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FUNDAMENTAL SOLUTIONS ON PARTIAL DIFFERENTIAL
OPERATORS OF SECOND ORDER WITH APPLICATION

TO MATRIX RICCATI EQUATIONS

Sheng-Ya Feng

Abstract. In this paper, we study the geometry associated with Schrödinger
operator via Hamiltonian and Lagrangian formalism. Making use of a multiplier
technique, we construct the heat kernel with the coefficient matrices of the operator
both diagonal and non-diagonal. For applications, we compute the heat kernel of
a Schrödinger operator with terms of lower order, and obtain a globally closed
solution to a matrix Riccati equations as a by-product. Besides, we finally recover
and generalise several classical results on some celebrated operators.

1. INTRODUCTION

1.1. Background

We first introduce a second order differential operator with quadratic potentials

T = −div(A∇) + 〈Bx, x〉+ 〈Cx,∇〉.

with A, B and C matrices. From now on, we call the fundamental solution of the
operator ∂t + T the heat kernel of T . Let us recall some well-known facts for B = 0,
when T becomes

H = −div(A∇) + 〈Cx,∇〉.
Kolmogorov [13] considers the following equation

(∂t − ∂2
x1

− x1∂x2)u = 0, (x1, x2, t) ∈ R × R × R+

to describe the probability density of a system with 2n degree of freedom and obtains
an explicit fundamental solution by Fourier transform. Hörmander [12] uses the same
method to construct heat kernel for H under a condition imposed on A and B which
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is equivalent to the hypoellipticity of ∂t +H . Beals [2] sketches a method to find heat
kernel for H with A ≥ 0 via a probabilistic ansatz.
The study of the generalised Hermite operator L = −Δ ± |x|2 is of independent

interest. Hermite operator LH = −Δ + |x|2 arises from harmonic oscillator and
has been studied for quite some time (cf. [3], [11]), while anti-Hermite operator
LGH = −Δ − |x|2 arises from anti-harmonic oscillator discussed in [14]. To the
best knowledge of this author, the geometry induced by anti-harmonic oscillator was
seldom studied. [8] makes some effort in this direction. They study the geometry of
generalised Hermite operator LGH = −Δ + 〈Bx, x〉 with B any real matrix when
spatial dimension n equals 2.
In this paper, our interests concentrate on the case C = 0, and we study Schrödinger

operator

(1.1) LS = −div(A∇) + 〈Bx, x〉

where A is a symmetric positive definite n × n real matrix, B is a n × n real matrix
commutative with A, i.e. AB = BA, div, ∇, and 〈·, ·〉 denote respectively diver-
gence, gradient and Euclidean inner product. In recent, [7] studies Hamiltonian system
qualitatively from the view point of conservation law of energy, and obtains the heat
kernel formulae with B a diagonally positive definite matrix. [9] and [10] generalise
the results in terms of spectral calculus for B any positive semi-definite matrix. More
generally, we deal with the heat kernel of the Schrödinger operator with terms of lower
order

(1.2) L = −div(A∇) + 〈Bx, x〉 + 〈f,∇〉+ 〈g, x〉+ h

where f and g are vectors, and h is a real number.

1.2. Motivation, Methodology and presentation

There are many methods to derive the heat kernel of LS with B positive definite
(cf.[14]). In particular, a common way for Hermite operator is to use eigenfunction
expansion (cf. [15]). [8] studies the Schrödinger operator via Hamiltonian and La-
grange formalism, which characterizes the singularities arising from the perturbation of
negative eigenvalues of matrix B for 2D case. This present work is processed in the
same framework, and the main objective is to

• complete the picture of singularities in higher dimension
• construct heat kernel for Schrödinger operators with at most quadratic potentials.
For the first objective, we block the matrix B into three parts according to the

signs of its eigenvalues, namely positive, negative and zero. Singular regions are char-
acterized by a solvable condition of linear equations induced by Hamiltonian system.
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We show these regions are hyper planes in space-time coordinates, which explains the
results in [8] that the disjoint union of singularities of different types are exactly planes
in 3D space-time coordinates. For the second one, we note that the dissipation effect
will appear in the heat kernel as the first-order terms are introduced into the potential.
A probabilistic ansatz helps us establish the basic form the heat kernel, and the problem
thus comes down to solving a set of matrix equations. The second objective is closely
related to the first one. Actually, the heat kernel of Schrödinger operators without
first-order terms solves the matrix Riccati equations deduced by the ansatz, and it also
provides an initial condition for the volume element.
Throughout this paper, we make solid computations for two purposes. On the one

hand, direct computations make the characterization of the singular regions natural and
clear. One the other hand, we introduce a diffusion matrixA for more generality, which
allows one to have an interesting modification of energy function in classical Hamilton-
Jacobi theory. Concrete calculus helps the readers to comprehend the construction of
this conserved quantity, while abstract deductions probably miss this point.

1.3. Arrangement

In section 2, we quantitatively study the associated Hamiltonian system for any
dimension, from which we conclude that the singularities are hyperplanes in phase
space. This work uniformly generalises the results for B positive definite or low
dimensional space (cf.[8], [9] or [10]). Moreover, we formally characterize three
important objects, namely geodesic, energy and action function of the Hamiltonian
system, where geodesic formally means x-component of the solution for Hamiltonian
system. All these quantities are given in closed forms, which will play a crucial role
in constructing explicit heat kernel of Schrödinger operator.
In section 3, we first use the obtained action function and a multiplier technique to

construct the heat kernel of Schrödinger operator LS when the coefficient matrices A
and B are diagonal. It is worth mentioning that the heat kernel has slightly different
properties as the normal one does, primly because that the Schrödinger operator under
consideration is not linear in x−variables. For this reason, we address the fundamental
solution of ∂t +LS or ∂t +L as generalised heat kernel. We close section 3 with the
computation of heat kernel for A and B non-diagonal case.
The heat kernel has significance in two areas of applications. In section 4, we first

apply it to obtain the heat kernel for Schrödinger operator with terms of lower order in
(1.2). The heat kernel of L has an ansatz

(1.3)
K(x, x0; t)

= W (t) exp{〈α(t)x, x〉+ 〈β(t)x, x0〉 + 〈γ(t)x0, x0〉 + 〈μ, x〉+ 〈ν, x0〉},

where α, β, γ are expected to be symmetric n × n real matrices, μ, ν to be vectors,
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and we deduce a system of matrix and scalar differential equations as in [2]

(1.4) α̇ = 4αAα − B + Bt

2
β̇ = 4βAα(1.5)

γ̇ = βAβ(1.6)

μ̇ = 4αAμ− 2αf − g(1.7)

ν̇ = 2βAμ− βf(1.8)

W−1Ẇ = 2tr(Aα) + 〈Aμ, μ〉 − 〈f, μ〉 − h(1.9)

where the dot denotes d
dt , and B

t denotes transpose of B. The main difficulty is to
solve the matrix Riccati equation (1.4), which is an equation of fundamental importance
in control theory [1]. Fortunately, the heat kernel of LS provide us a globally closed
solution of matrix Riccati equation (1.4), and a condition to identify the solution of the
scalar differential equation (1.9). Then other equations and hence the heat kernel of L
can be explicitly computed. Last section is devoted to the second areas of applications.
We will recover and generalise several classical results on some celebrated operators,
including Laplacian, Hermite operator and Ornstein-Uhlenbeck operator on weighted
space.

