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NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD FOR SOLVING
LARGE SCALE NONLINEAR EIGENVALUE PROBLEMS

Ben-Shan Liao, Zhaojun Bai, Lie-Quan Lee and Kwok Ko

Abstract. A nonlinear Rayleigh-Ritz iterative (NRRIT) method for solving
nonlinear eigenvalue problems is studied in this paper. It is an extension
of the nonlinear Arnoldi algorithm due to Heinrich Voss. The efficiency of
the NRRIT method is demonstrated by comparing with the inverse iteration
method to solve a highly nonlinear eigenvalue problem arising from finite
element electromagnetic simulation in accelerator modeling.

1. INTRODUCTION

We consider the nonlinear eigenvalue problem of determining scalar values λ
and nonzero vectors x for which

(1) T (λ)x = 0,

where T (λ) is a square matrix whose elements are analytical functions of the pa-
rameter λ. λ and x are referred to as eigenvalues and eigenvectors, respectively.
The nonlinear eigenvalue problem (1) arises in a variety of applications, such as
vibration simulation of fluid solid structures [20, 24], and calculation of propagation
modes of circular optical fiber [16, 10]. In this paper, we will focus on solving
the problem (1) derived from finite element analysis of Maxwell’s equation with
waveguide boundary conditions. It is of great interest in electromagnetic modeling
of accelerator [7, 9, 14, 27, 15].

Inverse iteration is a simple method to find an eigenpair of the nonlinear eigen-
value problem (1) with a proper initial approximation [21]. It requires solving
different linear system of equations of the same dimension as that of the original
problem at each iteration. It becomes very expensive for finding multiple eigenpairs
of large scale problems. Recently, a nonlinear Arnoldi algorithm is proposed [25].
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The method is a generalization of the well-known Arnoldi algorithm for solving lin-
ear problems. It uses a subspace projection to reduce the problem dimension, and
is especially designed to compute multiple eigenpairs. It has been used successfully
to solve large scale rational Hermitian eigenvalue problems [25, 3, 8].

In this paper, we first characterize the nonlinear Arnoldi algorithm as a general-
ization of the popular Rayleigh-Ritz subspace projection technique for solving large
scale linear eigenvalue problems [1], and refer to it as the nonlinear Rayleigh-Ritz
iterative (NRRIT) method. We then discuss a number of key issues for an efficient
implementation of the NRRIT method, such as the choice of initial approximate
eigenpairs, and the definition of proper projection subspaces to preserve properties
of the original problem. A significant part of our effort is devoted to solving a
highly nonlinear eigenvalue problem arising from electromagnetic modeling of ac-
celerator. Numerical results are presented to demonstrate that the NRRIT method is
a promising practical approach to solve this challenging problem.

The rest of the paper is organized as follows. Section 2 gives a short descrip-
tion of the nonlinear eigenvalue problem arising from electromagnetic modeling of
accelerator. Section 3 is a review of the inverse iteration. Section 4 first presents a
framework of nonlinear Rayleigh-Ritz projection technique and then discusses prac-
tical implementation issues. Numerical experiments and concluding remarks are in
Sections 5 and 6, respectively.

2. ELECTROMAGNETIC SIMULATION IN ACCELERATOR MODELING

In electromagnetic modeling of waveguide loaded accelerator cavities, one solves
Maxwell’s equation

(2) ∇× (
1
µ
∇× E)− λεE = 0 in Ω

with the boundary conditions

�n × E = 0 on ΓE(3)

�n × (
1
µ
∇× E) = 0 on ΓM(4)

�n × (
1
µ
∇× E) + i

√
λ − κ2

c,j �n × (�n × E) = 0 on Γj, j = 1, 2, . . . , p,(5)

where E is the electric field, λ = ω2/c2, ω is the wave number, c is the speed of
light, ε is relative permittivity, µ is relative permeability, and Ω is the geometry of the
cavity with the outward normal vector �n on the boundary. ΓE is the electric boundary
with perfect conductor, ΓM be the magnetic boundary with perfect insulator, and
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Γj are the waveguide boundaries. κc,j are the cutoff wave numbers of modes in
the waveguide ports, or simply called “cutoff values”, and p is the number of the
waveguides. i =

√−1. We assume that the interior of the domain Ω is source-
free and the dielectric materials are isotropic and homogeneous. There is only one
propagatingwaveguide mode in each waveguideport. See [7,9,15] for further detail.

