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New Stability Criteria for Linear Volterra Time-varying Integro-differential

Equations

Tran The Anh and Pham Huu Anh Ngoc*

Abstract. Using a novel approach, we get some new explicit criteria for uniform asymp-

totic stability and exponential asymptotic stability of linear Volterra time-varying

integro-differential equations of non-convolution type. Some examples are given to

illustrate the obtained results.

1. Introduction

Motivated by many applications in Biology, Economics, Physics, Engineering, and other

Applied Sciences, problems of stability of Volterra integro-differential equations have at-

tracted much attention from researchers during the past decades, see [1–20,22,23] and the

references therein. Stability analysis of time-varying integro-differential equations is, in

general, difficult. The traditional approach to stability of time-varying Volterra integro-

differential equations is the Lyapunov function method and most of existing stability

criteria for such equations are abstract and not easy to use, see e.g. [10–12,22].

In particular, problems of stability of linear time-varying Volterra integro-differential

equations of non-convolution type

ẋ(t) = A(t)x(t) +

∫ t

0
B(t, s)x(s) ds, t ≥ σ ≥ 0,(1.1)

x(t) = ϕ(t), t ∈ [0, σ],(1.2)

has been studied intensively. Some characterisations of the uniform asymptotic stability

and the exponential asymptotic stability of the linear time-varying integro-differential

equation (1.1) have been reported in [11, 12, 23]. By the direct Lyapunov method, some

abstract criteria for asymptotic stability of (1.1) have been given in [5, 10, 22, 23]. To the

best of our knowledge, there are not many explicit stability criteria for (1.1). There are
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a few explicit stability criteria for scalar linear Volterra time-varying integro-differential

equations of non-convolution type, see e.g. [2, 10,23].

Obviously, problems of stability of linear Volterra time-invariant integro-differential

equations of the convolution type

(1.3) ẏ(t) = A0y(t) +

∫ t

0
B0(t− s)y(s) ds, t ≥ σ ≥ 0,

are much easier. There have been many works dedicated to the uniform asymptotic sta-

bility and the exponential stability of the linear time-invariant integro-differential equa-

tion of the convolution type (1.3). Several explicit stability criteria for (1.3) are given

in [1, 3, 5, 17–20].

In this paper, we present a new approach to the uniform asymptotic stability and the

exponential asymptotic stability of the linear Volterra time-varying integro-differential

equations of non-convolution type (1.1). Our approach relies upon the spectral properties

of Metzler matrices and the comparison principle. Consequently, we get some new explicit

criteria for the uniform asymptotic stability and the exponential asymptotic stability of the

linear time-varying integro-differential equation of non-convolution type (1.1). Further-

more, we derive two explicit stability bounds for (1.1) subject to time-varying structured

perturbations and time-varying affine perturbations. Some examples are given to illustra-

tive the obtained results. To the best of our knowledge, most of the obtained results of

this paper are new.

2. Preliminaries

Let N be the set of all natural numbers. For given m ∈ N, let us denote m := {1, 2, . . . ,m}
and m0 := {0, 1, 2, . . . ,m}. Let K = C or R where C and R denote the sets of all complex

and all real numbers, respectively. Define R+ := {s ∈ R : s ≥ 0}. For given integers

l, q ≥ 1, Kl denotes the l-dimensional vector space over K and Kl×q stands for the set

of all l × q-matrices with entries in K. Inequalities between real matrices or vectors will

be understood componentwise, i.e., for two real matrices A = (aij) and B = (bij) in

Rl×q, we write A ≥ B if aij ≥ bij for i = 1, 2, . . . , l, j = 1, 2, . . . , q. In particular, if

aij > bij for i = 1, 2, . . . , l, j = 1, 2, . . . , q, then we write A � B instead of A ≥ B.

We denote by Rl×q+ the set of all nonnegative matrices A ≥ 0. Similar notations are

adopted for vectors. For x ∈ Kn and P ∈ Kl×q we define |x| = (|xi|) and |P | = (|pij |).
Then one has |PQ| ≤ |P | |Q|, for all P ∈ Rl×q, Q ∈ Rq×r. A norm ‖ · ‖ on Kn is

said to be monotonic if ‖x‖ ≤ ‖y‖ whenever x, y ∈ Kn, |x| ≤ |y|. Every p-norm on

Kn (‖x‖p = (|x|p1 + |x|p2 + · · · + |x|pn)1/p, 1 ≤ p < ∞) and ‖x‖∞ = maxi=1,2,...,n |xi|, is

monotonic. Throughout the paper, if otherwise not stated, the norm of a matrix P ∈ Kl×q
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is understood as its operator norm associated with a given pair of monotonic vector norms

on Kl and Kp, that is ‖P‖ = max‖y‖=1 ‖Py‖. Note that, one has

P ∈ Kl×q, Q ∈ Rl×q+ , |P | ≤ Q =⇒ ‖P‖ ≤ ‖|P |‖ ≤ ‖Q‖ ,

see, e.g. [21]. In particular, if Rn is endowed with ‖ · ‖1 or ‖ · ‖∞ then ‖A‖ = ‖|A|‖ for

any A = (aij) ∈ Rn×n. More precisely, one has ‖A‖1 = ‖|A|‖1 = max1≤j≤n
∑n

i=1 |aij |;
‖A‖∞ = ‖|A|‖∞ = max1≤i≤n

∑n
j=1 |aij |.

For any matrix M ∈ Kn×n the spectral abscissa of M is denoted by s(M) = max{<λ :

λ ∈ σ(M)}, where σ(M) := {z ∈ C : det(zIn −M) = 0} is the spectrum of M . A matrix

M ∈ Rn×n is said to be Hurwitz stable if, and only if, s(M) < 0. A matrix M ∈ Rn×n

is called a Metzler matrix if all off-diagonal elements of M are nonnegative. We now

summarize in the following theorem some properties of Metzler matrices which will be

used in that follows.

Theorem 2.1. [21] Suppose M ∈ Rn×n is a Metzler matrix. Then

(i) (Perron-Frobenius) s(M) is an eigenvalue of M and there exists a nonnegative eigen-

vector x 6= 0 such that Mx = s(M)x.

(ii) Given α ∈ R, there exists a nonzero vector x ≥ 0 such that Mx ≥ αx if and only if

s(M) ≥ α.

(iii) (tIn −M)−1 exists and is nonnegative if and only if t > s(M).

