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A NEW EIGENVALUE EMBEDDING APPROACH
FOR FINITE ELEMENT MODEL UPDATING

Yunfeng Cai and Shufang Xu

Abstract. This paper concerns the eigenvalue embedding problem (EEP) of
updating a symmetric finite-element model so that a few troublesome eigen-
values are replaced by some chosen ones, while the remaining large number
of eigenvalues and eigenvectors of the original model do not change. Based
on the theory established in [2], by sufficiently utilizing the inherent freedom
of the EEP, an expression of the parameterized solution to the EEP is derived.
This expression is then used to develop a novel numerical method for solv-
ing the EEP, in which the parameters in the solutions are optimized in some
sense. This method not only utilizes the freedom of the EEP but also removes
the limitation of the method proposed in [6]. The results of our numerical
experiments show that the present algorithm is feasible and efficient, and can
outperform the iterative method in [3] and the method in [6].

1. INTRODUCTION

Consider the system of matrix second-order differential equations of the form

(1.1) M ẍ + Cẋ + Kx = 0,

where M , C, and K are all real symmetric matrices of n by n and are called,
respectively, the mass matrix, the damping matrix, and the stiffness matrix. Model
(1.1), which is often referred to as a real symmetric finite element model, can
be obtained from the modeling of vibrating systems, such as bridges, buildings,
highways and automobiles using finite-element methods. In many applications,
the coefficient matrices enjoy very special properties, such as positive definiteness,
sparsity, and so on. If a fundamental solution to (1.1) is represented by

(1.2) x(t) = xeλt,
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then the scalar λ and the vector x must solve the quadratic eigenvalue problem
(QEP)

(1.3) Q(λ)x = 0,

where

(1.4) Q(λ) := Mλ2 + Cλ + K

is referred to as the quadratic matrix polynomial. The scalars λ and the correspond-
ing nonzero vectors x are called, respectively, the eigenvalues and the eigenvectors
of the quadratic matrix polynomial Q(λ). Together, (λ, x) is called an eigenpair of
Q(λ). It is known that Q(λ) has 2n eigenvalues over the complex field, which are
the roots of the equation

(1.5) det(Q(λ)) = 0,

provided that the leading coefficient matrix M is nonsingular.
It is well-known that the dynamical behavior of a vibrating system modeled by

(1.1) is determined by its natural frequencies and mode shapes, that is, the eigen-
values and eigenvectors of Q(λ). The undesired phenomena such as instability
and resonance are caused by some “troublesome” eigenvalues and the correspond-
ing eigenvectors of Q(λ). Therefore, in order to combat or avoid the undesired
phenomena, one way is to update the quadratic model Q(λ) so that these “trouble-
some” or unfavorable eigenvalues and eigenvectors are replaced by some suitable
ones, which are usually chosen by engineers and designers. Among current de-
velopments for finite element model updating, one challenge that is of practical
importance is to update the model while retaining the remaining eigenvalues and
eigenvectors. Such updating, if possible, is known as updating with no spill-over.
In this paper, we consider the special model updating with no spill-over, which is
known as the eigenvalue embedding problem (EEP), stated as follows [3]:

EEP Given a real symmetric quadratic matrix polynomial Q(λ) = Mλ 2 +
Cλ+K with M nonsingular and a few of its associated eigenpairs {λ i, xi}k

i=1 with
k ≤ n, assume that the new eigenvalues { λ̃i}k

i=1 have been measured or chosen.
Update the quadratic matrix polynomial Q(λ) to Q̃(λ) = M̃λ2 + C̃λ + K̃, with
M̃, C̃, K̃ real symmetric and M̃ nonsingular, so that the subset {λ i}k

i=1 is replaced
by {λ̃i}k

i=1 as k eigenvalues of Q̃(λ) while the remaining 2n − k eigenpairs of
Q̃(λ), which are usually unknown, are kept the same as those of the original Q(λ).
Furthermore, characterize the eigenvectors of Q̃(λ) corresponding to {λ̃i}k

i=1.

Such a problem in control theory is known as the partial pole assignment prob-
lem and is solved by feedback contol. Unfortunately, the use of the feedback control
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destroys the symmetry in (1.1); see [7, 8, 10, 14, 15]. Recently, a symmetry preserv-
ing iterative scheme that reassigns one real eigenvalue or one complex conjugate
pair of eigenvalues at a time was proposed in [3] as a possible numerical method for
solving the EEP. But that algorithm suffers from the shortcomings that the iteration
may break down before all desired eigenvalues are updated. Based on the spectral
decomposition theory, Chu and Xu [6] offered a nice approach for solving the EEP
which completely circumvents all inherent troubles of the algorithm suggested in
[3]. However, the inherent freedom of the EEP is not sufficiently utilized in this
method, since it only simply taken the given eigenvectors {xj}k

j=1 as the eigen-
vectors corresponding to the new eigenvalues {λ̃i}k

i=1, and moreover, it requires
that the real eigenvalues are replaced by real ones and the complex eigenvalues are
replaced by complex ones.

In this paper, based on the theory established in [2] we sufficiently utilize the
inherent freedom of the EEP to derive an expression of the parameterized solution
to the EEP. We then use the expression to develop a novel numerical method for
solving the EEP, in which the parameters in the solutions are optimized in some
sense. This method not only utilizes the freedom of the EEP, but also removes the
limitation of the method proposed in [6]. The results of our numerical experiments
show that the present algorithm is feasible and efficient, and can outperform the
iterative method in [3] and the method in [6].

This paper is organized as follows. In Section 2, we present some notations,
definitions, and basic theory, which will be used throughout this paper. In Section 3,
the parameterized solution to the EEP is derived, and some necessary and sufficient
conditions for the existence of solutions with a positive definite mass matrix are
discussed. The numerical approaches and numerical results are presented in Sections
4 and 5, respectively. Finally, we give some conclusion remarks in Section 6.