Using the finite element discretization, by representing of the electric field E
in terms of the basis functions Nk: E =

∑
k xkNk, equations (2)–(5) lead to an

algebraic nonlinear eigenvalue problem of the form

(6) T (λ)x = 0,

where

T (λ) = K − λM + i
p∑

j=1

√
λ − κ2

c,j Wj,

and the entries of K, M , and Wj are given by

Kk,� =
∫

Ω
(∇× Nk) · 1

µ
(∇× N�) dΩ,

Mk,� =
∫

Ω
Nk · εN� dΩ,

(Wj)k,� =
∫

Γj

(�n × Nk) · (�n × N�) dΓ.

K is the stiffness matrix, M is the mass matrix and Wj are the damping matrices.
All the matrices are real symmetric. Moreover, K is positive semi-definite, and M
is positive definite [14, 11].

In accelerator design, the waveguides are used to introduce damping into the
cavity to suppress the so-called Higher-Order Modes (HOMs), which are those reso-
nant modes forming the wakefields that can disrupt the stability of beam accelerator
and transport. The effectiveness of the damping is measured by the so-called ex-
ternal quality factors. Specifically, let κ =

√
λ, the resonant frequency f and the

corresponding external Qe of the cavity are defined as

(7) f(κ) =
c

2π
· Re(κ) and Qe(κ) =

1
2
· Re(κ)
Im(κ)

.

The quantity Qe measures the electromagnetic coupling between the cavity and
waveguide. It characterizes the energy loss through the waveguide. With a given
resonant frequency f0 > 0, the cavity designers would like to seek frequencies f

that are close to f0 and Qe > 1. Correspondingly, the desired eigenvalues λ of the
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nonlinear eigenvalue problem (6) are the ones such that

(8)


√

λ is close to the value κ0 = 2π
c f0 and

λ ∈ D =
{
λ | λ = κ2, Re(κ) > κ0, Im(κ)>0 and Qe(κ)>Q̂e >1

}
,

where Q̂e is a prescribed value. The shaded domain in Figure 1 is an illustration
of such a region in terms of κ =

√
λ.

For the waveguide loaded cavity with one cutoff value (p = 1), as we have in
Section 4, the problem (6) can be recast as a standard quadratic eigenvalue problem.
There are a number of established numerical techniques for solving the quadratic
eigenvalue problems [23, 2]. We have successfully solved such a nonlinear eigen-
value problem for the degrees of freedom up to 3.2 million [13, 12]. Unfortunately,
in general, it is a highly nonlinear eigenvalue problem. There is no efficient transfor-
mation to convert the nonlinear eigenvalue problem (6) to the polynomial eigenvalue
problems such that we can apply an established eigensolver. In the rest of this paper,
we will study a nonlinear Rayleigh-Ritz iteration method to solve the problem (6).

3. INVERSE ITERATION

In this section, we review the simple inverse iteration, which will be used in the
inner loop of the nonlinear Rayleigh-Ritz iteration method in next section. We note
that the eigenvalue problem (1) is equivalent to the nonlinear system of equations

Fig. 1. The region of interest D (shaded area). Ten eigenvalues of the linearized pencil
K̂(κ2

0) − λM̂(κ2
0) (“◦”) and eigenvalues λ of T (λ) (“×”).
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(9)
[

T (λ)x
wHx − 1

]
= 0,

where w is a prescribed vector for the normalization of the eigenvector. The inverse
iteration stems from applying Newton’s method to solve the nonlinear system (9)
[21, 26]. The following is a pseudocode of the inverse iteration:

IIT (inverse iteration)

1. Choose an initial approximate eigenpair (λ(0), x(0)).
2. For j = 0, 1, · · · , until convergence

(a) solve T (λ(j))u = T ′(λ(j))x(j) for u.
(b) compute the new approximate eigenpair{

λ(j+1) = λ(j) − (wHx(j))/α,

x(j+1) = u/α,

where α = wHu.

A common choice of the normalization vector w is x(0)/‖x(0)‖2
2. We need to

solve a linear system of the same dimension as the original problem at Step 2a.
It is typically the most time consuming step. We can use a sparse linear system
solver, such as UMFPACK [5] or SuperLU [6]. In practice, the convergence of
the approximate eigenpair (λ(j), x(j)) is declared when a properly defined residual
norm is smaller than a given tolerance. One may simply use the so-called absolute
residual norm ‖T (λ(�))x(�))‖. In Section 5, we will define a relative residual norm
for the nonlinear eigenvalue problem discussed in Section 2.