2. HAMILTONIAN SYSTEM ASSOCIATED WITH LS

In this section, we consider Hamiltonian system associated with Schrödinger oper-
ator

LS = −div (A∇) + 〈Bx, x〉
with A and B commutative.
Geodesics, energy and Hamilton-Jacobi action function are three significant objects

in Hamilton-Jacobi theory and are of their own interest. We study them one by one in
the following subsections.

2.1. Geodesics

The Hamiltonian function of LS is defined as its full symbol

HS = −〈Aξ, ξ〉+ 〈Bx, x〉
and the associated Hamiltonian system is

(2.1)

⎧⎪⎪⎨⎪⎪⎩
ẋ =

∂HS

∂ξ
= −Aξ −Atξ = −2Aξ

ξ̇ = −∂HS

∂x
= −Bx −Btx = − (

B +Bt
)
x

.
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Denoting D := 2A
(
B + Bt

)
, one has

ẍ = −2Aξ̇ = 2A(B +Bt)x = Dx,

and D is symmetric following from that A is commutative with B. The geodesics x(s)
between x0 and x in Rn satisfy the boundary value problem

(2.2)
{
ẍ = Dx

x(0) = x0, x(t) = x
.

We start with the case when both A and B are diagonal matrices, and write them
as follows

(2.3) A = Λa =

⎡⎣a2
1 . . .

a2
n

⎤⎦

(2.4) B = Λb =

⎡⎢⎢⎢⎢⎢⎢⎣
b21 . . .

b2m −b2m+1 . . .
−b2n

⎤⎥⎥⎥⎥⎥⎥⎦

(2.5) AB = ΛaΛb =

⎡⎢⎢⎢⎢⎢⎢⎣
a2

1b
2
1 . . .

a2
mb

2
m −a2

m+1b
2
m+1 . . .

−a2
nb

2
n

⎤⎥⎥⎥⎥⎥⎥⎦
where aj > 0, bj > 0 for j ∈ {1, · · · , n} satisfy the condition that:

Condition (C). For i �= k and 1 � i, k � m or m+ 1 � i, k � n, a2
i b

2
i �= a2

kb
2
k.

Putting Λa1 = diag{a2
j}mj=1, Λa2 = diag{a2

j}nj=m+1, Λb1 = diag{b2j}mj=1, and Λb2 =
diag{−b2j}nj=m+1, one has

(2.6) A =
[
Λa1

Λa2

]
,

(2.7) B =
[
Λb1

Λb2

]
,
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and

(2.8) D = 4AB = 4
[
Λa1Λ

b
1

Λa2Λ
b
2

]
.

The solution of the linear system ẍ = Dx is a combination of radical solu-
tions {e2ajbjs}mj=1, {e−2ajbjs}mj=1, {cos(2ajbjs)}nj=m+1, and {sin(2ajbjs)}nj=m+1. We
write the coefficients in both block and component forms

C1 =

[
C11

C21

]
, C2 =

[
C12

C22

]
,

C3 =

[
C13

C23

]
, C4 =

[
C14

C24

]
,

where

C11 =

⎡⎢⎣ c11 · · · c1m
... . . .

...
cm1 · · · cmm

⎤⎥⎦ , C21 =

⎡⎢⎣cm+1,1 · · · cm+1,m
... . . . ...
cn1 · · · cnm

⎤⎥⎦ ,

C12 =

⎡⎢⎣ c1,m+1 · · · c1n
... . . . ...

cm,m+1 · · · cmn

⎤⎥⎦ , C22 =

⎡⎢⎣cm+1,m+1 · · · cm+1,n
... . . . ...
cn1 · · · cnn

⎤⎥⎦ ,

C13 =

⎡⎢⎣ c1,n+1 · · · c1,n+m
... . . . ...

cm,n+1 · · · cm,n+m

⎤⎥⎦ , C23 =

⎡⎢⎣cm+1,n+1 · · · cm+1,n+m
... . . . ...

cn,n+1 · · · cn,n+m

⎤⎥⎦ ,

C14 =

⎡⎢⎣ c1,n+m+1 · · · c1,2n
... . . . ...

cm,n+m+1 · · · cm,2n

⎤⎥⎦ , C24 =

⎡⎢⎣cm+1,n+m+1 · · · cm+1,2n
... . . . ...

cn,n+m+1 · · · cn,2n

⎤⎥⎦ .
Accordingly, we first write the solution vectors as

x1(s) = (e2a1b1s, · · · , e2ambms)t,
x2(s) = (cos(2am+1bm+1s), · · · , cos(2anbns))t,

x3(s) = (e−2a1b1s, · · · , e−2ambms)t,
x4(s) = (sin(2am+1bm+1s), · · · , sin(2anbns))t,
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then

x(s) =
[
C11 C12 C13 C14

C21 C22 C23 C24

]⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦ ,

ẍ(s) = 4
[
C11 C12 C13 C14

C21 C22 C23 C24

]⎡⎢⎢⎣
Λa1Λ

b
1

Λa2Λ
b
2

Λa1Λ
b
1

Λa2Λ
b
2

⎤⎥⎥⎦
⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦

= 4
[
C11Λ

a
1Λ

b
1 C12Λ

a
2Λ

b
2 C13Λ

a
1Λ

b
1 C14Λ

a
2Λ

b
2

C21Λ
a
1Λ

b
1 C22Λ

a
2Λ

b
2 C23Λ

a
1Λ

b
1 C24Λ

a
2Λ

b
2

]⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦ ,

Dx(s) = 4
[
Λa1Λ

b
1

Λa2Λ
b
2

] [
C11 C12 C13 C14

C21 C22 C23 C24

]⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦

= 4
[
Λa1Λ

b
1C11 Λa1Λ

b
1C12 Λa1Λ

b
1C13 Λa1Λ

b
1C14

Λa2Λ
b
2C21 Λa2Λ

b
2C22 Λa2Λ

b
2C23 Λa2Λ

b
2C24

]⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦ .
Noting ẍ(s) = Dx(s), and the condition (C) implies

(2.9)
C11 = diag{cjj}mj=1, C13 = diag{cj,n+j}mj=1,

C22 = diag{cjj}nj=m+1, C24 = diag{cj,n+j}nj=m+1.

Similarly, that a2
jb

2
j > 0 for j ∈ 1, n implies

C12 = C21 = C14 = C23 = 0.

Thus,

x(s) =
[
C11 0 C13 0
0 C22 0 C24

]⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦
where C11, C22, C13, C24 are diagonal matrices commutative with Λaj and Λbj for
j = 1, 2.
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Next, the boundary condition in (2.2) will establish Cij’s. As before, we introduce
some notations.

x0 = (x(0)
1 , · · · , x(0)

n )t, x = (x(1)
1 , · · · , x(1)

n )t,

x0
1 = (x(0)

1 , · · · , x(0)
m )t, x0

2 = (x(0)
m+1, · · · , x(0)

n )t,

x1 = (x(1)
1 , · · · , x(1)

m )t, x2 = (x(1)
m+1, · · · , x(1)

n )t,

C̃11 = (c11, · · · , cmm)t, C̃13 = (c1,n+1, · · · , cm,n+m)t,

C̃22 = (cm+1,m+1, · · · , cnn)t, C̃24 = (cm+1,m+n+1, · · · , cn,2n)t.

Given a non-singular matrixM , we define N
M := M−1N .

