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PATH PROPERTIES OF [*°-VALUED RANDOM FIELDS

Kyo-Shin Hwang and Yong-Kab Choi*

Abstract. In this paper we investigate path properties for strictly stationary
and linearly positive quadrant dependent (LPQD) or linearly negative quadrant
dependent (LNQD) random fields with multidimensional indices taking values in
[*°-space.

1. INTRODUCTION AND RESULTS

In the last years there has been growing interest in concepts of positive/negative
dependence for families of random variables. Such concepts are of considerable use in
deriving inequalities in probability and statistics. Recently, Csorgt et al. [3] and Choi
and Csorgd [1, 2] studied asymptotic properties for [°°(and [P)-valued Gaussian random
fields. In this paper we are interested in path properties for any positive or negative
dependent random field with multidimensional indices taking values in [*°-space.

For the aim of the present paper, we need to elaborate upon definitions and notations
which will play a basic role in the present work. For a positive integer N, let R" and
Rf , respectively, be N-dimensional and nonnegative N-dimensional Euclidean spaces
with coordinatewise partial order <, and let Zf be the N-dimensional lattice of all

points in RY having nonnegative integer coordinates. Let {X;(t);t € [0,00)V}52,
be a sequence of random fields indexed by N-dimensional parameter t := (1, -, tn)

on the probability space (2, §, P), which will be called centered if E(X(t)) = 0.

Esary et al. [5] and Joag-Dev and Proschan [7] introduced definitions of positive
and negative associations, respectively: Let C be a set of functions of the form f :
[0,00)Y — R which are coordinatewise nondecreasing. A random field {X;(t); t €
[0,00)N}92, is said to be positively associated (PA, for short) if, for any f, g € C and
any finite subsets A and B of Z,

Cov (F(Xi(t): i € A), g(X,(t); j € B)) =0,
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while a random field {X;(t)}5°, is said to be negatively associated (NA, for short) if,
for any f, g € C and any disjoint finite subsets A and B of Z,

Cov (F(Xi(t): i € A), g(X,(t); j € B)) <0.

Newman [12] introduced and discussed the following another concepts of positive
or negative dependence. The random field {X;(t); t € [0,00)V}22, is said to be
linearly positive quadrant dependent (LPQD) if, for any positive numbers \; and any

disjoint finite subsets A, B of Z_, the inequality

P{ DONXi(t) =3, > NX(t) > y}

i€EA jEB
(1) > P a0z o b P a0 2 )
i€A jEB

holds for all real =, y € R, which is equivalent to the inequality (Lehmann [8], pp.
1137-1138)

P{ DONXi(t) <z > NX() < y}

icA jeB
(1.2) ZP{Z/\iXi(t) gx}P{Z/\ij(t) gy},
icA jeB

while the random field {X;(t)}5°, is said to be linearly negative quadrant dependent
(LNQD) if the inequalities in (1.1) and (1.2) are reversed. In general, two random
variables X and Y have been called positively (resp. negatively) quadrant dependent
(PQD) (resp. NQD) by Lehmann [8], if P(X > z,Y > y) > (resp. <) P(X > z)
P(Y > y) for all z, y € R.

From the definitions, it is obvious that PA or NA implies LPQD or LNQD (cf.
[5, 7]), respectively, but the converse is not true (see e.g. Joag-Dev [6], pp. 1038-
1039). The positive or negative dependence plays an important role in a wide variety of
areas, including statistical mechanics, quantum field theory, percolation models, multi-
nomial distribution, permutation distribution, reliability theory, mathematical physics
and multivariate statistical analysis.

Since LPQD and LNQD is strictly weaker than PA and NA, respectively, studying
the limit theorems for LPQD or LNQD random sequences is of interest in this field.
The following is not necessarily an exhaustive list of papers for LPQD or LNQD
random variables: Newman [12, 13], Li and Wang [9], Wang and Zhang [15], Zhang
[16].

The objective of this paper is to establish a generalized uniform law of the iterated
logarithm and investigate path properties for LPQD or LNQD random fields taking
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values in [*°-space, whose description now follows. For two vectors s = (s1,- -+, Sn)
and t = (t1,---,ty) in N-dimensional parameter space [0, 00)”, denote

S:|:t=<$1:|:t1,~~~,$N:|:tN>, St=<81t1,~~~,SNtN>,
s<t if s, <t, foreach m=1,2,--- N, 0=(0,---,0), 1=(1,---,1),
at=(aty, - ,aty) for a € (—00,00), (8,t)=(s1,--,5n,t1, - ,tn) € [0,00)%".

