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Pullback Exponential Attractors for Parabolic Equations with Dynamical

Boundary Conditions

Rados law Czaja* and Pedro Maŕın-Rubio

Abstract. The existence of pullback exponential attractors for a nonautonomous semi-

linear parabolic equation with dynamical boundary condition is proved when the time-

dependent forcing terms are translation bounded or even grow exponentially in the

past and in the future.

1. Introduction

In this paper we consider the nonautonomous semilinear parabolic equation with dynam-

ical boundary condition of the form

(1.1)



∂u

∂t
−∆u+ κu+ f1(u) = h1(t) in Ω× (s,∞),

∂u

∂t
+
∂u

∂~n
+ f2(u) = h2(t) on ∂Ω× (s,∞),

u(x, s) = us(x) for x ∈ Ω,

u(x, s) = ϕs(x) for x ∈ ∂Ω,

where Ω is a bounded domain in RN , N ≥ 2, with a Lipschitz boundary ∂Ω, ~n is the outer

normal unit vector to ∂Ω, s ∈ R is an initial time, us, ϕs are initial data, κ > 0, and the

functions f1, f2, h1, h2 are given. Parabolic equations of the above type with dynamical

boundary conditions serve as models in the heat transfer theory and in hydrodynamics,

for example in the description of the heat transfer in a solid body in contact with a moving

fluid. They have been investigated in many research articles (e.g., see [1–3, 11] and the

references therein).
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We assume that us ∈ L2(Ω), ϕs ∈ L2(∂Ω), h1 ∈ L2
loc(R;L2(Ω)), h2 ∈ L2

loc(R;L2(∂Ω)),

and the functions f1, f2 ∈ C(R) satisfy the following assumptions

(fi(u)− fi(v))(u− v) ≥ −l(u− v)2, u, v ∈ R, i = 1, 2,(1.2)

|fi(u)− fi(v)| ≤ L |u− v|
(

1 + |u|pi−2 + |v|pi−2
)
, u, v ∈ R, i = 1, 2,(1.3)

fi(u)u ≥ α |u|pi − β, u ∈ R, i = 1, 2,(1.4)

with some constants pi ≥ 2, α, l, L > 0, β ≥ 0.

The above conditions on the nonlinearities make that equations in problem (1.1) be-

come a reaction-diffusion equation with dynamical boundary conditions. Note that, in

particular, as fi we may take fi(u) = u |u|pi−2 − u, u ∈ R, with pi > 2. We also see

that (1.2) means that the functions R 3 u 7→ fi(u) + lu ∈ R, i = 1, 2, are nondecreasing.

Moreover, we observe that there exists C > 0 such that

(1.5) |fi(u)| ≤ C(1 + |u|pi−1), u ∈ R, i = 1, 2.

Finally, if p1 = p2 = 2, then (1.3) implies global Lipschitz continuity of fi, i = 1, 2, i.e.,

(1.6) |fi(u)− fi(v)| ≤ L̃ |u− v| , u, v ∈ R, i = 1, 2,

and the condition in (1.2) holds with l = L̃ = 3L.

Remark 1.1. If the system (1.1) does not contain the term with κ, but (1.4) holds, then

by a suitable change of f1, it can be considered in the form of (1.1) with any positive κ

for p1 > 2 and 0 < κ < α for p1 = 2. Indeed, define f̃1(u) = f1(u) − κu and note that

(1.2) implies (
f̃1(u)− f̃1(v)

)
(u− v) ≥ −(l + κ)(u− v)2, u, v ∈ R,

and, if p1 > 2, for every ε > 0 there exists cε > 0 such that

f̃1(u)u ≥ (α− ε) |u|p1 − β − cε, u ∈ R,

whereas if p1 = 2 we have

f̃1(u)u ≥ (α− κ) |u|2 − β, u ∈ R.

Moreover, (1.3) implies∣∣∣f̃1(u)− f̃1(v)
∣∣∣ ≤ (L+ κ) |u− v|

(
1 + |u|p1−2 + |v|p1−2

)
, u, v ∈ R.

In [1], under assumptions (1.2) and (1.4) for ~f = (f1, f2) and under some extra in-

tegrability condition for ~h = (h1, h2), the authors proved the existence of an evolution
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process for (1.1) on the space H = L2(Ω) × L2(∂Ω), which possesses a minimal pullback

attractor.

A minimal pullback attractor {A(t) : t ∈ R} for a process {U(t, s) : t ≥ s} on a Banach

space E is a family of nonempty compact subsets of E, which is invariant under the process,

i.e., U(t, s)A(s) = A(t) for t ≥ s, it pullback attracts all bounded subsets of E, i.e., for

any bounded subset D of E and t ∈ R

lim
s→∞

distE(U(t, t− s)D,A(t)) = 0,

where distE(A,B) = supx∈A infy∈B ‖x− y‖E denotes the Hausdorff semidistance in E,

and satisfies a minimality condition, which guarantees its uniqueness: if another family

{C(t) : t ∈ R} of nonempty closed subsets of E pullback attracts all bounded subsets of

E, then A(t) ⊂ C(t) for t ∈ R.

In the present article our aim is to prove the existence of a pullback exponential

attractor for (1.1). This family {M(t) : t ∈ R} of nonempty compact subsets of E is only

positively invariant under the process, i.e., U(t, s)M(s) ⊂M(t) for t ≥ s, but we require

that the fractal dimension in E (denoted by dimE
f (·)) of the sets forming the family has a

uniform bound, i.e., there exists d ≥ 0 such that

sup
t∈R

dimE
f (M(t)) ≤ d <∞,

and the pullback attraction of bounded subsets of E towards M(t) is at an exponential

rate. This means that there exists ω > 0 such that for every bounded subset D of E and

t ∈ R we have

lim
s→∞

eωs distE(U(t, t− s)D,M(t)) = 0.

Note that the existence of a pullback exponential attractor {M(t) : t ∈ R} implies the

existence of the minimal pullback attractor {A(t) : t ∈ R} as its subset, that is, A(t) ⊂
M(t) for t ∈ R. In particular, the minimal pullback attractor also has a uniform bound

of the fractal dimension.

The first constructions of pullback exponential attractors were presented in [8–10,14,16]

and later in [5]. In this paper, however, we use the recent results of [7] to show the existence

of pullback exponential attractors.