By boundary condition in (2.2), C̃11, C̃22, C̃13 and C̃24 satisfy the following linear
equations⎡⎢⎢⎢⎣

Im 0 Im 0
0 In−m 0 0

e2t
√
Λa

1Λ
b
1 0 e−2t

√
Λa

1Λ
b
1 0

0 cos(2t
√

−Λa2Λb2) 0 sin(2t
√

−Λa2Λb2)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
C̃11

C̃22

C̃13

C̃24

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
x0

1

x0
2

x1

x2

⎤⎥⎥⎦ .
To move on, we make assumption (*) that sin

(
2t
√

−Λa2Λb2
)
is non-singular. Indeed,

the region for sin
(

2t
√

−Λa2Λb2
)
singular consists of countably many hyperplanes in

(x, t)−space, thus, it has no contribution to the Hamilton-Jacobi action function. In
section 3, we will give a formal remark about this point.⎡⎢⎢⎢⎢⎢⎢⎣

Im 0 Im 0
... x0

1

0 In−m 0 0
... x0

2

e2t
√
Λa

1Λ
b
1 0 e−2t

√
Λa

1Λ
b
1 0

... x1

0 cos(2t
√
−Λa2Λb2) 0 sin(2t

√
−Λa2Λb2)

... x2

⎤⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im 0 Im 0
... x0

1

0 In−m 0 0
... x0

2

0 0 1−e4t
√

Λa
1 Λb

1

e
2t
√

Λa
1Λb

1

0
... x1 − e2t

√
Λa

1Λ
b
1x0

1

0 0 0 sin(2t
√
−Λa2Λb2)

... x2 − cos(2t
√
−Λa2Λb2)x0

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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→

⎡⎢⎢⎢⎢⎢⎢⎣
Im 0 Im 0

... x0
1

0 In−m 0 0
... x0

2

0 0 −Im 0
... e

2t
√

Λa
1Λb

1x1−e4t
√

Λa
1Λb

1x0
1

e
4t
√

Λa
1

Λb
1−1

0 0 0 sin(2t
√
−Λa2Λb2)

... x2 − cos(2t
√
−Λa2Λb2)x0

2

⎤⎥⎥⎥⎥⎥⎥⎦

(∗)−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Im 0 0 0

... e
2t
√

Λa
1

Λb
1

e
4t
√

Λa
1

Λb
1−1

x1 − 1

e
4t
√

Λa
1

Λb
1−1

x0
1

0 In−m 0 0
... x0

2

0 0 Im 0
... − e

2t
√

Λa
1

Λb
1

e
4t
√

Λa
1

Λb
1−1

x1 + e
4t
√

Λa
1

Λb
1

e
4t
√

Λa
1

Λb
1−1

x0
1

0 0 0 In−m
... csc(2t

√
−Λa2Λb2)x2 − cot(2t

√
−Λa2Λb2)x0

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We read off the solution

C̃11 =
e2t

√
Λa

1Λ
b
1

e4t
√
Λa

1Λ
b
1 − 1

x1 − 1

e4t
√
Λa

1Λ
b
1 − 1

x0
1,

C̃22 = x0
2,

C̃13 = − e2t
√
Λa

1Λ
b
1

e4t
√
Λa

1Λ
b
1 − 1

x1 +
e4t

√
Λa

1Λ
b
1

e4t
√
Λa

1Λ
b
1 − 1

x0
1,

C̃24 = csc
(

2t
√
−Λa2Λb2

)
x2 − cot

(
2t
√

−Λa2Λb2
)
x0

2,

(2.10)

and we may recover Cij ’s in (2.9) from C̃ij ’s in (2.10) with

(2.11)
cjj =

〈
C̃11, e

m
j

〉
, cj,n+j =

〈
C̃13, e

m
j

〉
, j = 1, m

cjj =
〈
C̃22, e

n−m
j−m

〉
, cj,n+j =

〈
C̃24, e

n−m
j−m

〉
, j = m+ 1, n

where emj denotes a m-dimensional canonical basis vector with jth component one and
others zero, and en−mj−m is defined in the same way.
Finally, we conclude the previous deduction as

Proposition 2.1. Suppose that A, B take the form (2.6), (2.7). Then the geodesics
of Hamiltonian system (2.1) that solves boundary problem (2.2) with t �= kπ

2ajbj
, k ∈

N+, j ∈ m+ 1, n are given by

(2.12) x(s) =
[
C11 0 C13 0
0 C22 0 C24

]⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦ =
[
C11x1(s) + C13x3(s)
C22x2(s) + C24x4(s)

]

where Cij ’s and components therein are identified by (2.9)-(2.11).
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2.1. Energy

By use of Hamilton-Jacobi theory, the energy is conserved along the geodesics.
In order to compute such energy and consequent action that both are associated with
A, we introduce M−inner product 〈· , · 〉M := 〈M · , · 〉 with M a symmetric positive
definite matrix. Indeed,

d

ds

[
〈ẋ(s), ẋ(s)〉(Λa)−1 − 〈ẍ(s), x(s)〉(Λa)−1

]
= 2 〈ẍ(s), ẋ(s)〉(Λa)−1 − 〈ẍ̇(s), x(s)〉(Λa)−1 − 〈ẍ(s), ẋ(s)〉(Λa)−1

= 〈ẍ(s), ẋ(s)〉(Λa)−1 − 〈ẍ̇(s), x(s)〉(Λa)−1

= 〈Dx(s), ẋ(s)〉(Λa)−1 − 〈Dẋ(s), x(s)〉(Λa)−1

= 0.

〈ẋ(s), ẋ(s)〉(Λa)−1 − 〈ẍ(s), x(s)〉(Λa)−1 = Const =: 2E

The main task of this subsection is to find such constant E in terms of boundary data.
In the following deduction, f(T ) denotes spectral calculus of continuous function f on
the selfadjoint operator T . As we know in the previous subsection,

x(s) =
[
C11 0 C13 0
0 C22 0 C24

]⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦ ,

ẋ(s) =
[
C11 0 C13 0
0 C22 0 C24

]

·

⎡⎢⎢⎢⎢⎢⎢⎣
2
√
Λa1Λ

b
1

−2
√

−Λa2Λb2
−2

√
Λa1Λ

b
1

2
√
−Λa2Λb2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦ ,

and

ẍ(s) = 4
[
C11 0 C13 0
0 C22 0 C24

]⎡⎢⎢⎣
Λa1Λ

b
1

Λa2Λ
b
2

Λa1Λ
b
1

Λa2Λ
b
2

⎤⎥⎥⎦
⎡⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎦ .
A direct computation shows
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〈ẋ(s), ẋ(s)〉(Λa)−1

= 4
[
x1(s)t, x2(s)t, x3(s)t, x4(s)t

]

·

⎡⎢⎢⎢⎣
C2

11Λ
b
1 0 −C11C13Λ

b
1 0

0 −C2
24Λ

b
2 0 C22C24Λ

b
2

−C11C13Λ
b
1 0 C2

13Λ
b
1 0

0 C22C24Λ
b
2 0 −C2

22Λ
b
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎥⎦
and

〈ẍ(s), x(s)〉(Λa)−1

= 4
[
x1(s)t, x2(s)t, x3(s)t, x4(s)t

]

·

⎡⎢⎢⎢⎣
C2

11Λ
b
1 0 C11C13Λ

b
1 0

0 C2
22Λ

b
2 0 C22C24Λ

b
2

C11C13Λ
b
1 0 C2

13Λ
b
1 0

0 C22C24Λ
b
2 0 C2

24Λ
b
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎥⎦ .
So,

〈ẋ(s), ẋ(s)〉(Λa)−1 − 〈ẍ(s), x(s)〉(Λa)−1

= 4
[
x1(s)t, x2(s)t, x3(s)t, x4(s)t

]

·

⎡⎢⎢⎢⎣
0 0 −2C11C13Λ

b
1 0

0 −(C2
22 +C2

24)Λ
b
2 0 0

−2C11C13Λ
b
1 0 0 0

0 0 0 −(C2
22 + C2

24)Λ
b
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1(s)
x2(s)
x3(s)
x4(s)

⎤⎥⎥⎥⎦
= −16x3(s)tC11C13Λ

b
1x1(s)

− 4x2(s)t(C2
22 +C2

24)Λ
b
2x2(s) − 4x4(s)t(C2

22 +C2
24)Λ

b
2x4(s)

= 4{−4tr(C11C13Λ
b
1) − tr[(C2

22 + C2
24)Λ

b
2]}.

