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Okounkov Bodies Associated to Pseudoeffective Divisors II

Sung Rak Choi, Jinhyung Park* and Joonyeong Won

Abstract. We first prove some basic properties of Okounkov bodies and give a charac-

terization of Nakayama and positive volume subvarieties of a pseudoeffective divisor

in terms of Okounkov bodies. Next, we show that each valuative and limiting Ok-

ounkov bodies of a pseudoeffective divisor which admits the birational good Zariski

decomposition is a rational polytope with respect to some admissible flag. This is an

extension of the result of Anderson-Küronya-Lozovanu about the rational polyhedral-

ity of Okounkov bodies of big divisors with finitely generated section rings.

1. Introduction

This paper is a continuation of our investigation on Okounkov bodies associated to pseu-

doeffective divisors [4–6]. Let X be a smooth projective variety of dimension n and D

be a divisor on X. Fix an admissible flag Y• on X, that is, a sequence of irreducible

subvarieties

Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {x}

where each Yi is of codimension i in X and is smooth at x. The Okounkov body ∆Y•(D)

of a big divisor D with respect to Y• is a convex body in the Euclidean space Rn which

carries rich information of D. Okounkov first defined the Okounkov body associated to an

ample divisor in [19, 20]. After this pioneering work, Lazarsfeld-Mustaţă [14] and Kaveh-

Khovanskii [11] independently generalized Okounkov’s work to big divisors (see [3] for

a survey). We then further extended the study of Okounkov bodies to pseudoeffective

divisors in [5]. More precisely, we have introduced and studied two convex bodies, called

the valuative Okounkov body ∆val
Y• (D) and the limiting Okounkov body ∆lim

Y• (D) associated

to a pseudoeffective divisor D. See Sections 3 and 4 for definitions and basics on Okounkov

bodies.
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In this paper, we first prove supplementary results to [5]. Main theorems of [5] and

the subsequent results in this paper depend on the following property of the Okounkov

body. This theorem is a generalization of [14, Theorem 4.26] and [10, Theorem 3.4].

Theorem 1.1 (= Theorem 3.6). Let X be a smooth projective variety of dimension n and

D be a big divisor on X. Fix an admissible flag Y• such that Yn−k 6⊆ B+(D). Then we

have

∆Yn−k•(D) = ∆Y•(D) ∩ ({0}n−k × Rk≥0).

In [5], we proved that the Okounkov bodies ∆val
Y• (D) and ∆lim

Y• (D) encode nice properties

of the divisor D if the given admissible flag Y• contains a Nakayama subvariety of D or a

positive volume subvariety of D (see Theorem 4.6). We show the following characterization

of those special subvarieties in terms of Okounkov bodies.

Theorem 1.2 (= Theorem 4.8). Let X be a smooth projective variety of dimension n and

D be an R-divisor on X. Fix an admissible flag Y• such that Yn is a general point in X.

Then we have the following:

(1) If D is effective, then Y• contains a Nakayama subvariety of D if and only if

∆val
Y• (D) ⊆ {0}n−κ(D) × Rκ(D).

(2) If D is pseudoeffective, then Y• contains a positive volume subvariety of D if and

only if ∆lim
Y• (D) ⊆ {0}n−κν(D) × Rκν(D) and dim ∆lim

Y• (D) = κν(D).

One of the most important properties one can probably expect a convex set in Rn to

satisfy is rational polyhedrality. However, the geometric structure of Okounkov body is

rather wild. It can be non-polyhedral even if the variety X is a Mori dream space and

a divisor D is ample (see [14, Subsection 6.3] and [12, Section 3]). However, Anderson-

Küronya-Lozovanu proved that if a big divisor D has a finitely generated section ring

R(X,D) :=
⊕
m≥0H

0(X,mD), then there exists an admissible flag Y• such that the

Okounkov body ∆Y•(D) is a rational polytope (see [1, Theorem 1]). We also refer to [6,

Theorems 1.1 and 4.17] and [22, Corollary 4.5] for more related results.

Our next aim is to generalize [1, Theorem 1] to the valuative and limiting Okounkov

bodies. We recall that when a divisor D is big, it has a finitely generated section ring if

and only if it admits the birational good Zariski decomposition (see [18, III.1.17.Remark]).

However, for a pseudoeffective divisor D, such equivalence no longer holds in general; D

admits the birational good Zariski decomposition if and only if D has a finitely generated

section ring and is abundant (see Proposition 2.7). For the rational polyhedrality of the

Okounkov bodies of pseudoeffective divisors, we assume the existence of good Zariski

decomposition on some birational model instead of the finite generation condition. See

Subsection 2.3 for our definition of (good) Zariski decomposition.
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Theorem 1.3 (= Corollary 5.4 and Theorem 5.6). Let X be a smooth projective variety

and D be a pseudoeffective Q-divisor on X which admits the good birational Zariski de-

composition. Then each Okounkov bodies ∆val
Y• (D) and ∆lim

Y• (D) is rational polyhedral with

respect to some admissible flag Y•.

We expect that the rational polyhedrality of Okounkov body holds in more general

situations. There are examples of divisors which do not admit birational good Zariski

decompositions, but whose associated Okounkov bodies are rational polyhedral (see Re-

mark 5.7).

To prove Theorem 1.3 for the case of valuative Okounkov bodies, we use the same idea

as [1, Proposition 4]. Using only the finite generation of section ring, we show the rational

polyhedrality of the valuative Okounkov body with respect to an admissible flag taken

by the intersections of general members of the linear series (see Theorem 5.3). For the

case of limiting Okounkov bodies, under the given assumption, we prove the statement by

reducing to the rationality problem of the limiting Okounkov body on some high model

f : Y → X where the good Zariski decomposition of f∗D exists (see Theorem 5.6).

The organization of the paper is as follows. In Section 2, we collect basic facts on

various notions that are used in the proofs. Next, in Section 3, we recall basic properties

of Okounkov bodies and prove Theorem 1.1. Then we study some properties of Nakayama

subvarieties and positive volume subvarieties to show Theorem 1.2 in Section 4. Section 5

is devoted to showing Theorem 1.3.