Assume that {X;(t); t € [0,00)V}, is a sequence of centered strictly stationary and
LPQD (LNQD) random fields with X;(0) = 0 and stationary increments

oi(ltl) = VE{Xi(s +t) - Xs(s)}?, i1,

where o;(t) are nondecreasing continuous functions of ¢ > 0, and || - || denotes the
Euclidean norm such that [|t|| = (32N _; t?n)l/Q. Put

O x (t> = sup Uz(t>
i>1
and assume that o, (-) is a regularly varying function with exponent cv > 0 at co. Recall
that a positive function o (t) of ¢ > 0 is said to be regularly varying with exponent
a>0atb>0iflim_p,{o(zt)/o(t)} = z for z > 0.

Let {X(t) := (X1(t), Xa(t),--); t € [0,00)} be a centered strictly stationary
and LPQD (LNQD) random field taking values in [*°-space (i.e. [°°-valued random
field) with 1°°-norm | - ||oc defined by [|X(t)]|so = sup;s; | Xi(t)].

For each m = 1,2,---, N, let a,,(T) and b,,(T) be positive nondecreasing func-
tions of 7" > 0 such that a,,(T") < b,,,(T") and limg_, b, (T) = co. Denote

ar = (a(T), - ,an(T)), br=(b(T),---,bn(T)),
AT) = \/2{ log (|Ibr|/ar) + loglog [br|}.

where log z = log(max{z, e}).
Note that the condition (i) in Theorem 1.1 below implies conditions (C2) and (I)
in [9] and [15], respectively. The main results are as follows.

Theorem 1.1. Let {X(t) := (X1(t), Xa(t),---);t € [0,00)V} be a centered
strictly stationary and LPQD (LNQD) [°°-valued random field with 1°°-norm || - ||oo
and E|X1(t)|*T < oo for some § € (0, 1], which satisfies conditions

(i) Z | Cov(X;(1), X;(b;) ) |=O(||bg|| ™) for each i, k > 1 and some \ > 2,
J2k+1
(ii) inf o*(x)/z > 0.
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where uj, = O(vy) denotes lim supy,_, . ug /v, < 0o. Then

[X(s +t) — X(8)loo

limsup sup sup
T—oo |s|<|brll [t <[br] o ([br])y/21oglog [br|
X(b
(1.3) = lim sup IX(br)lloo =1

T—oo 0x(|[br])1/2loglog[[br]|

The first result in (1.3) implies a generalized uniform law of the iterated logarithm
(LIL) for LPQD or LNQD [*°-valued random fields, but the second one in (1.3) is a
standard form of the ordinary LIL for [*°-valued random fields which is an extension

of Theorem 1 in [3]. Since v(7T') > /2loglog||br||, it is natural that (cf. see (2.1)
in the proof of Theorem 1.1)

X(s+t) — X
(1.4) limsup sup sup IX(s +) (8)lloc <1 as.
T—so |ls|<[br| [e)<br  x(PT])¥(T)

In order to obtain a limit result, we consider the following condition (iii) of Theorem
1.2.

Theorem 1.2. Let {X(t);t € [0,00)N} be as in Theorem 1.1 with conditions
(1)-(i1), and let
1 b
iy i o8 (el larl) _
T—oo loglog|brll
Then we have

lim  sup sup IX(s+t) — X(8)]| o
T—o0 sl <[[br| [tl|<|lbrl  O*([BTI)Y(T)
X X
(1.5) — fim sup  ALXEEDPD) =X )]

=1 a.s.
T—oosi<lbr  Ox(Ib7[)V(T)

Theorem 1.2 for [*°-valued random fields generalizes some limit results in [2, 3,
4, 10, 11]. Returning to our present exposition, we present an example for Gaussian
random field.

Example 1.1. Let {X(t);t € [0,00)"} be a centered stationary and LPQD
(LNQD) [*°-valued Gaussian random field with conditions (i)-(ii) in Theorem 1.1. For
eachi =1,2,..., N, leta;(T) = Vi logT and b;(T) = /i T, where T := 1/¢ for 0 <
¢ < 1. Then,

ar = (a1(T),-- ,an(T)) = (1,V2,--- ,V/N)logT, br=(1,v2,---,VN)T,
lai/ =V NN +1)/21og(1/s),  |Ibisll=vV NN +1)/2(1/s),

v(1/¢)~ \/2( log(1/<)—loglog(1/s)) for sufficiently small ¢ by (iii) in Theorem 1.2.
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Hence, by Theorem 1.1, we have the uniform law of the iterated logarithm

X t) - X
limsup sup sup [X(s +t) (8)lloc =1 a.s.

<10 sl <lby el 61<Ib el 0|y 1)1 /2 log log [[by /|

On the other hand, adding condition (iii) of Theorem 1.2, we have the modulus of
continuity

1X(s +b1/) = X(s)]|oo 3
lim sup =1 a.s.

0 Is][<Ifby ] ax(|[b1/dll) \/2 (log(1/s) —loglog(1/s))

2. PrOOFS

In this section, let ¢ denote a positive constant which may take different values
whenever they appear in different lines. We need the following properties.

