uy, y4+2)
)\r—i-l =
vandua, ..., ur41)

Hence, the positivity of the Vandermonde determinants impliesithaés the sign
of (—=1)"~/*1. Sinceu* = Z,’;% AUk, by linearity of the determinant

Dj(l,u,+2,...,u;_7_%,v*)=)»ij(1,uj,...,u;-_l,vj)
= (-1 ;D1
and thus, a®,41 > 0, D;(L 42, ..., ul 3, v*) > 0. O
The proof of (42) is complete.
PROOF OF(43). Forx € [x;;, x;,,,] let us set
1 x x’_i R(x)F(x)
hoy=der| T e Rl
i xi}:+l xzr,jrll R(‘xirﬁ—l)‘F(‘xiH—l)
1 x S
P L
T
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where A is such thath(x;) = 0. Sinceh is r-times differentiable and satisfies

h(xiy) = h(xiy) = --- = h(xir4+1) = 0, there exists somg € ]x;,, x;, ,, [ such that
0 0 .. 0 A(F)(ci)
1 xi, - x7Y R(xi,)F(x;
0="h")(cj) = det " : K (XIZ). e

1 Xippg 0 xl'rr+1 R(xi”l)F(xiHl)

0 0 - 0 r!
r—1
— adet 1 e T x.irz :

: : : PR
1 Xy - xirr+1 irr+l

leading tox = A(F)(cj)/r!. We get the result by substituting the expression of
in the equalityz(x1) =0. O

PROOF OF(44). We start with the following claim.

CLAIM 2. LetW be a linear subspace @* of dimension € {1, ...,k — 1}
and let{w?, ..., w4} be a basis ofW. Then for allu, v in R¥

Gramw?, ..., w?)(u, (I — y)V)

1 .
Wiy o Wiy Uy
= ) det| : o
i€dgt1 1 - 9 :
(74) 4 wlq+]_ wlq+]_ ulq+l
1 q
w;, Wy Viy
x det : ;
1 q ,
lg+1 lg+1 lg+1

where

Gramw?, ..., w?) =detG)  with G = (W', W/ )1« j<4-

We conclude thanks to Claim 2 by taking= R xf, v =X, —IIx X}, W =X,
andk =|J|.

PROOF OFCLAIM 2. Forz e R, let B(z) thek x (g + 1) matrix

1 q
wy e wp o 21

B@={(: =
w/% wZ Zk
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We obtain the result by computing

(whwhy - whwd) o (wy,v)

BuYB(v) =det| : : :
det{B(u)'B(v)) =de wiwl . W ey
(u, wh (u,wi)  (u,v)

by two different ways. The first way is direct: sin€ByV is a linear combination
of thew’’s we have

det(B(u)'B(v))
1

(wl,wh whwd) wh (7 —Ty)v)

_ det : : : :
(wa,why o wewe) (we (1 — TTy)V)
(uwh o uwd) (U, (- TIg)v)
whwl)y o wl we) 0

_ det : : : :
(Wq,W1> coe (W, wA) 0
(uwl) o uwd) (U, (1 - TIg)v)

= Gramw?, ..., w?)(u, (I — TTy)V).

The other way is to use the Cauchy-Binet formula [see Horn and Johnson (1991)]:
we calculate déB(u)’B(v)) as a function of thég + 1) x (¢ + 1) minors of the
matrix B(u) and B(v) which leads to the right-hand side of (74) and concludes the
proof. O

The proof of (44) is complete.d
A.2. Proof of Proposition 2.

Case X = K>o. LetPr be the law ofY under the model defined by (16).
Let ® be a test of leved of the hypothesig” € K. Let us define the tesk of
the hypothesis F = 0" against ‘F # 0" which rejects the null if®(Y) = 1 or if
®(—Y) =1. Since (e K> and since

Po(®(Y) = 1) =Po(P(—Y) =1) <a,

the testl is of level 2r < 3a. Let p,, (P, F) be theA-uniform separation rate @b
over ¥ . Itis enough to show that

on (P, F) = pu(0, F).

To do so, we show that the ||o-uniform separation rate oF over¥ is not larger
thanp, (®, ¥), which means that for alt’ € ¥ such that| F||oo > 0,(®, F) we
havePr (W (Y)=1)>1- 8.
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Let Fe F.If |Flloo = pu(®, F), then

either A(F)= sup (—=F()1ru)>0) = on(®, F) OF A(=F) > py(D, F).
x€[0,1]

In the first case, by definition gé,(®, ) we havePr(®(Y)=1) >1- g and

consequenthPr (¥ (Y) =1) > 1 — B8. Note that in the other case the same is true

since by symmetry of the law df — F

Pr(®(=Y)=1) =P_p(d(Y)=1).

Case X = X ». We argue similarly. Letd be a test of levelkx of the
hypothesisF € X ». We also consider the tedt’ of level « of “ F = 0” against
“F # 0" which rejects the null whelgl/ﬁ|f01 dY (¢)| is large enough (namely, larger
than the - « quantile of a standard Gaussian random variable). Finally, we define
the test¥ of the hypothesis F = 0” against ‘F # 0” which rejects the null if
d(Y)=1ord(-Y)=1ord'(¥Y)=1. Since G X », we have that the so-defined
testW is of level 3x.

Some easy computations show that there exists some corstipending on
a andp only such thatd’ rejects the null with probability not smaller than-18
as soon aisfo1 F(t)dt| is larger thanco /+/n (the sum of the8 and 1— o quantiles
of a standard Gaussian suits fgr. On the other hand, note that

A(F)=3% sup (F(s)—F())
O<s<t<1
and thus, by definition of tha-separation ratey, (®, ), of ® over ¥, ¥ rejects
the null with probability not smaller than X 8 under all alternatives € &
satisfying
max{A(F), A(~F)} =3 sup |F(t) — F(s)| > pa(®, F).

O<t,s<1

Therefore, since

1 1
IFlloc < SUP F(t)—/o F(s)ds +VO F(s)ds

t€[0,1]

1 1
5[ sup |F(t)—F(s)|ds+‘/ F(s)ds
0 re[0,1] 0

’

1
< sup |F(t)—F(s)|+’/ F(s)ds
t,5€[0,1] 0

W rejects the null with probability larger than-18 under all alternative such
that

| Flloo > 20u(®, F) + k0 //n,
and the result follows.
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