(iv) Given B ∈ Rn×n+ , C ∈ Cn×n. Then

|C| ≤ B =⇒ s(M + C) ≤ s(M +B).

The following is immediate from Theorem 2.1.

Theorem 2.2. Let M ∈ Rn×n be a Metzler matrix. Then the following statements are

equivalent:

(i) s(M) < 0;

(ii) Mp� 0 for some p ∈ Rn+;

(iii) M is invertible and M−1 ≤ 0;

(iv) For given b ∈ Rn, b� 0 there exists x ∈ Rn+, such that Mx+ b = 0;

(v) For any x ∈ Rn+ \ {0}, the row vector xTM has at least one negative entry.
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Let Km×n be endowed with the norm ‖ · ‖ and let J be an interval of R. As usual,

L1(R+,Km×n) denotes the Banach space of L1-integrable matrix functions on R+ with

values in Km×n and endowed with the L1-norm. Let C(J,Km×n) be the vector space

of all continuous functions on J with values in Km×n. In particular, for each σ ∈ R+,

C([0, σ],Km×n) is a Banach space endowed with the norm

‖ϕ‖ := max {‖ϕ(θ)‖ : θ ∈ [0, σ]} .

For given ϕ ∈ C([0, σ],Km×n), |ϕ| ∈ C([0, σ],Km×n) is defined by |ϕ| (t) := |ϕ(t)|, t ∈
[0, σ].

3. Explicit criteria for uniformly asymptotic stability

Consider the linear time-varying Volterra integro-differential equation of nonconvolution

type (1.1), where A(·) : R+ → Rn×n and B(· , ·) : ∆ = {(t, s) ∈ R+ × R+ : t ≥ s} → Rn×n

are given matrix-valued continuous functions.

Definition 3.1. Let σ ∈ R+ and ϕ ∈ C([0, σ],Rn) be given. A function x(·) : R+ → Rn

is said to be a solution of (1.1)–(1.2) if x(·) satisfies (1.1) for any t ≥ σ and fullfils the

initial condition (1.2).

It is well-known that for a fixed σ ≥ 0 and a given ϕ ∈ C([0, σ],Rn), the initial value

problem (1.1)–(1.2) always has a unique solution, see e.g. [4]. We denote it by x(· ;σ, ϕ).

Definition 3.2. (i) The zero solution of (1.1) is said to be uniformly stable (shortly,

US) if for any ε > 0 there exists δ = δ(ε) > 0 such that

σ ≥ 0, ϕ ∈ C([0, σ],Rn), ‖ϕ‖ < δ =⇒ ‖x(t;σ, ϕ)‖ < ε, ∀ t ≥ σ.

(ii) The zero solution of (1.1) is said to be uniformly asymptotically stable (shortly,

UAS) if it is US and there exists δ > 0 with the property that, for each ε > 0 there

is a number T = T (ε) > 0 such that

σ ≥ 0, ϕ ∈ C([0, σ],Rn), ‖ϕ‖ < δ =⇒ ‖x(t;σ, ϕ)‖ < ε, ∀ t ≥ σ + T.

If the zero solution of (1.1) is US (UAS) then we also say that (1.1) is US (UAS),

respectively.

The following theorem gives a characterisation of the uniform asymptotic stability of

(1.1).

Theorem 3.3. [22] Assume that



Stability of Linear Time-varying Integro-differential Equations 845

(i)

sup
t≥0

{
‖A(t)‖+

∫ t

0
‖B(t, s)‖ ds

}
<∞;

(ii) for any ε > 0, there exists S = S(ε) such that∫ t−S

0
‖B(t, s)‖ ds < ε, t ≥ S;

(iii) A(t) and B(t, t + s) are bounded and uniformly continuous in (t, s) ∈ {(t, s) ∈
R+ ×K : −t ≤ s ≤ 0} for any compact set K ⊂ (−∞, 0].

Then the zero solution of (1.1) is UAS if and only if

sup
t≥0

∫ t

0
‖R(t, s)‖ ds <∞,

where R(t, s) is the resolvent equation of (1.1) defined by

∂R(t, s)

∂s
= −R(t, s)A(s)−

∫ t

s
R(t, u)B(u, s) du, R(t, t) = In, t ≥ s ≥ 0.

In general, the problem of the uniform asymptotic stability of the linear time-varying

Volterra integro-differential equation of nonconvolution type (1.1) is difficult and most

of existing stability criteria in the literature are often complicated and hard to apply in

practice, see e.g. [13, 22]. Thus, it is interesting to find simple criteria for the uniform

asymptotic stability of (1.1).

For given A := (aij) ∈ Rn×n, let

M(A) := diag(a11, a22, . . . , ann) + |A− diag(a11, a22, . . . , ann)| .

Theorem 3.4. Suppose there exist A0 ∈ Rn×n and a continuous matrix-valued function

B0(·) : R+ → Rn×n such that

(3.1) M(A(t)) ≤ A0, ∀ t ≥ 0 and |B(t, s)| ≤ B0(t− s), ∀ t ≥ s ≥ 0.

If B0(·) ∈ L1(R+,Rn×n) and

(3.2) s

(
A0 +

∫ ∞
0

B0(s) ds

)
< 0,

then (1.1) is UAS.

Remark 3.5. Roughly speaking, Theorem 3.4 says that if (1.1) is bounded above (in some

sense) by (1.3) and (1.3) is UAS then (1.1) is UAS. More precisely, (3.1) means that (1.1)

is bounded above by (1.3) and (3.2) ensures that (1.3) is UAS. Then, (1.1) is UAS too.



846 Tran The Anh and Pham Huu Anh Ngoc

Proof. Consider the linear time-invariant integro-differential equation of the convolution

type (1.3) where A0 ∈ Rn×n and B0(·) satisfy (3.1)–(3.2). It is well-known that (1.3)

is UAS if and only if its characteristic equation has no roots in the right-hand complex

plane, that is,

(3.3) det(λIn −A0 − B̂0(λ)) 6= 0, ∀λ ∈ C+ := {λ ∈ C : <λ ≥ 0} ,

see e.g. [4], where

B̂0(λ) :=

∫ ∞
0

e−λsB0(s) ds

is the Laplace transform of B0(·). We now show that (3.3) holds and thus, (1.3) is UAS.