2. PRELIMINARIES

Throughout this paper we adopt the following notations and definitions. The
symbol ‖ · ‖ denotes the Euclidean norm of a vector or the spectral norm of a
matrix and ‖ · ‖F denotes the Frobenius norm of a matrix. For any given square
matrix A of size n × n, the spectrum of A is denoted by λ(A), and A > 0 denotes
a symmetric positive definite matrix. For any given m × n real matrix B, we use
B� to denote the transpose of B, and use N (B) to denote the null space of B, i.e.,

(2.1) N (B) = {x ∈ R
n | Bx = 0}.

dimX denotes the dimension of a subspace X , and sign(ξ) is employed to denote
the sign of ξ for any real number ξ. For any given real symmetric matrix A, the
ordered triple

i(A) =
(
i+(A), i−(A), i0(A)

)
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denotes the inertia of A, where i+(A) is the number of positive eigenvalues of A,
i−(A) is the number of negative eigenvalues of A, and i0(A) is the number of zero
eigenvalues of A, all counting multiplicity.

Assume the k eigenpairs {λj, xj}k
j=1 given in the EEP are in the following form

λ2j−1 = λ̄2j = αj + iβj, αj ∈ R, βj > 0, j = 1, 2, . . . , �,

x2j−1 = x̄2j = xjR + ixjI, xjR, xjI ∈ R
n, j = 1, 2, . . . , �,

and
λj ∈ R, xj ∈ R

n, j = 2� + 1, . . . , k.

Define

X1 := [x1R, x1I, . . . , x�R, x�I, x2�+1, . . . , xk],(2.2)

Λ1 := diag
([

α1 β1

−β1 α1

]
, . . . ,

[
α� β�

−β� α�

]
, λ2�+1, . . . , λk

)
,(2.3)

which are referred to as the real representations of {xj}k
j=1 and {λj}k

j=1, respec-
tively.

Similarly, let the real representation of the new measured eigenvalues {λ̃i}k
i=1

be

(2.4) Λ̃1 = diag
([

α̃1 β̃1

−β̃1 α̃1

]
, . . . ,

[
α̃

�̃
β̃

�̃

−β̃
�̃

α̃
�̃

]
, λ̃

2�̃+1
, . . . , λ̃k

)
,

which means that the new measured eigenvalues just contain �̃ complex conjugate
pairs. It is worthwhile to point out that here �̃ is not necessary equal to �, while
�̃ = � is required in [6].

Also, let the remaining 2n−k eigenpairs of Q(λ) be denoted by {λj, xj}2n
j=k+1,

and let the real representations of {λj}2n
j=k+1 and {xj}2n

j=k+1 be Λ2 and X2, respec-
tively.

Using the notations above, the EEP starts from the known matrix equality

(2.5) M [X1, X2]
[
Λ2

1 0
0 Λ2

2

]
+ C[X1, X2]

[
Λ1 0
0 Λ2

]
+ K[X1, X2] = 0,

and we want to find a real symmetric matrix triplet (M̃, C̃, K̃) with M̃ nonsingular
such that

(2.6) M̃ [X̃1, X2]
[
Λ̃2

1 0
0 Λ2

2

]
+ C̃[X̃1, X2]

[
Λ̃1 0
0 Λ2

]
+ K̃[X̃1, X2] = 0
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for some n × k real matrix X̃1, which serves as the real representation of the
eigenvectors corresponding to the new measured eigenvalues.

Let Λ be any m × m real matrix. Define

(2.7) DΛ :=
{

D ∈ R
m×m

∣∣ D = D�, DΛ = (DΛ)�
}

.

The main theorem and algorithm of this paper are derived based on the following
theorem, which has been proved in [2].

Theorem 2.1. Let (Λ, X) ∈ R
2n×2n × R

n×2n with

(2.8) U(Λ, X) :=
[

X
XΛ

]
being nonsingular. Then there exists a real symmetric matrix triplet (M, C, K) with
M nonsingular such that

(2.9) MXΛ2 + CXΛ + KX = 0

if and only if there exists a nonsingular D ∈ DΛ such that

(2.10) XD−1X� = 0,

where DΛ defined by (2.7). In this case, the triplet (M, C, K) is given by

(2.11)


M =

(
XΛD−1X�)−1

,

C = −M
(
XΛ2D−1X�)M,

K = −M
(
XΛ3D−1X�)M + CM−1C.

Remark 2.1. Notice that when a triplet (M, C, K) is represented in the form
of (2.11), then it is easy to verify that

(2.12) D =
[

X

XΛ

]� [
C M

M 0

] [
X

XΛ

]
.

In addition, it has been proved that the following two statements are equivalent:
• U(Λ, X) defined by (2.8) is nonsingular and there exists a nonsingular D ∈
DΛ such that (2.10) holds;

• There exists a nonsingular D ∈ DΛ such that (2.10) holds and XΛD−1X�

is nonsingular.
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See [2] for more details.

As the end of this section, we make the following hypotheses, which we will
not repeated in the rest of this paper.

• Λ1 and Λ̃1 have only simple eigenvalues, i.e., λi �= λj and λ̃i �= λ̃j for i �= j,
i, j = 1, · · · , k.

• λ(Λ1) ∩ λ(Λ2) = ∅ and λ(Λ̃1) ∩ λ(Λ2) = ∅.
• X1 defined in (2.2) is of full column rank.

3. SOLUTIONS OF THE EEP

In this section, based on Theorem 2.1 we will derive an expression of the
parameterized solution to the EEP under some proper assumptions.

Let

(3.1) Λ̃ = diag(Λ̃1, Λ2).

