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RECIPROCAL CONTINUITY AND COMMON FIXED POINTS
OF NONSELF MAPPINGS

M. Imdad and Javid Ali

Abstract. We extend the notions of reciprocal continuity and Cq-commutativity
to nonself setting besides observing equivalence between compatibility and φ
-compatibility, and utilize the same to obtain some results on coincidence and
common fixed points for two pairs of nonself mappings in metrically convex
metric spaces. As an application of our main result, we also prove a common
fixed point theorem in Banach spaces besides furnishing several illustrative
examples.

1. INTRODUCTION

The study of fixed point theorems for nonself mappings in metrically convex
metric spaces was initiated by Assad and Kirk [2, 1972]. In practice, there do exist
many situations which cannot be described by self mappings and hence the study of
nonself mappings is worth investigating. In recent years, inspired by Rhoades [20],
several results for single-valued mapping have been proved by various researchers
of this domain. In this direction, one may cite [3,4,5,7,8,13,15]. Specifically,
Assad [3] proved some results for nonself mappings defined on a closed subset
of a complete metrically convex metric space satisfying Kannan type mappings
which has subsequentally been generalized by Khan et al. [15] for generalized type
contractions. Recently, Imdad and Khan [8,10] and Imdad et al. [9] generalized
these results for pairs of mappings. Here one may note that in such results, one
often requires all or some of underlying mappings to be continuous (cf. [7, 8, 9,
15]).

On the other hand, Park [18] and Khan et al. [14] used a new technique to
prove fixed point theorems in metric spaces by altering distances between the points
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employing suitably equipped continuous control function which has further been
pursued by Pathak and Sharma [19], Sastry and Babu [21] and Sastry et al. [22].
Assad [3,4], Abdalla and Zaheer [5], Imdad and Khan [8] and others used this
technique in nonself setting.

The control function employed in Sastry et al. [22] to alter distances is indeed
a function φ : �+ → �+ which satisfy the following properties:

(i) φ is continuous at origin and monotonically increasing in �+,
(ii) φ(t) = 0 ⇔ t = 0,
(iii) φ(2t) ≤ 2φ(t).

Remark 1.1. Let {tn} ⊂ �+ satisfying φ(tn) → 0 as n → ∞. Then tn → 0
as n → ∞.

Before proving our results, we collect the relevant definitions and results.

Definition 1.1. [6]. Let K be a nonempty subset of a metric space (X, d) and
G, S : K → X. The pair (G, S) is said to be weakly commuting if

d(GSx, SGx)≤ d(Gx, Sx)

for every x ∈ K with Gx, Sx ∈ K.
Note that for K = X, this definition reduces to that of Sessa [23].
Motivated from [6], we define the φ-compatibility for nonself mappings as

follows:

Definition 1.2. Let K be a nonempty subset of a metric space (X, d) and
G, S : K → X. The pair (G, S) is said to be φ-compatible if

lim
n→∞φ(d(GSxn, SGxn)) = 0

whenever there is a sequence {xn} ⊂ K such that lim
n→∞ d(Gxn, Sxn) = 0 with

Gxn, Sxn ∈ K.

Note that for K = X this definition reduces to φ-compatibility due to Sastry et
al. [22] and for φ = Id. and K = X , this definition reduces to ‘compatibility’ for
self mappings due to Jungck [11].

In view of Remark 1.1, φ-compatibility and compatibility are equivalent. Hence
throughout this paper, we use compatibility instead of φ-compatibility.

Definition 1.3. [12]. A pair (G, S) of nonself mappings defined on a nonempty
subset K of a set X is said to be weakly compatible (or coincidentally commuting)
if Gx = Sx for some x ∈ K with Gx, Sx ∈ K ⇒ GSx = SGx.
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Definition 1.4. [8]. Let (X, d) be a metric space and K be a nonempty subset
of X. Let F, G, S, T : K → X which satisfy the inequality

(1.1.1)

φ(d(Fx, Gy))

≤ a max
{

1
2
φ(d(Tx, Sy)), φ(d(Tx, Fx)), φ(d(Sy,Gy))

}
+b [φ(d(Tx, Gy))+ φ(d(Sy, Fx))]

for all distinct x, y ∈ K with a, b ≥ 0 such that a + 2b < 1, where φ : �+ → �+

be a function which satisfies (i), (ii) and (iii). Then (F, G) is called generalized
(T, S) contraction mappings of K into X.