In Section 4 we prove the existence of a pullback exponential attractor for (1.1) in

H = L2(Ω) × L2(∂Ω) (cf. Theorem 4.5) if the forcing term ~h = (h1, h2) ∈ L2
loc(R;H) is

translation bounded, i.e., there exists K > 0 such that

(1.7) sup
t∈R

∫ t+1

t

∣∣∣~h(τ)
∣∣∣2
H
dτ ≤ K,

and the nonlinear terms fi, i = 1, 2, have suitable exponents pi (see (4.5)) due to the

available a priori estimate in H. If an additional condition (4.11) is satisfied, we are able
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to consider higher exponents p1 = p2 = p given in (4.15). In particular, for N = 2 the

nonlinearities fi(u) = u3 − u, u ∈ R, among many others, are admitted.

In Section 5 we consider the Lipschitz case (p1 = p2 = 2) and show in Theorem 5.4

the existence of a pullback exponential attractor for (1.1) in H even if the time-dependent

forcing terms h1 and h2 may grow exponentially in the past and in the future, i.e., when

the function ~h = (h1, h2) ∈ L2
loc(R;H) admits the exponential growth

(1.8)
∣∣∣~h(t)

∣∣∣2
H
≤ Keθ|t|, t ∈ R

for some K > 0 and 0 ≤ θ < 2(λ1 +α), where λ1 > 0 is the first eigenvalue of the operator

A0, specified in (2.5).

2. Evolution process of global weak solutions

We consider the problem (1.1) with

us ∈ L2(Ω), ϕs ∈ L2(∂Ω), h1 ∈ L2
loc(R;L2(Ω)) and h2 ∈ L2

loc(R;L2(∂Ω))

given. Moreover, we assume that fi ∈ C(R), i = 1, 2, satisfy (1.2)–(1.4).

We denote by | · |p,Ω (respectively, | · |p,∂Ω) the norm in Lp(Ω) (respectively, in Lp(∂Ω))

and by (· , ·)Ω (respectively, (· , ·)∂Ω) the inner product in L2(Ω) and (L2(Ω))N , which

defines the norm | · |2,Ω = | · |Ω, and the duality product between Lp
′
(Ω) and Lp(Ω) (re-

spectively, the inner product in L2(∂Ω), which defines the norm | · |2,∂Ω = | · |∂Ω, and the

duality product between Lp
′
(∂Ω) and Lp(∂Ω)). The notation | · | will also be used for

the Lebesgue measure of a set in both RN or RN−1, without more indications since no

confusion arises.

By ‖ · ‖Ω we denote the norm in H1(Ω), which is associated to the inner product

((· , ·))Ω = (∇· ,∇·)Ω + (· , ·)Ω. Furthermore, γ0 will denote the trace operator

γ0(u) = u|∂Ω, u ∈ C∞(Ω),

which belongs to L(H1(Ω), H1/2(∂Ω)) with norm ‖γ0‖ and is surjective. The norm in the

subspace H1/2(∂Ω) of L2(∂Ω) is given by

‖u‖1/2,∂Ω =

(∫
∂Ω
|u(x)|2 dσx +

∫∫
∂Ω×∂Ω

|u(x)− u(y)|2

|x− y|N
dσxdσy

)1/2

and makes H1/2(∂Ω) a Hilbert space. Moreover, H1
0 (Ω) =

{
u ∈ H1(Ω) : γ0(u) = 0

}
,

H1/2(∂Ω) is a dense subspace of L2(∂Ω) and γ0 maps bounded subsets of H1(Ω) into

relatively compact subsets of L2(∂Ω) (for details see [12, Chapter 1], [13, Chapter 6]

and [17, Chapter 2]). Finally, let us observe that throughout the paper BE
r (x) denotes the
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open ball in a metric space E of center x and radius r, and clE A denotes the closure in

the topology of E of a certain subset A of E.

Following [1, 15] we will show existence and uniqueness of global weak solutions of

(1.1).

Definition 2.1. A global weak solution of (1.1) is a pair of functions (u, ϕ) satisfying

u ∈ C([s,∞);L2(Ω)) ∩ L2(s, T ;H1(Ω)) ∩ Lp1(s, T ;Lp1(Ω)),

ϕ ∈ C([s,∞);L2(∂Ω)) ∩ L2(s, T ;H1/2(∂Ω)) ∩ Lp2(s, T ;Lp2(∂Ω))

for all T > s, γ0(u(t)) = ϕ(t) for a.e. t ∈ (s,∞), the following equality holds for all

v ∈ H1(Ω) ∩ Lp1(Ω) such that γ0(v) ∈ Lp2(∂Ω)

d

dt
(u(t), v)Ω +

d

dt
(ϕ(t), γ0(v))∂Ω + (∇u(t),∇v)Ω + κ(u(t), v)Ω

+ (f1(u(t)), v)Ω + (f2(γ0(u(t))), γ0(v))∂Ω

= (h1(t), v)Ω + (h2(t), γ0(v))∂Ω for a.e. t ∈ (s,∞),

and u(s) = us and ϕ(s) = ϕs.

As in the proof of [1, Theorem 5] we introduce the following spaces (with corresponding

norms) and the following operators, which will be useful in the sequel. We define a Hilbert

space

H = L2(Ω)× L2(∂Ω),

with the inner product ((u, ϕ), (v, ψ))H = (u, v)Ω + (ϕ,ψ)∂Ω, which induces the norm

| · |H given by |(u, ϕ)|2H = |u|2Ω + |ϕ|2∂Ω for (u, ϕ) ∈ H, and the closed vector subspace of

H1(Ω)×H1/2(∂Ω) defined as

V0 =
{

(u, γ0(u)) : u ∈ H1(Ω)
}

with the norm given by ‖(u, γ0(u))‖2V0 = ‖u‖2Ω +‖γ0(u)‖21/2,∂Ω for (u, γ0(u)) ∈ V0. Observe

that V0 is a Hilbert space, which is densely and compactly embedded in H. We identify

H with its dual by the Riesz theorem and therefore we have the chain of inclusions V0 ⊂
H ⊂ V ′0 .