Hence,

(2.13)
E =

1
2
(〈ẋ, ẋ〉(Λa)−1 − 〈ẍ, x〉(Λa)−1)

= 2
{
−4tr(C11C13Λ

b
1)− tr

[
(C2

22 + C2
24)Λ

b
2

]}
.

Making use of C̃ij’s solved previously, we have
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tr
(
C11C13Λ

b
1

)
=
〈
C̃11, C̃13

〉
Λb

1

= −
〈
Λb1e

2t
√
Λa

1Λ
b
1x1 − Λb1x

0
1

e4t
√
Λa

1Λ
b
1 − 1

,
e2t

√
Λa

1Λ
b
1x1 − e4t

√
Λa

1Λ
b
1x0

1

e4t
√
Λa

1Λ
b
1 − 1

〉

= −1
4

〈
Λb1

sinh2(2t
√
Λa1Λ

b
1)
x1, x1

〉
− 1

4

〈
Λb1

sinh2(2t
√
Λa1Λ

b
1)
x0

1, x
0
1

〉

+
1
2

〈
Λb1 cosh(2t

√
Λa1Λ

b
1)

sinh2(2t
√
Λa1Λ

b
1)

x1, x
0
1

〉

and

tr
[(
C2

24 +C2
22

)
Λb2

]
=
〈
C̃24, C̃24

〉
Λb

2

+
〈
C̃22, C̃22

〉
Λb

2

=

〈
Λb2
x2 − cos(2t

√
−Λa2Λb2)x0

2

sin(2t
√
−Λa2Λb2)

,
x2 − cos(2t

√
−Λa2Λb2)x0

2

sin(2t
√
−Λa2Λb2)

〉
+
〈
Λb2x

0
2, x

0
2

〉

=

〈
Λb2

sin2(2t
√
−Λa2Λb2)

x2, x2

〉
+

〈
Λb2

sin2(2t
√
−Λa2Λb2)

x0
2, x

0
2

〉

− 2

〈
Λb2 cos(2t

√
−Λa2Λb2)

sin2(2t
√
−Λa2Λb2)

x2, x
0
2

〉
.

Finally, we conclude the following proposition on the energy

Proposition 2.2. Suppose that A, B take the form (2.6), (2.7). Then energy of
Hamiltonian system (2.1) conforms conservation law along the geodesics (2.9) with
constant E given by
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E =
1
2
(〈ẋ, ẋ〉(Λa)−1 − 〈ẍ, x〉(Λa)−1)

= 2
{
−4tr

(
C11C13Λ

b
1

)
− tr

[(
C2

24 +C2
22

)
Λb2

]}

= 2

⎡⎣〈 Λb1

sinh2(2t
√
Λa1Λ

b
1)
x1, x1

〉
+

〈
Λb1

sinh2(2t
√
Λa1Λ

b
1)
x0

1, x
0
1

〉

− 2

〈
Λb1 cosh(2t

√
Λa1Λ

b
1)

sinh2(2t
√
Λa1Λ

b
1)

x1, x
0
1

〉
+

〈
−Λb2

sin2(2t
√
−Λa2Λb2)

x2, x2

〉

+

〈
−Λb2

sin2(2t
√
−Λa2Λb2)

x0
2, x

0
2

〉
− 2

〈−Λb2 cos(2t
√
−Λa2Λb2)

sin2(2t
√
−Λa2Λb2)

x2, x
0
2

〉⎤⎦ .
2.2. Action function

In this subsection, we compute the Hamilton-Jacobi action function S, which is
a crucial ingredient in the construction of heat kernel. It satisfies Hamilton-Jacobi
equation (cf. [4], [5] and [6])

∂S

∂t
+H(x,∇S) = 0.

Noting in our case H = −1
2E , we have S = 1

2

∫
Edt + c. In the multiplier method

to be adopted in section 3, the factor 1
2 and constant c independent of variable t

will be absorbed by multiplier and volume element respectively. For this reason, we
do not differentiate energy from Hamiltonian, and simply define action function as
S = − ∫

Edt. Integration by parts shows

J1 =
∫

Λb1

sinh2

(
2t
√
Λa1Λ

b
1

)dt = −1
2

√
Λb1
Λa1

cosh
(

2t
√
Λa1Λ

b
1

)
sinh

(
2t
√
Λa1Λ

b
1

) ,

J2 =
∫ Λb1 cosh

(
2t
√
Λa1Λ

b
1

)
sinh2

(
2t
√
Λa1Λ

b
1

) dt = −1
2

√
Λb1
Λa1

1

sinh
(

2t
√
Λa1Λ

b
1

) ,
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J3 =
∫ −Λb2

sin2

(
2t
√

−Λa2Λb2
)dt = −1

2

√
−Λb2
Λa2

cos
(

2t
√

−Λa2Λb2
)

sin
(

2t
√
−Λa2Λb2

) ,

J4 =
∫ −Λb2 cos

(
2t
√

−Λa2Λb2
)

sin2

(
2t
√

−Λa2Λb2
) dt = −1

2

√
−Λb2
Λa2

1

sin
(

2t
√
−Λa2Λb2

) .
Finally, we have

Proposition 2.3. Suppose that A, B take the form (2.6), (2.7). Then the Hamilton-
Jacobi action function of Hamiltonian system (2.1) with boundary condition in (2.2)
is given by

(2.14)

S = −
∫
Edt

=

〈√
Λb1
Λa1

cosh
(
2t
√
Λa1Λ

b
1

)
sinh

(
2t
√
Λa1Λ

b
1

) x1, x1

〉
+

〈√
Λb1
Λa1

cosh
(
2t
√
Λa1Λ

b
1

)
sinh

(
2t
√
Λa1Λ

b
1

) x0
1, x

0
1

〉

− 2

〈√
Λb1
Λa1

1

sinh
(
2t
√
Λa1Λ

b
1

)x1, x
0
1

〉
+

〈√
−Λb2
Λa2

cos
(
2t
√−Λa2Λb2

)
sin

(
2t
√
−Λa2Λb2

) x2, x2

〉

+

〈√
−Λb2
Λa2

cos
(
2t
√

−Λa2Λb2
)

sin
(
2t
√−Λa2Λb2

) x0
2, x

0
2

〉
− 2

〈√
−Λb2
Λa2

1

sin
(
2t
√−Λa2Λb2

)x2, x
0
2

〉
.

3. HEAT KERNEL FOR LS

Given diagonal coefficient matrices, we find heat kernel for LS via multiplier
techniques, and discuss its properties similar to the normal heat distribution. Heat
kernel formulae for non-diagonal coefficient matrices will be given at the end of this
section.
3.1. Explicit formulae (diagonal case)
We start with a basic fact on the action function.