2. Preliminaries

In this section, we collect relevant facts which will be used later. Throughout the paper,

X is a smooth projective variety of dimension n and we always work over an algebraically

closed field of characteristic zero.

2.1. Asymptotic invariants

We review basic asymptotic invariants of divisors, namely, the asymptotic base loci and

volume functions. The stable base locus of an R-divisor D is defined as SB(D) :=⋂
D∼RD′≥0 Supp(D′). The augmented base locus of an R-divisor D is defined as B+(D) :=⋂
A SB(D−A) where the intersection is taken over all ample divisors A. The restricted base

locus of an R-divisor D is defined as B−(D) :=
⋃
A SB(D + A) where the union is taken

over all ample divisors A. Note that B+(D) and B−(D) depend only on the numerical

class of D. For details, we refer to [8] and [16].

Now, let V be an irreducible subvariety of X of dimension v. The restricted vol-

ume of a Z-divisor D along V is defined as volX|V (D) := lim supm→∞
h0(X|V,mD)

mv/v! where
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h0(X|V,mD) is the dimension of the image of the natural restriction map ϕ :H0(S,OX(D))

→ H0(V,OV (D)). The restricted volume volX|V (D) depends only on the numerical class

of D, and one can uniquely extend it to a continuous function

volX|V : BigV (X)→ R

where BigV (X) is the set of all R-divisor classes ξ such that V is not properly contained in

any irreducible component of B+(ξ). When V = X, we simply let volX(D) := volX|X(D)

and we call it the volume of an R-divisor D. For more details on volumes and restricted

volumes, see [13] and [9]. Now assume that V * B−(D) for an R-divisorD. The augmented

restricted volume of D along V is defined as vol+X|V (D) := limε→0+ volX|V (D+ εA) where

A is an ample divisor on X. The definition is independent of the choice of A. Note that

vol+X|V (D) = volX|V (D) for D ∈ BigV (X). This also extends uniquely to a continuous

function

vol+X|V : Eff
V

(X)→ R

where Eff
V

(X) := BigV (X) ∪
¦
ξ ∈ Eff(X) \ Big(X) | V * B−(ξ)

©
. For D ∈ Eff

V
(X), we

have volX|V (D) ≤ vol+X|V (D) ≤ volV (D|V ), and both inequalities can be strict in general.

See [5] for more details on augmented restricted volumes.

2.2. Iitaka dimension

Let D be an R-divisor on X. Let N(D) = {m ∈ Z>0 | |bmDc| 6= ∅}. For m ∈ N(D), we

consider the rational map φmD : X 99K Zm ⊆ Pdim|bmDc| defined by the linear system

|bmDc|. The Iitaka dimension of D is defined as

κ(D) :=

max {dim Im(φmD) | m ∈ N(D)} if N(D) 6= ∅,

−∞ if N(D) = ∅.

We remark that the Iitaka dimension κ(D) is not really an invariant of the R-linear

equivalence class of D. Nonetheless, it satisfies the property that κ(D) = κ(D′) for

effective divisors D, D′ such that D ∼R D
′.

For another important invariant, we fix a sufficiently ample Z-divisor A on X. The

numerical Iitaka dimension of D is defined as

κν(D) := max

¨
k ∈ Z≥0

∣∣∣∣∣ lim sup
m→∞

h0(X, bmDc+A)

mk
> 0

«

if h0(X, bmDc + A) 6= ∅ for infinitely many m > 0, and we let κν(D) := −∞ otherwise.

The numerical Iitaka dimension κν(D) depends only on the numerical class [D] ∈ N1(X)R.

Definition 2.1. An R-divisor D is said to be abundant if κ(D) = κν(D).
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By definition, κ(D) ≤ κν(D) holds and the inequality can be strict in general. However,

κν(D) = dimX if and only if κ(D) = dimX. We refer to [7, 15, 18] for more detailed

properties of κ and κν .

Recall that the section ring of an R-divisor D is defined as R(X,D) :=
⊕

m≥0H
0(X,

bmDc).

Proposition 2.2. [17, Corollary 1] A Q-divisor D on X is semiample if and only if it

is nef, abundant, and its section ring is finitely generated.

2.3. Zariski decomposition

We now briefly recall several notions related to Zariski decompositions in higher dimension.

For more details, we refer to [2, 18,21].

To define the divisorial Zariski decomposition, we first consider a divisorial valuation

σ on X with the center V := CentX σ on X. If D is a big R-divisor on X, we define

the asymptotic valuation of σ at D as ordV (‖D‖) := inf {σ(D′) | D ≡ D′ ≥ 0}. If D is

only a pseudoeffective R-divisor on X, we define ordV (‖D‖) := limε→0+ ordV (‖D + εA‖)
for some ample divisor A on X. This definition is independent of the choice of A. The

divisorial Zariski decomposition of a pseudoeffective R-divisor D is the decomposition

D = Pσ +Nσ

into the negative part Nσ :=
∑

codimE=1 ordE(‖D‖)E where the summation is over the

codimension one irreducible subvarieties E of X such that ordE(‖D‖) > 0 and the positive

part Pσ := D −Nσ.

Let D be an R-divisor on X which is effective up to ∼R. The s-decomposition of D is

the decomposition

D = Ps +Ns

into the negative part Ns := inf {L | L ∼R D,L ≥ 0} and the positive part Ps := D −Ns.

The positive part Ps is also characterized as the smallest divisor such that Ps ≤ D and

R(X,Ps) ' R(X,D) (see [21, Proposition 4.8]). Note that Ps ≤ Pσ and Ps, Pσ do not

coincide in general.

Lemma 2.3. Let D be an abundant R-divisor on X with the divisorial Zariski decompo-

sition D = Pσ +Nσ and the s-decomposition D = Ps +Ns. Then Pσ = Ps.