(Py) Two random variables X and Y are PQD (resp. NQD) if and only if
Cov (f(X), g(Y)) > (resp. <) 0 for all real-valued nondecreasing functions f and g
(such that f(X) and g(Y") have finite variances) (see Lehmann [8]);

(Py) (Hoeffding equality): For any absolutely continuous functions f and g on the
real line and for any random variables X and Y satisfying Ef2(X) 4+ Eg?(Y) < oo,
we have

Cov (f(X), g(Y))
/ / f(x (X >z, Y >y)— P(X >z)P(Y > y)}da:dy.

The main ingredients of the proofs of Theorems 1.1-1.2 are Propositions 2.1-2.3
below. Note that the conditions (i)-(ii) in Theorem 1.1 imply conditions (C2) and
(D-(I1) in [9] and [15], respectively. Moreover, || X(t)||oo/0«(||t]|) is a standardized
random variable. Thus Lemma 2 in [9] and Corollary 2.1 in [15] are easily changed
to the following Berry-Esseen type theorem.

Proposition 2.1. (Berry-Esseen type theorem). Let {X(t); t € [0,00)V} be as in
Theorem 1.1 with conditions (1)-(ii). Then

)l - s
P{EBLs < 21— a(:)| = O(Ibr| %), T - o,

where ®(-) is a standard normal distribution function and ||br| — oo as T — oc.

sup,

Denote by, = by, for a nonnegative increasing sequence {7%}7°, in R . Using
Proposition 2.1, the following proposition is immediate from the proof of Lemma 9 in
Petrov [14, p. 311].
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Proposition 2.2. Let {X(t)} be as in Proposition 2.1. Assume that g(x) is a
positive nondecreasing function of x > 0 and that {||by|| ; k > 1} is a positive nonde-
creasing sequence such that 372, ||by||~Y/® < cc. Then the following statements are
equivalent.

X(be) o
(4) ZP{ T > 9 } < o0
®) Z e = (5o mi)) < o0

The following proposition on the large deviation probability is proved in Section 3.

Proposition 2.3. Let {X(t);t € [0,00)N} be a centered strictly stationary 1°°-
valued random field. Then, for any € > 0 there exists a constant c. > 0 such that, for
v>1,

sup sup
Is<librll [tl<|brl ox(|[brl])

ch<P{HX(bT)Hoo S Y }

o(lfbrl) — 1+e

4 ZQZNZ" {HX bT)Hoo \/m 2n/2})

o(brl) = T+e

P{ [X(s +t) —X(s)[loo Zv}

Proof of Theorem 1.1. Let us first prove

X ~X
2.1 limsup sup 1X(s +t) (8)lloo <
T—oo |[s|<[[brl [t <[brl o«(|br[])1/210glog|[br||

For 0 > 1, set Ay = {T; 6*~! < ||br|| < 6*}, k > 1. Note that \/2loglog f~1 >
6—1/2loglog O since (logu)/u is decreasing for u > €. By the regularity of o, (-),
we get a.(||br||) /o (6F) > 672% as k — oo, and hence
X t) — X
e o (s + ) = X(5) e
T—oo [s|<llbr| lt]<[br]l ox([[br]) /2 1oglog ||br]|

X(s+t)— X
(2.2) < limsup sup sup  sup [X(s +t) = X(s) oo
k—oo TEA||s|<[[br| HtH<Hbq‘~’H o, (|br||) /2 1oglog O+

X t) — X
91+2°‘hmsup sup  sup (s+t) — X(s)lloo

koo s <0k ||t]|<6% 0+(6%)y/2loglog OF

For convenience, let ||by|| = 6%, where by, := by, for a nonnegative increasing se-
quence {7}}7°,. Using Proposition 2.3, it follows that for any ¢ > 0 there exists a
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positive constant c. such that

P{ sup  sup 1X(s + t) — X(8)]| oo y 1+2€}
Isl<6t [|6]<6* 0+(0F)+/21oglog OF
(2.3) <c< {H (bk>\!oo>(1+2a>\/m}

. — +€

o (0F) — 1+4e€

/ k
2221\/2" {HX bk)”oo (1+2¢)y/2loglog 6 \/W'Qn/2})~

(0k) — 1+4e
Now let us apply Proposition 2.2 with ||by|| = 6% and

2 2logl k 142 2logl k
g(0%) = (14 2¢)y/2loglogd (Or (14 2¢)y/2loglogd /71+2N10g3.2n/2>.