We consider the continuous linear operator A0 : V0 → V ′0 defined through a symmetric

continuous bilinear form B : V0 × V0 → R given as

B[~u,~v] = 〈A0~u,~v〉V ′0 ,V0 = (∇u,∇v)Ω + κ(u, v)Ω,

where ~u = (u, γ0(u)), ~v = (v, γ0(v)) ∈ V0, since

(2.1) |B[~u,~v]| ≤ (1 + κ) ‖~u‖V0 ‖~v‖V0 , ~u,~v ∈ V0.
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Recall that B is coercive (cf. (16) in [1]), i.e.,

(2.2) B[~u, ~u] ≥ 1

1 + ‖γ0‖2
min {1, κ} ‖~u‖2V0 , ~u ∈ V0.

By Lax-Milgram lemma there exists the bounded inverse A−1
0 : V ′0 → V0. Its restriction to

H is a bounded compact operator, which is the inverse of the unbounded linear operator

A0 : H ⊃ D(A0) → H with the domain D(A0) = {~u ∈ V0 : A0~u ∈ H}. This operator is

symmetric and surjective. Moreover, it is positive, since for ~u = (u, γ0(u)) ∈ D(A0) we

have

(A0~u, ~u)H = 〈A0~u, ~u〉V ′0 ,V0 = |∇u|2Ω + κ |u|2Ω ≥ min {1, κ/2}min
{

1, ‖γ0‖−2
}
|~u|2H .

Hence there exists an orthonormal basis {~wj = (wj , γ0(wj))} ⊂ D(A0) in the Hilbert

space H consisting of eigenfunctions of A0, with corresponding eigenvalues λj such that

λj+1 ≥ λj > 0, j ∈ N, and λj →∞.

We define the linear subspaces E0 = {~0} and

(2.3) En = span {~w1, . . . , ~wn} , n ∈ N,

of V0 and note that the bilinear form B defines an inner product in V0 and
{
~wj/
√
λj
}

is

an orthonormal basis in V0 with this inner product. Consequently, for any ~u ∈ V0 such

that ~u ⊥ En−1, we have

B[~u, ~u] =

∞∑
j=1

λ−1
j B[~u, ~wj ]

2 =

∞∑
j=n

λj(~u, ~wj)
2
H ≥ λn |~u|

2
H , n ∈ N.

Hence we obtain

(2.4) λn = min
~u∈V0\{0}
~u⊥En−1

〈A0~u, ~u〉V ′0 ,V0
|~u|2H

, n ∈ N.

In particular, we have

(2.5) λ1 = min
~u∈V0\{0}

〈A0~u, ~u〉V ′0 ,V0
|~u|2H

.

Now, we introduce the nonlinear operators A1 : V1 → V ′1 and A2 : V2 → V ′2 given by

A1(u, ϕ) = (f1(u), 0), (u, ϕ) ∈ V1 = Lp1(Ω)× L2(∂Ω),

A2(u, ϕ) = (0, f2(ϕ)), (u, ϕ) ∈ V2 = L2(Ω)× Lp2(∂Ω).

The operators are well-defined by (1.5). Note that Vi, i = 0, 1, 2, are separable, reflexive

Banach spaces, densely embedded in H. We define

V =
2⋂
i=0

Vi = V0 ∩ (Lp1(Ω)× Lp2(∂Ω)) with ‖~u‖2V =
2∑
i=0

‖~u‖2Vi .
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We see that V is a separable Banach space, densely embedded in H. Thus, we have

V ⊂ H ⊂ V ′ and Vi ⊂ H ⊂ V ′i , i = 0, 1, 2.

Observe that from (1.3) it follows that each Ai, i = 0, 1, 2, is hemicontinuous, i.e., for

every ~u,~v, ~w ∈ Vi the function

R 3 µ 7→ 〈Ai(~u+ µ~v), ~w〉V ′i ,Vi ∈ R

is continuous. Moreover, by (1.5) we see that

‖Ai(~u)‖V ′i ≤ Ci
(

1 + ‖~u‖pi−1
Vi

)
, ~u = (u, ϕ) ∈ Vi, i = 1, 2.

We also have by (2.1)

‖A0~u‖V ′0 ≤ (1 + κ) ‖~u‖V0 , ~u ∈ V0.

By (2.2) and (1.2) each operator is monotone, i.e.,

〈A0(~u− ~v), ~u− ~v〉V ′0 ,V0 ≥ 0, ~u,~v ∈ V0,

〈Ai(~u)−Ai(~v), ~u− ~v〉V ′i ,Vi ≥ −l |~u− ~v|
2
H , ~u,~v ∈ Vi, i = 1, 2.

Finally, we have by (1.4)

〈A1(~u), ~u〉V ′1 ,V1 ≥ α |u|
p1
p1,Ω
− β |Ω| , ~u = (u, ϕ) ∈ V1,

〈A2(~u), ~u〉V ′2 ,V2 ≥ α |ϕ|
p2
p2,∂Ω − β |∂Ω| , ~u = (u, ϕ) ∈ V2,

and by (2.2)

〈A0(~u), ~u〉V ′0 ,V0 ≥
1

1 + ‖γ0‖2
min {1, κ} ‖~u‖2V0 , ~u ∈ V0.

Then by a modification of [15, Chapter 2, Theorem 1.4] for every ~h = (h1, h2) ∈ L2
loc(R;H),

s ∈ R, T > s and ~us = (us, ϕs) ∈ H there exists a unique function

~u ∈ L2(s, T ;V0) ∩ Lp1(s, T ;V1) ∩ Lp2(s, T ;V2) ∩ C([0, T ], H)

such that 
d~u

dt
+

2∑
i=0

Ai(~u) = ~h,

~u(s) = ~us.

Moreover, we obtain the energy equality for a.e. t > s

1

2

d

dt
|~u(t)|2H +

2∑
i=0

〈Ai(~u(t)), ~u(t)〉V ′i ,Vi = (~h(t), ~u(t))H .

Thus we have proved (cf. also [1, Theorem 5]) the result on the existence and uniqueness

of the global weak solutions to (1.1).
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Theorem 2.2. Under conditions (1.2)–(1.4) for any s ∈ R, (us, ϕs) ∈ L2(Ω) × L2(∂Ω)

there exists a unique global weak solution (u, ϕ) of problem (1.1). Moreover, this solution

satisfies the energy equality

1

2

d

dt

(
|u(t)|2Ω + |ϕ(t)|2∂Ω

)
+ |∇u(t)|2Ω + κ |u(t)|2Ω + (f1(u(t)), u(t))Ω

+ (f2(ϕ(t)), ϕ(t))∂Ω

= (h1(t), u(t))Ω + (h2(t), ϕ(t))∂Ω

(2.6)

for a.e. t > s.