Definition 1.5. A metric space (X, d) is said to be metrically convex if for
any x, y ∈ X with x 
= y, there exists a point z ∈ X, x 
= z 
= y such that

d(x, z) + d(z, y) = d(x, y).

Lemma 1.1. [2]. Let K be a nonempty closed subset of a metrically convex
metric space X. If x ∈ K and y /∈ K, then there exists a point z ∈ ∂K such that

d(x, z) + d(z, y) = d(x, y).

In this paper, we extend the notions of reciprocal continuity and Cq-commutativity
for nonself mappings besides observing equivalence between compatibility and φ-
compatibility, and proved some common fixed point theorems in metrically convex
metric spaces. Our main result generalizes earlier results due to Assad [4], Imdad
and Khan [8], Imdad et al. [9], Khan and Bharadwaj [13], Khan et al. [15] and
others. We also furnish some illustrative examples.

2. RECIPROCAL CONTINUITY IN NONSELF SETTING

Recently, Pant [17] introduced the notion of reciprocal continuity and used it
to prove common fixed point theorems for contraction type self mappings. In what
follows, we extend this notion to nonself setting besides furnishing an example and
proving a related result.

A natural extension of reciprocal continuity to nonself mappings can be given
as follows:

Definition 2.1. Let K be a nonempty subset of a metric space (X, d).
A pair of mappings G, S : K → X is said to be reciprocally continuous if
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lim
n→∞ GSxn = Gz and lim

n→∞ SGxn = Sz whenever there is a sequence {xn} ⊂ K

with {Sxn}, {Gxn} ⊂ K such that

lim
n→∞ Sxn = lim

n→∞ Gxn = z for some z ∈ K.

Notice that for K = X this definition reduces to the definition of reciprocal
continuity due to Pant [17] given for self mappings. However in the context of
above definition the following facts are worth noticing.

(a) If both the component maps G and S are continuous, then they are obviously
reciprocally continuous but the converse is not true (see Example 2.1).

(b) There exists a rich class of pairs of discontinuous mappings which are com-
patible as well as reciprocally continuous and this is why the notion of recip-
rocal continuity is advantageous in proving results on common fixed points.
To substantiate our claim, we furnish the following example.

Example 2.1. Consider X = [1,∞) equipped with Euclidian metric d and
K = [1, 3]. Define G, S : K → X as

Gx =

{
2x4 − 1, 1 ≤ x ≤ 2

1
4

x2, otherwise,
Sx =

{
x2, 1 ≤ x ≤ 2

1
4

2x4 − 1, otherwise.

Then for any sequence {xn} ⊂ K with {Gxn}, {Sxn} ⊂ K , we have

d(GSxn, SGxn) = |2x4
n − x8

n − 1| → 0 ⇔ xn → 1 ⇔ Gxn → 1 and Sxn → 1.

Thus the pair (G, S) is compatible on K. Also notice that for sequence {xn} with
Gxn → 1 and Sxn → 1, we have lim

n→∞ GSxn = 1 = G1 and lim
n→∞ SGxn = 1 =

S1 which shows that the pair (G, S) is reciprocally continuous whereas both the
components are discontinuous.

Here, we point out that common fixed point theorems for compatible mappings
often require the continuity of some or all involved mappings (e.g. [15, Theorem
3.2]). The notion of reciprocal continuity makes it possible to prove common fixed
point theorems for compatible mappings under relatively less continuity requirement.
In the setting of common fixed point theorems, pair of compatible mappings satisfy-
ing a suitable contractive or contraction condition can ensure reciprocal continuity
in the presence of continuity of one of the mapping. In the sequel, we prove the
following lemma which exhibits that under a contraction condition patterned after
Khan et al. [15] in a nonself setting in metrically convex metric spaces compatibility
of pairs implies their reciprocal continuity provided one component map of a pair
is continuous.
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Lemma 2.1. Let K be a subset of a metric space (X, d) and let F, G, S, T :
K → X be four mappings such that (F, G) be a generalized (T, S) contraction
mappings of K into X . Suppose that

(a) GK ∩ K ⊂ TK (resp. FK ∩ K ⊂ SK),

(b) the pair (G, S) (resp. (F, T )) is compatible,
(c) G or S (resp. F or T ) is continuous,
(d) the control function φ : �+ → �+ is left continuous.

Then the pair (G, S) (resp. (F, T )) is reciprocally continuous.