Assume that on the contrary that

det

(
λIn −A0 −

∫ ∞
0

e−λsB0(s) ds

)
= 0

for some λ ∈ C+. It follows that

0 ≤ <λ ≤ s
(
A0 +

∫ ∞
0

e−λsB0(s) ds

)
.

Since A0 is a Metzler matrix, Theorem 2.1(iv) implies

0 ≤ s
(
A0 +

∫ ∞
0

e−λsB0(s) ds

)
≤ s

(
A0 +

∫ ∞
0

B0(s) ds

)
,

which conflicts with (3.2).

Fix σ ∈ R+ and let ϕ ∈ C([0, σ],Rn). Denote by x(·) := x(· ;σ, ϕ) the solution of

(1.1)–(1.2). Let y(·) := y(· ;σ, |ϕ|) be the solution of (1.3) satisfying the initial condition

y(t) = |ϕ| (t), t ∈ [0, σ]. By Theorem 2.2, (3.2) implies

(3.4)

(
A0 +

∫ ∞
0

B0(s) ds

)
p� 0

for some p ∈ Rn, p� 0. For a given ε > 0, we claim that |x(t)| ≤ y(t) + εp, ∀ t ∈ [0,+∞).

Clearly, |x(t)| = |ϕ(t)| = y(t) � y(t) + εp, ∀ t ∈ [0, σ]. We show that |x(t)| ≤ y(t) + εp,

∀ t ∈ [σ,∞]. Assume on the contrary that there exists t1 > σ such that |x(t1)| � y(t1)+εp.

Set t∗ := inf {t ∈ (σ,+∞) : |x(t)| � y(t) + εp}. By continuity, t∗ > σ and there is an index

i0 ∈ n such that

(3.5) |x(t)| ≤ y(t)+εp, ∀ t ∈ [0, t∗); |xi0(t∗)| = yi0(t∗)+εpi0 , |xi0(τk)| > yi0(τk)+εpi0

for some τk ∈ (t∗, t∗ + 1/k), k ∈ N. Let A(t) := (aij(t)) ∈ Rn×n, ∀ t ∈ R+; A0 := (a
(0)
ij ) ∈

Rn×n and let B(t, s) := (bij(t, s)) ∈ Rn×n, t ≥ s ≥ 0; B0(t) := (b
(0)
ij (t)) ∈ Rn×n, t ∈ R+.

For every i ∈ n, we have

d

dt
|xi(t)| = sgn(xi(t))ẋi(t) ≤ aii(t) |xi(t)|+

n∑
j=1
j 6=i

|aij(t)| |xj(t)|+
∫ t

0

n∑
j=1

|bij(t, s)| |xj(s)| ds
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for almost any t ∈ [σ,+∞). It follows that for any t ∈ [σ,∞)

D+ |xi(t)| := lim sup
h→0+

|xi(t+ h)| − |xi(t)|
h

= lim sup
h→0+

1

h

∫ t+h

t

d

ds
|xi(s)| ds

≤ aii(t) |xi(t)|+
n∑
j=1
j 6=i

|aij(t)| |xj(t)|+
n∑
j=1

∫ t

0
|bij(t, s)| |xj(s)| ds,

(3.6)

where D+ denotes the Dini upper-right derivative. In particular, it follows from (3.5) and

(3.6) that

D+ |xi0(t∗)| ≤ ai0i0(t∗) |xi0(t∗)|+
n∑
j=1
j 6=i0

|ai0j(t∗)| |xj(t∗)|

+

n∑
j=1

∫ t∗

0
|bi0j(t∗, s)| |xj(t∗)| ds

(3.5)

≤ ai0i0(t∗)(yi0(t∗) + εpi0) +

n∑
j=1
j 6=i0

|ai0j(t∗)| (yj(t∗) + εpj)

+
n∑
j=1

∫ t∗

0
|bi0j(t∗, s)| (yj(t∗) + εpj) ds

(3.1)

≤ a
(0)
i0i0

(yi0(t∗) + εpi0) +

n∑
j=1
j 6=i0

a
(0)
i0j

(yj(t
∗) + εpj)

+
n∑
j=1

∫ t∗

0
b
(0)
i0j

(t∗ − s)(yj(t∗) + εpj) ds

=

n∑
j=1

a
(0)
i0j

(yj(t
∗) + εpj) +

n∑
j=1

∫ t∗

0
b
(0)
i0j

(t∗ − s)(yj(t∗) + εpj) ds

= ẏi0(t∗) + ε

(
[A0p]i0 +

[(∫ t∗

0
B0(t∗ − s) ds

)
p

]
i0

)

≤ ẏi0(t∗) + ε

([(
A0 +

∫ +∞

0
B0(t∗ − s) ds

)
p

]
i0

)
(3.4)
< ẏi0(t∗) = D+yi0(t∗).

On the other hand, (3.5) implies that

D+ |xi0(t∗)| = lim sup
t→t∗+

|xi0(t)| − |xi0(t∗)|
t− t∗

≥ lim
k→∞

|xi0(τk)| − |xi0(t∗)|
τk − t∗

≥ lim
k→∞

yi0(τk)− yi0(t∗)

τk − t∗
= lim

k→∞

yi0(τk)− yi0(t∗)

τk − t∗
= D+yi0(t∗).
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This is a contradiction. Hence, |x(t)| � y(t) + εp, ∀ t ∈ [σ,+∞). Since ε > 0 is arbitrary,

it follows that

|x(t;σ, ϕ)| ≤ y(t;σ, |ϕ|), ∀ϕ ∈ C([0, σ],Rn), t ≥ 0.

By the monotonicity of vector norms, this yields

(3.7) ‖x(t;σ, ϕ)‖ ≤ ‖y(t;σ, |ϕ|)‖ , ∀ t ≥ 0, ∀ϕ ∈ C([0, σ],Rn).

As (1.3) is UAS, (3.7) implies that (1.1) is UAS. This completes the proof.

For given A ∈ Rn×n, let

µ(A) := lim
h→0+

‖In + hA‖ − 1

h

be the matrix measure of A, see e.g. [6]. The following theorem is a scalar version of

Theorem 3.4.

Theorem 3.6. Suppose there exist γ > 0 and a continuous function b(·) : R+ → R+ such

that

(3.8) µ(A(t)) ≤ −γ, ∀ t ≥ 0 and ‖B(t, s)‖ ≤ b(t− s), ∀ t ≥ s ≥ 0.