Proof. Let σ be a divisorial valuation on X with V = CentX σ. [16, Proposition 6.4] implies

that infm∈Z>0,D′∈|bmDc|
1
mσ(D) = ordV (‖D‖) holds. Since infm∈Z>0,D′∈|bmDc|

1
mσ(D) =

σ(Ns), we see that D = Ps +Ns is the divisorial Zariski decomposition.
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The Fujita-Zariski decomposition of a pseudoeffective R-divisor D is the decompositon

D = Pf +Nf

into the effective negative part Nf and the nef positive part Pf such that if f : Y → X

is a birational morphism from a smooth projective variety and f∗D = P ′ + N ′ with P ′

nef and N ′ ≥ 0, then P ′ ≤ f∗P . By definition, the divisorial Zariski decomposition and

s-decomposition uniquely exist, and the Fujita-Zariski decomposition is also unique if it

exists. Recall that the Fujita-Zariski decomposition does not exist in general even if we

take the pullback on a sufficiently high model f : ÜX → X (see [18, Chapter IV]).

It is unclear in general whether the Fujita-Zariski decomposition is the divisorial Zariski

decomposition (cf. [18, III.1.17.Remark (2)]). However, this holds when the divisor is

abundant and the positive part is semiample.

Proposition 2.4. Let D be an abundant Q-divisor on X having a decomposition D =

P +N into a nef divisor P and an effective divisor N . Then the following are equivalent:

(1) It is the divisorial Zariski decomposition with P = Pσ semiample.

(2) It is the Fujita-Zariski decomposition with P = Pf semiample.

(3) It is the s-decomposition with P = Ps semiample.

Proof. (1) ⇒ (2): It is easy to check that the divisorial Zariski decomposition with the

nef positive part is the Fujita-Zariski decomposition (see [18, III.1.17.Remark]).

(2) ⇒ (3): Let D = Ps + Ns be the s-decomposition. Then Pf ≥ Ps by definition.

Since Pf is semiample, we also have Pf ≤ Ps. Therefore Pf = Ps.

(3) ⇒ (1): It follows from Lemma 2.3.

Definition 2.5. If one of the conditions in Proposition 2.4 holds for an abundant Q-

divisor D, then we say that D admits the good Zariski decomposition, and denote it by

D = P + N . We say that D admits the birational good Zariski decomposition if there

exists a birational morphism f : ÜX → X from a smooth projective variety such that f∗D

admits the good Zariski decomposition.

Proposition 2.6. Let D be a pseudoeffective Q-divisor with the good Zariski decomposi-

tion D = P +N . Then P , N are also Q-divisors.

Proof. Since P is semiample, there exists a morphism f : X → Y such that P ∼R f∗A

where A is an ample divisor on Y . The ample divisor A can be written as a finite

sum of ample Cartier divisors on Y with positive real coefficients. Thus we can write

P ∼R
∑k
i=1 aiPi for some semiample Cartier divisors Pi and some positive real numbers
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ai. Now we write N =
∑m
j=1 bjNj for prime divisors N1, . . . , Nm and positive real numbers

bj . Then N1, . . . , Nm are linearly independent in N1(X)R by [18, III.1.10.Proposition]. Let

VP and VN be the subspaces of N1(X)R spanned by {Pi}ki=1 and {Nj}mj=1, respectively.

We now claim that VP ∩ VN = {0}. Suppose that the claim does not hold. Then there

exists a nonzero class η ∈ VP ∩ VN such that η ≡ P ′ ≡ N ′ where P ′ ∈ ⊕k
i=1 R · Pi and

N ′ ∈ ⊕m
j=1 R · Nj . Note that there exists a positive number ε > 0 such that for any

real number r satisfying |r| < ε, the divisor P − rP ′ is nef and N + rN ′ is effective.

Thus [18, Proposition III.1.14(2)] implies that in the following decompositions

D = P +N

≡ (P − rP ′) + (N + rN ′),

we have N ≤ N + rN ′, hence 0 ≤ rN ′ for any r such that |r| < ε. However, since N ′ is

a nonzero divisor, this is a contradiction. The claim implies that if D is a Q-divisor, then

so is N in the decomposition D = P +N . Therefore P , N are both Q-divisors.

Now, we characterize when a divisor admits the birational good Zariski decomposition.

Proposition 2.7. Let D be a pseudoeffective Q-divisor on X. Then D admits the bi-

rational good Zariski decomposition if and only if D is abundant and R(X,D) is finitely

generated.

Proof. Suppose that there exists a birational morphism f : ÜX → X from a smooth projec-

tive variety such that f∗D = P +N is the good Zariski decomposition. By definition, D is

abundant. Note that R(X,D) ' R(ÜX, f∗D) ' R(ÜX,P ). Since P is a semiample Q-divisor

by Proposition 2.6, it follows from Proposition 2.2 that R(X,D) is finitely generated. Con-

versely, suppose that D is abundant and R(X,D) is finitely generated. For a sufficiently

large and divisible integer m > 0, we take a resolution f : ÜX → X of the base locus of |mD|
and consider the decomposition f∗(mD) = M+F into the base point free M and the fixed

part F of |f∗mD|. By the finite generation of R(X,D), we see that f∗D = 1
mM + 1

mF is

the s-decomposition with semiample positive part. By Proposition 2.4, f∗D admits the

good Zariski decomposition.

3. Okounkov bodies

In this section, we recall the construction of Okounkov bodies associated to pseudoeffective

divisors in [5,11,14] and basic results. In the end, we prove Theorem 1.1 (= Theorem 3.6).

First, fix an admissible flag on X

Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {x}
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where each Yi is an irreducible subvariety of codimension i in X and is smooth at x. Let

D be an R-divisor on X with |D|R := {D′ | D ∼R D
′ ≥ 0} 6= ∅. We define a valuation-like

function

νY• : |D|R → Rn≥0

as follows. For D′ ∈ |D|R, let

ν1 = ν1(D′) := ordY1(D′).

Since D′ − ν1(D′)Y1 is effective, we can define

ν2 = ν2(D′) := ordY2((D′ − ν1Y1)|Y1).

If νi = νi(D
′) is defined, then we define νi+1 = νi+1(D′) inductively as

νi+1(D′) := ordYi+1((· · · ((D′ − ν1Y1)|Y1 − ν2Y2)|Y2 − · · · − νiYi)|Yi).

The values νi(D
′) for 1 ≤ i obtained as above define νY•(D

′) = (ν1(D′), ν2(D′), . . . , νn(D′)).