14¢ 14¢
Considering the right hand side of (2.3) and (B) of Proposition 2.2, we have

o0

exp( —=(—— oglog
i (1+2¢)v/2loglog 6% 2\ 1+e¢

[e.9]
< CZ (logﬁk)_l_5 < 00,
k=1
where ¢/ = ¢/(1 + ¢), and also

— n 1714262
ZZQQNQ exp(—g( * 8) (210g10g9k)(1+2N10g3)2">

k=1n=1 l+e
o o
< Z Z 92V2" (Jog k)~ (14 (1+2N 10g 3)2"
k=1n=1
<e Z Z 22N2" —(logy k) log 3) o~ (log, k)2"
k=1n=1
o o o o
S B IELISIS 5) SIS
k=1n=1 k=1n=1

It follows from (2.3) and Proposition 2.2 that

[0.9]
[X(s +t) = X(8) lloo }
P{ sup  sup >1+4 2, < oo.
o1 Usli<or [e]<er 0w (0%)/2loglog O

Thus the Borel-Cantelli lemma yields

X t) — X
limsup sup sup IX(s+t) () Hoo<1—1—25 a.s.

k—oo |s|<6% ||t]|<6k 0«(0%)\/2logloglF
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Combining this with (2.2) implies (2.1) since € and 6 are arbitrary.
By virtue of (2.1), the proof of (1.3) is completed if we show that

X(br) ||co
(2.4) lim sup | X(br) | >
T—oo 0u(|br|])\/2loglog ||br

Set by, = by, for an increasing sequence {Tk}zozl in R;, and let 79 > 1 be an integer
such that o, (||bx||) = ox«(||bkl||). Then

X(b) |l Xi
(2.5) limsup | X(b) | > lim sup o(br)
k—oo 0w ([[brl)\/21oglog|[brll — k—oo i ([|br]) /2 loglog |[by |

and the inequality (2.4) is immediate from (2.5) if we prove

(2.6) lim sup Xio (br)
k—oo iy (|[brl]) /2 1oglog || by||

1—4e a.s.

for any small € > 0. Let

By — {Xi()(bk) — Xiy (b /2)
iy (|| bx — b2 [])

> (1- 25)\/210g10g | bx — by2 || } .

Note that

Xiy(br) — X, (b
oy o K8 = Xig(biga)

oig([Ilbx =bgpa )~
is a standardized random variable. For 6 > 1, set ||b|| = 6*. Then || by — by s || ~
0% for sufficiently large k since || bi| — [[br/2|l < |[br — byl < [ bi| +
[br/2 || To apply Proposition 2.2 with || by — by /o ||, let g(|| by — by /2 ||) = (1 — 2¢)

\/2 loglog || by — by/a ||. Then

o0

Z ! )exp(— %.92(”bk—bk/2H ) >cZexp( (1—e loglog9k>

“— (|l bu—byg2 ||
> CZ EHe = .
k=1

Consequently, applying Proposition 2.2 implies
[0.9]

2.7) Y P(By) = oo
k=1

Next, let

_ {Uk >(1- 35)\/2 loglog || by, — by s H} :
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We will show that
(2.8) P(By, i.0.) =1.

Choose a differential function f(z) on R such that |f'(z)| < k for some 0 < kK < 00
and

0< I{a} > (1— 25)\/210g10gH by — by H}

29) < f(@) < 1{a > (1-32), 2 loglog | br = byya ||} < 1,

where I{-} is an indicator function. In order to prove (2.8), it is enough to show that

(2.10) if(Uk) =00 a.s.

k=1
From (2.7) and (2.9), we get
2.11) Y Ef(Ux) =Y P(By) = o.
k=1 k=1

By Markov inequality, we have

k
(2.12) §4Var< ” f(Uk>>/<Zn:Ef(Uk>>
=1 =1

83 S | Cov (U, £(T) |
< k=1 j=k+1 _
S B (S erwn)’
k=1 k=1

Noting that Uy and U; are LPQD (resp. LNQD) from the definition of LPQD (resp.
LNQD), it follows from (i), (P1), (P2) and the regularity of o,(-) that
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>3 | Cov (f(U), F(U))) |

k=1j=k+1

ZZ// 17 W) | PV > 2.0, > 1)

k=1j=k+1

—P{U}, > 2}P{U; > y}‘dxdy

SQZZ // P{U > 2,U; >y}

k=1j=k+1
—P{Us > 2} P{U; > y} ) dady |

= K? Z Z ‘ Cov (U, Uj)‘

(2.13) k 1j=k+1

<c
Z ku = by2|])

IN

‘cov X, (br)—=X, (bys2), X, (bj)—X,, (bj/Q))‘
j=k+1
2 b =brpl &
¢ Cov (X;,(1), X, (b;) — X, (bj/2)
kz: Z(bk—bk/z)];l‘ (Ko o (B o (bj/2 )‘

<cz (0)' 2 I bgsnysall Y | Cov (Xiy(1), Xiy (b))

j>k+1

< czek(1—2a)9(k+1)/2u bi H—)\ < CZQ—()\—2+204)1§ < 00
k=1 k=1

for > 0 and A > 2. Combining (2.11)-(2.13) and letting n — oo yields

P {i f(Uk> < OO} = 0.
k=1

This proves (2.10) and consequently (2.8). Let

Xio(by/2)
Cp = {01007/ > —2\/210g10gH by /2 H}

io ([[Prs2ll)
It follows from (2.1) and (2.8) that P(B; N Cy, i.0.) = 1. It is easy to see that
X, (b
P{M > (1 —4e)y/2loglog|| bgl, i.o.}
7io (|[brl])

X, (bg)
> P{——~>(1-3¢),/2loglog || by —by /s | =2/2loglog || b2 |,
{Uz‘o(kuH) \/ / \/ /

> P{Bg ney, zo} —1
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for k large enough. This implies (2.6).