If b(·) ∈ L1(R+,R) and

(3.9) − γ +

∫ ∞
0

b(s) ds < 0,

then (1.1) is UAS.

Proof. The proof is similar to that of Theorem 3.4. So we omit the proof.

Example 3.7. Consider the linear time-varying Volterra integro-differential equation in

R2 defined by

(3.10) ẋ(t) = A(t)x(t) +

∫ t

0
B(t, s)x(s) ds, t ≥ σ ≥ 0,

where

A(t) :=

−4− t2 0

−e−t −4

 , t ≥ 0; B(t, s) :=

−e−(t−s) sin s cos(st)
(1+t−s)2

0 e−(t−s) cos s

 , t ≥ s ≥ 0.

Let

A0 :=

−4 0

1 −4

 ; B0(t) :=

e−t 1
(1+t)2

0 e−t

 , t ≥ 0.

Then A0 and B0(·) satisfy (3.1) for t ≥ s ≥ 0. By simple computation, we have

A0 +

∫ ∞
0

B0(t) dt =

−3 1

1 −3

 ; s

(
A0 +

∫ ∞
0

B0(t) dt

)
= −2 < 0.

Thus (3.10) is UAS by Theorem 3.4.
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4. Explicit criteria for exponential asymptotic stability

In this section, we deal with the exponential asymptotic stability of (1.1). In contrast to or-

dinary differential equations and time-delay differential equations, the uniform asymptotic

stability and the exponential asymptotic stability of linear integro-differential equations

are, in general, not equivalent. For example, the exponential asymptotic stability of (1.3)

implies its uniformly asymptotic stability, but the converse statement does not hold. Ac-

tually, they are equivalent provided the kernel of (1.3) B0(·), exponentially decays, see

Theorem 4.2 below.

Definition 4.1. The zero solution of (1.1) is said to be exponentially asymptotically

stable (shortly, EAS), if there exists K,β > 0 such that

‖x(t;σ, ϕ)‖ ≤ Ke−β(t−σ) ‖ϕ‖ , ∀ t ≥ σ, ∀ϕ ∈ C([0, σ],Rn).

When the zero solution of (1.1) is EAS, we also say that (1.1) is EAS.

Theorem 4.2. [18] Assume that (1.3) is UAS and there exists α > 0 such that

(4.1)

∫ ∞
0
‖B0(s)‖ eαs ds <∞.

Then (1.3) is EAS.

We are now in the position to state the main results of this section.

Theorem 4.3. Suppose all hypotheses of Theorem 3.4 are satisfied. If (4.1) holds for

some α > 0 then (1.1) is EAS.

Proof. Fix σ ∈ R+ and let ϕ ∈ C([0, σ],Rn). Let x(·) := x(· ;σ, ϕ) be the solution of

(1.1)–(1.2) and let y(·) := y(· ;σ, |ϕ|) be the solution of (1.3) satisfying y(t) = |ϕ| (t),
t ∈ [0, σ]. We already showed in the proof of Theorem 3.4 that

(4.2) ‖x(t;σ, ϕ)‖ ≤ ‖y(t;σ, |ϕ|)‖ , ∀ t ≥ 0, ∀ϕ ∈ C([0, σ],Rn).

Note that (1.3) is UAS. Then (4.1) ensures that (1.3) is EAS by Theorem 4.2. Finally,

(4.2) implies that (1.3) is EAS. This completes the proof.

Theorem 4.4. Suppose all hypotheses of Theorem 3.6 are satisfied. If

(4.3)

∫ ∞
0

b(s)eαs ds <∞

for some α > 0 then (1.1) is EAS.

Proof. The proof is similar to that of Theorem 4.3 and it is omitted here.
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The following theorem gives new criteria for the exponential asymptotic stability of

(1.1). As far as we know, a result like Theorem 4.5 below cannot be found in the literature.

Theorem 4.5. The zero solution of (1.1) is EAS provided one of the following conditions

holds:

(i) There exist β1 > 0 and p ∈ Rn, p� 0 so that

(4.4)

(
M(A(t)) +

∫ t

0
|B(t, s)| eβ1(t−s) ds

)
p� −β1p, ∀ t ≥ 0.

(ii) There exist β2 > 0 and M ∈ Rn×n, s(M) < 0 so that

(4.5)

(
M(A(t)) +

∫ t

0
|B(t, s)| eβ2(t−s) ds

)
≤M, ∀ t ≥ 0.

Proof. Assume that (i) holds. Let ϕ ∈ C([0, σ],Rn), ‖ϕ‖ ≤ 1. Since p� 0, there exists a

positive number K (K is independent of σ) such that

|ϕ(t)| � Kp, ∀ t ∈ [0, σ], ∀ϕ ∈ C([0, σ],Rn), ‖ϕ‖ ≤ 1.

Set u(t) := Ke−β1(t−σ)p, t ∈ [0,∞) and let x(t) := x(t;σ, ϕ), t ∈ [0,∞), ‖ϕ‖ ≤ 1. Clearly,

|x(t)| = |ϕ(t)| � Kp ≤ Ke−β1(t−σ)p = u(t), ∀ t ∈ [0, σ].

We claim that |x(t)| ≤ u(t), ∀ t ∈ [σ,+∞). Assume on the contrary that there exists

t1 > σ such that |x(t1)| � u(t1). Set t∗ := inf {t ∈ (σ,+∞) : |x(t)| � u(t)}. By continuity,

t∗ > σ and there is i0 ∈ n such that

(4.6) |x(t)| ≤ u(t), ∀ t ∈ [σ, t∗); |xi0(t∗)| = ui0(t∗), |xi0(ξk)| > ui0(ξk)

for some ξk ∈ (t∗, t∗ + 1/k), k ∈ N. Let A(t) := (aij(t)) ∈ Rn×n, ∀ t ∈ R+ and let

B(t, s) := (bij(t, s)) ∈ Rn×n, t ∈ R, s ∈ R+. For every i ∈ n, we have

d

dt
|xi(t)| = sgn(xi(t))ẋi(t) ≤ aii(t) |xi(t)|+

n∑
j=1
j 6=i

|aij(t)| |xj(t)|

+

∫ t

0

n∑
j=1

|bij(t, s)| |xj(s)| ds

for almost any t ∈ [σ,+∞). It follows that for any t ∈ [σ,+∞),

D+ |xi(t)| := lim sup
h→0+

|xi(t+ h)| − |xi(t)|
h

= lim sup
h→0+

1

h

∫ t+h

t

d

ds
|xi(s)| ds

≤ aii(t) |xi(t)|+
n∑
j=1
j 6=i

|aij(t)| |xj(t)|+
n∑
j=1

∫ t

0
|bij(t, s)| |xj(s)| ds,
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where D+ denotes the Dini upper-right derivative. In particular, it follows from (4.4) and