Definition 3.1. The Okounkov body ∆Y•(D) of a big R-divisor D with respect to an

admissible flag Y• is defined as the closure of the convex hull of νY•(|D|R) in Rn≥0.

More generally, a similar construction can be applied to a graded linear series W• on

X to construct the Okounkov body ∆Y•(W•) of W•. For more details, we refer to [14].

When D is not big, we have the following extension introduced in [5].

Definition 3.2. [5, Definitions 1.1 and 1.2] Let D be an R-divisor on X.

(1) When D is effective up to ∼R, i.e., |D|R 6= ∅, the valuative Okounkov body ∆val
Y• (D)

of D with respect to an admissible flag Y• is defined as the closure of the convex hull

of νY•(|D|R) in Rn≥0. If |D|R = ∅, then we set ∆val
Y• (D) := ∅.

(2) When D is pseudoeffective, the limiting Okounkov body ∆lim
Y• (D) of D with respect

to an admissible flag Y• is defined as

∆lim
Y• (D) := lim

ε→0+
∆Y•(D + εA) =

⋂
ε>0

∆Y•(D + εA),

where A is an ample divisor on X. (Note that ∆lim
Y• (D) is independent of the choice

of A.) If D is not pseudoeffective, we set ∆lim
Y• (D) := ∅.

Remark 3.3. Boucksom’s numerical Okounkov body ∆num
Y• (D) in [3] is the same as our

limiting Okounkov body ∆lim
Y• (D).
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Suppose that D is effective. By definition, ∆val
Y• (D) ⊆ ∆lim

Y• (D), and the inclusion can

be strict in general (see [5, Examples 4.2 and 4.3]). Moreover, by [3, Proposition 3.3 and

Lemma 4.8], we have

dim ∆val
Y• (D) = κ(D) ≤ dim ∆lim

Y• (D) ≤ κν(D).

The following lemmas will be useful for computing Okounkov bodies.

Lemma 3.4. Let D be an R-divisor on X. Consider a birational morphism f : ÜX → X

with ÜX smooth and an admissible flag

ÜY• : ÜX = ÜY0 ⊇ ÜY1 ⊇ · · · ⊇ ÜYn−1 ⊇ ÜYn =
{
x′
}

on ÜX. Suppose that Yn is a general point in X and

Y• := f(ÜY•) : X = Y0 ⊇ Y1 = f(ÜY1) ⊇ · · · ⊇ Yn−1 = f(ÜYn−1) ⊇ Yn = f(ÜYn) =
{
f(x′)

}
is an admissible flag on X. Then we have ∆val

Ỹ•
(f∗D) = ∆val

Y• (D) and ∆lim
Ỹ•

(f∗D) =

∆lim
Y• (D).

Proof. The limiting Okounkov body case is shown in [4, Lemma 3.3]. The proof for the

valuative Okounkov body case is almost identical and we leave the details to the readers

as an exercise.

Lemma 3.5. Let D be an R-divisor on X with the s-decomposition D = Ps +Ns and the

divisorial Zariski decomposition D = Pσ +Nσ. Fix an admissible flag Y• on X such that

Yn is a general point in X. Then we have ∆val
Y• (D) = ∆val

Y• (Ps) and ∆lim
Y• (D) = ∆lim

Y• (Pσ),

respectively.

Proof. The first assertion follows from the fact that R(X,D) ' R(X,Ps) and the construc-

tion of the valuative Okounkov body. The second assertion is nothing but [4, Lemma 3.5].

Finally, we give a proof of the main result of this section. The following key result is

implicitly used in [5] (especially in the proof of [5, Theorem B]) and in this paper as well.

We include the complete proof here.

Theorem 3.6. Let X be a smooth projective variety of dimension n and D be a big divisor

on X. Fix an admissible flag Y• such that Yn−k * B+(D). Then we have

∆Yn−k•(D) = ∆Y•(D) ∩ ({0}n−k × Rk≥0).
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Proof. We may assume that each Yi is a smooth variety. Let {Ai} be a sequence of ample

divisors on X such that each D +Ai is a Q-divisor and limi→∞Ai = 0. Then we have

∆Y•(D) =
∞⋂
i=1

∆Y•(D +Ai) and ∆Yn−k•(D) =
∞⋂
i=1

∆Yn−k•(D +Ai).

Furthermore, Yn−k * B+(D+Ai) for all i. Note that it is enough to prove the statement

for the Q-divisors D + Ai for all sufficiently large i. Thus we assume below that D is a

Q-divisor.

It is easy to check that ∆Yn−k•(D) ⊆ ∆Y•(D). This implies that ∆Yn−k•(D) ⊆ ∆Y•(D)

∩ ({0}n−k × Rk≥0) by definition. Suppose that the inclusion is strict:

∆Yn−k•(D) ( ∆Y•(D) ∩ ({0}n−k × Rk≥0).

Then there exists a point (0n−k, x1, . . . , xk) ∈ ∆Y•(D)∩({0}n−k×Rk≥0), but (0n−k, x1, . . . ,

xk) 6∈ ∆Yn−k•(D).

Let A be an ample Q-divisor on X. Note that ∆Yn−k•(D) ⊆ ∆Yn−k•(D+ εA) for any ε

≥ 0. Since Yn−k * B+(D+εA), we have volRk ∆Yn−k•(D+εA) = 1
(n−k)! volX|Yn−k(D+εA).

Recall that by [9, Theorem A], the function volX|Yn−k : BigYn−k(X) → R is continuous,

where BigYn−k(X) denotes the cone in N1(X)R consisting of the real divisor classes η such

that Yn−k is not properly contained in any of the irreducible components of B+(η). Thus

we can find a rational number ε > 0 such that (x1, . . . , xk) 6∈ ∆Yn−k•(D + εA) and

volRk ∆Yn−k•(D + εA) < volRk ∆

where ∆ ⊆ Rk is the convex hull of the set ∆Yn−k•(D) and the point (x1, . . . , xk). Note that

we can fix a small neighborhood U of (x1, . . . , xk) in Rk which is disjoint from ∆Yn−k•(D+

εA).