Lemma 3.1. Given A, B, energy E and action function S as in (2.6), (2.7), (2.10)
and (2.11) respectively, the following equalities hold

(1) |∇xS|2A = 4〈Bx, x〉+ 2E(3.1)

(2) tr(AHess(S)) =
m∑
j=1

2ajbj cosh(2tajbj)
sinh(2tajbj)

+
n∑

j=m+1

2ajbj cos(2tajbj)
sin(2tajbj)

(3.2)
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where |· |A :=
√〈· , · 〉A, and Hess(f) denotes Hessian of function f ∈ C2.

Proof.
A direct computation shows that

(1)

∇xS =
[∇x1S

∇x2S

]
= 2

⎡⎢⎢⎢⎣
√

Λb
1

Λa
1

cosh(2t
√
Λa

1Λ
b
1)

sinh(2t
√
Λa

1Λ
b
1)
x1 −

√
Λb

1
Λa

1

1

sinh(2t
√
Λa

1Λ
b
1)
x0

1√
−Λb

2
Λa

2

cos(2t
√

−Λa
2Λ

b
2)

sin(2t
√

−Λa
2Λ

b
2)
x2 −

√
−Λb

2
Λa

2

1

sin(2t
√

−Λa
2Λ

b
2)
x0

2

⎤⎥⎥⎥⎦
|∇xS|2A

=
[
(∇x1S)t, (∇x2S)t

] [Λa1
Λa2

] [∇x1S
∇x2S

]
= 〈∇x1S,∇x1S〉Λa

1
+ 〈∇x2S,∇x2S〉Λa

2

= 4

⎧⎪⎨⎪⎩
〈
Λb1
Λa1

cosh2(2t
√
Λa1Λ

b
1)

sinh2(2t
√
Λa1Λ

b
1)
x1, x1

〉
Λa

1

+

〈
Λb1
Λa1

1

sinh2(2t
√
Λa1Λ

b
1)
x0

1, x
0
1

〉
Λa

1

− 2

〈
Λb1
Λa1

cosh(2t
√
Λa1Λ

b
1)

sinh2(2t
√
Λa1Λ

b
1)
x1, x

0
1

〉
Λa

1

+

〈
−Λb2
Λa2

cos2(2t
√

−Λa2Λb2)
sin2(2t

√
−Λa2Λb2)

x2, x2

〉
Λa

2

+

〈
−Λb2
Λa2

1

sin2(2t
√

−Λa2Λb2)
x0

2, x
0
2

〉
Λa

2

− 2

〈
−Λb2
Λa2

cos(2t
√

−Λa2Λb2)
sin2(2t

√
−Λa2Λb2)

x2, x
0
2

〉
Λa

2

⎫⎪⎬⎪⎭
= 4 〈Bx, x〉+ 2E.

(2)

Hess(S) = 2

⎡⎢⎢⎣
√

Λb
1

Λa
1

cosh(2t
√
Λa

1Λ
b
1)

sinh(2t
√
Λa

1Λ
b
1) √

−Λb
2

Λa
2

cos(2t
√

−Λa
2Λ

b
2)

sin(2t
√

−Λa
2Λ

b
2)

⎤⎥⎥⎦ .
Hence,

AHess(S) = 2

⎡⎢⎣
√
Λa1Λ

b
1

cosh(2t
√
Λa

1Λ
b
1)

sinh(2t
√
Λa

1Λ
b
1) √

−Λa2Λb2 cos(2t
√

−Λa
2Λ

b
2)

sin(2t
√

−Λa
2Λ

b
2)

⎤⎥⎦ .
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Thus,

tr(AHess(S)) =
m∑
j=1

2ajbj cosh(2tajbj)
sinh(2tajbj)

+
n∑

j=m+1

2ajbj cos(2tajbj)
sin(2tajbj)

.

We expect to find the heat kernel of LS in the following form

K(x, x0; t) = V (t)eκS(x,x0;t)

where the multiplierκ is a real number. Making use of (3.1) in Lemma 4.1 and noticing
that

PK : = (∂t + L)K

= (∂t − div (A∇) + 〈Bx, x〉)
(
V (t)eκS(x,x0;t)

)
= K

(
V ′

V
− κE − κ2|∇xS|2A − κtr(AHess(S)) + 〈Bx, x〉

)
= K

(
V ′

V
− κE − 4κ2 〈Bx, x〉 − 2κ2E − κtr(AHess(S)) + 〈Bx, x〉

)
= 0

for t > 0, we choose κ = −1
2 and let volume element V (t) satisfy transport equation

(3.3)
V (t)′

V (t)
= κtr (AHess(S)) .

Readers may consult [4], [5] and [6] for more types of transport equations. By (3.2)
in Lemma 4.1, we integrate equation (3.3) to have

(3.4) V (t) = C

m∏
j=1

(
1

sinh (2tajbj)

)1
2

n∏
j=m+1

(
1

sin (2tajbj)

)1
2

.

The constant C is determined to normalise the integral in x−variable of the heat
kernel K. However, it is easy to see from (2.14) that the integral is divergent if
x0 �= 0. K(x, 0; t), a propagator from origin to arbitrary point x, is called generalised
heat kernel as we shall prove next section that it indeed has similar properties to the
normal heat distribution. We denote K(x, 0; t) by K(x; t) from now on, then

K(x; t) = C

m∏
j=1

(
1

sinh(2tajbj)

)1
2

n∏
j=m+1

(
1

sin(2tajbj)

) 1
2

× e
− 1

4t

(∑m
j=1

2tbj
aj

cosh(2tajbj)

sinh(2tajbj)
(x

(1)
j )2+

∑n
j=m+1

2tbj
aj

cos(2tajbj)

sin(2taj bj)
(x

(1)
j )2

)
.
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Making use of
∫

R
e−x2

dx =
√
π,∫

Rn

K(x; t)dx

= C

m∏
j=1

(
1

sinh(2tajbj)

)1
2

n∏
j=m+1

(
1

sin(2tajbj)

)1
2

·
m∏
j=1

[(
1
4t

2tbj
aj

cosh(2tajbj)
sinh(2tajbj)

)− 1
2 √

π

]
n∏

j=m+1

[(
1
4t

2tbj
aj

cos(2tajbj)
sin(2tajbj)

)− 1
2 √

π

]

= C

n∏
j=1

(
2πaj
bj

)1
2
m∏
j=1

(
1

cosh(2tajbj)

) 1
2

n∏
j=m+1

(
1

cos(2tajbj)

)1
2

tends to C
∏n
j=1

(
2πaj
bj

) 1
2

as t→ 0+.

By choosing C =
∏n
j=1

(
bj

2πaj

)1
2

, we have arrived at the following proposition

Proposition 3.4. Assume that A and B are diagonal matrices as in (2.3) and (2.4).
Then the heat kernel of the Schrödinger operator LS = −div(A∇) + 〈Bx, x〉 is

K(x, x0; t) = (4πt)−
n
2

m∏
j=1

(
2tbj

aj sinh(2tajbj)

)1
2

n∏
j=m+1

(
2tbj

aj sin(2tajbj)

)1
2

× e
− 1

4t

(∑m
j=1

2tbj
aj

cosh(2tajbj)

sinh(2tajbj)
(x

(1)
j )2+

∑m
j=1

2tbj
aj

cosh(2tajbj)

sinh(2tajbj)
(x

(0)
j )2

)

× e
− 1

4t

(∑n
j=m+1

2tbj
aj

cos(2tajbj)

sin(2tajbj)
(x

(1)
j )2+

∑n
j=m+1

2tbj
aj

cos(2tajbj)

sin(2tajbj)
(x

(0)
j )2

)

× e
1
2t

(∑m
j=1

2tbj
aj

1
sinh(2tajbj)

x
(0)
j x

(1)
j +

∑n
j=m+1

2tbj
aj

1
sin(2taj bj)

x
(0)
j x

(1)
j

)
.