Under certain assumptions associated with the initial approximate eigenpair, the
inverse iteration converges quadratically [21]. Variants of inverse iteration include
residual inverse iteration and QR-type iteration [19, 26].

4. NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD

From a mathematical point of view, the recently proposed nonlinear Arnoldi
algorithm [25], nonlinear Jacobi-Davidson method [3], and rational Krylov method
[22, 8] for solving nonlinear eigenvalue problem (1) are extensions of the Rayleigh-
Ritz subspace projection technique for solving linear eigenvalue problems, see [1]
and reference therein. At the level of abstraction, these methods may be summarized
as the following:

NRRIT (nonlinear Rayleigh-Ritz iterative procedure)

(a) Select a proper projection subspace V .
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(b) Compute approximate eigenpairs (θ, z) satisfying Galerkin condition:

(10) z ∈ V and T (θ)z ⊥ V .

(c) Evaluate residual norms for assessing the accuracy of the approximate eigen-
pairs (θ, z). If the approximates are satisfactory then stop. Otherwise return
to Step (b) with a refined and/or augmented projection subspace V .

We note that at Step (b), let V be an orthonormal basis of V , then z = V g for
some n-vector g, where n is the dimension of the subspace V . Hence, Step (b)
is equivalent to determining eigenpairs (θ, g) of the reduced nonlinear eigenvalue
problem

(11) TV (θ)g = 0,

where TV (θ) = V HT (θ)V is a matrix of the order n. The values θ are referred to
as Ritz values and the vectors z are the corresponding Ritz vectors. In a practical
implementation of the NRRIT procedure, the critical issues are (a) what is a proper
initial projection subspace V and how to compute its basis V ? and (b) how to
refine, expand or restart the subspace V when necessary? In the rest of this section,
we describe how we address these issues, and present a complete implementation.

Let us begin with the choice of initial approximate eigenpairs. As we know,
all nonlinear eigensolvers require initial approximate eigenpairs and it is a crucial
factor deciding convergence of the procedure. A good choice is to use a subset of
eigenpairs (θ�, v�) of the linear eigenvalue problem

(12) K̂(τ)v = θM̂ (τ)v,

where K̂(τ) = T (τ) − τT ′(τ) and M̂(τ) = −T ′(τ) are extracted from the first
order truncation of the Taylor series expansion of T (λ):

(13) T (λ) = T (τ) + (λ − τ)T ′(τ) + O((λ − τ)2),

τ is a given expansion point close to the desired eigenvalues of T (λ). The eigen-
vectors v� are used to form the initial projection subspace V = span{v�}.

Example. Consider the accelerator modeling problem (6) with a single waveg-
uide cutoff value:

(14)
[
K − λM + i

√
λ − κ2

c W
]
x = 0.

A natural choice of the initial approximate eigenpairs (θ�, v�) is from eigenpairs of
the linear term K − λM . However, all these eigenpairs are real due to the fact that
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K − λM is a symmetric positive definite pencil. There are no physical meaning
of these eigenvalues and the corresponding external Qe values are not defined. In
Section 5, we will see that numerically, it leads to some approximate eigenpairs
of (14) without practical interest. A better choice is from the linear approximate
eigenvalue problem of (14) at the point τ = κ2

0:

(15)

[
K + i

(
κ2

0 − 2κ2
c

2
√

κ2
0 − κ2

c

)
W

]
v = θ

[
M − i

(
1

2
√

κ2
0 − κ2

c

)
W

]
v.

Let (θ�, v�) be the m eigenpairs of (15) such that θ� near to the point κ0 and θ
1/2
�

are in the region defined as (8) for 
 = 1, 2, . . . , m, where the indices are labeled
according to the distance between θ

1/2
i and κ0:

(16) |θ1/2
1 − κ0| ≤ |θ1/2

2 − κ0| ≤ · · · ≤ |θ1/2
m − κ0|.

Then we can use these m eigenpairs as initial approximate eigenpairs and define a
projection basis V from for the initial projection subspace V as

(17) V =
[

v1 v2 · · · vm

]
.