There exists a sufficiently small δ > 0 such that the divisors

A1 = A1(δ1) ∼Q
1

2
εA+ δ1Y1,

A2 = A2(δ1, δ2) ∼Q A1|Y1 + δ2Y2,

...

An−k = An−k(δ1, δ2, . . . , δn−k) ∼Q An−k−1|Yn−k−1
+ δn−kYn−k

are successively ample for any δj satisfying δ ≥ δ1, δ2, . . . , δn−k > 0. Since (0n−k, x1, . . . ,

xk) ∈ ∆Y•(D), there exists a sequence of valuative points

xi = (δi1, . . . , δ
i
n−k, x

i
1, . . . , x

i
k) ∈ ∆Y•(D)

such that

lim
i→∞

δij = 0 for 1 ≤ j ≤ n− k and lim
i→∞

xil = xl for 1 ≤ l ≤ k.
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Since it is known that the set of rational valuative points {νY•(D′) | D ∼Q D
′ ≥ 0} is dense

in ∆Y•(D), we may assume that xi ∈ {νY•(D′) | D ∼Q D
′ ≥ 0} so that xi ∈ Qn for all i.

We now fix a sufficiently large i such that 0 ≤ δij < δ for all 1 ≤ j ≤ n−k and (xi1, . . . , x
i
k)

lies in the small neighborhood U in Rk of (x1, . . . , xk). Since xi is a rational valuative

point of ∆Y•(D), there exist an effective divisor D′ ∼Q D such that νY•(D
′) = xi. Namely,

we have

D′ = D1 + δi1Y1,

D1|Y1 = D2 + δi2Y2,

...

Dn−k−1|Yn−k−1
= Dn−k + δin−kYn−k

where Dj on Yj−1 (j = 1, 2, . . . , n− k) are effective divisors.

Now note that we have

D′ +
1

2
εA = D1 +

�
1

2
εA+ δi1Y1

�
∼Q D1 +A′1

where we may assume that A′1 is an effective ample divisor such that multY1 A
′
1 = 0. We

also have

(D1 +A′1)|Y1 = D2 + (A′1|Y1 + δi2Y2) ∼Q D2 +A′2

where we may assume that A′2 is an effective ample divisor such that multY2 A
′
2 = 0. By

continuing this process, we finally obtain

(Dn−k−1 +A′n−k−1)|Yn−k−1
= Dn−k + (A′n−k−1|Yn−k−1

+ δin−kYn−k) ∼Q Dn−k +A′n−k

where we may assume that A′n−k is an effective ample divisor such that multYn−k A
′
n−k = 0.

We now claim that there exists an effective divisorD′′ ∼Q D+εA such thatD′′|Yn−k−1
=

Dn−k + E for some effective divisor E with multYn−k E = 0 and νYn−k•(E|Yn−k) =

(x′1, . . . , x
′
k) where we may assume that x′j ≥ 0 are arbitrarily small. Note that such D′′

defines a rational valuative point νY•(D
′′) = (0n−k, xi1 + x′1, . . . , x

i
k + x′k) ∈ ∆Y•(D + εA).

Thus (xi1 + x′1, . . . , x
i
k + x′k) ∈ ∆Yn−k•(D + εA). If our claim holds, then we can conclude

that (xi1 + x′1, . . . , x
i
k + x′k) belongs to the small neighborhood U of (x1, . . . , xk) in Rk,

which is a contradiction since U is disjoint from ∆Yn−k•(D + εA). Therefore we finally

obtain ∆Yn−k•(D) = ∆Y•(D) ∩ ({0}n−k × Rk≥0).

It now remains to show the claim. For a sufficiently divisible and large integer m > 0,

we take a log resolution fm : ÜXm → X of the base ideal of
∣∣∣m(D + 1

2εA)
∣∣∣ so that we obtain

a decomposition f∗m(m(D + 1
2εA)) = M ′m + F ′m into a base point free divisor M ′m and

the fixed part F ′m of
∣∣∣f∗m(m(D + 1

2εA))
∣∣∣. Let Mm := 1

mM
′
m. We may assume that fm is

isomorphic outside B+(D + 1
2εA). We can take smooth strict transforms ÜY m

i on ÜXm of
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Yi for 1 ≤ i ≤ n− k. For a general point y in ÜY m
n−k, we have the positive moving Seshadri

constant ε(‖D + 1
2εA‖; fm(y)) > 0. Thus we also have the positive Seshadri constant

ε(Mm; y) > 0 for m � 0 so that ÜY m
n−k * B+(Mm). Let gm : ÜXm → Zm be the birational

morphism defined by |M ′m|. Possibly by taking a further blow-up of ÜXm, we may assume

that every irreducible component of the exceptional locus of gm is a divisor. We can still

assume that fm is isomorphic over a general point in Yn−k. The divisor Hm := Mm −Em
is ample for any sufficiently small effective divisor Em whose support is the gm-exceptional

locus. Note that mult
Ỹm
n−k

(Em) = 0. Let f∗m(D+ 1
2εA) = Pm+Nm be the divisorial Zariski

decomposition. As in [15, Proof of Proposition 3.7], by applying [8, Proposition 2.5], we

see that Pm −Mm is arbitrarily small if we take a sufficiently large m > 0. Since we may

take an arbitrarily small Em, so is Pm −Hm for a sufficiently large m > 0.

For simplicity, we fix a sufficiently large integer m > 0 and we denote f = fm, ÜX = ÜXm

and ÜYi = ÜY m
i . Let f∗(D + 1

2εA) = P + N be the divisorial Zariski decomposition.

Then as we have seen above, we can assume that P can be arbitrarily approximated

by an ample divisor H on ÜX such that F = f∗(D + 1
2εA) − H is an effective divisor

satisfying mult
Ỹn−k

(F ) = 0. Note that F − N is an arbitrarily small effective divisor

such that mult
Ỹn−k

(F −N) = 0. Thus we can find an effective divisor A0 ∼Q A such that

multYn−k−1
A0 = 0, E0 := 1

2εf
∗A0|Ỹn−k−1

−(F−N)|
Ỹn−k−1

is effective, and mult
Ỹn−k

E0 = 0.