By Theorem 2.1, from (2.6) we easily see that once we find a nonsingular matrix
D̃ ∈ D

Λ̃
such that

(3.2) [X̃1, X2]D̃−1[X̃1, X2]� = 0,

for some n × k real matrix X̃1, with

(3.3)

[
X̃1 X2

X̃1Λ̃1 X2Λ2

]

being nonsingular, then one solution (M̃, C̃, K̃) to the EEP can be given by (2.11)
in terms of D̃, X̃1, Λ̃1, X2, and Λ2. Noting λ(Λ̃1)∩λ(Λ2) = ∅, we can easily derive
that D̃ ∈ D

Λ̃
if and only if D̃ = diag(D̃1, D̃2), where D̃1 ∈ D

Λ̃1
and D̃2 ∈ DΛ2 .

Thus, (3.2) can be rewritten as

(3.4) X̃1D̃
−1
1 X̃�

1 + X2D̃
−1
2 X2 = 0.

Define

D1=
[

X1

X1Λ1

]� [
C M
M 0

][
X1

X1Λ1

]
, D2 =

[
X2

X2Λ2

]� [
C M
M 0

][
X2

X2Λ2

]
.(3.5)

Then, by Theorem 2.1, this, together with (2.5), gives rise to

(3.6) X1D
−1
1 X�

1 + X2D
−1
2 X2 = 0.
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Here we take

(3.7) D̃2 = D2.

The reasons for doing this are threefold. First, we do not want the expression of
the solutions to the EEP to involve X2 and Λ2, since they are not given or hard
to get. Second, according to the spectral decomposition theorem in [6], D2 can be
interpreted as the normalization matrix of the eigenvector matrix X2. Equality (3.7)
means that the updating maintains the same normalization matrix for X2. Third,
it makes the problem much easier to handle, and both methods in [3] and [6] are
carried out under this assumption.

Combining (3.4), (3.6), and (3.7), we get

(3.8) X̃1D̃
−1
1 X̃�

1 = X1D
−1
1 X�

1 .

Noticing that for any z ∈ N (X̃�
1 ), we have

X1D
−1
1 X�

1 z = X̃1D̃
−1
1 X̃�

1 z = 0,

which implies that
X�

1 z = 0,

since X1 is of full column rank and D1 is nonsingular. This shows that N (X̃�
1 ) ⊂

N (X�
1 ). Noting that

dimN (X̃�
1 ) ≥ n − k = dimN (X�

1 ),

we obtain N (X̃�
1 ) = N (X�

1 ), and so, there exists a matrix Z ∈ R
k×k such that

(3.9) X̃1 = X1Z.

Substituting (3.9) into (3.8) and using the fact that X1 is of full column rank, we
have

(3.10) ZD̃−1
1 Z� = D−1

1 ,

which implies that Z is nonsingular. This shows that if (3.7) holds, then there exist
matrices X̃1 and D̃1 such that (3.2) holds is equivalent to there exist matrices Z
and D̃1 such that (3.10) holds.

Without loss of generosity, we may assume that D1 is in the following form

(3.11) D1 = diag

([
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]
︸ ︷︷ ︸

�

, ε2�+1, . . . , εk

)
,
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where εj = 1 or −1, j = 2�+1, . . . , k. In fact, since Λ1 has only simple eigenvalues,
we can always normalize the given eigenvectors {xj}k

j=1 so that (3.11) holds. See
Algorithm 4.1 in the next section for more details.

On the other hand, since Λ̃1 has only simple eigenvalues, it follows immediately
that D̃1 ∈ D

Λ̃1
if and only if the matrix D̃1 has the form

(3.12) D̃1 = diag

([
ξ̃1 η̃1

η̃1 −ξ̃1

]
, . . . ,

[
ξ̃
�̃

η̃
�̃

η̃
�̃

−ξ̃
�̃

]
, ξ̃

2�̃+1
, . . . , ξ̃k

)
.

Furthermore, the equality (3.10) means that the matrix D̃1 is congruent to the matrix
D1. By Sylvester’s law of inertia, this, together with (3.12), implies that D̃1 must
have the following form

(3.13) D̃1 = Γ�P�
1 D1P1Γ,

where
(3.14)

Γ := diag

(
γ1

[
cos θ1 sin θ1

− sin θ1 cos θ1

]
, . . . , γ

�̃

[
cos θ

�̃
sin θ

�̃− sin θ
�̃

cos θ
�̃

]
, γ

2�̃+1
, . . . , γk

)
with θj ∈ R and γj > 0, and P1 is a k × k permutation matrix with the property

(3.15) P�
1 D1P1 = diag

([
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]
︸ ︷︷ ︸

�̃

, ε̃
2�̃+1

, . . . , ε̃k

)
.

Observe that (3.15) implies that �̃ ≤ min{i+(D1), i−(D1)}. This gives us a
necessary condition for the existence of solutions to the EEP.

Theorem 3.1. If the EEP has a solution, then the number of complex conjugate
pairs contained in the new measured eigenvalues {λ̃j}k

j=1 cannot exceed the mini-
mum of both the number of positive eigenvalues of D1 and the number of negative
eigenvalues of D1, where D1 is defined by (3.5) and uniquely determined by the
given eigenpairs {λi, xi}k

i=1.

As D−1
1 is in the form of (3.11), we are able to construct a k × k permutation

matrix P2 such that

(3.16) D−1
1 = D1 = P2JP�

2 ,

where

(3.17) J :=
[
Ir 0
0 −Is

]
, r := i+(D1), s := i−(D1).
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Substituting (3.16) and (3.13) into (3.10) and setting

(3.18) W := P�
2 ZΓ−1P�

1 P2,

we get

(3.19) WJW� = J.

This matrix equation is always solvable and an expression of its general solution
can be given, which are summarized below.