(4.6) that

D+ |xi0(t∗)|
(4.6)

≤ ai0i0(t)Ke−β1(t∗−σ)αi0 +
n∑
j=1
j 6=i0

|ai0j(t)|Ke−β1(t∗−σ)αj

+
n∑
j=1

∫ t∗

0
|bi0j(t∗, s)|Ke−β1(s−σ)αj ds

= Ke−β1(t∗−σ)

ai0i0(t)αi0 +

n∑
j=1
j 6=i0

|ai0j(t)|αj +

n∑
j=1

∫ t∗

0
|bi0j(t∗, s)|αj ds


(4.4)
< −β1Ke

−β1(t∗−σ)αi0 = D+ui0(t∗).

However, this conflicts with (4.6). Therefore

|x(t;σ, ϕ)| ≤ u(t) = Ke−β1(t−σ)p, ∀ t ≥ σ ≥ 0, ∀ϕ ∈ C([0, σ],Rn), ‖ϕ‖σ ≤ 1.

By the monotonicity of vector norms, this yields

‖x(t;σ, ϕ)‖ ≤ K1e
−β1(t−σ), ∀ t ≥ σ ≥ 0, ∀ϕ ∈ C([0, σ],Rn), ‖ϕ‖σ ≤ 1

for some K1 > 0. Since (1.1) is linear, it follows that

‖x(t;σ, ϕ)‖ ≤ K1e
−β1(t−σ) ‖ϕ‖σ , ∀ t ≥ σ ≥ 0; ∀ϕ ∈ C([0, σ],Rn).

Hence (1.1) is EAS.

Next, we show that (ii) implies (i). Since M is a Metzler matrix and s(M) < 0, there

is a vector p ∈ Rn, p� 0 such that Mp� p by Theorem 2.2. By continuity,

(4.7) Mp� −ηp

for some η > 0. Let β be as in (ii) and let β2 := min {β, η}. Clearly, β2 > 0 and(
M(A(t)) +

∫ t

0
|B(t, s)| eβ2(t−s) ds

)
≤
(
M(A(t)) +

∫ t

0
|B(t, s)| eβ(t−s) ds

)
(4.5)

≤ M.

Therefore, (
M(A(t)) +

∫ t

0
|B(t, s)| eβ2(t−s) ds

)
p ≤Mp

(4.7)
� −ηp ≤ −β2p.

Thus, (i) holds. This completes the proof.

Remark 4.6. By a slight modification of the proof of Theorem 4.5, it is easy to show that

Theorem 4.5 still holds, if (4.4) (or (4.5)) holds for any t ∈ [t0,∞) for some t0 ≥ 0. That

is, (1.1) is EAS provided one of the following conditions holds:
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(i’) There exist β1 > 0 and p ∈ Rn, p� 0 so that

(4.8)

(
M(A(t)) +

∫ t

0
|B(t, s)| eβ1(t−s) ds

)
p� −β1p, ∀ t ≥ t0.

(ii’) There exist β2 > 0 and M ∈ Rn×n, s(M) < 0 so that

(4.9)

(
M(A(t)) +

∫ t

0
|B(t, s)| eβ2(t−s) ds

)
≤M, ∀ t ≥ t0.

Consequently, the scalar linear time-varying Volterra integro-differential equation

ẋ(t) = −a(t)x(t) +

∫ t

0
b(t, s)x(s) ds

is EAS if

lim inf
t→∞

(
a(t)−

∫ t

0
|b(t, s)| eβ(t−s)

)
ds < 0

for some β > 0, see e.g. [10, Theorem 3.1].

Consider the linear Volterra time-varying integro-differential equation

(4.10) ẋ(t) = −a(t)x(t) +

∫ t

0
b(t− s)x(s) ds, t ≥ 0,

where a(·), b(·) : R+ → R are continuous functions and b(t) ≥ 0 for all t ≥ 0.

It has been shown in [2] that if there exists an α > 0 such that∫ ∞
0

b(s)eαs ds <∞

and

(4.11) − a(t) +

∫ t−t0

0
e
∫ t
t−s a(r) drb(s) ds ≤ −α, ∀ t ≥ t0 ≥ 0,

then the zero solution of (4.10) is EAS.

Since b(t) ≥ 0 for all t ≥ 0 and (4.11) implies that −a(t) ≤ −α, t ≥ t0 ≥ 0. We have

−a(t) +

∫ t−t0

0
e
∫ t
t−s αdrb(s) ds ≤ −a(t) +

∫ t−t0

0
e
∫ t
t−s a(r) drb(s) ds ≤ −α, t ≥ t0 ≥ 0.

Thus,

−a(t) +

∫ t

0
eαsb(s) ds ≤ −α, t ≥ 0.

Therefore, (i) of Theorem 4.5 holds.

We illustrate the obtained results by a couple of examples.
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Example 4.7. Consider the linear time-varying Volterra integro-differential equation in

R2 defined by

(4.12) ẋ(t) = A(t)x(t) +

∫ t

0
B(t, s)x(s) ds, t ≥ σ ≥ 0,

where

A(t) :=

−4− t 1

−e−t −4

 , t ≥ 0; B(t, s) :=

−e−(t−s) sin s e−
t−s
2

0 e−(t−s) cos s

 , t ≥ s ≥ 0.

Let

A0 :=

−4 1

1 −4

 ; B0(t) :=

e−t e−
t
2

0 e−t

 , t ≥ 0.

Then A0 and B0(·) satisfy (3.1) for t ≥ s ≥ 0 and∫ ∞
0
‖B0(s)‖ eαs ds <∞

for any α ∈ (0, 1/2). By simple computation, we have

A0 +

∫ +∞

0
B0(t) dt =

−3 3

1 −3

 ; s

(
A0 +

∫ +∞

0
B0(t) dt

)
= −3 +

√
3 < 0.

Thus (4.12) is EAS by Theorem 4.3.