(3.5)

Remark 3.1. In sake of continuity of aj ’s and bj’s, heat kernel (3.5) keeps valid
if the matrix D has multiple eigenvalues or zero eigenvalues. Moreover, condition (C)
is technical, and can be removed.

Remark 3.2. Heat kernel (3.5) is complex valued as long as sin(2tajbj) < 0, i.e.
t ∈ ( 4k+1

4ajbj
π, 4k+3

4ajbj
π), k ∈ N+, j ∈ m+ 1, n.

Remark 3.3. Heat kernel (3.5) holds if the sub-matrix sin
(

2t
√

−Λa2Λb2
)
is non-

singular, which we proposed as an assumption in the previous section. We call region
Ω = {(x, t) ∈ Rn × R+ : t = kπ

2ajbj
, k ∈ N+, j ∈ m+ 1, n} singular region and
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region Ωc = Rn × R+ \ Ω regular region. Briefly speaking, there is no geodesic or
uncountably many geodesics connecting the given boundary points x and x0 for t =
kπ

2ajbj
, while there is a unique geodesic for any given two points x and x0 if t �= kπ

2ajbj
.

Here we point out that such singular region has no contribution to the Hamilton-Jacobi
action function which is regarded as an integral of energy in t−variable.

3.1. Generalised heat kernel

In this subsection, we show that generalised heat kernel has analogue properties to
the normal one, that is

Proposition 3.5. Heat kernel (3.5) is said to be generalised in the following sense.

(1) K(x, x0; t) > 0, ∀(x, x0) ∈ Rn × Rn, 0 < t� 1.

(2) Fix x0 = 0, K̂(ξ; t) → 1, as t→ 0+.

(3) Fix x0 = 0, K(x; t) d−→ δ(x), as t→ 0+.

where hat denotes Fourier transform on spatial variables, and d−→ means limitation in
the sense of distribution.

Proof. (1) It is obvious from formulae (3.5) for t appropriately small.

In the rest of this proof, we fix x0 = 0 in (3.5) and

(3.6)

K(x; t) = (4πt)−
n
2

m∏
j=1

(
2tbj

aj sinh(2tajbj)

)1
2

n∏
j=m+1

(
2tbj

aj sin(2tajbj)

) 1
2

× e
− 1

4t

(∑m
j=1

2tbj
aj

cosh(2tajbj)

sinh(2tajbj)
(x

(1)
j )2+

∑n
j=m+1

2tbj
aj

cos(2tajbj)

sin(2tajbj)
(x

(1)
j )2

)
.

(2) By properties of Fourier transform

ê−πx2(ξ) = e−πξ
2

and
f̂(λx)(ξ) = λ−1f̂

(
λ−1ξ

)
,

we have
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K̂(ξ; t) =
∫

Rn
K(x; t)e−2πiξ·xdx

= (4πt)−
n
2

m∏
j=1

(
2tbj

aj sinh(2tajbj)

)1
2

n∏
j=m+1

(
2tbj

aj sin(2tajbj)

) 1
2

×
m∏
j=1

∫
R

e
− 1

4t

2tbj
aj

cosh(2tajbj)

sinh(2tajbj)
(x

(1)
j )2

e−2πiξj ·x(1)
j dx

(1)
j

×
n∏

j=m+1

∫
R

e
− 1

4t

2tbj
aj

cos(2taj bj)

sin(2tajbj)
(x

(1)
j )2

e−2πiξj ·x(1)
j dx

(1)
j

= (4πt)−
n
2

m∏
j=1

(
2tbj

aj sinh(2tajbj)

)1
2

n∏
j=m+1

(
2tbj

aj sin(2tajbj)

) 1
2

×
m∏
j=1

(
1

4πt
2tbj
aj

cosh(2tajbj)
sinh(2tajbj)

)− 1
2

e
−4π2t

aj
2tbj

sinh(2taj bj)

cosh(2tajbj)
ξ2j

×
n∏

j=m+1

(
1

4πt
2tbj
aj

cos(2tajbj)
sin(2tajbj)

)− 1
2

e
−4π2t

aj
2tbj

sin(2tajbj)

cos(2tajbj)
ξ2j

=
m∏
j=1

(
1

cosh(2tajbj)

)1
2

n∏
j=m+1

(
1

cos(2tajbj)

)1
2

×
m∏
j=1

e
−2π2 aj

bj

sinh(2taj bj)

cosh(2tajbj)
ξ2j

n∏
j=m+1

e
−2π2 aj

bj

sin(2tajbj)

cos(2taj bj)
ξ2j → 1

as t→ 0+.

(3) We write (3.6) as K(x; t) = K1(x; t)K2(x; t), where

K1(x; t) =
m∏
j=1

(
2tajbj

sinh(2tajbj)

) 1
2

n∏
j=m+1

(
2tajbj

sin(2tajbj)

)1
2

· e
− 1

4t

⎡⎣∑m
j=1

(
x
(1)
j
aj

)2(
2tajbj cosh(2taj bj)

sinh(2tajbj)
−1

)
+
∑n

j=m+1

(
x
(1)
j
aj

)2(
2tajbj cos(2tajbj)

sin(2tajbj)
−1

)⎤⎦

and

K2(x; t) =
(4πt)−

n
2

(detA)
1
2

e−
|x|2

A−1
4t .

The proof will be carried out in two steps.
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(i) K2(x; t)
d−→ δ(x), as t→ 0+.

For any ϕ ∈ C∞
0 (Rn),

(3.7)
∫

Rn

K2(x; t)ϕ(x)dx= ϕ(0)
∫

Rn

K2(x; t)dx+
∫

Rn

K2(x; t) [ϕ(x)− ϕ(0)]dx.

The first term∫
Rn
K2(x; t)dx =

n∏
j=1

∫
R

1
aj
√

4πt
e
− x2

j

4ta2
j dxj =

n∏
j=1

∫
R

e−πx
2
j dxj = 1,

and the second term∫
Rn

K2(x; t) [ϕ(x)− ϕ(0)]dx =
∫

Rn

(4πt)−
n
2

(detA)
1
2

e−
|A− 1

2 x|2
4t [ϕ(x)− ϕ(0)]dx

=
∫

Rn

e−π|y|
2
[
ϕ
(√

4πtA
1
2 y
)
− ϕ(0)

]
dy → 0,

as t→ 0+.
As a result of (3.7),

lim
t→0+

∫
Rn
K2(x; t)ϕ(x)dx= ϕ(0) =

∫
Rn
δ(x)ϕ(x)dx,

i.e. K2
d−→ δ, as t→ 0+.

(ii) K(x; t) d−→ δ(x), as t→ 0+.

Taking any ϕ ∈ C∞
0 (Rn), we assume that support of ϕ is contained in the ball

{x ∈ Rn : |x| � R}, and that ϕ is dominated by some constant C everywhere. For the
sake of ∫

Rn

Kϕdx− ϕ(0) =
∫

Rn

(K1 − 1)K2ϕdx+
∫

Rn

K2ϕdx− ϕ(0)

and step (i) limt→0+

∫
Rn K2ϕdx = ϕ(0), it is sufficient to concludeK d−→ δ, as t→ 0+

by checking

lim
t→0+

∫
Rn

(K1 − 1)K2ϕdx = 0.