Lemma 3.1. The general solution of equation (3.19) is given by

(3.20) W =

[
(Ir + Y Y �)

1
2 Q�

r Y

QsY
�Q�

r Qs(Is + Y �Y )
1
2

]
,

where Qr ∈ R
r×r, Qs ∈ R

s×s are arbitrary orthogonal matrices, and Y ∈ R
r×s is

arbitrary.

Proof. For any matrix A ∈ R
m×n, it is easy to verify that the matrix equality

(3.21) (Im + AA�)
1
2 A = A(In + A�A)

1
2

always holds. Using this equality, we can easily check that W in the form of (3.20)
is a solution of (3.19) for any given Qr, Qs, and Y . Therefore, it suffices, if we
can prove that any solution W of equation (3.19) must have the form of (3.20).

Partition W as

(3.22) W =

[
W11 W12

W21 W22

]
,

where W11 ∈ R
r×r and W22 ∈ R

s×s, then it follows immediately from (3.19) that

(3.23)


W11W

�
11 − W12W

�
12 = Ir,

W21W
�
21 − W22W

�
22 = −Is,

W11W
�
21 − W12W

�
22 = 0.

Using the pole decomposition of matrices, it is easy to derive from the first two
equations of (3.23) that there exist two orthogonal matrices Qr ∈ R

r×r and Qs ∈
R

s×s such that

W11 = (Ir + W12W
�
12)

1
2 Q�

r ,(3.24)

W22 = (Is + W21W
�
21)

1
2 Qs.(3.25)
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Then substituting (3.24) and (3.25) into the last equation of (3.23), we get

(Ir + W12W
�
12)

1
2 Q�

r W�
21 = W12Q

�
s (Is + W21W

�
21)

1
2 ,

or

(3.26) Qr(Ir + W12W
�
12)

− 1
2 W12 = W�

21(Is + W21W
�
21)

− 1
2 Qs.

Let the SVD decompositions of W12 and W�
21 be

W12 = U

[
Σ 0
0 0

]
V � and W�

21 = Ũ

[
Σ̃ 0
0 0

]
Ṽ �,

respectively, where U, Ũ ∈ R
r×r and V, Ṽ ∈ R

s×s are orthogonal matrices, Σ =
diag(σ1, · · · , σt) with t = rank(W12) and σ1 ≥ · · · ≥ σt > 0, Σ̃ = diag(σ̂1, · · · , σ̂t̂)
with t̂ = rank(W21) and σ̂1 ≥ · · · ≥ σ̂t̂ > 0. Substituting them into (3.26) yields

(3.27) QrU

[
Σ(It + Σ2)−

1
2 0

0 0

]
V � = Ũ

[
Σ̃(It̂ + Σ̃2)−

1
2 0

0 0

]
Ṽ �Qs,

which implies t = t̂ and

Σ(It + Σ2)−
1
2 = Σ̃(It + Σ̃2)−

1
2 ,

and so Σ = Σ̃. Then, by the properties of SVD decompositions, we know that
U, V, Ũ, Ṽ can be chosen so that QrU = Ũ and V � = Ṽ �Qs. Thus we have

QrU

[
Σ 0
0 0

]
V � = Ũ

[
Σ 0
0 0

]
Ṽ �Qs,

which leads to

(3.28) W21 = Q�
r W�

12Qs.

Then substituting it into (3.25), we get W22 = Qs(Is+W�
12W12)

1
2 , which completes

the proof of the lemma.

In summary, the arguments lead to the parameterized expressions of the required
matrices D̃1 and X̃1 in (3.4) as follows:

(3.29) D̃1 = Γ�P�
1 D1P1Γ, X̃1 = X1Z = X1P2WP�

2 P1Γ,

where the matrices Γ, W , and P1 can be chosen, while the matrices X1, D1, and
P2 are determined by given data.

Thus, applying Theorem 2.1, we can now state our main theorem concerning
the solutions to the EEP below.
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Theorem 3.2. Let the notations be defined as the above, assume that D1 defined
by (3.5) has the form as in (3.11) and �̃ ≤ min{i+(D1), i−(D1)}. For any given
W in the form of (3.20) and P1 with the property (3.15), if the matrix M−1 +
X̆1(W Ω̃1JW� − Ω1J)X̆�

1 is nonsingular, where X̆1 = X1P2, Ω1 = P�
2 Λ1P2,

Ω̃1 = P�
2 P1Λ̃1P

�
1 P2, then one solution to the EEP is given by

(3.30)

M̃ =
[
M−1 + X̆1(W Ω̃1JW� − Ω1J)X̆�

1

]−1
,

C̃ = M̃
[
M−1CM−1 − X̆1(W Ω̃2

1JW� − Ω2
1J)X̆�

1

]
M̃,

K̃ = M̃
[
M−1(K − CM−1C)M−1

−X̆1(W Ω̃3
1JW� − Ω3

1J)X̆�
1

]
M̃ + C̃M̃−1C̃.

Proof. Using (3.29) and (3.16) and noting that ΓΛ̃1Γ−1 = Λ̃1, we have

(3.31)

X̃1Λ̃1D̃
−1
1 X̃�

1

= (X1P2WP�
2 P1Γ)Λ̃1(Γ−1P�

1 D1P1Γ−�)(Γ�P�
1 P2W

�P�
2 X�

1 )

= X1P2WP�
2 P1Λ̃1P

�
1 D1P2W

�P�
2 X�

1 )

= X1P2WP�
2 P1Λ̃1P

�
1 P2JW�P�

2 X�
1

= X̆1W Ω̃1JW�X̆�
1 .