Example 4.8. Consider the linear time-varying Volterra integro-differential equation

(4.13) ẋ(t) = A(t)x(t) +

∫ t

0
B(t, s)x(s) ds, t ≥ σ ≥ 0,

where

A(t) :=

−2− 6t −1

−1 −7t− 3

 , t ≥ 0; B(t, s) :=

−e−(t−s)s e−(t−s)

0 e−
1
2

(t−s)s

 , t ≥ s ≥ 0.

Note that Theorem 4.3 may not be applied to (4.13). Clearly,

M(A(t)) =

−2− 6t 1

1 −7t− 3

 , t ≥ 0,

and we have for β > 0, β 6= 1/2 and β 6= 1,

∫ t

0
|B(t, s)| eβ(t−s) ds =

 t
1−β + e(β−1)t−1

(1−β)2
1−e(β−1)t

1−β

0 t
1
2
−β + e(β−

1
2 )t−1

( 1
2
−β)2

 , t ≥ 0.
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Let p := (1, 1)T ∈ R2, p � 0. By Theorem 4.5, (4.13) is EAS, if there exists β > 0 such

that

(4.14)

(
M(A(t)) +

∫ t

0
|B(t, s)| eβ(t−s) ds

)
p� −βp, ∀ t ≥ 0.

For a fixed β ∈ (0, 1/4), (4.14) is equivalent to

−1− 6t+
t

1− β
+
e(β−1)t − 1

(1− β)2
+

1− e(β−1)t

1− β
< −β, ∀ t ≥ 0,(4.15)

−2− 7t+
t

1
2 − β

+
e(β− 1

2
)t − 1

(1
2 − β)2

< −β, ∀ t ≥ 0.(4.16)

Let us define

f(t) := −1− 6t+
t

1− β
+
e(β−1)t − 1

(1− β)2
+

1− e(β−1)t

1− β
, t ≥ 0

and

g(t) := −2− 7t+
t

1
2 − β

+
e(β− 1

2
)t − 1

(1
2 − β)2

, t ≥ 0.

It is easy to show that f ′(t) < 0, g′(t) < 0, ∀ t ≥ 0. This gives f(t) < f(0) = −1 < −β
and g′(t) < g(0) = −2 < −β for any t ≥ 0. Therefore, (4.15) and (4.16) hold and then

(4.13) is EAS.

5. Stability of perturbed equations

We are now concerned with stability of the linear time-varying Volterra integro-differential

equation (1.1) subject to time-varying structured perturbations and affine perturbations.

The classes of structured perturbations and affine perturbations are well-known in the

theory of robust stability of dynamical systems, see e.g. [14, 15]. They are different and

complement each other and describe a large class of parameter perturbations, see [15] for

detailed information.

To the best of our knowledge, problems of stability of the linear time-varying Volterra

integro-differential equation (1.1) subject to time-varying structured perturbations and

affine perturbations have not been studied yet in the literature.

Throughout this section, we suppose all of the hypotheses of Theorem 3.4 are satisfied.

Thus, (1.1) is UAS.

5.1. Time-varying structured perturbations

Consider a perturbed equation of the form

ẋ(t) = (A(t) +D0(t)∆(t)E0(t))x(t)

+

∫ t

0
(B(t, s) +D(t, s)δ(t, s)E(t, s))x(s) ds, t ≥ 0,

(5.1)



Stability of Linear Time-varying Integro-differential Equations 855

where

(i) D0(·) : R+ → Rn×l0 , E0(·) : R+ → Rq0×n, D(· , ·) : R+ × R+ → Rn×l1 , E(· , ·) : R+ ×
R+ → Rq1×n are given matrix-valued continuous functions;

(i) ∆(·) : R+ → Rl0×q0 and δ(· , ·) : R+ × R+ → Rl1×q1 are unknown matrix-valued

continuous functions.

The main problem here is to find a positive number r such that the perturbed equa-

tion (5.1) remains UAS whenever the size of perturbations is less than r.

Theorem 5.1. Assume that all of the hypotheses of Theorem 3.4 are satisfied. Sup-

pose there exist D0 ∈ Rn×l0+ , D1 ∈ Rn×l1+ , E0 ∈ Rq0×n+ , E1 ∈ Rq1×n+ , ∆0 ∈ Rl0×q0+ , and

δ1(·) : R+ → Rl1×q1+ such that

(i) |D0(t)| ≤ D0, |E0(t)| ≤ E0, |∆(t)| ≤ ∆0, ∀ t ≥ 0;

(ii) |D(t, s)| ≤ D1, |E(t, s)| ≤ E1, |δ(t, s)| ≤ δ1(t− s), ∀ t ≥ s ≥ 0;

(iii)
∫∞

0 ‖δ1(s)‖ ds <∞.

Then the perturbed equation (5.1) remains UAS if

(5.2) ‖∆0‖+

∫ ∞
0
‖δ1(s)‖ ds < 1

maxP∈{E1,E2},Q∈{D1,D2}

∥∥∥∥P (A0 +
∫ +∞

0 B0(s) ds
)−1

Q

∥∥∥∥ .
In addition, if

(5.3)

∫ ∞
0
‖B0(s)‖ eαs ds <∞;

∫ ∞
0
‖δ1(s)‖ eαs ds < +∞

for some α > 0, then (5.1) is EAS.

Proof. From (i), it follows that

(5.4) |D0(t)∆(t)E0(t)| ≤ D0∆0E0, ∀ t ≥ 0.

Furthermore, (3.1), (ii) and (iii) imply

|B(t, s) +D(t, s)δ(t, s)E(t, s)| ≤ B0(t− s) +D1δ1(t− s)E1, t ≥ s ≥ 0

and∫ ∞
0
‖B0(s) +D1δ1(s)E1‖ ds <

∫ ∞
0
‖B0(s)‖ ds+ ‖D1‖ ‖E1‖

∫ ∞
0
‖δ1(s)‖ ds < +∞.



856 Tran The Anh and Pham Huu Anh Ngoc

Let D0∆0E0 := (m
(0)
ij ) ∈ Rn×n, and let D0(t)∆(t)E0(t) := (mij(t)) ∈ Rn×n, and

A(t) := (aij(t)) ∈ Rn×n, t ≥ 0. Thus A(t) + D0(t)∆(t)E0(t) = (aij(t) + mij(t)). From

(3.1) and (5.4), it follows that

(aii(t) +mii(t)) ≤ (a
(0)
ii +m

(0)
ii ), ∀ t ≥ 0, ∀ i ∈ n

and

|(aij(t) +mij(t))| ≤ (a
(0)
ij +m

(0)
ij ), ∀ t ≥ 0, ∀ i, j ∈ n, i 6= j.