Proof. Let us assume that the pair (G, S) is compatible and S is continuous. Let
{xn} be a sequence in K such that Gxn → z and Sxn → z with {Gxn}, {Sxn} ⊂
K. Since S is continuous, we get SSxn → Sz. Now compatibility of (G, S) implies
that lim

n→∞ d(GSxn, SGxn) = 0, that is GSxn → Sz. Since GK∩K ⊂ TK for each
xn there exists some yn in TK with GSxn = Tyn. Then SSxn → Sz, SGxn →
Sz, GSxn → Sz and Tyn → Sz. We assert that Fyn → Sz. If not, then there
exists a subsequence Fym, a number ε > 0 and a positive integer n0 ∈ N such
that for each m ≥ n0, we have d(GSxm, Fym) ≥ ε, d(Fym, Sz) ≥ ε. Now using
(1.1.1), we have

φ(d(Fym, GSxm))

≤ a max
{

1
2
φ(d(Tym, SSxm)), φ(d(Tym, Fym)), φ(d(SSxm, GSxm))

}
+b[φ(d(Tym, GSxm)) + φ(d(SSxm, Fym))

which on letting m → ∞, reduces to

φ(d(Fym, Sz)) ≤ (a + b)φ(d(Fym, Sz)) < φ(d(Fym, Sz))

which is a contradiction. Hence lim
n→∞ Fym = Sz. If Gz 
= Sz, then by (1.1.1), we

get

φ(d(Gz, Fyn)) ≤ a max
{

1
2
φ(d(Tyn, Sz)), φ(d(Tyn, Fyn)), φ(d(Sz,Gz))

}

+b[φ(d(Tyn, Gz)) + φ(d(Sz, Fyn))]

which on letting n → ∞, reduces to

φ(d(Gz, Sz)) ≤ (a + b)φ(d(Sz, Gz))

< φ(d(Sz, Gz))
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a contradiction. Hence Sz = Gz. Thus by assuming Sxn → z and Gxn → z along
with continuity of S, we obtain SGxn → Sz and GSxn → Gz(= Sz) which shows
that the pair (G, S) is reciprocally continuous. We arrive at the same conclusion
when the pair (G, S) is compatible and G is continuous. The proof for the other
pair (F, T ) is similar, hence it is omitted. This completes the proof.

3. RESULTS

Our main result runs as follows:

Theorem 3.1. Let K be a nonempty closed subset of a complete metrically
convex metric space X . If (F, G) is a generalized (T, S) contraction mappings of
K into X which satisfy

(a) ∂K ⊂ SK ∩ TK, FK ∩ K ⊂ SK, GK ∩ K ⊂ TK,

(b) Tx ∈ ∂K ⇒ Fx ∈ K, Sx ∈ ∂K ⇒ Gx ∈ K,
(c) either the pair (G, S) is compatible and reciprocally continuous or the pair

(F, T ) is compatible and reciprocally continuous,
then the pair (G, S) as well as (F, T ) has a point of coincidence.

Moreover, G, S, F and T have a unique common fixed point provided the pairs
(G, S) and (F, T ) are weakly compatible.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the
following way.

Let x ∈ ∂K. Since ∂K ⊂ TK , there exists a point x0 ∈ K such that x = Tx0.
From the implication Tx0 ∈ ∂K ⇒ Fx0 ∈ K ∩ FK ⊂ SK . Let x1 ∈ K be such
that y1 = Sx1 = Fx0 ∈ K. Since y1 = Fx0, then there exists a point y2 = Gx1

such that
d(y1, y2) = d(Fx0, Gx1).

Suppose y2 ∈ K. Then y2 ∈ K ∩ GK ⊂ TK which implies that there exists a
point x2 ∈ K such that y2 = Tx2. Otherwise, if y2 /∈ K, then there exists a point
p ∈ ∂K such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ ∂K ⊂ TK , there exists a point x2 ∈ K such that p = Tx2 and so

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 = Fx2 be such that

d(y2, y3) = d(Gx1, Fx2).

Thus repeating the forgoing arguments one obtains two sequences {xn} and {yn}
such that
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(i) y2n = Gx2n−1, y2n+1 = Fx2n.

(ii) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ ∂K

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n).

(iii) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ ∂K

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We denote

P0 = {Tx2i ∈ {Tx2n} : Tx2i = y2i},
P1 = {Tx2i ∈ {Tx2n} : Tx2i 
= y2i},
Q0 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},
Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 
= y2i+1}.