Proof of Theorem 1.2. Letf =1+4¢ for0 <e < 1. Letk; and [; (1 <i < N)
be positive integers, and set 6% = (61, ... 9F~) g2 = (goh ... golv) € RY for
—o<a<oo, k=+3N & andz_ﬁzjilzi. Define

Bex = {T3 07! <ai(T) <0, "' <oy(T) < oM, 1<i< N}
In the sequel, we always consider £ and k such that By # @. Note that g1 <
| ar| < 6N and 0! < || by| < 6NF for T € Bgy. The condition (iii) implies that

| < Nk —2(loglog#*)/(log#)* =: K and

(1) = (2108 (Ibr o) {1+ BRI ) ™ 5 \fotog (11 o)

for sufficiently large k£ (or 7T"). Thus (1.5) is immediate from (1.4) if we show that

X
(2-14) lim lnf sup H (S + bT) ( ) Hoo

>1 a.s.
T=o0 Jis||<[br|l ¢, (b)) \/210g HbTH/HaTH)

By the definition of o,(-), there exists an integer ¢+ > 1 such that o,(||6¥|) =
o ([|6¥]]), k > 1. Put [y e = ﬁwk_l@_ll/]v, <o, 0F19=IN/N) Then we can write

X _
liminf sup |X(s + br) — X(s) lloo
T=o0 |s||<brl| o«(|lbrl) \/210g HbTH/HaTH)

X ky _
> liminf inf sup [ X(s +6%) = X(s) llc
koo T€Bek 5| <[[br| 0w ([|0¥]) /2 1og GNF=IH1
1X(s + 6%) — X(s + br)||oo
—limsup sup sup
k—oo TeByx [s|<|[brll o«(||6X71])) v/21logNk—+1
X(s + 6%) —
(2.15) > liminf inf IX(s + 6%) — X(5)l|oo

sup
koo LK g <pr—1 o ([|0%]]) v/21og ONE1H

— limsup sup sup sup
k—oo I<K |s||<|lo%] [|o%t[<[[br|<[6*]]

IX(s +6%) = X(s + br)lloo_ o([J6* — 0" 1])
ou([|0% — gk=1])) \/21og OVE=IFT o ([0 1]])
s /N ky _ s ne/N
> lim inf inf X160 +0%) — X077

max
k—oo I<K 1<i<Bre o, (||6%|)) /2 log ONk—I+1
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— limsup sup sup sup
k—oo <K ||s||<|lo¥| flo*—[<[t]<[l6%]]

IX(s +6%) = X(s + )00 ou(ll — O 1]])

o, (]|0% — 0%1(|) /210g ONF—IFT o ([0%71])

= Jl - J27

where i:= (i1, -+ ,in) € Z¥. First, we claim that
(2.16) Ji>1 a.s.

Let {X;(t); t € [0,00)V}22, be a centered strictly stationary and LNQD random field
taking values in [°°-space, then it follows that

X, (108N +6%) — X, (i04N)

P{ inf max

I<K 1<i<By.e UL(H91‘H) /210g GNF—1H1

(2.17) _Z( { H9“H <\/2 £) log ONk— m})
I<K

sm}

eNk—I

Similarly, if {X;(t)}5°, is a centered strictly stationary and LPQD [*°-valued random
field, then we have

I<K 1<i<fre  o,(]|0%]) /2logONF— 1T~

X, (108N +0%) — X, (i0%/N)
< E : _p m ¢ ¢ _ Nk—I+1
- (1 {1§i§%,e o ([10%]]) ~ \/2(1 )log ¢ }>

I<K
X, (108N +0%) — X, (i04/N)
< . . L L 2(1=¢)1 Nk—I1+1
—Z<1 P{mﬁ o 10°T) > \/2(1-e) g }>
I<K
(2.18)
X, (0N 4 6%) — X, (04/N)
< 1—P{— - 2(1—¢)log ONk—I+1 ...
‘Z<K< { o2 IoF]) > V/201-e)log 0¥
XL(Bk £ QZ/N + ek) - Xb(ﬁk £ QZ/N)
-, : : > 4/2(1—¢)log ONk—I+1
o (16<T) v
(9k gNE—1
< 1—(Pe———— 2(1— 1 Nk—l+1
‘Z<K< ( {oxueku >V o) log 4141} )
eNk—I
= 1—(1-— <4/2(1 1 Nk—l+1
Z<K< ( {aL H9“H Vo))

eNk—I

<o (P{tiay < a0 -aons™ 1} )
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for k large enough and some constant ¢ > 0. On the other hand, if Z is a standard
normal random variable, then we have