By Theorem 3.4, the zero solution of (5.1) is UAS if

M1 = A0 +D0∆0E0 +

∫ ∞
0

(B0(s) +D1δ1(s)E1) ds

is Hurwitz stable.

Assume on the contrary that s1 := s(M1) > 0. By the Perron-Frobenius theorem

(Theorem 2.1(i)), there exists x1 ∈ Rn+, x1 6= 0 such that(
A0 +D0∆0E0 +

∫ ∞
0

(B0(s) +D1δ1(s)E1) ds

)
x1 = s1x1.

By assumption, s
(
A0 +

∫∞
0 B0(s) ds

)
< 0, thus

(
s1In −A0 −

∫∞
0 B0(s) ds

)
is invertible

and this implies

(5.5)

(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1(
D0∆0E0x1 +D1

∫ ∞
0

δ1(s) dsE1x1

)
= x1.

Let i0 ∈ {0, 1} be the index such that ‖Ei0x1‖ := max {‖E0x1‖ , ‖E1x1‖}. Then (5.5)

implies ‖Ei0x1‖ > 0. Multiply both sides of (5.5) from the left by Ei0 , to get

Ei0

(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1(
D0∆0E0x1 +D1

∫ ∞
0

δ1(s) dsE1x1

)
= Ei0x1.

Taking norms, we get∥∥∥∥∥Ei0
(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

D0

∥∥∥∥∥ ‖∆0‖ ‖E0x1‖

+

∥∥∥∥∥Ei0
(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

D1

∥∥∥∥∥
∫ ∞

0
‖δ1(s)‖ ds ‖E1x1‖ ≥ ‖Ei0x1‖ .

It follows that max
P∈{E0,E1}
Q∈{D0,D1}

∥∥∥∥∥P
(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

Q

∥∥∥∥∥
(‖∆0‖+

∫ ∞
0
‖δ1(s)‖ ds

)
≥ 1,
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or equivalently,

‖∆0‖+

∫ ∞
0
‖δ1(s)‖ ds

≥ 1

maxP∈{E0,E1},Q∈{D0,D1}

∥∥∥P (s1In −A0 −
∫∞

0 B0(s) ds
)−1

Q
∥∥∥ .

(5.6)

On the other hand, the resolvent identity gives

(
0In −A0 −

∫ ∞
0

B0(s) ds

)−1

−
(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

= (s1 − 0)

(
0In −A0 −

∫ ∞
0

B0(s) ds

)−1(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

.

Since s1 ≥ 0, Theorem 2.1(iii) implies that(
−A0 −

∫ ∞
0

B0(s) ds

)−1

≥
(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

≥ 0.

Therefore,

P

(
−A−

∫ ∞
0

B0(s) ds

)−1

Q ≥ P
(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

Q ≥ 0

for any P ∈ {E0, E1}, Q ∈ {D0, D1}. By monotonicity of the operator norm,

(5.7)

∥∥∥∥∥P
(
−A0 −

∫ ∞
0

B0(s) ds

)−1

Q

∥∥∥∥∥ ≥
∥∥∥∥∥P
(
s1In −A0 −

∫ ∞
0

B0(s) ds

)−1

Q

∥∥∥∥∥
for any P ∈ {E0, E1}, Q ∈ {D0, D1}. Finally, (5.6) and (5.7) imply that

‖∆0‖+

∫ ∞
0
‖δ1(s)‖ ds ≥ 1

maxP∈{E0,E1},Q∈{D0,D1}

∥∥∥P (A0 +
∫∞

0 B0(s) ds
)−1

Q
∥∥∥ .

However, this conflicts with (5.2). Thus, (5.1) is UAS.

The remainder of Theorem 5.1 follows from Theorem 4.3. This completes the proof.

5.2. Time-varying affine perturbations

In contrast to the previous subsection, we now assume that (1.1) is subject to affine

perturbations, that is,

(5.8) ẋ(t) =

A(t) +
N∑
j=1

αjAj(t)

x(t)+

∫ t

0

B(t, s) +
N∑
j=1

βjBj(t, s)

x(s) ds, t ≥ 0,

where



858 Tran The Anh and Pham Huu Anh Ngoc

(i) Aj(·) : R+ → Rn×n, Bj(· , ·) : R+ × R+ → Rn×n, j ∈ N , are given matrix-valued

continuous functions;

(ii) (αj)j∈N ∈ RN and (βj)j∈N ∈ RN are unknown.

Theorem 5.2. Assume that all of the hypotheses of Theorem 3.4 are satisfied. Suppose

there exist A0j ∈ R+
n×n and B0j(·) : R+ → Rn×n+ , j ∈ N such that

(i) |Aj(t)| ≤ A0j, ∀ t ≥ 0, j ∈ N ; |Bj(t, s)| ≤ B0j(t− s), ∀ t ≥ s ≥ 0, j ∈ N ;

(ii)
∫∞

0 ‖B0j(s)‖ ds <∞, ∀ j ∈ N .

Then the perturbed equation (5.8) remains UAS provided

max

{
max
j∈N
|αj | ,max

j∈N
|βj |
}

<
1

s

((
−A0 −

∫ +∞
0 B0(s) ds

)−1 (∑N
j=1A0j +

∑N
j=1

∫∞
0 B0j(s) ds

)) .(5.9)

In addition, if

(5.10)

∫ ∞
0
‖B0(s)‖ eαs ds <∞;

∫ ∞
0
‖B0j(s)‖ eαs ds <∞, j ∈ N

for some α > 0 then the perturbed equation (5.8) is EAS.

Proof. From the assumption of Theorem 3.4 and (ii), it follows that∫ ∞
0

∥∥∥∥∥∥B0(s) +
N∑
j=1

βjB0j(s)

∥∥∥∥∥∥ ds ≤
∫ +∞

0
‖B0(s)‖ ds+

N∑
j=1

∫ ∞
0
|βj | ‖B0j(s)‖ ds <∞.

By Theorem 3.4, it remains to show that

s0 := s

A0 +

N∑
j=1

|αj |A0j +

∫ ∞
0

B0(s) +

N∑
j=1

|βj |B0j(s)

 ds

 < 0.