Note that (Tx2n, Sx2n+1) /∈ P1 × Q1. Similarly, (Sx2n−1, Tx2n) /∈ Q1 × P1.
Now, we distinguish the following three cases:

Case 1. If (Tx2n, Sx2n+1) ∈ P0 × Q0, then

φ(d(Tx2n, Sx2n+1))

= φ(d(Fx2n, Gx2n−1))

≤ a max
{

1
2
φ(d(Tx2n, Sx2n−1)), φ(d(Tx2n, Fx2n)), φ(d(Sx2n−1, Gx2n−1))

}
+b[φ(d(Tx2n, Gx2n−1)) + φ(d(Fx2n, Sx2n−1))]

= a max{φ(d(y2n, y2n−1)), φ(d(y2n, y2n+1))}+ bφ(d(y2n−1, y2n+1))

= a max{φ(d(y2n, y2n−1)), φ(d(y2n, y2n+1))}+b[φ(d(y2n−1, y2n)+d(y2n, y2n+1))].

If d(y2n, y2n−1) ≥ d(y2n, y2n+1), then

φ(d(Tx2n, Sx2n+1)) ≤ (a + 2b)φ(d(Tx2n, Sx2n−1)).

Otherwise, if d(y2n, y2n−1) < d(y2n, y2n+1), then we have

φ(d(Tx2n, Sx2n+1)) ≤ aφ(d(y2n, y2n+1)) + 2bφ(d(y2n, y2n+1))

= (a + 2b)φ(d(y2n, y2n+1))

< φ(d(y2n, y2n+1))
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which is a contradiction. Hence

φ(d(Tx2n, Sx2n+1)) ≤ (a + 2b)φ(d(Tx2n, Sx2n−1)).

Similarly, if (Sx2n−1, Tx2n) ∈ Q0 × P0, then

φ(d(Sx2n−1, Tx2n))≤ (a + 2b)φ(d(Sx2n−1, Tx2n−2)).

Case 2. If (Tx2n, Sx2n+1) ∈ P0 × Q1, then we have

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

which in turn yields

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1),

and hence

φ(d(Tx2n, Sx2n+1)) ≤ φ(d(Tx2n, y2n+1)) = φ(d(y2n, y2n+1)).

Now, as in Case 1, we obtain

φ(d(Tx2n, Sx2n+1)) ≤ (a + 2b)φ(d(Tx2n, Sx2n−1)).

In case (Sx2n−1, Tx2n) ∈ Q1 × P0, then

φ(d(Sx2n−1, Tx2n)) ≤ (a + 2b)φ(d(Sx2n−1, Tx2n−2)).

Case 3. If d(Tx2n, Sx2n+1) ∈ P1 × Q0, then Sx2n−1 ∈ Q0 and

d(Tx2n, Sx2n+1) = d(Tx2n, y2n+1) ≤ d(Tx2n, y2n) + d(y2n, y2n+1).

Note that d(y2n, Sx2n+1) = d(Fx2n, Gx2n−1), therefore proceeding as in Case 1,
we have

φ(d(y2n, y2n+1)) = φ(d(Fx2n, Gx2n−1)) ≤ (a + 2b)φ(d(Tx2n, Sx2n−1))

< φ(d(Tx2n, Sx2n−1)),

and thus d(y2n, y2n+1) ≤ d(Tx2n, Sx2n−1) as φ is an increasing function, therefore,
we can write

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n) + d(Tx2n, Sx2n−1) = d(Sx2n−1, y2n)

and hence

φ(d(Tx2n, Sx2n+1)) ≤ φ(d(Sx2n−1, y2n)) ≤ (a + 2b)φ(d(Tx2n−2, Sx2n−1))

= kφ(d(Tx2n−2, Sx2n−1)), where k = a + 2b.
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Thus in all the cases, we have

φ(d(Tx2n, Sx2n+1)) ≤ k max{φ(d(Sx2n−1, Tx2n)), φ(d(Tx2n−2, Sx2n−1))}
whereas

φ(d(Sx2n+1, Tx2n+2)) ≤ k max{φ(d(Sx2n−1, Tx2n)), φ(d(Tx2n, Sx2n+1))}.
It can be shown by induction that for n ≥ 1,

φ(d(Tx2n, Sx2n+1)) ≤ k2n−1 max{φ(d(Tx0, Sx1)), φ(d(Sx1, Tx2))}
and

φ(d(Sx2n+1, Tx2n+2)) ≤ k2n max{φ(d(Sx1, Tx2)), φ(d(Tx2, Sx3))}.
Now, for any positive integer p, we have