Some conclusions from the above functional setting, abstract formulation and energy

equality are given below. The first one is that the global weak solutions of (1.1) satisfy

the following differential inequality.

Proposition 2.3. Under the assumptions of Theorem 2.2, the solution ~u = (u, ϕ) of (1.1)

satisfies with any δ > 0

(2.7)
d

dt
|~u(t)|2H + (2λ1 − δ) |~u(t)|2H ≤ 2β(|Ω|+ |∂Ω|) + δ−1

∣∣∣~h(t)
∣∣∣2
H

for a.e. t > s.

Proof. We apply (1.4) and (2.5) to (2.6) to get

d

dt
|~u(t)|2H + 2λ1 |~u(t)|2H ≤ 2β(|Ω|+ |∂Ω|) + 2 [(h1(t), u(t))Ω + (h2(t), ϕ(t))∂Ω]

for a.e. t > s. The Cauchy-Schwarz and Cauchy inequalities lead to (2.7).

Another consequence, now from Theorem 2.2, is that the global weak solutions to (1.1)

define an evolution process {U(t, s) : t ≥ s} in H, i.e.,

(2.8) U(t, s)(us, ϕs) = (u(t), ϕ(t)), (us, ϕs) ∈ H,

where (u, ϕ) is the unique global weak solution of (1.1) with (u(s), ϕ(s)) = (us, ϕs).

Observe that the process is Lipschitz continuous on H, which means that for each

pair (t, s), the map U(t, s) is Lipschitz (and the Lipschitz constant is not supposed to be

uniform for all the pairs).

Proposition 2.4. Under the assumptions of Theorem 2.2, for every t ≥ s there exists a

constant Lt,s = e(l−λ1)(t−s) > 0 such that

|U(t, s)~us − U(t, s)~vs|H ≤ Lt,s |~us − ~vs|H , ~us, ~vs ∈ H.
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Proof. Consider a pair of initial data ~us, ~vs ∈ H. Denoting the corresponding solutions by

~u and ~v, we see that the difference ~w = ~u− ~v satisfies for a.e. t > s

1

2

d

dt
|~w|2H + 〈A0 ~w, ~w〉V ′0 ,V0 + 〈A1(~u)−A1(~v), ~w〉V ′1 ,V1 + 〈A2(~u)−A2(~v), ~w〉V ′2 ,V2 = 0.

Using (1.2) and (2.5), we obtain

d

dt
|~w(t)|2H + 2(λ1 − l) |~w(t)|2H ≤ 0 for a.e. t > s.

In particular, we conclude

|~w(t)|2H ≤ e
2(l−λ1)(t−s) |~w(s)|2H , t ≥ s,

which proves the claim.

3. Existence of exponential pullback attractors

Our aim now is to prove the existence of a pullback exponential attractor for the process

{U(t, s) : t ≥ s} in H defined in (2.8). To achieve this goal we are going to apply [7,

Corollaries 2.6 and 2.8], which we recall below.

Theorem 3.1. Let {U(t, s) : t ≥ s} be a Lipschitz continuous process on a Hilbert space

H. Assume that

(H1) there exists a family of nonempty closed bounded subsets B(t) of H, t ∈ R, which is

positively invariant under the process, i.e.,

U(t, s)B(s) ⊂ B(t), t ≥ s,

(H2) there exist t0 ∈ R, γ0 ≥ 0 and M > 0 such that

diamH(B(t)) < Me−γ0t, t ≤ t0,

(H3) in the past the family {B(t) : t ∈ R} pullback absorbs all bounded subsets of H; that

is, for every bounded subset D of H and t ≤ t0 there exists TD,t ≥ 0 such that

U(t, t− r)D ⊂ B(t), r ≥ TD,t,

and, additionally, the function (−∞, t0] 3 t 7→ TD,t ∈ [0,∞) is nondecreasing for

every bounded D ⊂ H.

Next, we assume that the semi-process {U(t, s) : t0 ≥ t ≥ s} can be represented as

U(t, s) = C(t, s) + S(t, s),

where {C(t, s) : t0 ≥ t ≥ s} and {S(t, s) : t0 ≥ t ≥ s} are families of operators satisfying

the following properties:
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(H4) there exists t̃ > 0 such that C(t, t− t̃) are contractions within the absorbing sets with

the contraction constant independent of time, i.e.,∣∣C(t, t− t̃)~u− C(t, t− t̃)~v
∣∣
H
≤ λ |~u− ~v|H , t ≤ t0, ~u,~v ∈ B(t− t̃),

where 0 ≤ λ < 1
2e
−γ0 t̃,

(H5) for some ν ∈
(

0, 1
2e
−γ0 t̃ − λ

)
there exists N = Nν ∈ N such that for any t ≤ t0, any

R > 0 and any ~u ∈ B(t− t̃) there exist ~v1, . . . , ~vN ∈ H such that

S(t, t− t̃)
(
B(t− t̃) ∩BH

R (~u)
)
⊂

N⋃
i=1

BH
νR(~vi).

Then there exists a pullback exponential attractor {M(t) =Mν(t) : t ∈ R} in H satisfying

the properties:

(a) M(t) is a nonempty compact subset of B(t) for t ∈ R,

(b) U(t, s)M(s) ⊂M(t), t ≥ s,

(c) supt∈R dimH
f (Mν(t)) ≤ − lnNν/

[
ln (2(ν + λ)) + γ0t̃

]
,

(d) for any t ∈ R there exists ct > 0 such that for any s ≥ max {t− t0, 0}+ 2t̃

distH(U(t, t− s)B(t− s),M(t)) ≤ cte−ω0s,

where ω0 = −
(
ln (2(ν + λ)) + γ0t̃

)
/t̃ > 0,

(e) for any 0 < ω < ω0 we have

lim
s→∞

eωs distH(U(t, t− s)D,M(t)) = 0, t ∈ R, D bounded in H.

The process {U(t, s) : t ≥ s} has also the minimal pullback attractor {A(t) : t ∈ R}, which

is contained in the pullback exponential attractor {M(t) =Mν(t) : t ∈ R} and thus has

uniformly bounded fractal dimension.