Assume on the contrary that s0 ≥ 0. Since A0 +
∑N

j=1 |αj |A0j +
∫∞

0 (B0(s) +
∑N

j=1 |βj |
B0j(s)) ds is a Metzler matrix,A0 +

N∑
j=1

|αj |A0j +

∫ ∞
0

B0(s) +
N∑
j=1

|βj |B0j(s)

 ds

x0 = s0x0

for some x0 ≥ 0, x0 6= 0, by the Perron-Frobenius theorem (Theorem 2.1(i)). This implies(
s0In −A0 −

∫ ∞
0

B0(s) ds

)−1
 N∑
j=1

|αj |A0j +
N∑
j=1

|βj |B0j(s) ds

x0 = x0.
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Thus,

|x0| =

∣∣∣∣∣∣
(
s0In −A0 −

∫ ∞
0

B0(s) ds

)−1
 N∑
j=1

|αj |A0j +
N∑
j=1

|βj |B0j(s) ds

x0

∣∣∣∣∣∣
≤
(
s0In −A0 −

∫ ∞
0

B0(s) ds

)−1
∣∣∣∣∣∣
 N∑
j=1

|αj |A0j +
N∑
j=1

|βj |B0j(s) ds

x0

∣∣∣∣∣∣
≤
(
−A0 −

∫ +∞

0
B0(s) ds

)−1
∣∣∣∣∣∣
 N∑
j=1

|αj |A0j +
N∑
j=1

∫ ∞
0
|βj |B0j(s) ds

x0

∣∣∣∣∣∣
≤
(
−A0 −

∫ +∞

0
B0(s) ds

)−1
 N∑
j=1

|αj |A0j +

N∑
j=1

∫ ∞
0

e−λs |βj |B0j(s) ds

 |x0|

≤ max

{
max
j∈N
|αj | ,max

j∈N
|βj |
}

×

(−A0 −
∫ ∞

0
B0(s) ds

)−1
 N∑
j=1

A0j +

N∑
j=1

∫ +∞

0
B0j(s) ds

 |x0| .

Since the matrix
(
−A0 −

∫∞
0 B0(s) ds

)−1
(∑N

j=1A0j +
∑N

j=1

∫∞
0 e−λsB0j(s) ds

)
is non-

negative, it follows from Theorem 2.1(iii) that

s

(−A0 −
∫ ∞

0
B0(s) ds

)−1
 N∑
j=1

A0j +

∫ ∞
0

N∑
j=1

B0j(s) ds


≥
(

max

{
max
j∈N
|αj | ,max

j∈N
|βj |
})−1

> 0.

However, this conflicts with (5.9).

The remainder of Theorem 5.2 follows from Theorem 4.3. This completes the proof.

5.3. Illustrative examples

We now reconsider (4.12) given in Example 4.7. As shown in Example 4.7, (4.12) is EAS.

Consider the perturbed equation

(5.11) ẋ(t) = (A(t) +D0(t)∆(t)E0(t))x(t) +

∫ t

0
(B(t, s) +D(t, s)δ(t, s)E(t, s))x(s) ds,

where

A(t) :=

−4− t 1

−e−t −4

 , t ≥ 0; B(t, s) :=

−e−(t−s) sin s e−
t−s
2

0 e−(t−s) cos s

 , t ≥ s ≥ 0,
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D0(t) :=

 cos(t2)
5

0

 ; ∆(t) :=
(

1
2 sin t 1

2e
−t cos t

)
; E0(t) :=

e−t 0

0 1
1+2t2

 , t ≥ 0,

D(t, s) :=

 0

1
5e
−t sin s

 ; δ(t, s) :=
(

1
2e
−(t−s) sin t 1

2e
−(t−s)

)
;

and

E(t, s) :=

− sin2 t 0

0 − ln(1 + e−s)

 , t ≥ s ≥ 0.

In Example 4.7, it is shown that

s

(
A0 +

∫ ∞
0

B0(t) dt

)
= −3 +

√
3 < 0,

where

A0 :=

−4 1

1 −4

 ; B0(t) :=

e−t e−
t
2

0 e−t

 , t ≥ 0.

Note that

|D0(t)| ≤ D0 :=

1
5

0

 ; |∆(t)| ≤ ∆0 :=
(

1
2

1
2

)
; |E0(t)| ≤ E0 =

1 0

0 1


for any t ≥ 0 and

|D(t, s)| ≤ D1 :=

0

1
5

 ; |δ(t, s)| ≤ δ1(t− s) :=
(

1
2e
−(t−s) 1

2e
−(t−s)

)
;

|E(t, s)| ≤ E1 :=

1 0

0 1


for any t ≥ s ≥ 0. Let R2 be endowed with 1-norm. It is easy to check that

‖∆0‖+
∫ ∞

0
‖δ1(s)‖ ds = 1 <

1

maxP∈{E0,E1},Q∈{D0,D1}

∥∥∥∥P (A0 +
∫ +∞

0 B0(s) ds
)−1

Q

∥∥∥∥ = 5.

Thus (5.11) is UAS by Theorem 5.1. Furthermore, since B0(·) and δ1(·) satisfy (5.3) for

any α ∈ (0, 1/2) then (5.11) is EAS.

Next, we consider the perturbed equation given by

(5.12) ẋ(t) = (A(t) + α1A1(t))x(t) +

∫ t

0
(B(t, s) + β1B1(t, s))x(s) ds,
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where

A1(t) :=

2 cos3 t 0

2
1+2t4

−4

 ; B1(t, s) :=

−4e−(t−s) sin t 0

4e−(t−s) −2e−(t−s) 1
1+t2

 , t ≥ s ≥ 0

and α1, β1 ∈ R are unknown. Clearly,

|A1(t)| ≤ A1 :=

2 0

2 4

 ; |B1(t, s)| ≤ B1(t− s) =

4e−(t−s) 0

4e−(t−s) 2e−(t−s)


for any t ≥ s ≥ 0 and(

−A0 −
∫ +∞

0
B0(s) ds

)−1(
A1 +

∫ +∞

0
B1(s) ds

)
=

6 3

4 3

 .

By Theorem 5.2, (5.12) is still EAS if

max {|α1| , |β1|} <
1

s

((
−A0 −

∫ +∞
0 B0(s) ds

)−1 (
A1 +

∫ +∞
0 B1(s) ds

)) =
2

9 +
√

51
.
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