φ(d(Tx2n, Sx2n+p))

≤ φ(d(Tx2n, Sx2n+1) + d(Sx2n+1, Tx2n+2) + . . . + d(Tx2n+p−1, Sx2n+p))

≤ φ((1 + k + k2 + . . . + kn−1)k2n max{d(Tx0, Sx1), d(Sx1, Tx2)})

= φ

((
k2n

1 − k

)
max{d(Tx0, Sx1), d(Sx1, Tx2)}

)

which shows that the sequence {Tx0, Sx1, Tx2, . . . , Sx2n−1, Tx2n, Sx2n+1, . . .} is
Cauchy in K. Then as noted in [6], there exists at least one subsequence {Tx2nk

}
or {Sx2nk+1} which is contained in P0 and Q0 respectively and converges to some
z in K as K is a closed subset of X .

Since the pair (G, S) is reciprocally continuous as well as compatible, therefore
(Tx2nk

= Gx2nk−1 and Sx2nk−1 ∈ K) SGx2nk−1 → Sz, GSx2nk−1 → Gz and
Gz = Sz.

Since GK ∩ K ⊂ TK , there exists a point w in K such that Gz = Tw = Sz.
Now we show that Gz = Fw. Suppose that Gz 
= Fw. Using (1.1.1), we have

φ(d(Fw, Gz)) ≤ (a + b)φ(d(Fw, Gz))

which is a contradiction and hence Gz = Sz = Fw = Tw. Thus both the pairs
have points of coincidence.

Since the pair (G, S) is weakly compatible, we have

GGz = GSz = SGz = SSz.

We show that GGz = Gz. Suppose that it is not so, then again using (1.1.1), we
obtain
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φ(d(Gz, GGz)) = φ(d(Fw, GGz))

≤ (a + 2b)φ(d(Gz, GGz)) < φ(d(Gz, GGz))

a contradiction and hence Gz = GGz.
Also GGz = G(Sz) = SGz, therefore Gz is a common fixed point of the pair

(G, S).
Also, suppose that Fw 
= FFw, then again as above

φ(d(Fw, FFw)) = φ(d(FFw, Gz))

≤ (a + 2b)φ(d(Fw, FFw)) < φ(d(Fw, FFw))

which is a contradiction and hence FFw = Fw and FFw = FTw = TFw. This
shows that Fw is a common fixed point of the pair (F, T ). Hence Gz is a unique
common fixed point of G, S, F and T . The uniqueness of Gz is easily follows from
(1.1.1).

If we assume that (F, T ) is compatible pair of reciprocally continuous mappings,
then proceeding on similar lines one can establish the earlier conclusions. This
completes the proof.

Remark 3.1. Theorem 3.1 generalizes earlier results due to Assad [4], Imdad
and Khan [8], Imdad et al. [9], Khan and Bharadwaj [13], Khan et al. [15] and
others as we never require continuity of involved mappings.

Theorem 3.2. Let K be a nonempty closed subset of a complete metrically
convex metric space X . If (F, G) be a generalized (T, S) contraction mappings of
K into X which satisfy

(a) ∂K ⊂ SK ∩ TK, FK ∩ K ⊂ SK, GK ∩ K ⊂ TK,

(b) Tx ∈ ∂K ⇒ Fx ∈ K, Sx ∈ ∂K ⇒ Gx ∈ K,
(c) either pair (G, S) is compatible and G (or S) continuous or pair (F, T ) is

compatible and F (or T ) continuous,
(d) the control function φ : �+ → �+ is left continuous.

Then the pair (G, S) as well as (F, T ) has a point of coincidence.

Proof. Suppose the pair (G, S) is compatible and G continuous, then in view
of Lemma 2.1, the pair (G, S) is reciprocally continuous. Similarly if we assume
the compatibility of the pair (G, S) and continuity of S, then the pair (G, S) again
reciprocally continuous. Hence the proof follows from Theorem 3.1.

Finally, we prove a result when ‘closedness of K’ is replaced by ‘compactness
of K’.