4. Translation bounded forcing terms

We consider (1.1) under assumptions (1.2), (1.3) and (1.4). The main ingredient of Theo-

rem 3.1 is the pullback absorbing family {B(t) : t ∈ R}. We will find a pullback absorbing

family for the problem (1.1) when the function ~h = (h1, h2) ∈ L2
loc(R;H) is translation

bounded, i.e., (1.7) holds.
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By Proposition 2.3 we know that the global weak solutions ~u = (u, ϕ) of (1.1) satisfy

(2.7). Setting 0 < δ < 2λ1 we use (1.7) and apply a version of the Gronwall inequality

from [6, Chapter II, Lemma 1.3] to (2.7) to get

(4.1) |~u(t)|2H ≤ |~u(s)|2H e
−(2λ1−δ)(t−s) +Kδ, t ≥ s,

where Kδ =
(
2β(|Ω|+ |∂Ω|) + δ−1K

) (
1 + 1

2λ1−δ

)
.

We define

(4.2) B0 =
{
~u ∈ H : |~u|2H ≤ 2Kδ

}
.

From (4.1) and (4.2) it follows that for every bounded subset D of H there exists rD > 0

such that

U(t, t− r)D ⊂ B0, r ≥ rD, t ∈ R.

Moreover, there exists r0 > 0 such that

U(t, t− r)B0 ⊂ B0, r ≥ r0, t ∈ R.

Thus, the family

(4.3) B(t) = clH
⋃
r≥r0

U(t, t− r)B0, t ∈ R,

is positively invariant and pullback absorbing. Indeed, from above we see that B(t) ⊂ B0

is a nonempty closed bounded subset of H and by Proposition 2.4

U(t, s)B(s) ⊂ B(t), t ≥ s,

which shows (H1). Moreover, we have

diamH(B(t)) < 2 diamH(B0), t ∈ R,

so (H2) holds with M = 2 diamH(B0), γ0 = 0 and t0 ∈ R arbitrary. Furthermore, if D is

a bounded subset of H and t ≤ t0, then, setting TD = rD + r0 and taking s ≥ TD, we get

U(t, t− s)D = U(t, t− r0)U(t− r0, t− r0 − (s− r0))D ⊂ U(t, t− r0)B0 ⊂ B(t),

which shows that (H3) is satisfied in this case.

We have proved the following

Proposition 4.1. If fi, i = 1, 2, satisfy (1.2)–(1.4), and ~h = (h1, h2) ∈ L2
loc(R;H)

satisfies (1.7), then the family B(t) ⊂ B0, t ∈ R, defined by (4.3) is positively invariant

and pullback absorbing for the process {U(t, s) : t ≥ s} in H associated to problem (1.1).

Moreover, this family satisfies the assumptions (H1)–(H3) in Theorem 3.1.
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We consider the projections Pn : H → En given by

(4.4) Pn~u =

n∑
j=1

(~u, ~wj)H ~wj , ~u ∈ H,

where En is defined in (2.3). We set Qn = I − Pn.

Proposition 4.2. Suppose that fi, i = 1, 2, satisfy (1.2), (1.3) and (1.4) with the expo-

nents

(4.5)
2 ≤ p1 ≤ 2 +

2

N
, 2 ≤ p2 ≤ 2 +

1

N − 1
for N ≥ 3,

2 ≤ p1 < 3, 2 ≤ p2 < 3 for N = 2.

Assume further that ~h = (h1, h2) ∈ L2
loc(R;H) satisfies (1.7). Then the semi-process

{U(t, s) : t0 ≥ t ≥ s} corresponding to problem (1.1) can be decomposed as

U(t, s) = QnU(t, s) + PnU(t, s)

in such a way that for any 0 < η < 1 and 0 < ε ≤ (1− η) 1
1+‖γ0‖2

min {1, κ} we have

(4.6) |Qn(U(t, s)~us − U(t, s)~vs)|2H ≤
(
e−2ηλn+1(t−s) +

c0

4ε(ηλn+1 + l)
e2l(t−s)

)
|~us − ~vs|2H

for all t ≥ s and ~us, ~vs ∈ B(s) ⊂ H, with some constant c0 > 0.

Proof. Let us denote by ~u = (u, ϕ), ~v = (v, ψ) the global weak solutions of (1.1) cor-

responding to initial data ~us, ~vs ∈ B(s), respectively. By the positive invariance of

{B(t) : t ∈ R} we infer that ~u(t), ~v(t) ∈ B0 for every t ≥ s. In particular, there exists

RB0 > 0 such that

(4.7) |u(t)|Ω , |v(t)|Ω , |ϕ(t)|∂Ω , |ψ(t)|∂Ω ≤ RB0 , t ≥ s.

Observe that ~w = ~u− ~v satisfies for a.e. t > s

d

dt
(~w, ~z)H + 〈A0 ~w, ~z〉V ′0 ,V0 + (f1(u)− f1(v), z)Ω + (f2(ϕ)− f2(ψ), γ0(z))∂Ω = 0

for any ~z = (z, γ0(z)) ∈ V .

Testing the above problem with ~z = Qn ~w = (I − Pn)~w, we get for a.e. t > s

(4.8)
1

2

d

dt
|~z|2H + 〈A0~z, ~z〉V ′0 ,V0 + (f1(u)− f1(v), z)Ω + (f2(ϕ)− f2(ψ), γ0(z))∂Ω = 0.

We fix 0 < η < 1 and use (2.4) to obtain

1

2

d

dt
|~z|2H + (1− η) 〈A0~z, ~z〉V ′0 ,V0 + ηλn+1 |~z|2H

≤ ‖(f1(u)− f1(v), f2(ϕ)− f2(ψ))‖V ′0 ‖(z, γ0(z))‖V0 .
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Taking 0 < ε ≤ (1− η) 1
1+‖γ0‖2

min {1, κ} we apply the Cauchy inequality and get

1

2

d

dt
|~z|2H + (1− η) 〈A0~z, ~z〉V ′0 ,V0 + ηλn+1 |~z|2H

≤ ε
(
‖z‖2Ω + ‖γ0(z)‖21/2,∂Ω

)
+

1

4ε
‖(f1(u)− f1(v), f2(ϕ)− f2(ψ))‖2V ′0 .

Hence, by (2.2) it yields

(4.9)
1

2

d

dt
|~z|2H + ηλn+1 |~z|2H ≤

1

4ε
‖(f1(u)− f1(v), f2(ϕ)− f2(ψ))‖2V ′0 .