®(z):=P{Z <z} =1-P{Z >z} <exp(—P{Z >z}

1 2 2
< ex (— e ” /2><ex (—ce_xﬂ)
= OxXP V22 = oxp

for all large > 0. Noting that Yy := X,(6%)/0,(||6¥||) is a standardized random

variable and applying Proposition 2.1 to Yx in place of || X(b7) || /o« (|[b7]]), it follows
from (2.17) and (2.18) that

s 06/N | pky « 0&/N
P{ inf max X,(i0 +0°) — X.(i0 >§\/1—5}
I<K 1<i<Bie  o,(]|0%) \/2log ONk—T+1

<e% (P{io ueku SEEEETE)

I<K

< CZ <’P{ ’GkH < \/2 g) log ONk— z+1} (\/2<1_5> loggNk—l—f—l) ’
eNk—l
+ <I><\/2(1 —¢)log GNk—l+1>)
Z < (0 1) 1/5+<I>(\/2 1—¢)logONk— l+1>)
<K
—(k=1)/5 o —(1—&)log gNE—I+1
SC;{{Q —i—exp( ce €)los )}
IPPEERGERTEIS L

<X fow (oo

<c Z exp ( — cG(Nk_l)5> < cexp ( — ¢ (klog 9)25/1%9)

I<K
<cexp (- cgk%/loge) < ¢ exp(—cck)

gNk—1

eNk—l

gNk—1

for all large k, since 2¢ > log @ for any small ¢ > 0. The Borel-Cantelli lemma implies
(2.16).
Next, we show that

(2.19) Jo < ce® a.s.

for any small £ > 0, where ¢ > 0 is a constant. Since o.(-) is a regularly varying
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function with exponent o > 0 at oo, we have

(0% — <) _ o0 = D) _
o ([10%1])) o (04

a

Therefore, (2.19) is proved if we show that

limsup sup sup sup
k—oo <K |Is||<[l6%[| [lex=*[I<[t]|<[l6x]l

(2.20) X409 X+ t)llo 0

U*(Hgk _ 9k—1H> /9 logGNk_H'l -

Similarly to the proof of Proposition 2.3, it follows by the stationary of {X;(t)}2,
that

X 0%) — X t
P{sup sup sup [X(s + 6%) (8 + )l >1+25}
1<K [sl|<]lox| [lox-2 <]t <[|0%]] 0w(]|6% —Ok=1]) \/21log GNE-I+1
X %) — X t
D B (= =
<w si<ionl oy 2lel<gory (10K — <)

> (1 +25)\/210g9N’f—l+1}
IX(6% — 0% 1|0 _ 1+2¢
< 21 9Nk—l+1
2 ( Corqm—aerpy > 752 V2be j

I<K

anan p f 1X(6% = 051 oo
L

og ONk=I+1,/1 + 2N log 3 - 2"/2}>

Kk
SCEZ (P{X(Q Moo S 1+25\/W}

k
2\ Uo (k] ~ Tre

o (X loe 1426 ,
+ 22N2 {H > 21log @Nk—=1+1, /1 1+ 2N 1o 3_2n/2} )
Z D T V2 v ©

Set by, = by, for an increasing subsequence {7} }72, of {T'; T' > 0}. Let us apply
Proposition 2.2 with ||bg|| := ||#%|| and

142 142
g(|[bk|) = —:_ 8\/210g9Nk—l+1 (or 1—:_ 8\/2 log @Nk=I+1/14+2N log3 - 2”/2>.
5 5

Considering the right hand side of (2.21) and (B) of Proposition 2.2, it follows by the
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same way as in the proof of (2.1) that

1 1,142
¥ e o (5 () e
i1 1o (14 2¢)y/21log ONA—1+ t+e

= CZGXp (1+ ') log 2(loglog0%)/(log0)%)

=c Z exp (log(log g )21+ log )
k=1

o
< CZ 1 < oo
k=1

where ¢’ =¢/(1 +¢) and

[e.9] o
n 1 1+2€ 2
2N2 NEk—I+1 n
E E 52 exp(—§(1 8)210g9 (1+2N10g3)2>

k=1Il<K n=1

o0 o0
< Z Z 92N2" ( —(1+¢)log g2(loglog 6%) /(log 0)* (1 +2Nlog3) 2n>
k= ln 1

CZ 2221\/2" (logy k) (1+2N)2"

k=1n=1
0o oo

_ CZ Z o—(log k)2" | 92N2"(1-log, k)

k=1n=1

o o
< CZ Z k—l—s/Q—n

k=1n=1

Therefore, by (2.21) and Proposition 2.2, we obtain

X(s+0%) —X(s+t
ZP{sup sup sup [X(s+6%) (s5t)loc >1—i—25}<oo

1<K [s||<[[o%] [l <[t <||o%| ox([|0% — Ok~L]])/2]og HNE-I+1

which gives (2.20). Combining (2.16) with (2.19) yields (2.14) via (2.15) since ¢ is
arbitrary.