Theorem 3.3. Let (X, d) be a complete metrically convex metric space and
K be a nonempty compact subset of X . Let F, G, T : K → X satisfying
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(a) ∂K ⊂ TK, (FK ∪ GK) ∩ K ⊆ TK,

(b) Tx ∈ ∂K ⇒ Fx, Gx ∈ K,
(c) φ(d(Fx, Gy)) < M(x, y) with M(x, y) > 0 for x, y ∈ K where

(3.3.1)
M(x, y) = a max

{1
2
φ(d(Tx, Ty)), φ(d(Tx, Fx)), φ(d(Ty, Gy))

}
+b[φ(d(Tx, Gy))+ φ(d(Ty, Fx))].

Then F, G and T have points of coincidence provided the pair (F, T ) or (G, T ) is
compatible and reciprocally continuous.

Proof. We assert that M(x, y) = 0 for some x, y ∈ K. Otherwise M(x, y) 
= 0
for any x, y ∈ K. Define

f(x, y) =
φ(d(Fx, Gy))

M(x, y)
.

Then f is continuous and satisfies f(x, y) < 1 for all (x, y) ∈ K×K. Since K×K

is compact, there exists (u, v) ∈ K × K such that f(x, y) ≤ f(u, v) = c < 1 for
x, y ∈ K which in turn yields φ(d(Fx, Gy)) ≤ c M(x, y) for x, y ∈ K and
0 < c < 1. Therefore using (3.3.1), one obtains ca + 2cb < 1. Now by Theorem
3.1 (with restriction S = T), one gets Tz = Fz and Tw = Gw for some z, w ∈
K. Consequently M(z, w) = 0, contradicting the fact M(x, y) > 0. Therefore
M(x, y) = 0 for some x, y ∈ K which implies Tx = Fx and Tx = Ty = Gy.

If M(x, x) = 0 then Tx = Gx and if M(x, x) 
= 0 then using (3.3.1), one infers
that d(Tx, Gx) ≤ 0 yielding thereby Tx = Gx. Similarly, in either of the cases
M(y, y) = 0 or M(y, y) > 0, one concludes that Ty = Fy. Thus we have shown
that F, G and T have a common point of coincidence. For fixed point, the proof is
identical to that of Theorem 3.1, and hence omitted. This completes the proof.

Now, we furnish an example which demonstrates the validity of the hypotheses
of Theorem 3.1 besides establishing the genuineness of our extension over several
other relevant results of the existing literature.

Example 3.1. Let X = � with the usual metric and K = [0, 3]. Define
φ : �+ → �+ as φ(t) = t and F, G, S, T : K → X as

Fx =




x2 if 0 ≤ x ≤ 2

1
2 if 2 < x ≤ 3,

Tx =




2x4 if 0 ≤ x ≤ 2

3 if 2 < x ≤ 3,

Gx =




x3 if 0 ≤ x ≤ 2

1
2 if 2 < x ≤ 3

and Sx =




2x6 if 0 ≤ x ≤ 2

3 if 2 < x ≤ 3.
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Since ∂K = {0, 3} and TK∩SK = [0, 32]∩[0, 128] = [0, 32], hence ∂K = {0, 3}
⊂ TK ∩ SK. Further, FK ∩ K = [0, 4] ∩ [0, 3] = [0, 3] ⊂ SK and GK ∩ K =
[0, 8]∩ [0, 3] ⊂ TK. Also

T0 = 0 ∈ ∂K ⇒ F0 = 0 ∈ K, T3 = 3 ∈ ∂K ⇒ F3 =
1
2
∈ K,

S0 = 0 ∈ ∂K ⇒ G0 = 0 ∈ K, S3 = 3 ∈ ∂K ⇒ G3 =
1
2
∈ K.

Moreover, if for x ∈ [0, 2] and y ∈ (2, 3], then

d(Fx, Gy) = |x2 − 1
2
|

≤ 2
3

max{1
2
d(Tx, Sy), d(Tx, Fx), d(Sy,Gy)}

+
1
7
{d(Fx, Sy) + d(Tx, Gy)}.

Next, if x, y ∈ (2, 3], then

d(Fx, Gy) = 0 =
1
2
d(Tx, Sy),

≤ 2
3

max{1
2
d(Tx, Sy), d(Tx, Fx), (Sy,Gy)}

+
1
7
{d(Fx, Sy) + d(Tx, Gy)}.

Finally, if x, y ∈ [0, 2], then

d(Fx, Gy) = |x2 − y3|

≤ 2
3

max{1
2
d(Tx, Sy), d(Tx, Fx), (Sy,Gy)}

+
1
7
{d(Fx, Sy) + d(Tx, Gy)},

which shows that the contraction condition (1.1.1) is satisfied for every distinct
x, y ∈ K.