Since Lq1(Ω) × Lq2(∂Ω) ↪→ V ′0 with q1 = 2N/(N + 2), q2 = 2(N − 1)/N for N ≥ 3, and

q1, q2 > 1 for N = 2, we estimate using (1.3) and the Hölder inequality

‖(f1(u)− f1(v), f2(ϕ)− f2(ψ))‖2V ′0

≤ c2L2 |u− v|2Ω
(

1 + |u|p1−2
2q1
2−q1

(p1−2),Ω
+ |v|p1−2

2q1
2−q1

(p1−2),Ω

)2

+ c2L2 |ϕ− ψ|2∂Ω

(
1 + |ϕ|p2−2

2q2
2−q2

(p2−2),∂Ω
+ |ψ|p2−2

2q2
2−q2

(p2−2),∂Ω

)2

,

(4.10)

for some constant c > 0. By (4.5) we have 2qi
2−qi (pi− 2) ≤ 2 for i = 1, 2. Thus, joining this

estimate with (4.9) and using (4.7) we obtain

d

dt
|~z|2H + 2ηλn+1 |~z|2H ≤

c0

2ε
|~w|2H for a.e. t > s,

with some constant c0 > 0. By Proposition 2.4, in particular, we have

d

dt

(
e2ηλn+1t |~z(t)|2H

)
≤ c0

2ε
e2ηλn+1t+2l(t−s) |~w(s)|2H for a.e. t > s.

Integrating and using |~z(s)|H ≤ |~w(s)|H , we get (4.6).

In [2] the authors proved the existence of a regular (i.e., in D(A0)∩V ) minimal pullback

attractor for (1.1) if ∂Ω is smooth enough and f1, f2, additionally to (1.2), (1.3) and (1.4),

satisfy

(4.11) |f1(s)− f2(s)| ≤ C(1 + |s|), s ∈ R,

which in particular implies p = p1 = p2 ≥ 2. Although this seems a further restriction on

fi, i = 1, 2, it actually allows us to improve Proposition 4.2 in this case.

Denoting by (un, γ0(un)) the Galerkin approximation of the global weak solution ~u =

(u, ϕ) of (1.1) with ~us = (us, ϕs), we have (see [2, (18), (20)])

|(un(t), γ0(un(t)))|2H +
min {1, κ}
1 + ‖γ0‖2

∫ t

s
‖(un(τ), γ0(un(τ)))‖2V0 dτ

+ 2α

∫ t

s
|un(τ)|pp,Ω dτ + 2α

∫ t

s
|γ0(un(τ))|pp,∂Ω dτ

≤ 2β(t− s)(|Ω|+ |∂Ω|) +

(
2

κ
+

‖γ0‖2

min {1, κ/2}

)∫ t

s

∣∣∣~h(τ)
∣∣∣2
H

+ |~us|2H ,

(4.12)
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(t− s)
(

min {1, κ}
1 + ‖γ0‖2

‖(un(t), γ0(un(t)))‖2V0 + 2α̃1

(
|un(t)|pp,Ω + |γ0(un(t))|pp,∂Ω

))
≤ max {1, κ}

∫ t

s
‖(un(τ), γ0(un(τ)))‖2V0 dτ + (t− s)

∫ t

s

∣∣∣~h(τ)
∣∣∣2
H
dτ

+ 2α̃2

∫ t

s

(
|un(τ)|pp,Ω + |γ0(un(τ))|pp,∂Ω

)
dτ + (t− s)4β̃(|Ω|+ |∂Ω|)

(4.13)

for all t ≥ s and any n ∈ N, where α̃1, α̃2, β̃ > 0 are such that

α̃1 |u|p − β̃ ≤
∫ u

0
fi(r) dr ≤ α̃2 |u|p + β̃, u ∈ R, i = 1, 2.

From (1.7) and (4.12) it follows that if ~us ∈ B(t − 1) ⊂ B0, t ∈ R, we get uniform

boundedness of∫ t

t−1
‖(un(τ), γ0(un(τ)))‖2V0 dτ,

∫ t

t−1
|un(τ)|pp,Ω dτ,

∫ t

t−1
|γ0(un(τ))|pp,∂Ω dτ

with respect to t ∈ R. After passing to the limit (cf. [2, Corollary 8]) to get these estimates

for the solutions, and applying them to (4.13), we obtain

(4.14) U(t, t− 1)B(t− 1) ⊂ B1 =
{
~u ∈ V0 : ‖~u‖V0 ≤ RB1

}
, t ∈ R,

for some RB1 > 0. Arguing as in the proof of Proposition 4.2 with s = t−1 we obtain (4.9)

and (4.10). Since V0 ↪→ Lq
′
1(Ω)× Lq′2(∂Ω) with q′1 = 2N/(N − 2), q′2 = 2(N − 1)/(N − 2)

for N ≥ 3, and q′1, q
′
2 ≥ 1 for N = 2, we have

2qi
2− qi

(p− 2) ≤ q′i, i = 1, 2,

if

(4.15)
2 ≤ p ≤ 2 +

1

N − 2
for N ≥ 3,

p ≥ 2 arbitrary for N = 2,

and we continue the proof of Proposition 4.2 using the uniform estimate (4.14) in V0. Thus

we have obtained

Proposition 4.3. Suppose that ∂Ω is smooth enough and fi, i = 1, 2, satisfy (1.2), (1.3),

(1.4) and (4.11) with the exponents p1 = p2 = p satisfying (4.15). Assume further that
~h = (h1, h2) ∈ L2

loc(R;H) satisfies (1.7). Then the semi-process {U(t, s) : t0 ≥ t ≥ s}
corresponding to problem (1.1) can be decomposed as

U(t, s) = QnU(t, s) + PnU(t, s)

in such a way that for any 0 < η < 1 and 0 < ε ≤ (1− η) 1
1+‖γ0‖2

min {1, κ} we have

|Qn(U(t, t− 1)~u− U(t, t− 1)~v)|2H ≤
(
e−2ηλn+1 +

c0

4ε(ηλn+1 + l)
e2l

)
|~u− ~v|2H

for all ~u,~v ∈ B(t− 1) ⊂ H and t ∈ R with some constant c0 > 0.
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From the above result we conclude the following

Corollary 4.4. Under the assumptions of Proposition 4.2 or Proposition 4.3, there exist

two families of operators {C(t, s) : t0 ≥ t ≥ s} and {S(t, s) : t0 ≥ t ≥ s} with U(t, s) =

C(t, s) + S(t, s) satisfying hypotheses (H4)–(H5) of Theorem 3.1.