Applying Theorem 2.1, we have

M−1 = X1Λ1D
−1
1 X�

1 + X2Λ2D
−1
2 X�

2 ,(3.32)

M̃−1 = X̃1Λ̃1D̃
−1
1 X̃�

1 + X2Λ2D
−1
2 X�

2 ,(3.33)

provided that the matrix

(3.34) X̃1Λ̃1D̃
−1
1 X̃�

1 + X2Λ2D
−1
2 X�

2

is nonsingular. Combining (3.33), (3.32), and (3.31) yields

(3.35)
M̃−1 − M−1 = X̃1Λ̃1D̃

−1
1 X̃�

1 − X1Λ1D
−1
1 X�

1

= X̆1(W Ω̃1JW� − Ω1J)X̆�
1 ,

from which the first equality of (3.30) follows, and moreover, we can easily see that
the assumption implies that the matrix defined by (3.34) is nonsingular.
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Similarly, we have

M̃−1C̃M̃−1 − M−1CM−1 = −X̆1(W Ω̃2
1JW� − Ω2

1J)X̆�
1 ,

M̃−1(K̃ − C̃M̃−1C̃)M̃−1 − M−1(K − CM−1C)M−1

= −X̆1(W Ω̃3
1JW� − Ω3

1J)X̆�
1 ,

from which the last two equalities of (3.30) can be derived. This completes the
proof.

Remark 3.1. It is critically important to note that the update formula (3.30)
from Q(λ) to Q̃(λ) does not need the information about (Λ2, X2). In addition, if
� = �̃ and we take W = Ik and P1 = Ik in (3.30), then (M̃, C̃, K̃) defined by
(3.30) is exactly the same as the update formula gave in [6]. However, since W
and P1 in (3.30) can be chosen, we can properly choose the two matrices so that
some other requirements may be satisfied. Sometimes even in the case the method
of [6] fails to solve the EEP, we can still solve the EEP using (3.30) (see Example
5.1 in Section 5).

Remark 3.2. When n is large, directly using (3.30) to calculate (M̃, C̃, K̃)
is numerically expensive, since the inverse of M is required there. As a matter
of fact, using the Sherman-Morrison-Woodbury formula, we can get the following
more useful equivalence form:

(3.36)

M̃ = R1M,

C̃ = R1R2R
�
1 ,

K̃ = R1

(
K − MS3M + R2S1R2

−MS2C − CS2M + MS2MS2M
)
R�

1 ,

where S1,S2,S3, R1, and R2 are given by

(3.37)

S1 : = −X̆1(W Ω̃1JW� − Ω1J)[
Ik + X̆�

1 MX̆1(W Ω̃1JW� − Ω1J)
]−1

X̆�
1 ,

S2 : = X̆1(W Ω̃2
1JW� − Ω2

1J)X̆�
1 , R1 := I + MS1,

S3 : = X̆1(W Ω̃3
1JW� − Ω3

1J)X̆�
1 , R2 := C − MS2M.

Notice that here only the inverse of a k × k matrix is needed, and so, when kl− n,
using (3.36) to compute the solution to the EEP is far much cheaper than using
(3.30).
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Remark 3.3. From (3.36) it is not difficult to derive that

(a) M−1+X̆1(W Ω̃1JW�−Ω1J)X̆�
1 is nonsingular if and only if Ik +X̆�

1 MX̆1

(W Ω̃1JW� − Ω1J) is nonsingular;

(b) M̃ is positive definite if and only if all the eigenvalues of Ik+X̆�
1 MX̆1(W Ω̃1

JW� − Ω1J) are positive, provided that M is positive definite.

4. ALGORITHMS

In this section we consider how to use the theory established in Section 3 to
develop a feasible and efficient algorithm for solving the EEP. In fact, Theorem 3.1
has given us a recipe for doing this. In Summary, the computation of the solution
to the EEP requires three major steps:

Step 1. Normalize the given eigenvectors {xj}k
j=1 so that the matrix D1 defined

by (3.5) has the form of (3.11), and find the numbers r, s and the permutation matrix
P2 in (3.16).

Step 2. Select the permutation matrix P1 with the property (3.15) and the matrix
W in the form of (3.20) so that some requirements are satisfied.

Step 3. Compute the symmetric matrices M̃, C̃, and K̃ by (3.36).

Notice that the assumption on Λ1 implies that the matrix D1 must has the
following form

D1 = diag

([
ξ1 η1

η1 −ξ1

]
, . . . ,

[
ξ� η�

η� −ξ�

]
, ξ2�+1, . . . , ξk

)
,

where ξi, ηi ∈ R. It is easy to derive that Step 1 can be carried out by the following
algorithm.

Algorithm 4.1.

for j = 1 : �

ξj = x�
jRCxjR + 2x�

jRM(αjxjR − βjxjI)

ηj = x�
jRCxjI + 2αjx�

jRMxjI + βj(x�
jRMxjR + x�

jIMxjI)

ωj =
√

ξ2
j +η2

j , ζj =
ξj

ωj
, cos θj =−sign(ηj)

√
1+ζj

2
, sin θj =

√
1−ζj

2

[xjR, xjI] := ω
− 1

2
j [xjR, xjI]

[
cos θj sin θj

− sin θj cos θj

]
end
r := �, s := �
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for j = 2� + 1 : k

ξj = x�
j Cxj + 2λjx�

j Mxj

xj := |ξj|−
1
2 xj

if ξj > 0, r := r + 1, else s := s + 1 end
end
Reorder the given real eigenpairs {λj, xj}k

j=2�+1 into {λij , xij}k
j=2�+1 so that

ξi2j−1 > 0, ξi2j < 0, j = � + 1, . . . , τ := min{r, s}
sign(ξij) = sign(r− s), j = 2τ + 1, . . . , k

λj := λij , xj := xij , j = 2� + 1, . . . , k

if r > s

P2 := [e1, e3, . . . , e2τ−1, e2τ+1, e2τ+2, . . . ek, e2, e4, . . . , e2τ ]
else

P2 := [e1, e3, . . . , e2τ−1, e2, e4, . . . , e2τ , e2τ+1, e2τ+2, . . . , ek]
end

D1 := diag

([
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]
︸ ︷︷ ︸

τ

, sign(r− s)Ik−2τ

)

This algorithm not only normalizes the given eigenvectors, but also reorders the
given real eigenvalues, which leads to the matrix D1 defined by (3.5) has the form
as shown in Algorithm 4.1. Of course, there is more than meets the requirement of
(3.11). However, it is convenient for us to carry out the following steps.