Notice that the pair (G, S) (also (F, T )) is compatible and reciprocally con-
tinuous (e.g. xn = 1

n ). Moreover, 0 is a point of common coincidence as T0 = F0
and S0 = G0 with TF0 = 0 = FT0 and SG0 = 0 = GS0 which shows that the
pairs (F, T ) and (G, S) are weakly compatible. Thus all the conditions of Theorem
3.1 are satisfied and ‘0’ is the unique common fixed point of F, G, S and T.

Here, it may be pointed out that all the four involved mappings are discontinu-
ous which establishes the utility of our results over the ones hypothesizing continuity
requirement.
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4. AN APPLICATION

Recently, Al-Thagafi and Shahzad [1] introduced the concept of Cq-commuting
mappings and proved some common fixed point theorems along with results on
invariant approximations. We extend the notion of Cq-commutativity to a pair of
nonself mappings. As an application of Theorem 3.1, we prove a common fixed
point theorem for the Cq-commuting mappings in Banach spaces.

Definition 4.1. Let (G, S) be a pair of nonself mappings defined on q-
starshaped subset K of a normed space X with q ∈ F (S) and Cq(G, S) :=
∪{C(Gk, S) : 0 ≤ k ≤ 1} where Gkx = kGx + (1 − k)q. Then the pair
(G, S) is said to be Cq-commuting if GSx = SGx for all x ∈ Cq(G, S) pro-
vided Gx, Sx ∈ K.

Clearly, Cq-commuting mappings are weakly compatible but converse need not
be true in general. The following simple example illustrates the situation better.

Example 4.1. Let X = � with usual norm and K = [0, 3]. Define G, S :
K → X by Gx = x2 for all x 
= 2 and G2 = 1, and Sx = 2x for all x ∈ K . Then
K is q-starshaped with q = 0 ∈ F (S), C(G, S) = {0} and Cq(G, S) = K\{2}.
It is easy to verify that (G, S) is a pair of weakly compatible nonself mappings but
not Cq-commuting.

In an attempt to generalize the notion of weak commutativity due to Sessa [23],
Pant [16] introduced the notions of pointwise R-weak commutativity and R-weak
commutativity for self mappings. Imdad and Kumar [8] extended these notions for
a pair of nonself mappings and proved some coincidence and fixed point theorems
in metrically convex metric spaces.

Definition 4.2. [8]. Let K be a nonempty subset of a normed space (X, ‖.‖)
and G, S : K → X . Then the pair (G, S) is said to be pointwise R-weakly
commuting on K if for a given x ∈ K there exists a real number R > 0 such that

‖GSx− SGx‖ ≤ R‖Gx− Sx‖
provided Gx, Sx ∈ K.

If above inequality holds for all x ∈ K, then the pair of mappings is said
to be R-weakly commuting on K. R-weakly commuting mappings are pointwise
R-weakly commuting but converse need not be true (see Example 4.4). Notice that
for K = X and R = 1, R-weak commutativity reduces to weak commutativity for
self mappings due to Sessa [23]. Here it may be noted that R-weak commutativ-
ity implies weak compatibility at the points of coincidence and remains a minimal
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condition to obtain results on common fixed points.

The classes of Cq-commuting and R-weakly commuting mappings are differ-
ent. The following examples demonstrate the situation better.

The pair of mappings in Example 4.1 is R-weakly commuting but not Cq-
commuting.

Example 4.2. Let X = � with usual norm and K = [1, 2]. Define G, S :
K → X as

Gx =




x2, if 1 < x ≤ 2

1, if x = 1
and Sx =




2x, if 1 < x < 2

1, if x ∈ {1, 2}.
K is q-starshaped set with q = 1 ∈ F (S) and Cq(G, S) = {1}. It is easy to verify
that the pair (G, S) is Cq-commuting but not R-weakly commuting.

However, there do exist pair of mappings which possesses both the properties
at the same time and otherwise as well.

Example 4.3. Let X = � with usual norm and K = [0, 5
4 ]. Define G, S :

K → X as

Sx =




1, if 0 ≤ x ≤ 1

2
3
, if 1 < x ≤ 5

4

and Gx =




1 +
x2

4
, if x ∈ {0} ∪ (1,

5
4
]

2
3
, if 0 < x < 1

1, if x = 1.