Figure 1 shows a numerical example of the problem (14) of order 10124 and the
cutoff value κc = 110.24. The circles are ten eigenvalues θ� of the linear approx-
imation (15) closest to the point κ0 = 188.5 and labeled according to (16). We
note that the problem (14) can be converted to the following quadratic eigenvalue
problem

(18)
[
ν2M − ν (iW ) + (κ2

cM − K)
]
x = 0,

where ν =
√

λ − κ2
c . Therefore, we can first extract eigenvalues ν of (18) by a

quadratic eigensolver, and then compute the eigenvalues λ = ν2 +κ2
c of the original

problem (14). The crosses in Figure 1 are the 10 eigenvalues of the original problem
(14) computed via the quadratic problem (18). We can see that some of the initial
approximate eigenvalues θ� are already good approximations to the eigenvalues λ,
such as the ones labeled by 1, 2, 5, 7 and 8.

Now let us consider how to form a symmetry-preserving projection subspace.
Note that the eigenvectors {v�} are generally complex. If V is used as a projection
basis, then the matrix TV (θ) of the reduced nonlinear eigenvalue problem will be
fully complex. In the application such as the accelerator modeling problem (6) it is
advantageous to preserve realness and symmetry of coefficient matrices K, M and
Wj in terms of computational costs and accuracy. In this case, we can use a real
orthonormal projection basis Q such that

Q = orth(
[

Re(V ) Im(V )
]
),
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where orth(X) stands for an orthonormal basis for the range of X . This leads to
a reduced nonlinear eigenvalue problem

(19) TQ(θ)y = 0,

where TQ(θ) = QTT (θ)Q. It is easy to see that for the problem (6), the coefficient
matrices QTKQ, QT MQ and QTWjQ in TQ(θ) preserve the realness and sym-
metry of the original coefficient matrices K , M and Wj . In general, the computed
eigenpairs will be at least as accurate as the ones computed by using the com-
plex projection matrix V . The similar idea has been used for structure-preserving
model-reduction techniques [4].

Starting with the 
-th initial approximate eigenpair (θ�, v�), an approximate
eigenpair (θ, y) of the reduced problem (19) can be found by using a nonlinear
eigensolver suitable for small dense problems, such as the IIT method with the
initial approximations (θ�, Q

Tv�). An approximate eigenpair of the original non-
linear problem (1) is then given by (θ, z = Qy). If (θ, z) is convergent, then the
basis matrix V is updated by replacing the initial vector v� with the Ritz vector z.
Otherwise, the projection subspace spanned by Q is augmented by the new vector

v = ṽ − QQT ṽ

where ṽ = T−1(τ)T (θ)z. This is one step of the residual inverse iteration [19].
Such a subspace expansion strategy can be explained by the rational Krylov method
[22, 8] and is used in the nonlinear Arnoldi method [25]. In practice, to maintain
the real orthonormal projection basis, Q is augmented by

Q :=
[

Q Q̃
]

where Q̃ = orth([ Re(v) Im(v) ]).
Beside the projection subspace augmentation, we also need to consder issues of

purging and restarting. The NRRIT procedure with the initial approximate eigen-
pair (θ�, v�) may fail to converge to an eigenpair of the original problem. This is
detected by the number of the NRRIT iterations exceeding a prescribed limit imax.
If it occurs, the starting vector v� and all associated augmented vectors in Q are
purged from the projection basis matrix Q. Furthermore, to control the memory
and computational costs, we also need to restart the projection subspace when the
number of basis vectors becomes too large. A restart is always performed after an
approximate eigenpair is accepted. The restarting projection subspace is spanned by
Q = orth([ Re(V ) Im(V ) ]), where V is updated with the converged Ritz vectors
z and is reduced by purging those initial vectors v�, which lead to the failure of the
convergence.

The following is a pseudocode for the nonlinear Rayleigh-Ritz iterative method
to find k eigenvalues of the nonlinear eigenvalue problem (6) close to a prescribed
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point τ . In the pseudocode, nmax is the maximal size of the projection subspace Q,
m is the number of the converged eigenpairs, and imax is the maximal number of
iterations allowed.

NRRIT (nonlinear Rayleigh-Ritz iterative method to compute k eigen-
pairs)

1. Compute n selected eigenpairs {(θj, vj)}n
j=1 of the matrix pair

(K̂(τ), M̂(τ)) as described in (8), where n ≥ k.
2. Order {(θj, vj)}n

j=1 properly and let V =
[

v1 v2 · · · vn

]
.