In the rest of this section, we will always assume that the given eigenvectors
have been normalized and the given real eigenvalues have been reordered by Algo-
rithm 4.1.

Step 2 is the key step of this method. Let us first consider how to select
the permutation matrix P1. In fact, from the computation formula (3.30), we can
seen that the role of P1 played in (3.30) is essentially to specify a correspondence
between the set {λi}k

i=1 and {λ̃i}k
i=1, that is, to specify a permutation {i1, · · · , ik}

of {1, · · · , k} such that λi is replaced by λ̃ij in the updated model for i = 1, · · · , k.
Conversely, if there is a a permutation {i1, · · · , ik} of {1, · · · , k} such that

• λ̃i2j−1 and λ̃i2j are complex conjugate or both real for j = 1, 2, . . . , τ and

• λ̃ij is real for all j = 2τ + 1, . . . , k,

the permutation matrix P1 is defined by

(4.1) P�
1 := [ei1, ei2, . . . , eik]
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must satisfy (3.15). The permutation with the above properties is referred to as
compatible permutation. Clearly, a compatible permutation exists if and only if
�̃ ≤ τ .

Thus, selecting a permutation matrix P1 with the property (3.15) amounts to
choosing a compatible permutation {i1, · · · , ik} of {1, · · · , k}. In practice, such
a permutation is usually known, which is usually given by engineers or design-
ers. In summary, if a compatible permutation is given, the matrix P1Λ̃1P

�
1 in the

computation formula (3.30) can be determined by the following algorithm.

Algorithm 4.2.

for j = 1 : τ

if λ̃i2j−1= α̃ij + iβ̃ij with β̃ij > 0

Λ̃[2]
j :=

[
α̃ij β̃ij

−β̃ij α̃ij

]
else

Λ̃[2]
j := diag(λ̃i2j−1, λ̃i2j)

end
end
Λ̃1 := P1Λ̃1P

�
1 = diag

(
Λ̃[2]

1 , . . . , Λ̃[2]
τ , λ̃i2τ+1, . . . λ̃ik

)
We next consider how to select the matrix W . In practice, we prefer the adjust-

ments made to the coefficient matrices as small as possible. Let

κ := ‖X̆1(W Ω̃1JW� − Ω1J)X̆�
1 M‖.

Similar to the discussion in [12], we can prove that if κ < 1, then

(4.2)
‖M̃ − M‖

‖M‖ ≤ κ

1 − κ
,

and moreover, ‖C̃ − C‖=O(κ), ‖K̃ − K‖=O(κ) as κ → 0. Consequently, it is
nature to select W in the form of (3.20) so that

‖X̆1(W Ω̃1JW� − Ω1J)X̆�
1 M‖2

F = min .(4.3)

Of course, other optimization problems can be proposed to minimize the adjustments
made to the coefficient matrices, but this one is noteworthy and important. However,
it seems difficult to get a globally optimal solution to the above optimization problem.
Consequently, we only develop a numerical method for computing a sub-optimal
solution to the optimization problem (4.3).
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Notice that, in (3.20), if the orthogonal matrices Qr and Qs are diagonal matri-
ces, and Y has only nonzero elements on its main diagonal, then we have

(4.4) W̃ := P2WP�
2 = diag(W[2]

1 , · · · , W[2]
τ , Ek−2τ),

where P2 is generated by Algorithm 4.1, Ek−2τ is a diagonal matrix with only 1 or
−1 on its diagonal, and

(4.5) W
[2]
j =

rj

√
1 + σ2

j σj

rjsjσj sj

√
1 + σ2

j

 ,

with rj = ±1, sj = ±1, and σj being any real numbers for j = 1, · · · , τ .
Also, if W takes in this special form, (3.37) can be rewritten as

(4.6)

S1 = −X1

(
W̃ Λ̃1D1W̃

� − Λ1D1

)[
Ik + X�

1 MX1

(
W̃ Λ̃1D1W̃

� − Λ1D1

)]−1
X�

1 ,

S2 = X1

(
W̃ Λ̃2

1D1W̃
� − Λ2

1D1

)
X�

1 ,

S3 = X1

(
W̃ Λ̃3

1D1W̃
� − Λ3

1D1

)
X�

1 ,

where D1 and Λ̃1 are generated by Algorithm 4.1 and 4.2, respectively.
Based on those facts, here we will only select W in the form of (4.4) so that

(4.3) holds. Notice that the matrices S1, S2, S3 are independent of the choice of
the matrix Ek−2τ in (4.4), so we here simply take Ek−2τ = Ik−2τ . Thus, under
this limitation, the optimization problem (4.3) can be reduced into the following τ

optimization problems:

(4.7)
f(σj ; rj, sj) : =

∥∥∥X
[2]
j

(
W

[2]
j Λ̃[2]

j J2W
[2]�
j

−Λ[2]
j J2

)
X

[2]�
j M

∥∥∥2

F
= min, j = 1, · · · , τ,

where Λ̃[2]
j is given in Algorithm 4.2, W

[2]
j is defined by (4.5), and

J2 := diag(1,−1), X[2]
j := X1

(
:, 2j−1 : 2j

)
, Λ[2]

j := Λ1

(
2j−1 : 2j, 2j−1 : 2j

)
.