Clearly, K is q-starshaped set with q = 1 ∈ F (S) and Cq(G, S) = {0, 1}. It is easy
to verify that the pair (G, S) is Cq-commuting as well as R-weakly commuting.

Example 4.4. Let X = � with usual norm and K = [0, 1]. Define G, S :
[0, 1] → [ 34 , 5

4 ) ⊂ � as

Sx =
{

3
4
, if 0 ≤ x ≤ 1 andGx =




3
4

+
x2

2
, if 0 ≤ x < 1

3
4
, if x = 1.

First, note that if x ∈ [0, 1√
2
] then Gx, Sx ∈ [0, 1] = K. One can show that

(G,S) is not R-weakly commuting on [0, 1√
2
], for one cannot find R > 0 satisfying

the definition of R-weak commutativity. But, for some x ∈ [0, 1√
2
], one can always
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find some R > 0 satisfying the definition of pointwise R-weak commutativity. For
instance if we take x = 1

2
√

2
then∣∣∣∣SG

( 1
2
√

2

)
− GS

( 1
2
√

2

)∣∣∣∣ ≤ R

∣∣∣∣S( 1
2
√

2

)
− G

( 1
2
√

2

)∣∣∣∣
holds for all R ≥ 9

2 .
Notice that K is q-starshaped with q = 3

4 ∈ F (S) and C(G, S) = {0, 1} but
the pair (G, S) is not weak compatible and hence not Cq-commuting on K.

Remark 4.1. It is straightforward to note that the pair (G, S) of Cq-commuting
mappings is R-weakly commuting on Cq(G, S) and hence pointwise R-weakly
commuting. But converse need not be true (see Example 4.4).

Now we state and prove the following theorem in Banach spaces as an appli-
cation of our main theorem.

Theorem 4.1. Let K be a nonempty weakly compact q-starshaped subset of
a Banach space X and (F, G) be a generalized S-nonexpansive mappings (with
φ(t) = t) of K into X satisfying

(a) ∂K ⊂ SK, (FK ∪ GK) ∩ K ⊂ SK,

(b) Sx ∈ ∂K ⇒ Fx, Gx ∈ K,
(c) the pair (G, S) is compatible and C q-commuting.

Moreover, if (I − G) is demiclosed and S is affine, then the mappings F, G
and S have a common fixed point in K provided S is continuous.

Proof. Notice that (due to Lemma 2.1) the pair (G, S) is reciprocally contin-
uous. Since K is q-starshaped subset of X , then (1− t)q + tx ∈ K for all x ∈ K.
Define a mapping Gn : K → X by Gnx = (1 − kn)q + knGx for all x ∈ K,
where {kn} is a sequence in [0,1] such that kn → 1. Then it is straightforward to
verify that the pair (F, Gn) is generalized S-contraction mappings of K into X and
Gn also satisfying conditions (a) − (c). Since weak topology is Hausdorff and K

is weakly compact, therefore K is weakly closed and hence strongly closed. Now
by Theorem 3.1 (with T = S) for each n ≥ 2, the mappings F, Gn and S have a
unique common fixed point, say zn. By the weak compactness of K, there exists
a subsequence {zni} of {zn} and z ∈ K such that zni → z weakly. Since weakly
convergent sequences are bounded, therefore, {zni} is also bounded, i.e. there is a
constant ρ > 0 such that ‖zni‖ < ρ for all n ≥ 2. For each n ≥ 2, we have

(I − G)zni = zni − k−1
ni

[Gnizni − (1− kni)q]

= (1− k−1
ni

)zni + (k−1
ni

− 1)q
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and hence
‖(I − G)zni‖ ≤ |k−1

ni
− 1|(ρ + ‖q‖).

Since k−1
ni

→ 1 as n → ∞, we have (I − G)z → 0 ∈ K . Also zni ⇀ z ∈ K and
(I − G) is demiclosed, it follows that (I − G)z = 0 yielding thereby Gz = z. As
zni is a fixed point of S and S is continuous, then Sz = z. Suppose Fz 
= z, then
using inequality (1.1.1)(for T = S)

d(Fz, z) = d(Fz, Gz) ≤ a max{1
2
d(Sz, Sz), d(Sz, Fz), d(Sz,Gz)}

+b[d(Sz, Gz)+ d(Sz, Fz)]d(Fz, z)

≤ (a + b)d(Fz, Sz) < d(Fz, Sz) = d(Fz, z)

which is a contradiction. Hence z is a common fixed point of the mappings F, G
and S. This completes the proof.
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