Proof. We put t̃ = 1 and C = QnU and S = PnU with some n ∈ N large enough. (H4)

follows from Propositions 4.2 and 4.3, while (H5) is a direct consequence of [4, Lemma 1]

(see also [7, Lemma 4.2]) and Proposition 2.4. In particular, if n ∈ N is such that

(4.16) λ =

(
e−2ηλn+1 +

c0

4ε(ηλn+1 + l)
e2l

)1/2

<
1

2
,

then, for 0 < ν < min
{

1
2 − λ, e

l−λ1
}

, we have in (H5)

(4.17) Nν ≤
(

1 +
2el−λ1

ν

)n
.

Collecting the above results, as an application of Theorem 3.1, we obtain

Theorem 4.5. Suppose that functions fi, i = 1, 2, satisfy (1.2), (1.3) and (1.4) with

the exponents pi, i = 1, 2, given in (4.5) or (1.2), (1.3), (1.4) and (4.11) with the ex-

ponents p1 = p2 = p given in (4.15) and ∂Ω smooth enough. Assume further that
~h = (h1, h2) ∈ L2

loc(R;H) satisfies (1.7). Then the process {U(t, s) : t ≥ s} on H =

L2(Ω)×L2(∂Ω) of global weak solutions of (1.1) possesses a pullback exponential attractor

{M(t) =Mν(t) : t ∈ R} in H satisfying the properties:

(a) M(t) is a nonempty compact subset of B(t) ⊂ B0 for t ∈ R,

(b) U(t, s)M(s) ⊂M(t), t ≥ s,

(c) supt∈R dimH
f (M(t)) ≤ log 1

2(ν+λ)
Nν , where λ is given in (4.16) and Nν is given in

(4.17) for 0 < ν < min
{

1
2 − λ, e

l−λ1
}

,

(d) for any t ∈ R there exists ct > 0 such that for any s ≥ max {t− t0, 0}+ 2

distH(U(t, t− s)B(t− s),M(t)) ≤ cte−ω0s,

where ω0 = − ln (2(ν + λ)) > 0,

(e) for any 0 < ω < ω0 we have

lim
s→∞

eωs distH(U(t, t− s)D,M(t)) = 0, t ∈ R, D bounded in H.
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The process possesses also the minimal pullback attractor {A(t) : t ∈ R} in H, which is

contained in the pullback exponential attractor {M(t) =Mν(t) : t ∈ R} and thus has uni-

formly bounded fractal dimension.

Note that the above result holds for example for the nonlinearities fi of the form

fi(u) = u3 − aiu, u ∈ R, for N = 2 under the assumption of the same order of f1 and

f2, i.e., (4.11) and sufficiently smooth boundary. Actually, many other nonlinearities are

allowed, like any polynomial of odd degree with positive leading coefficient. This also

shows that the regular minimal pullback attractor obtained in [2] has uniformly bounded

fractal dimension in H if the forcing terms ~h = (h1, h2) are translation bounded.

5. Exponentially growing forcing terms

We consider now (1.1) under assumptions (1.6) and (1.4) with p1 = p2 = 2. Note that

(1.2) holds with l = L̃. We will find a pullback absorbing family for the problem (1.1)

when the function ~h = (h1, h2) ∈ L2
loc(R;H) admits an exponential growth in the past

and in the future by assuming (1.8) for some K > 0 and 0 ≤ θ < 2(λ1 + α), where λ1 > 0

is the first eigenvalue of the operator A0.

Applying (1.4) and (2.5) to the energy equality (2.6), we see that the global weak

solutions ~u = (u, ϕ) of (1.1) satisfy for a.e. t > s

d

dt
|~u(t)|2H + 2(λ1 + α) |~u(t)|2H ≤ 2β(|Ω|+ |∂Ω|) + 2 [(h1(t), u(t))Ω + (h2(t), ϕ(t))∂Ω] .

Hence by the Cauchy inequality for δ > 0 such that 0 < θ + δ < 2(λ1 + α) we have for

a.e. t > s

(5.1)
d

dt
|~u(t)|2H + (2(λ1 + α)− δ) |~u(t)|2H ≤ 2β(|Ω|+ |∂Ω|) + δ−1

∣∣∣~h(t)
∣∣∣2
H
.

Using (1.8) and applying the Gronwall inequality to (5.1) we get

|~u(t)|2H ≤ |~u(s)|2H e
−(2λ1+2α−δ)(t−s) + 2β(|Ω|+ |∂Ω|)(2λ1 + 2α− δ)−1

+ δ−1K

∫ t

s
e−(2λ1+2α−δ)(t−τ)eθ|τ | dτ, t ≥ s.

Estimating the last term, we obtain

(5.2) |~u(t)|2H ≤ |~u(s)|2H e
−(2λ1+2α−δ)(t−s) +K1 +K2e

θ|t|, t ≥ s,

where K1 = 2β(|Ω|+ |∂Ω|)(2λ1 + 2α− δ)−1 and K2 = 2δ−1(2λ1 + 2α− δ − θ)−1K.

We define

B̃(t) =
{
~u ∈ H : |~u|2H ≤ 2K1 + 2K2e

θ|t|
}
, t ∈ R.
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It follows from (5.2) that for every bounded subset D of H there exists rD > 0 such that

U(t, t− r)D ⊂ B̃(t), r ≥ rD, t ∈ R.

Moreover, there exists r0 > 0 such that

U(t, t− r)B̃(t− r) ⊂ B̃(t), r ≥ r0, t ∈ R,

since, by using (5.2), it suffices to check that

2K1e
−(2λ1+2α−δ)r + 2K2e

θ|t−r|e−(2λ1+2α−δ)r ≤ K1 +K2e
θ|t|, t ∈ R, r ≥ r0.