Notice that, for each j = 1, 2, . . . , τ , if we have found four real numbers σ
(i)
j ,

i = 1, 2, 3, 4, so that

(4.8)
f(σ(1)

j ;1,1) =min
σj

f(σj;1,1), f(σ(2)
j ;−1,1)=min

σj

f(σj;−1,1),

f(σ(3)
j ;1,−1) =min

σj

f(σj;1,−1), f(σ(4)
j ;−1,−1)=min

σj

f(σj;−1,−1),
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and

(σ̂j, r̂j, ŝj) ∈
{
(σ(1)

j , 1, 1), (σ(2)
j ,−1, 1), (σ(3)

j , 1,−1), (σ(4)
j ,−1,−1)

}
such that

(4.9)
f(σ̂j, r̂j, ŝj) = min

{
f(σ(1)

j ; 1, 1), f(σ(2)
j ;−1, 1),

f(σ(3)
j ; 1,−1), f(σ(4)

j ;−1,−1)
}
,

then (σ̂j, r̂j, ŝj) must solve the optimization problem (4.7). For each of the four
optimization problems in (4.8), it is to minimize an univariate function, which is
twice continuously differentiable for σj , and hence its local minimum near zero can
be obtained by Newton’s method (see Program 50-newton in [13]) with the initial
value being zero.

Our discussions above are summarized in the algorithm below.

Algorithm 4.3.

Set u1 = u2 = v1 = v3 = 1, u3 = u4 = v2 = v4 = −1
for j = 1 : τ

σj := 0, rj := 1, sj := 1, f := f(0; 1, 1)
for i = 1 : 4

σ := 0
while |f ′(σ; ui, vi)| > ε (tolerance)

σ := σ − f ′(σ; ui, vi)/f ′′(σ; ui, vi)
end
if f(σ; ui, vi) < f

rj := ui, sj := vi, σj := σ, f := f(σ; ui, vi)
end

end

W
[2]
j =

rj

√
1 + σ2

j σj

rjsjσj sj

√
1 + σ2

j


end

W := diag
(
W[2]

1 , · · · , W[2]
τ , Ik−2τ

)
Step 3 only involves matrix-matrix operations, which can be carried out using

standard matrix computation subroutines.
In summary, we have the following algorithm for the computation of a sub-

optimal solution to the EEP.
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Algorithm 4.4. (Compute a Sub-Optimal Solution to the EEP)
Input: The given data M , C, K, Λ1, X1, Λ̃1 as described in Section 2, the given
permutation {i1, · · · , ik} of {1, · · · , k}, and a tolerance ε.
Output: A sub-optimal solution (M̃, C̃, K̃) to the EEP.

1. Apply Algorithm 4.1 to generate D1 and the reordered Λ1 and X1.
2. Apply Algorithm 4.2 to generate the ordered Λ̃1.
3. Apply Algorithm 4.3 to generate W .
4. Compute A = Ik + X�

1 MX1(W Λ̃1D1W
� − Λ1D1).

5. Solve AV = X�
1 for V using Gaussian elimination with partial pivoting.

6. Compute
S1 = −X1(W Λ̃1D1W

� − Λ1D1)V , S2 = X1(W Λ̃2
1D1W

� − Λ2
1D1)X�

1 ,
S3 = X1(W Λ̃3

1D1W
� − Λ3

1D1)X�
1 , R1 = I + MS1, R2 = C − MS2M .

7. Compute (M̃, C̃, K̃) by (3.36).

Observe that this algorithm is rich in Basic Linear Algebra Subroutine-3 (BLAS-
3) level operations, and so it can be implemented using high-performance software
packages such as LAPACK on today’s high-speed computers. Moreover, our nu-
merical experiments show that this algorithm is feasible and efficient.

5. NUMERICAL EXAMPLES

In this section, we illustrate the the feasibility and efficiency of the present
algorithm using some numerical examples. All numerical examples were performed
on a Pentium(R) 4.0/2.40G Hz computer using MATLAB 6.5.1, and the tolerance
ε is taken to be 10−13.

Example 5.1. Consider a spring system with

M =
[
2 0
0 1

]
, C =

[
10 −2
−2 1

]
, K =

[
12 −6
−6 4

]
.

Direct calculation gives rises to all 4 eigenpairs {λj, xj}4
j=1 of Q(λ) = Mλ2 +

Cλ + K as follows:

λ1 = −1, λ2 = −3, λ3 = λ̄4 = −1 + i,

x1 = (1, 1)�, x2 = (1, 0)�, x3 = x̄4 = (1, 2)� + i(−1, 0)�.

Next we shall use Algorithm 4.4 described in Section 4 to update Q(λ) to Q̃(λ)
such that the eigenvalues of Λ1 are replaced by the eigenvalues of Λ̃1, where Λ1

and Λ̃1 are given in the following 4 different cases.
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Case 1. Assume that Λ1 = diag(−1,−3) and Λ̃1 = diag(−1.5,−4).
In this case, if the eigenvector matrix X̃1 corresponding to Λ̃1 is kept the same

as the one corresponding to Λ1, i.e., X̃1 = X1, then direct calculation shows that
M−1 + X1(Λ̃1 − Λ1)D1X

�
1 is singular. Consequently, for those given data the

method proposed in [6] fails.
If the method proposed in [3] is used, when −1 is replaced by −1.5 in the first

step of the updating, it leads to the loss of positivity of the resulting stiffness matrix,
which causes the updating to break down prematurely.

Now applying Algorithm 4.4 proposed in Section 4, with {i1, i2} = {1, 2}, we
get

M̃ =
[
2.0762 1.5091
1.5091 3.0538

]
, C̃ =

[
16.3409 5.0496
5.0496 −2.0181

]
, K̃ =

[
32.5923 −9.1704
−9.1704 4.0762

]
,

where the mass matrix M̃ is not only nonsingular, but also positive definite. How-
ever, the solution (M̃, C̃, K̃) above is infeasible for the spring system since C̃(2, 2) =
−2.0181 < 0. But if W̃ in (4.6) is taken as

W̃ =
[√

2 1
1

√
2

]
,

we can obtain a feasible solution given by

M̃ =
[

0.4000 −0.6000
−0.6000 1.2333

]
, C̃ =

[
1.2000 −1.1333
−1.1333 2.2000

]
, K̃ =

[
1.7333 −1.6000
−1.6000 2.4000

]
.