3. Set Q = orth([Re(V ) Im(V ) ]).
4. Set 
 = 1, iters = 1 and m = 0.

5. Iterate while m ≤ k and 
 ≤ n:

(a) compute an eigenpair (θ, y) of TQ(θ)y=0 with initial (θ�, Q
Tv�),

(b) compute Ritz vector z = Qy and residual r = T (θ)z,
(c) if the Ritz pair (θ, z) is convergent, then

i. save (θ, z) as an approximate eigenpair,
ii. update V by setting v� = z,

iii. if |Q| > nmax, then restart with Q = orth([ Re(V ) Im(V ) ]),
and update TQ(θ),

iv. reset iters = 1,
v. set 
 = 
 + 1 and m = m + 1 and go to step 5 for

searching next eigenpair,
(d) solve T (τ)ṽ = r for ṽ,
(e) orthogonalize ṽ against Q: v = ṽ − QQT ṽ,
(f) compute Q̃ = orth([ Re(v) Im(v) ]),
(g) augment Q :=

[
Q Q̃

]
and update TQ(θ),

(h) if iters > imax, then
i. flag failure with the initial approximate eigenpair (θ�, v�),

ii. purge all associated augment vectors from Q,
iii. update V by purging v� from V ,
iv. set 
 = 
 + 1 and iters = 0,

(i) set iters = iters + 1.

A few remarks are in order. First, to solve the reduced problem at Step 5, we
can use the inverse iteration discussed in Section 3. Second, at Step 5d, we need to
solve a linear system T (τ)v = r of the same dimension as the original problem. It
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usually takes much more time than other steps. However, we note that the coefficient
matrix T (τ) of the linear system remains unchanged in the loop. Therefore, it is
more efficient than a Jacobi-Davidson-based implementation, where the so-called
correction equation is modified at every iteration [3, 26, 18]. Finally, in both inner
and outer iterations (Steps 5 and 5c), we need to use stopping criteria. In Section 5,
we will define proper stopping criteria for the accelerator problem (6).

5. NUMERICAL EXPERIMENTS

In this section, we present numerical results of using the NRRIT method to
solve the nonlinear eigenvalue problem (6) arising from electromagnetic modeling
of accelerator described in Section 2. We consider a model open cavity as shown
in Figure 2. The cavity part is the cylindrical part. The two waveguides are coaxial
waveguide at the top left and the rectangular waveguide at the bottom [17]. The
underlying nonlinear eigenvalue problem is of the form

(20) T (λ)x =
[
K − λM + i

√
λ − κ2

c,1 W1 + i
√

λ − κ2
c,2 W2

]
x = 0,

where the matrices K, M , W1 and W2 are of order N = 9956. The cutoff values
are κc,1 = 0 and κc,2 = 108.8774. The computational task is to find 10 eigenvalues
λj close to the point κ0 = 2πf0/c = 146.71, where f0 = 7.0 × 109(Hz) and the
corresponding external Qe-values are greater than 10.

To test the accuracy of an approximate eigenpair (θ, z), we use the relative
residual norm

(21) E(θ, z)=
‖T (θ)z‖2

(‖K‖1+|θ|‖M‖1+
√

|θ−κ2
c,1|‖W1‖1+

√
|θ−κ2

c,2|‖1W2‖1)‖z‖2

where ‖ · ‖1 and ‖ · ‖2 denote the 1-norm and 2-norm, respectively. All numerical
experiments reported in this paper were run in MATLAB 7.0.1 on a Pentium IV PC
with 2.6GHz CPU and 1GB of core memory.

Experiment 1. Let us first examine the impact of the initial approximate
eigenpairs. A nature choice is to select some eigenpairs of the linear term K −λM
of T (λ). All these eigenvalues are real since K − λM is a positive definite pencil.
Function eigs with the shift-and-invert spectral transformation took 11.8 seconds
to compute 10 real eigenpairs (θ(r)

j , v
(r)
j ) closest to the shift τ = κ2

0. Using these
real initial approximations, NRRIT converges to 10 eigenpairs of (20) with all
relative residual norms smaller than ε = 10−10. The left side of Table 1 reports the
corresponding frequencies and Qe-values defined as (7). In the table, we also show
the results computed by the inverse iteration with the same initial approximates.
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Since the computed eigenpairs by NRRIT and IIT methods are numerically the
same within the relative residual errors, the same frequencies and Qe-values are
shown in the table.

Fig. 2. A simulation model of waveguide loaded cavity with two cutoff guides.