Let f∗D = P ′+N ′ be the divisorial Zariski decomposition. Since P ′+f∗(1
2εA) is movable,

we get P ≥ P ′ + f∗(1
2εA) and so N ′ ≥ N . Since Yn−k * B+(D), every irreducible

component of N ′ cannot contain ÜYn−k−1. Clearly, f∗Dn−k −N ′|Ỹn−k−1
is effective, and so

is f∗Dn−k −N |Ỹn−k−1
. Thus

E1 := f∗(Dn−k +A′n−k)−N |Ỹn−k−1
+ E0

= f∗(Dn−k +A′n−k)− F |Ỹn−k−1
+

1

2
εf∗A0|Ỹn−k−1

is an effective divisor on ÜYn−k−1. Note that E1 ∼Q (H + 1
2εf

∗A)|
Ỹn−k−1

. Since

H0
�ÜX,m�

H +
1

2
εf∗A

��
→ H0

�ÜYn−k−1,m

�
H +

1

2
εf∗A

� ∣∣∣∣
Ỹn−k−1

�

is surjective for all sufficiently divisible integers m > 0, it follows that there exists H ′ ∼Q

H + 1
2εf

∗A such that H ′|
Ỹn−k−1

= E1. Then we have

(H ′ + F )|
Ỹn−k−1

= E1 + F |
Ỹn−k−1

= f∗Dn−k + E′

where

E′ := f∗A′n−k + (F −N)|
Ỹn−k−1

+ E0 = f∗A′n−k +
1

2
εf∗A0|Ỹn−k−1

is an effective divisor. Note that mult
Ỹn−k

E′ = 0. We may also assume that each x′j ≥ 0 is

arbitrarily small in ν
Ỹn−k•

(E′|
Ỹn−k

) = (x′1, . . . , x
′
k). By letting D′′ := f∗(H

′+F ) ∼Q D+εA
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and E := f∗E
′, we obtain the divisors satisfying the required properties. This shows the

claim, and hence, we complete the proof.

4. Nakayama subvarieties and positive volume subvarieties

In [5], we introduced Nakayama subvarieties and positive volume subvarieties of divisors.

We now further study those subvarieties and prove Theorem 1.2 (= Theorem 4.8) in this

section. We first recall the definitions of those subvarieties.

Definition 4.1. [5, Definitions 2.7 and 2.13] Let D be an R-divisor on X.

(1) When D is effective, a Nakayama subvariety of D is an irreducible subvariety U ⊆ X
such that dimU = κ(D) and for every integer m ≥ 0 the natural map

H0(X, bmDc)→ H0(U, bmD|Uc)

is injective (or equivalently, H0(X, IU ⊗OX(bmDc)) = 0 where IU is an ideal sheaf

of U in X).

(2) When D is pseudoeffective, a positive volume subvariety of D is an irreducible sub-

variety V ⊆ X such that dimV = κν(D) and vol+X|V (D) > 0.

Remark 4.2. In [5], we required an additional condition V * B−(D) for the definition of

positive volume subvariety. However, we can drop this condition by Lemma 4.3. Note

that V * B−(D) does not imply vol+X|V (D) > 0 (see [5, Example 2.14]).

Lemma 4.3. Let D be a pseudoeffective R-divisor on X. If V is a positive volume

subvariety of D, then V * B−(D).

Proof. If V ⊆ B−(D), then there is a sequence {Ai} of ample divisors on X such that

limi→∞Ai = 0 and V ⊆ SB(D +Ai). Then volX|V (D +Ai) = 0, so vol+X|V (D) = 0. Thus

V is not a positive volume subvariety of D.

Remark 4.4. Even if V is a positive volume subvariety of D, it is possible that V ⊆ SB(D).

For instance, consider a ruled surface S carrying a nef divisor D such that D · C > 0 for

every irreducible curve C ⊆ S, but D is not ample (see e.g., [13, Example 1.5.2]). Since

κ(D) = −∞, we have SB(D) = S. Thus every positive volume subvariety of D is contained

in SB(D).

Remark 4.5. When κ(D) = 0 (resp. κν(D) = 0), every point not in Supp(D) (resp. B−(D))

is a Nakayama (resp. positive volume) subvariety of D. When κ(D) > 0, any κ(D)-

dimensional general subvariety (e.g., intersection of general ample divisors) is a Nakayama
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subvariety of D (see [5, Proposition 2.9]). Similarly, when κν(D) > 0, any κν(D)-

dimensional intersection of sufficiently ample divisors is a positive volume subvariety of D

(see [5, Proposition 2.17]). In particular, we can always construct an admissible flag Y•

on X containing a Nakayama subvariety of D or a positive volume subvariety of D such

that Yn is a general point in X.

The importance of such special subvarieties associated to divisors is that one can read

off interesting asymptotic properties of divisors from Okounkov bodies with respect to

admissible flags containing those subvarieties. The following theorem is the main result

of [5], which can be regarded as a generalization of [14, Theorem A].

Theorem 4.6. [5, Theorems A and B] We have the following:

(1) Let D be an effective R-divisor on X. Fix an admissible flag Y• containing a

Nakayama subvariety U of D such that Yn is a general point in X. Then ∆val
Y• (D) ⊆

{0}n−κ(D) × Rκ(D) so that one can regard ∆val
Y• (D) ⊆ Rκ(D). Furthermore, we have

dim ∆val
Y• (D) = κ(D) and volRκ(D)(∆val

Y• (D)) =
1

κ(D)!
volX|U (D).

(2) Let D be a pseudoeffective R-divisor on X and fix an admissible flag Y• containing

a positive volume subvariety V of D. Then ∆lim
Y• (D) ⊆ {0}n−κν(D) × Rκν(D) so that

one can regard ∆lim
Y• (D) ⊆ Rκν(D). Furthermore, we have

dim ∆lim
Y• (D) = κν(D) and volRκν (D)(∆lim

Y• (D)) =
1

κν(D)!
vol+X|V (D).