This shows that we can properly choose the parameters in the solution (3.36) so
that some other requirements may be satisfied.

Case 2. Assume that Λ1 = diag(−1,−3) and Λ̃1 = diag(−1.05,−3.05).

Using the method proposed in [6], we have

M̃ =
[
2.1170 0.1114
0.1114 1.0585

]
, C̃ =

[
10.9186 −1.7772
−1.7772 0.7772

]
, K̃ =

[
13.5933 −6.4568
−6.4568 4.1170

]
.

Notice that adjustments made to the coefficient matrices are moderately small when
the updated eigenvalues are “near” the original ones. As a matter of fact, direct
calculation gives

‖M̃ − M‖ = 0.2029, ‖C̃ − C‖ = 0.9558, ‖K̃ − K‖ = 1.7232.

While using Algorithm 4.4, with {i1, i2} = {1, 2}, we get

M̃ =
[
1.9331 0.0576
0.0576 1.0538

]
, C̃ =

[
9.9630 −1.7102
−1.7102 0.8848

]
, K̃ =

[
12.4088 −5.9815
−5.9815 3.9331

]
,
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and

‖M̃ − M‖ = 0.0899, ‖C̃ − C‖ = 0.3685, ‖K̃ − K‖ = 0.4095.

Observe that our results are much better.

Case 3. Assume that Λ1 = diag(−1,−3) and Λ̃1 =
[−2 1
−1 −2

]
, which has a

pair of complex conjugate eigenvalues −2 ± i.
In this case, the updating requires that two real eigenvalues are replaced by

a complex conjugate pair of eigenvalues, so the methods proposed in [3] and [6]
cannot be used. While applying Algorithm 4.4, with {i1, i2} = {1, 2}, we get

M̃ =
[
1.5624 0.9236
0.9236 6.1908

]
, C̃ =

[
11.9440 10.6666
10.6666 −0.8473

]
, K̃ =

[
38.4019 −6.9720
−6.9720 3.5624

]
.

Observe that M̃ and K̃ are positive definite.

Case 4. Assume that Λ1 =
[−1 1
−1 −1

]
and Λ̃1 = diag(−0.5,−1.5).

In this case, the updating requires that a complex conjugate pair of eigenvalues
are replaced by two real eigenvalues. Of course, for those given data, the methods
proposed in [3] and [6] cannot be used. Applying Algorithm 4.4, with {i1, i2} =
{1, 2}, we get

M̃ =
[

0.8905 −0.3422
−0.3422 1.1150

]
, C̃=

[
3.3431 −1.1499
−1.1499 2.5989

]
, K̃ =

[
2.0147 −0.3698
−0.3698 1.0460

]
.

Here M̃ , C̃ , and K̃ are all positive definite.

Example 5.2. Consider the quadratic model (M, C, K), where M ∈ R
66×66

and K ∈ R
66×66 come from the statically condensed oil rig model of the Harwell-

Boeing Collection BCSSTRUC1 [17]. The damping matrix here is defined by
C = 1.55I66. By applying the standard MATLAB code polyeig.m to (M, C, K),
we obtain its 132 eigenpairs, out of which are four real eigenvalues and two pairs
of complex conjugate eigenvalues, given by

λ1 = λ̄2 = −6.2357± 121.9449i, λ3 = λ̄4 = −6.4014± 159.0833i,

λ5 = −5.3584, λ6 = −9.2761, λ7 = −3.4628, λ8 = −13.1972.

Let

λ̃1 = ¯̃
λ2 = −6.5000± 125.0000i, λ̃3 = ¯̃

λ4 = −6.8000± 165.0000i,

λ̃5 = −5.6000, λ̃6 = −10.0000, λ̃7 − 3.8000, λ̃8 = −13.9000.
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Using Algorithm 4.4, with {i1, i2, i3, i4} = {1, 2, 3, 4}, we get (M̃, C̃, K̃) and X̃1.
Moreover, we have

‖M̃X̃1Λ̃2
1 + C̃X̃1Λ̃1 + K̃X̃1‖ = 3.2556× 10−9,

‖M̃X2Λ2
2 + C̃X2Λ2 + K̃X2‖ = 1.0055× 10−7,

and

‖M̃ − M‖
‖M‖ = 0.0483,

‖C̃ − C‖
‖C‖ = 0.2783,

‖K̃ − K‖
‖K‖ = 0.0155.

This shows that the present algorithm is reliable.

6. CONCLUSION

In this paper, we discussed the symmetry eigenvalue embedding problem (EEP),
in which the troublesome or unwanted eigenvalues are replaced by chosen ones,
while the remaining large number of eigenpairs do not change. Based on the theory
established in [2], we sufficiently utilize the inherent freedom of the EEP to derive
an expression of the parameterized solution to the EEP. Then using the expression,
we develop a novel numerical method for solving the EEP, in which the parameters
in the solutions are optimized in some sense. This method not only utilizes the
freedom of the EEP, but also removes the limitation of the method proposed in [6].
The results of our numerical experiments show that the present algorithm is feasible
and efficient, and can outperform the iterative method in [3] and the method in
[6]. In addition, the present algorithm is rich in Basic Linear Algebra Subroutine-3
(BLAS-3) level operations, and so it can be implemented using high-performance
software packages such as LAPACK on today’s high-speed computers.

Finally, it is worthwhile to point out that we only obtain a sub-optimal solution
of the optimization problem (4.3), How to get its global optimum remains unsolved,
which needs further investigation.
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