Indeed, a variable change y = A− 1
2 x√

4πt
makes∫

Rn
(K1 − 1)K2ϕdx =

∫
|x|�R

(K1(x; t)− 1)K2(x; t)ϕ(x)dx

=
∫
|y|�‖A

− 1
2 ‖R√

4πt

(K1(
√

4πtA
1
2 y) − 1)ϕ(

√
4πtA

1
2 y)e−π|y|

2
dy
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where

K1(
√

4πtA
1
2 y) =

m∏
j=1

(
2tajbj

sinh(2tajbj)

) 1
2

n∏
j=m+1

(
2tajbj

sin(2tajbj)

)1
2

· e−π
[∑m

j=1 y
2
j

(
2tajbj cosh(2tajbj)

sinh(2taj bj)
−1

)
+
∑n

j=m+1 y
2
j

(
2tajbj cos(2tajbj)

sin(2tajbj)
−1

)]
.

Noticing that u cosh(u)−sinh(u)
sinh(u) → 0+ and u cos(u)−sin(u)

sin(u) → 0− as t→ 0+, we obtain

∣∣∣∣∫
Rn

(K1 − 1)K2ϕdx

∣∣∣∣ � C

m∏
j=1

(
2tajbj

sinh(2tajbj)

) 1
2

n∏
j=m+1

(
2tajbj

sin(2tajbj)

)1
2

·
∫

Rn

[
e
−π∑n

j=m+1 y
2
j

(
2taj bj cos(2tajbj)

sin(2taj bj)
−1

)
− 1

]
e−π|y|

2
dy → 0

as t→ 0+, which completes the proof.

3.2. Explicit formulae (non-diagonal case)

In order to generalise Proposition 3.1 to non-diagonal case, we first rewrite (3.5)
in inner-product form

K(x, x0; t) = (4πt)−
n
2

⎛⎝detψ
(
2t
√
ΛaΛb

)
detΛa

⎞⎠
1
2

× e
− 1

4t

(
〈ϕ(2t√ΛaΛb)x,x〉

(Λa)−1+〈ϕ(2t√ΛaΛb)x0,x0〉
(Λa)−1−2〈ψ(2t√ΛaΛb)x,x0〉

(Λa)−1

)

(3.8)

where ϕ(u) = u coth(u), ψ(u) = u
sinh(u) .

Suppose that A and B are commutative, then there exists an orthogonal matrix
P such that PAP t = Λa and P (B + Bt)P t = 2Λb. Putting y = Px, system
ẍ = 2A(B +Bt)x =: Dx becomes ÿ = 4ΛaΛby. Moreover, we have

detψ
(
2t
√
ΛaΛb

)
= detψ

(
t
√
D
)
,〈

ϕ
(
2t
√
ΛaΛb

)
y, y

〉
(Λa)−1

=
〈
(Λa)−1ϕ

(
2t
√
ΛaΛb

)
Px, Px

〉
=
〈
PA−1P tϕ

(
2t
√
ΛaΛb

)
Px, Px

〉
=
〈
A−1ϕ

(
t
√
D
)
x, x

〉
=
〈
ϕ
(
t
√
D
)
x, x

〉
A−1

,
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and similarly, 〈
ϕ
(
2t
√
ΛaΛb

)
y0, y0

〉
(Λa)−1

=
〈
ϕ
(
t
√
D
)
x0, x0

〉
A−1

,

〈
ψ
(
2t
√
ΛaΛb

)
y, y0

〉
(Λa)−1

=
〈
ψ
(
t
√
D
)
x, x0

〉
A−1

.

According to (3.8), we have arrived one of our main results.

Theorem 3.1. For given matrix A symmetric positive definite, B a real matrix
such that A and B are commutative, the heat kernel of Schrödinger operator

LS = −div(A∇) + 〈Bx, x〉

has the following form

K(x, x0; t) = (4πt)−
n
2

⎛⎝detψ
(
t
√
D
)

detA

⎞⎠
1
2

× e−
1
4t(〈ϕ(t

√
D)x,x〉

A−1+〈ϕ(t√D)x0,x0〉
A−1−2〈ψ(t√D)x,x0〉

A−1)(2.1)

where D = 2A(B +Bt), ϕ(u) = u coth(u), ψ(u) = u
sinh(u) .

Remark 3.4. We use the convention u coth(u)|u=0 = 1, so D coth(D) = In on
the kernel of D, and so on.

4. HEAT KERNEL FOR L

For the first application of Theorem 3.1, we compute the explicit heat kernel of
operator L. With mention in introduction, we will adopt the ansatz (1.3) and solve
the associated differential equation system (1.4)-(1.9). Of all these equations, the most
difficult one is the matrix Riccati equation (1.4). Given the results of previous sections,
we handle this point in a straightforward way. In fact, we have the following

Theorem 4.2. (Globally closed solution for matrix Riccati equation). For matrix
A symmetric positive definite, B a real matrix such that A and B are commutative,
matrix Riccati equation

(1.4) α̇ = 4αAα − B + Bt

2
has a globally explicit solution

(4.1) α =
−1
4t
A−1ϕ

(
t
√
D
)
.

Besides, the differential equations system
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β̇ = 4βAα(1.5)

γ̇ = βAβ(1.6)

have explicit solutions

β =
1
2t
A−1ψ

(
t
√
D
)

γ =
−1
4t
A−1ϕ

(
t
√
D
)(4.2)

where D = 2A(B +Bt), ϕ(u) = u coth(u), ψ(u) = u
sinh(u) .

Proof. The solutions are read out from the Theorem 3.1 since equations (1.4)-(1.6)
are irrelevant to vector f , g and constant h.

Next, we may integrate equations (1.7)-(1.9) for A and B satisfying condition of
Theorem 3.1. We point out that for singular matrix B, solutions are formulated in
component form. To have concise solutions, we assume that B is non-singular and
commutative with symmetric positive definite A.

• μ− function

(4.3) μ =
1
2
A−1f −

cosh
(
t
√
D
)

√
D sinh

(
t
√
D
)g.

• ν − function

(4.4) ν =
1
2
A−1f +

1
√
D sinh

(
t
√
D
)g.

Remark 4.5. Free constants in μ−function and ν−function are absorbed by func-
tion W (t).

• W − function
Making use of

Aα =
−1
4t
ϕ
(
t
√
D
)
,

〈Aμ, μ〉 =
1
4
|f |2A−1 −

〈
coth

(
t
√
D
)

√
D

f, g

〉
+

〈
coth2

(
t
√
D
)

2 (B +Bt)
g, g

〉
,

〈f, μ〉 =
1
2
|f |2A−1 −

〈
coth

(
t
√
D
)

√
D

f, g

〉
,

volume elementW (t) satisfies
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W−1Ẇ =
−1
2t
tr
[
ϕ
(
t
√
D
)]

− 1
4
|f |2A−1 +

〈
coth2

(
t
√
D
)

2 (B +Bt)
g, g

〉
− h.

Integration yields

W (t) = W0e
−
(

1
4
|f |2

A−1+h
)
t+〈φ(t√D)g,g〉

A
t3

where W0 = C

[
det 1

sinh(t
√
D)

] 1
2

and φ(u) = u−coth(u)
u3 . Taking f = g = h = 0, we

have

W0 = W = V = (4πt)−
n
2

⎛⎝detψ
(
t
√
D
)

detA

⎞⎠
1
2

.