Remark 4.7. In order to extract asymptotic properties of divisors from ∆val
Y• (D) as in The-

orem 4.6(1), we need to assume that Yn is a general point in X. When considering ∆val
Y• (D)

(resp. ∆lim
Y• (D), we say that Yn is general if Yn is not contained in SB(D) (resp. B−(D))

(see [14, Lemma 2.6] and [5, Subsection 3.2]).

As an application of Theorem 4.6, we now prove the following Theorem 1.2.

Theorem 4.8. Let D be an R-divisor on X. Fix an admissible flag Y• such that Yn is a

general point in X. We have the following:

(1) If D is effective, then Y• contains a Nakayama subvariety of D if and only if

∆val
Y• (D) ⊆ {0}n−κ(D) × Rκ(D).

(2) If D is pseudoeffective, then Y• contains a positive volume subvariety of D if and

only if ∆lim
Y• (D) ⊆ {0}n−κν(D) × Rκν(D) and dim ∆lim

Y• (D) = κν(D).
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Proof. The (⇒) direction of both (1) and (2) at once follows from Theorem 4.6. For the

(⇐) direction of (1), note that ordYn−κ(D)
(D′) = 0 for every effective divisorD′ ∼R D under

the assumption that ∆val
Y• (D) ⊆ {0}n−κ(D) × Rκ(D). This means that H0(X, IYn−κ(D)

⊗
OX(bmDc)) = 0 for every integer m ≥ 0. Thus Yn−κ(D) is a Nakayama subvariety of D.

For the (⇐) direction of (2), take an arbitrary ample divisor A on X. Since ∆Y•(D +

A) ⊇ ∆lim
Y• (D), it follows that

∆Y•(D +A) ∩ ({0}n−κν(D) × Rκν(D)
≥0 ) ⊇ ∆lim

Y• (D).

Since Yn is general, we have Yn−κν(D) * B−(D). Thus Yn−κν(D) * B+(D +A) and using

Theorem 3.6, we obtain ∆Yn−κν (D)•(D +A) ⊇ ∆lim
Y• (D). Therefore, by [14, (2.7)] we have

volX|Yn−κν (D)
(D +A) = κν(D)! · volRκν (D) ∆Yn−κν (D)•(D +A)

≥ κν(D)! · volRκν (D) ∆lim
Y• (D).

The given condition implies that volRκν (D) ∆lim
Y• (D) > 0. Hence, vol+X|Yn−κν (D)

(D) > 0, and

by definition Yn−κν(D) is a positive volume subvariety of D.

Regarding Theorem 4.8(1), we recall that dim ∆val
Y• (D) = κ(D) always holds whenever

D is effective by [3, Proposition 3.3].

5. Rational polyhedrality of Okounkov bodies

This section is devoted to showing the rational polyhedrality of Okounkov bodies of pseu-

doeffective divisors. We then finally prove Theorem 1.3 (= Corollary 5.4 and Theorem 5.6).

First, we study the Okounkov bodies under surjective morphisms.

Lemma 5.1. (cf. [4, Lemma 3.3]) Let f : X → X be a surjective morphism of projective

varieties of the same dimension n and fix an admissible flag

Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {x}

on X such that

Y • : X = f(Y0) ⊇ f(Y1) ⊇ · · · ⊇ f(Yn−1) ⊇ f(Yn) = {f(x)}

is an admissible flag on X. For a big Z-divisor D on X, consider a graded linear series

W• associated to f∗D on X with Wk := H0(X, kD) ⊆ H0(X, kf∗D) for any integer k ≥ 0.

Then ∆Y•(W•) = ∆Y •
(D).

Proof. It follows from the construction of Okounkov body associated to a graded linear

series.
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The following lemma plays a crucial role in proving Theorem 1.3.

Lemma 5.2. (cf. [1, Proposition 4]) Let W• be a graded linear series on a smooth projective

variety X generated by a base point free linear series W1. Suppose also that W1 defines

a surjective morphism f : X → X of projective varieties of the same dimension n. Let

Y• be an admissible flag on X defined by successive intersection of sufficiently general

members E1, . . . , En of W1; Yi := E1 ∩ · · · ∩ Ei for 1 ≤ i ≤ n − 1 and Yn = {x} is a

general point in X. Then ∆Y•(W•) is an n-dimensional simplex in Rn≥0 whose verticies

are 0, e1, . . . , en−1, volX(W•)en.

Proof. There exists a very ample Z-divisor D on X so that we may assume Wk =

H0(X, kD) ⊆ H0(X, kf∗D) for any integer k ≥ 0. By the genericity assumption on

Ej for defining Yi, we may assume that

Y • : X = f(Y0) ⊇ f(Y1) ⊇ · · · ⊇ f(Yn−1) ⊇ f(Yn)

is an admissible flag on X. By Lemma 5.1, ∆Y•(W•) = ∆Y •
(D). Note that Dn =

volX(D) = volX(W•). By applying [1, Proposition 4] to ∆Y •
(D), we obtain the assertion.

We now show the rational polyhedrality of ∆val
Y• (D).

Theorem 5.3. Let D be an effective Q-divisor on X with finitely generated section ring

R(X,D). Then there exists an admissible flag Y• on X containing a Nakayama subvariety

of D such that ∆val
Y• (D) is a rational simplex in {0}n−κ(D) × Rκ(D) of dimension κ(D).