We observe that the computed eigenvalues λ2 and λ3 are not physically mean-
ingful since their corresponding external Qe-values are less than 1. Furthermore,
the computed resonant frequencies f9 and f10 are far away from the prescribed
frequency f0.

An alternative choice of the initial approximate eigenpairs is from eigenvalues
of linear truncation K̂(τ) − λM̂(τ) of T (λ), as discussed in Section 4. Function
eigs with the shift-and-invert spectral transformation took 23 seconds to compute
10 complex eigenpairs (θ(c)

j , v
(c)
j ) closest to the shift τ = κ2

0. The right side of
Table 1 reports the frequencies and Qe-values computed by the NRRIT and IIT
methods with the complex initials. As we can see that all computed resonant
frequencies and Qe-values are physically meaningful. Furthermore, the resonant
frequencies fj are closer to the prescribed frequency f0.

Experiment 2. Let us show computational efficiency of the NRRIT method
by comparing with the inverse iteration. In the inner loops, both NRRIT and IIT
methods require solving linear systems of equations of the same dimension as the
original problem. However, the coefficient matrix of the linear system remains
unchanged in NRRIT. As a result, NRRIT is more computational efficient as shown
in Table 2.

Experiment 3. In this experiment, we compare the performance of two im-
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plementations of the NRRIT method, namley using real projection basis Q and
complex projection basis V . Figure 3 shows the convergence history of two imple-
mentations. The horizontal axis is the number of iterations. The vertical axis is the
relative residual norm of approximate eigenpairs. When an approximate eigenpair
(θ, z) is declared to be convergent, it is marked by a circle (“◦”) for real basis Q

and by an asterisk (“∗”) for complex basis V . In summary, the NRRIT method with
the real projection subspace Q requires 25% fewer number of iterations, and is 20%
faster in computational time.

Table 1. Results using real initials (θ (r)
j , v

(r)
j ) (left) and complex initials (θ(c)

j , v
(c)
j )

(right)
IIT NRRIT

j fj Qe iters iters |Q|
1 7.1373 34643.66 2 4 16
2 4.5655 0.36 6 21 58
3 7.2465 0.48 8 14 86
4 9.9992 2136.73 3 6 98
5 10.0449 12376.84 2 6 110
6 10.4762 1149.21 2 4 118
7 10.5463 7714.93 2 5 128
8 11.1581 118.71 3 6 140
9 14.2617 3.17 5 14 168

10 15.0143 3.59 6 12 192
Total no. of iters 39 92

Total elapsed time (s) 178.55 53.31

IIT NRRIT
j fj Qe iters iters |Q|
1 7.1373 34643.66 1 2 22
2 9.9992 2136.73 2 10 42
3 10.0449 12376.84 1 6 54
4 10.4762 1149.21 2 6 66
5 10.5463 7714.93 1 5 76
6 11.1518 118.71 2 5 86
7 13.1180 15.25 3 12 110
8 13.2698 536.76 2 7 124
9 13.5882 2500.75 2 8 140

10 13.7688 181.23 2 7 154
Total no. of iters 18 68

Total elapsed time (s) 108.92 55.91

Table 2. Performance of IIT and NRRIT with complex initials (θ(c)
j , v

(c)
j )

IIT NRRIT
Residual error ε Iters Elapsed-time Iters Elapsed-time

10−8 15 94.98 46 45.95
10−10 18 108.92 68 55.91
10−12 22 127.47 87 75.08
10−14 24 136.97 114 80.59

6. CONCLUDING REMARKS

We presented a NRRIT algorithm for solving large-scale nonlinear eigenvalue
problem of the form (1). It is a generalization of the Rayleigh-Ritz subspace pro-
jection for solving linear eigenvalue problems. We showed that the choice of initial
approximate eigenpairs is an important factor for the success of the method. We
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also show that the method can be modified to preserve specific features of a par-
ticular application, such as using real projection subspace to preserve symmetry. It
is demonstrated that the NRRIT method is practically viable method and outper-
forms the inverse iteration for solving the large scale nonlinear eigenvalue problems
arising from finite element analysis of resonant frequencies and external Qe values
of a waveguide loaded cavity in the accelerator design. In this paper, we focus
on the description of algorithm and issues in practical implementation. Theoretical
analysis of the NRRIT method is an open problem.

Fig. 3. Convergence history of NRRIT with real projection basis Q (solid line) and
complex projection basis V (dash-dot line).
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