3. APPENDIX: PROOF OF PROPOSITION 2.3

First we prove an auxiliary result for the strictly stationary [*°-valued random field
of Proposition 2.3.
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Lemma 3.1. Let D be a compact subset of R with Euclidean norm || - || and
let {Zy(t); t € D}, be a sequence of separable and centered strictly stationary
random fields with Zi,(0) = 0. Assume that {U(t) := (Z1(t), Zo(t),---); t € D} is
a centered strictly stationary 1°°-valued random field with [*°-norm || - ||s. Suppose
that

0< Tg:=supE(Zr(t))?2 <oo, T :=suply,
teh k>1

o[t —sll) = E{Z(t) — Zi(s)}”

< it —s|),  0u(t) =supok(t), p«(t) = sup g (?),
k>1 k>1

where oi(t) and ¢ (t) are positive nondecreasing and continuous functions of t > 0.
Then, for A > 0 and K > (2v/2 + 2)/1+ N log3, there exists a positive constant c
such that

P{supeen [U()]loo > 2(T + K 5 0u(A277")dy ) }
m(D) 10U (t)]] 0o
(3.1) S 3N (P{ i 2 o)

+3%0 oM p {“;{m“‘g > 2T+ Nlog3 .2n/2})

for any x > 1, where m(DD) is the Lebesgue measure of D.

Proof. For each n =0,1,2,---, put £, = A272", X > 0. Denote a diameter of

any subset G of D by d(G). Let {Si(n) ; i=1,2,---, N, (D)} be a minimal &,-net

of D, where
N., (D) =min{l; D C uﬁzlsi("), d(Si(n)) <ep}.

Then there is a positive constant ¢ such that
m(D)

()™

For each Si(") , choose one point tg") € Si(") ND and put A, = UfV:E{L(D){tZ(n)}. Let
K; >+/T+ Nlog3 and K = (22 + 2)K;. For = > 1, set

ok/2

(3-2) Ne, (D) <c

k> 1.

)

ok = K1 i (ep-1)
Letting 6 = 2*=1/2 for k > 0, it is clear that 2¥/2 = (21/2 + 2)(6}, — 0x_1). Thus
Zxk—xKZcp A 279 (8, — Gy <a:K/ 0 (A 27Y)dy.
k=1 k=1

Therefore
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Plaw Ul 2 o(0+ & [~ o027 a))}

o0

(3.3) < P{ sup [U(#)[loo = 2T + a:k}
k=1
< lim P{ sup [U(t)] >xF+Zxk}

teA,
Put

By = { sup [|U(t)] > a:F}
telg

By ={ swp [U(t)] > xF—i—Zxk} n> 1.
teA, k=1

By induction, we have

o
(4)  P(Bu) < P(By-1) + P(ByNB;, 1) < P(Bo) + ) P(Bu N By ).
n=1
If B, occurs, then one can find t € A, such that |[U(t)| o > 2"+ >_}_, ). Since

(=1) Which contains t. For this Siy (n—1) , We choose a point

s € A,_1. If, in addition, BC _4 occurs, then [|[U(s)||o0 < a:F + Zk | T and hence
we have [|[U(t) — U(s)||cc > 2. These facts yield, for n > 1,

P(B,NBs_)< > P{Ut) = Us)lloo > 2}
tEAn,SEAn—l
0<|[t—s||<en—1

Ap—q covers D, there is S;

Therefore, it follows from (3.2) and the stationarity of U(t) that

S PBnB)<Y. Y P{IU®) - Ul > 20}
n=1 n=1 te ﬁln, ‘f<677ll 11

0<
— m(D) _[[U(t) = U(s)|ls Tn
(3.5) < C; (€n>NP{ o (|lt —sl|) = (P*(€n—1>}
m(D) N2 p U(t) Hoo n/2
< X2 PU ey 2
m( N2" p 1O(#)]]o n/2
=W Z? PUonely 2 VT Niogd 27}

On the other hand,
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m®) (U@ o y _ m(®) [U®]s
66 P00 e PUoi 2 mam) = w T Lo 2°)

Therefore, the inequality (3.1) follows from (3.3)-(3.6).