Consequently, volume element W is given by

(4.5) W = (4πt)−
n
2

⎛⎝detψ
(
t
√
D
)

detA

⎞⎠
1
2

e
−
(

1
4
|f |2

A−1+h
)
t+〈φ(t√D)g,g〉

A
t3
.

Finally, we yields another main result of this paper.

Theorem 4.3. For A symmetric positive definite, B non-singular such that A and
B are commutative, the heat kernel of operator

L = −div(A∇) + 〈Bx, x〉 + 〈f,∇〉+ 〈g, x〉+ h

has the following form

K(x, x0; t) = (4πt)−
n
2

⎛⎝detψ
(
t
√
D
)

detA

⎞⎠
1
2

e
−
(

1
4
|f |2

A−1+h
)
t+〈φ(t√D)g,g〉

A
t3

× e−
1
4t(〈ϕ(t

√
D)x,x〉

A−1+〈ϕ(t√D)x0,x0〉
A−1−2〈ψ(t√D)x,x0〉

A−1)

× e
1
2 〈f,x−x0〉

A−1−〈 coth(t
√

D)√
D

g,x〉+〈 1√
D sinh(t

√
D)
g,x0〉

(2.2)

where D = 2A(B +Bt), ϕ(u) = u coth(u), ψ(u) = u
sinh(u) , φ(u) = u−coth(u)

u3 .

5. EXAMPLES

For the second application of Theorem 3.1, we demonstrate three examples to
recover and generalise several classical results on some celebrated operators. Notation
ϕ(u) = u coth(u) and ψ(u) = u

sinh(u) keep valid throughout the whole section.

Example 5.1. Generalised Laplacian
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Define generalised Laplacian as LGL = −div(A∇) where A is a symmetric positive
definite matrix. With B = 0 in Theorem 3.1, we have D = 0, ϕ

(
t
√
D
)

= In,

ψ
(
t
√
D
)

= In and the heat kernel is given by

KGL(x, x0; t) =
(4πt)−

n
2

(detA)
1
2

e−
1
4t(〈x,x〉A−1+〈x0,x0〉

A−1−2〈x,x0〉
A−1)

=
(4πt)−

n
2

(detA)
1
2

e−
|x−x0 |2

A−1
4t .

(5.1)

In particular, taking A = In, kernel becomes

KL(x, x0; t) = (4πt)−
n
2 e−

|x−x0 |2
4t

which is exactly the Gaussian.

Example 5.2. Generalised Hermite operator

Define generalised Hermite operator LGH = −div(A∇) + 〈Bx, x〉 with B > 0.

• A = In, B = diag{b2j}nj=1 (bj > 0)

By Theorem 3.1, we yield Mehler formulae

K(x, x0; t) = (4πt)−
n
2

n∏
j=1

(
2tbj

sinh(2tbj)

)1
2

× e
− 1

4t

(∑n
j=1

2tbj cosh(2tbj)

sinh(2tbj)
(x

(1)
j )2+

∑n
j=1

2tbj cosh(2tbj)

sinh(2tbj)
(x

(0)
j )2

)

× e
− 1

4t

(
−2

∑n
j=1

2tbj
sinh(2tbj)

x
(0)
j x

(1)
j

)
.

(5.2)

• A = diag{a2
j}nj=1, B = diag{b2j}nj=1 (aj > 0, bj > 0)

By Theorem 3.1, the heat kernel for the generalised Hermite operator has the form

K(x, x0; t) = (4πt)−
n
2

n∏
j=1

(
2tbj

aj sinh(2tajbj)

) 1
2

× e
− 1

4t

(∑n
j=1

2tbj
aj

cosh(2tajbj)

sinh(2tajbj)
(x

(1)
j )2+

∑n
j=1

2tbj
aj

cosh(2tajbj)

sinh(2taj bj)
(x

(0)
j )2

)

× e
− 1

4t

(
−2

∑n
j=1

2tbj
aj

1
sinh(2tajbj)

x
(0)
j x

(1)
j

)
.

(5.3)

• A > 0, B = diag{b2j}nj=1 ( bj > 0), A and B are commutative.
With D = 4AB in Theorem 3.1, the heat kernel of the generalised Hermite operator
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is given by

K(x, x0; t)

= (4πt)−
n
2

⎛⎝detψ
(
2t
√
AB

)
detA

⎞⎠
1
2

×

e−
1
4t(〈ϕ(2t

√
AB)x,x〉

A−1+〈ϕ(2t√AB)x0,x0〉
A−1−2〈ψ(2t√AB)x,x0〉

A−1).

(5.4)

Example 5.3. Ornstein-Uhlenbeck operator on weighted space

Define Ornstein-Uhlenbeck operator

HOU = −div(A∇) + Bx · ∇

withA symmetric positive definite andB any real matrix commutativewithA. Ornstein-
Uhlenbeck

Hφ = −div(A∇) + A∇φ · ∇
on Hilbert space L2(Rn, e−φdx) is unitarily equivalent to the Schrödinger operator

H = −div(A∇) +
1
4
|∇φ|2A − 1

2
div(A∇φ)

defined on Hilbert space L2(Rn, dx):

Hφ = THT−1

where T is a multiplication operator defined by

Tu := e
φ
2u.

Thus,
e−tHφ = Te−tHT−1.

Let φ take the form 〈B̃x, x〉 satisfying A∇φ = Bx, then

B̃x+ B̃tx = ∇φ = A−1Bx.

Hence,
φ =

1
2

〈(
B̃x+ B̃t

)
x, x

〉
=

1
2
〈Bx, x〉A−1 ,

Hess(φ) = A−1B,

div (A∇φ) = tr [AHess(φ)] = tr(B).
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Consequently,

H = −div (A∇) +
1
4
〈
BtA−1Bx, x

〉− 1
2
tr(B).

By Theorem 4.2 with D = BtB, f = g = 0 we have the heat kernel of H :

K(x, x0; t)

= (4πt)−
n
2

⎛⎝detψ
(
t
√
BtB

)
detA

⎞⎠
1
2

e
t
2
tr(B)

× e−
1
4t(〈ϕ(t

√
BtB)x,x〉

A−1+〈ϕ(t√BtB)x0,x0〉
A−1−2〈ψ(t√BtB)x,x0〉

A−1).

For any g ∈ L2(Rn, e−φdx),

e−tHφg = Te−tHT−1g

=
∫

Rn

e
φ(x)

2 K(x, y; t)e−
φ(y)
2 g(y)dy

=
∫

Rn

e
φ(x)

2 K(x, y; t)e
φ(y)
2 g(y)e−φdy.

Finally, the heat kernel of Ornstein-Uhlenbeck operator on weighted space

HOU : L2(Rn, e−
〈Bx,x〉

A−1
2 dx) → L2(Rn, e−

〈Bx,x〉
A−1

2 dx)

is given by

(5.5)

KOU (x, x0; t)

= e
φ(x)

2 K(x, x0; t)e
φ(x0)

2

= (4πt)−
n
2

⎛⎝detψ
(
t
√
BtB

)
detA

ettr(B)

⎞⎠
1
2

× e−
1
4t{〈[ϕ(t√BtB)−tB]x,x〉

A−1+〈[ϕ(t√BtB)−tB]x0,x0〉
A−1−2〈ψ(t

√
BtB)x,x0〉

A−1}.
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