Thus, the sets

(5.3) B(t) = clH
⋃
r≥r0

U(t, t− r)B̃(t− r) ⊂ B̃(t), t ∈ R

form a positively invariant family consisting of nonempty closed bounded subsets of H,

which shows (H1). Moreover, we have

diamH(B(t)) ≤ 2
√

2K1 + 2K2eθ|t| < 5 max
{√

K1,
√
K2

}
e−

θ
2
t, t ≤ 0,

so (H2) holds with M = 5 max
{√

K1,
√
K2

}
, γ0 = θ/2 and t0 ≤ 0 arbitrary. Furthermore,

if D is a bounded subset of H and t ≤ t0, then setting TD = rD + r0 and taking s ≥ TD

we get U(t, t− s)D ⊂ B(t), which shows that (H3) is satisfied in this case.

We have proved the following

Proposition 5.1. Under assumptions (1.6) and (1.4) with p1 = p2 = 2 for fi, i = 1, 2 and
~h = (h1, h2) ∈ L2

loc(R;H) satisfying (1.8), the family B(t) defined by (5.3) is positively

invariant and pullback absorbing for the process {U(t, s) : t ≥ s} in H. Moreover, this

family satisfies the assumptions (H1)–(H3) in Theorem 3.1.

We consider the projections Pn : H → En, Qn = I − Pn as in (4.4).

Proposition 5.2. Suppose that fi, i = 1, 2, satisfy (1.6) and (1.4) with p1 = p2 = 2.

Assume further that ~h = (h1, h2) ∈ L2
loc(R;H) satisfies (1.8). Then the semi-process

{U(t, s) : t0 ≥ t ≥ s} corresponding to problem (1.1) can be decomposed as

U(t, s) = QnU(t, s) + PnU(t, s)

in such a way that for every 0 < ε < 2λ1 we have

|Qn(U(t, s)~us − U(t, s)~vs)|2H

≤

(
e−(2λn+1−ε)(t−s) +

ε−1L̃2

2λn+1 − ε+ 2L̃
e2L̃(t−s)

)
|~us − ~vs|2H

(5.4)

for all t ≥ s and ~us, ~vs ∈ H.
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Proof. Let us denote by ~u = (u, ϕ), ~v = (v, ψ) the global weak solutions of (1.1) cor-

responding to initial data ~us, ~vs ∈ H, respectively. Then, setting ~w = ~u − ~v and ~z =

Qn ~w = (I − Pn)~w, we obtain (4.8) as in the proof of Proposition 4.2. Using (2.4) and

Cauchy-Schwarz and Cauchy inequalities to (4.8), we get for every 0 < ε < 2λ1 and for

a.e. t > s

d

dt
|~z|2H + (2λn+1 − ε) |~z|2H ≤ ε

−1
(
|f1(u)− f1(v)|2Ω + |f2(ϕ)− f2(ψ)|2∂Ω

)
.

Since fi, i = 1, 2, are globally Lipschitz continuous, it follows from (1.6) that

d

dt
|~z|2H + (2λn+1 − ε) |~z|2H ≤ ε

−1L̃2 |~w|2H for a.e. t > s.

By Proposition 2.4, in particular we have

d

dt

(
e(2λn+1−ε)t |~z(t)|2H

)
≤ ε−1L̃2e(2λn+1−ε)t+2L̃(t−s) |~w(s)|2H for a.e. t > s.

Integrating and using |~z(s)|H ≤ |~w(s)|H , we get (5.4).

Corollary 5.3. Under the assumptions of Proposition 5.2, there exist two families of

operators {C(t, s) : t0 ≥ t ≥ s} and {S(t, s) : t0 ≥ t ≥ s} with U(t, s) = C(t, s) + S(t, s)

satisfying hypotheses (H4)–(H5) of Theorem 3.1.

Proof. We put t̃ > 0 arbitrary and C = QnU and S = PnU with some n ∈ N large

enough. (H4) follows from Proposition 5.2 and (H5) follows from [4, Lemma 1] (see also [7,

Lemma 4.2]) and Proposition 2.4. In particular, if n ∈ N is such that

(5.5) λ =

(
e−(2λn+1−ε)t̃ +

ε−1L̃2

2λn+1 − ε+ 2L̃
e2L̃t̃

)1/2

<
1

2
e−

θ
2
t̃,

then, for 0 < ν < min
{

1
2e
− θ

2
t̃ − λ, e(L̃−λ1)t̃

}
, we have

(5.6) Nν ≤
(

1 + 2e(L̃−λ1)t̃

ν

)n
in (H5).

Collecting the above results, as an application of Theorem 3.1, we obtain

Theorem 5.4. If fi, i = 1, 2, satisfy (1.6) and (1.4) with p1 = p2 = 2, whereas ~h =

(h1, h2) ∈ L2
loc(R;H) satisfies (1.8) with some K > 0 and 0 ≤ θ < 2(λ1 + α), then the

process {U(t, s) : t ≥ s} on H = L2(Ω)×L2(∂Ω) of global weak solutions of (1.1) possesses

a pullback exponential attractor {M(t) =Mν(t) : t ∈ R} in H satisfying the properties:

(a) M(t) is a nonempty compact subset of B(t) for t ∈ R,
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(b) U(t, s)M(s) ⊂M(t), t ≥ s,

(c) supt∈R dimH
f (M(t)) ≤ − lnNν/

[
ln (2(ν + λ)) + θ

2 t̃
]
, where λ is given in (5.5) and

Nν is given in (5.6) for 0 < ν < min
{

1
2e
− θ

2
t̃ − λ, e(L̃−λ1)t̃

}
,

(d) for any t ∈ R there exists ct > 0 such that for any s ≥ max {t− t0, 0}+ 2t̃

distH(U(t, t− s)B(t− s),M(t)) ≤ cte−ω0s,

where ω0 = −1
t̃

(
ln (2(ν + λ)) + θ

2 t̃
)
> 0,

(e) for any 0 < ω < ω0 we have

lim
s→∞

eωs distH(U(t, t− s)D,M(t)) = 0, t ∈ R, D bounded in H.

The process possesses also the minimal pullback attractor {A(t) : t ∈ R} in H, which is

contained in the pullback exponential attractor {M(t) =Mν(t) : t ∈ R} and thus has uni-

formly bounded fractal dimension.

It would be interesting to know if we may obtain the existence of pullback exponen-

tial attractors or minimal pullback attractors with uniformly bounded fractal dimension

when the time-dependent forcing terms grow exponentially, but the nonlinearities have

superlinear growth.
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Pedro Maŕın-Rubio

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo.
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