Proof. Let m > 0 be a sufficiently divisible and large integer such that mD is a Z-divisor

and the section ring R(X,mD) is generated by H0(X,mD). We take a log resolution

f : ÜX → X of the base ideal b(|mD|) so that we obtain a decomposition f∗(mD) = M+F

into a base point free divisor M and the fixed part F of |f∗(mD)|. Note that the morphism

φ : ÜX → Z given by |M | is the Iitaka fibration of f∗D. Let A1, . . . , An−κ(D) be sufficiently

general ample divisors on ÜX such that each Y ′i := A1 ∩ · · · ∩ Ai for 1 ≤ i ≤ n − κ(D)

is a smooth irreducible subvariety of dimension n − i. By Remark 4.5, U := Y ′n−κ(D)

is a Nakayama subvariety of f∗D. Let Wk be the image of the natural injective map

H0(ÜX, kf∗(mD)) → H0(U, kf∗(mD)|U ) for any integer k ≥ 0. Then W• is a graded

linear series on U generated by W1. Note that φ|U : U → Z is a surjective morphism

of projective varieties of the same dimension κ(D) defined by W1. Now take sufficiently

general members E1, . . . , Eκ(D) of W1 such that Y ′n−κ(D)+i := E1 ∩ · · · ∩ Ei for 1 ≤ i ≤
κ(D) − 1 is a smooth irreducible subvariety of X (and U) of dimension κ(D) − i, and

Y ′n = {x} where x is a general point in U . In particular, Y ′• : Y ′0 ⊇ · · · ⊇ Y ′n is an

admissible flag on ÜX and the partial flag Y ′n−κ(D)• is an admissible flag on U . Then by
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Lemma 5.2, ∆Y ′
n−κ(D)•

(W•) is a κ(D)-dimensional simplex. Recall from [5, Remark 3.11]

that ∆val
Y ′•

(f∗D) = ∆Y ′
n−κ(D)•

(W•). Furthermore, by the genericity assumption on Y ′• , we

can assume that Y• : f(Y ′0) ⊇ · · · ⊇ f(Y ′n) is an admissible flag on X and f(Y ′n−κ(D)) is a

Nakayama subvariety of D. By Lemma 3.4, ∆val
Y• (D) = ∆val

Y ′•
(f∗D), and hence, ∆val

Y• (D) is

a rational simplex. Finally, by Theorem 4.6(1), ∆val
Y• (D) is contained in {0}n−κ(D)×Rκ(D)

and is of dimension κ(D).

Corollary 5.4. Let D be an effective Q-divisor on X which admits the birational good

Zariski decomposition. Then there exists an admissible flag Y• on X containing a Nakayama

subvariety of D such that ∆val
Y• (D) is a rational simplex in {0}n−κ(D)×Rκ(D) of dimension

κ(D).

Proof. By Proposition 2.7, D has a finitely generated section ring. Then the assertion

now follows from Theorem 5.3.

We now turn to the limiting Okounkov body case.

Lemma 5.5. Let P be a nef divisor on X and consider an admissible flag Y• on X

containing a smooth positive volume subvariety V = Yn−κν(D) of P . Then ∆lim
Y• (P ) =

∆Yn−κν (P )•(P |V ).

Proof. By definition, it is clear that ∆lim
Y• (P ) ⊇ ∆Yn−κν (P )•(P |V ). Thus it is sufficient

to show that their Euclidean volumes in Rκν(P ) are equal, i.e., volRκν (P )(∆lim
Y• (P )) =

volRκν (P )(∆Yn−κν (P )•(P |V )), or equivalently, vol+X|V (P ) = volV (P |V ) by Theorem 4.6.

Fix an ample divisor A on X. Since P + εA is ample for any ε > 0, it follows that

volX|V (P + εA) = volV ((P + εA)|V ). By the continuity of the volume function, we obtain

vol+X|V (P ) = lim
ε→0+

volX|V (P + εA) = lim
ε→0+

volV ((P + εA)|V ) = volV (P |V ),

so we complete the proof.

We next obtain an analogous result on the rational polyhedrality of ∆lim
Y• (D).

Theorem 5.6. Let D be a pseudoeffective Q-divisor on X which admits the birational good

Zariski decomposition. Then there exists an admissible flag Y• on X containing a positive

volume subvariety of D such that ∆lim
Y• (D) is a rational simplex in {0}n−κν(D)×Rκν(D) of

dimension κν(D).

Proof. Let f : ÜX → X be a birational morphism of smooth projective varieties of dimension

n such that f∗D = P + N is the good Zariski decomposition. Let A1, . . . , An−κν(D) be

sufficiently general ample divisors on ÜX such that each Y ′i := A1 ∩ · · · ∩ Ai for 1 ≤
i ≤ n − κν(D) is a smooth irreducible subvariety of dimension n − i. By Remark 4.5,
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V := Y ′n−κν(D) is a positive volume subvariety of f∗D. By [5, Theorem 2.18], P |V is big,

and mP |V on V is base point free for a sufficiently divisible and large integer m > 0. Let

E1, . . . , Eκν(D)−1 ∈ |mP |V | be general members such that each Y ′n−κν(D)+i := E1∩· · ·∩Ei
for 1 ≤ i ≤ κν(D) − 1 is a smooth irreducible subvariety of X of dimension κν(D) − i,
and Y ′n := {x} where x is a general point in V . Then Y ′• : ÜX = Y ′0 ⊇ · · · ⊇ Y ′n is an

admissible flag on ÜX. By [1, Theorem 7], ∆Y ′
n−κν (D)•

(P |V ) is a κν(D)-dimensional simplex.

By Lemma 5.5, ∆lim
Y ′•

(P ) = ∆Y ′
n−κν (D)•

(P |V ), and by Lemma 3.5, ∆lim
Y ′•

(f∗D) = ∆lim
Y ′•

(P ).

By the genericity assumption on Y ′• , we can assume that Y• : f(Y ′0) ⊇ · · · ⊇ f(Y ′n) is an

admissible flag on X and f(Y ′n−κν(D)) is a positive volume subvariety of D. By Lemma 3.4,

we obtain ∆lim
Y• (D) = ∆lim

Y ′•
(f∗D), and hence, ∆lim

Y• (D) is a rational simplex. Finally, by

Theorem 4.6, ∆lim
Y• (D) is in {0}n−κν(D) × Rκν(D) and of dimension κν(D).

Remark 5.7. The problem of the rational polyhedrality of Okounkov body is not yet fully

understood. It was shown in [1, Corollary 13] and [6, Theorems 1.1 and 4.17] that on a

smooth projective surface, there always exists an admissible flag with respect to which

the Okounkov body of any Q-divisor is a rational polytope. Thus, in particular, even if

a pseudoeffective Q-divisor is not abundant or does not have finitely generated section

ring, the associated Okounkov body can still be a rational polytope with respect to some

admissible flag. On the other hand, even when the given variety is a Mori dream space,

the Okounkov body can be non-polyhedral for some admissible flag (see [12, Section 3]).
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