Proof of Proposition 2.3.  Let D2 = {(s,t); [s|| < |Ibr|l, [[t|| < ||br|}. In
order to apply Lemma 3.1, we set

Xi(s+t) — X;(s)

Zi S,t = , 12>1
&8 == brl)
and
vi(z) = 72@(\/52) z>0
' ox(|[brl) ’ '
Clearly,

E{Z(s,t)} =0 and TI'=1.
Letting p = (s',t') and q = (s”, t”), it follows that

E{Zip) - Zi(a)}*

1 / (" N (s — X.(s" 2
= g P + ) = X" ) — (Xi(s) = Xi(s)}
2 N _ (s" " o2(lls’ — s
< m{ai(\!(s +t) = (s"+ t)|) + oi (]l I}
4 2 1 g2 I 411]|2
< mai (\/5\/“5 12+ [t = t[12)
=i (lp —al)-

On the other hand, for any € > 0, there exists a small constant C. > 0 such that

(3.7) K [ oVaC b2 ) dy <,
0

where K > (2v/2+2)/T + 2N log3 as in Lemma 3.1 and we take A = v/2C. ||br|.
Indeed, using the regularity of o, (-), we have

L(2C. |[bp| 27¥
K/ 0. (V2C. |br|| 27V dy—QK/ “”bﬂ‘”) >dy
T

< 2K (2 Cg)aﬂ/ 272 gy < e,
0

provided C. is small enough. Put v = z(1+¢), = > 1, and set {U(s, t) := (Z1(s, t),
Za(s,t),--+); (s,t) € DZ}. Then {U(s,t)} is a centered strictly stationary [°°-
valued random field with 2N parameters. It follows from (3.7) and Lemma 3.1 that,
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forv > 1,
[X(s +t) — X(s)]|oo
Pq sup sup >
{sSbT I6l</br] ox(|brll) }
<P{ swp UG O > 2(0+ K / 2.(V2Ce bl 27 )y ) }
(s,t)eDZ, 0
2N
S )
(fC [br|])2N U*(H(S,t)H) l1+e

+222N2" {HU(S t)Hoo \/m 2n/2})

(0 = T+

Kbl . v\, S pf XDl
305<P{ o-(brl) — 1+a}+n212 PL ool

> Y /Tf2Nlog3- 2"/2}).
+e
This completes the proof of Proposition 2.3.

ACKNOWLEDGMENT

The authors wish to thank the referee for careful reading of their manuscript, and
for helpful suggestions that have led to improving the presentation of our results.

REFERENCES
1. Y. K. Choi and M. Csorgt, Path properties of [P —valued Gaussian random fields, Sci.
China Series A: Math., 50(10) (2007), 1501-1520.

2. Y. K. Choi and M. Csorgt, Asymptotic properties for increments of [°°—valued Gaussian
random fields, Canad. J. Math., 60(2) (2008), 313-333.

3. M. Csorgd, Z. Y. Lin and Q. M. Shao, Path properties for [*°—valued Gaussian processes,
Proc. Amer. Math. Soc., 121 (1994), 225-236.

4. M. Csorgd and P. Révész, Strong Approximations in Probability and Statistics, Academic
Press, New York, 1981.

5. J. Esary, F. Proschan and D. Walkup, Association of random variables with applications,
Ann. Math. Statist., 38(4) (1967), 1466-1474.

6. K. Joag-Dev, Independence via uncorrelatedness under certain dependence structures,
Ann. Probab., 11(4) (1983), 1037-1041.

7. K. Joag-Dev and F. Proschan, Negative association of random variables with applications,
Ann. Statist., 11(1) (1983), 286-295.



620

10.
11.

12.

13.

14.

15.

16.

Kyo-Shin Hwang and Yong-Kab Choi

E. L. Lehmann, Some concepts od dependence, Ann. Math. Statist., 37(5) (1966),
1137-1153.

. Y. X. Li and J. F. Wang, The law of the iterated logarithm for positively dependent

random variables, J. Math. Anal. Appl., 339(1) (2008), 259-265.
Z.Y. Lin and C. R. Lu, Strong Limit Theorems, New York, 1975.

Z.Y. Lin, C. R. Lu and L. X. Zhang, Path Properties of Gaussian Processes, Zhejiang
University Press, 2001.

C. M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math. Phys.,
74(2) (1980), 119-128.

C. M. Newman, Asymptotic independence and limit theorems for positively and nega-
tively dependent random variables, in: Inequalities in Statistics and Probability, (Y. L.
Tong, ed., Institute of Mathematical Statistics, Hayward, CA), 1984, pp. 127-140.

V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, New York, 1975.

J. F. Wang and L. X. Zhang, A Berry-Esseen theorem for weakly negatively dependent
random variables and its applications, Acta Math. Hungar., 110(4) (2006), 293-308.

L. X. Zhang, Central limit theorems for asymptotically negatively associated random
fields, Acta Math. Sinica, Engl. Ser, 16(4) (2000), 691-710.

Kyo-Shin Hwang, Yong-Kab Choi
Department of Mathematics and RINS
Gyeongsang National University

Jinju 660-701

South Korea

E-mail: mathykc@naver.com



