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Admissibly Stable Manifolds for a Class of Partial Neutral Functional

Differential Equations on a Half-line

Thieu Huy Nguyen* and Xuan Yen Trinh

Abstract. For the following class of partial neutral functional differential equations ∂
∂tFut = B(t)u(t) + Φ(t, ut) t ∈ (0,∞),

u0 = φ ∈ C := C([−r, 0], X)

we prove the existence of a new type of invariant stable and center-stable manifolds,

called admissibly invariant manifolds of E-class for the solutions. The existence of such

manifolds is obtained under the conditions that the family of linear partial differential

operators (B(t))t≥0 generates the evolution family {U(t, s)}t≥s≥0 (on Banach space

X) having an exponential dichotomy or trichotomy on the half-line and the nonlinear

delay operator Φ satisfies the ϕ-Lipschitz condition, i.e., ‖Φ(t, φ)−Φ(t, ψ)‖ ≤ ϕ(t)‖φ−
ψ‖C for φ, ψ ∈ C, where ϕ(t) belongs to some admissible function space on the half-

line. Our main method is based on Lyapunov-Perrons equations combined with the

admissibility of function spaces and fixed point arguments.

1. Introduction

Consider the following partial neutral functional differential equation (PNFDE)

(1.1)
∂

∂t
Fut = B(t)u(t) + Φ(t, ut), t > 0

with the initial datum u0 = φ ∈ C := C([−r, 0], X), where X is a Banach space,

B(t) : D(B) ⊂ X → X is a (possibly unbounded) linear operator for every fixed t ≥ 0

with norm ‖ · ‖D(B) and ‖B(t)x‖ ≤ K̃‖x‖D(B), x ∈ D(B). That is to say, B(t) has the

same domain of definition denoted by D(B) for all t > 0. Furthermore, F : C → D(B)

is a bounded linear operator called a difference operator ; Φ: R+ × C → X is a continu-

ous nonlinear operator called a delay operator, and ut is the history function defined by

ut(θ) := u(t+ θ) for θ ∈ [−r, 0].
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The research for invariant manifolds is an important object in the study for longtime

behavior of solutions to evolution equations. Early results can be traced back to Hadamard

[5], Perron [16,17], Bogoliubov and Mitropolsky [2, 3] for existence of invariant manifolds

for differential equations in Rn (ODE). Then, Daleckii and Krein [4] proved the existence of

invariant manifolds for solutions to semi-linear equations in Banach spaces with bounded

linear operators. Henry [6] extended such results to the case of semi-linear parabolic partial

differential equations without delays. Huy [13] showed such existences for general semi-

linear non-autonomous evolution equations in general Banach spaces with nonlinear terms

being ϕ-Lipschitz which represent complicated diffusion processes. Moreover, recently in

[8], Huy has proved the existence of a new type of invariant manifolds, namely the invariant

stable manifolds of admissible classes. Such manifolds consist of solutions’ trajectories

belonging to wide classes of admissible Banach spaces which can be Lp-spaces, Lorentz or

interpolation spaces.

For the case of delay partial functional differential equations (i.e., the special case of

(1.1) when Fut = u(t)) Minh and Wu [21] used the Graph-transform method to show

the existence of invariant manifolds of solutions to delay partial differential equations

(see also [22] and reference therein). Such results have then been extended by Huy and

Duoc [14] to the case of ϕ-Lipschitz delays.

In case of neutral partial functional differential equations (PNFDE) in the autonomous

cases (i.e., B(t) = B and Φ(t, φ) = Φ(φ) do not depend on t), some results on existence

of invariant manifolds have been obtained by H. Petzeltová and O. J. Staffans [18] and

by R. Benkhalti, K. Ezzinbi and S. Fatajou [1]. They obtained such results under the

conditions that B generates a hyperbolic analytic semigroup, and Φ is uniform Lipschitz

continuous with a small Lipschitz constant.

Results on existence of invariant manifolds in the non-autonomous case for PNFDE

(i.e., B(t) and Φ(t, φ) depend on time t) have been obtained by Huy and Bang under the

conditions that the family (B(t))t≥0 generates the dichotomic or trichotomic evolution

family, and the delay term Φ is ϕ-Lipshitz, i.e., ‖Φ(t, φ)−Φ(t, ψ)‖ ≤ ϕ(t)‖φ−ψ‖C , where

φ, ψ ∈ C and ϕ(t) is a real function belonging to certain admissible space.

The purpose of the present paper is to extend the results and methods in [9] combining

with the methods in [8] to prove the existence of invariant stable manifolds of admissible

classes (see Definition 1.2 below) which are constituted by trajectories of solutions belong-

ing to certain Banach space E which can be an Lp-space, a Lorentz space Lp,q or some

interpolation space. We prove the existence of such manifolds for (1.1) when its linear part

(B(t))t≥0 generates the evolution family having an exponential dichotomy or trichotomy on

the half-line, and its nonlinear term is ϕ-Lipshitz, i.e., ‖Φ(t, φ)−Φ(t, ψ)‖ ≤ ϕ(t)‖φ−ψ‖C ,
where φ, ψ ∈ C and ϕ(t) is a real and positive function which belong to admissible function
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space.

As mentioned in [9], when handling with PNFDE we face a difficult fact that the

differential operators do not apply directly to u(t) but to Fut, and hence the variation-

of-constant formula is available only for Fut. Therefore, we write F in the form F =

δ0 − (δ0 − F ), with Dirac distribution δ0 concentrated at 0. Furthermore, another diffi-

culty is lying in the fact that the admissibly inertial manifold is constituted by trajectories

of the solutions belonging to (rescaledly) general admissible function spaces (see Defini-

tions 3.1 and 3.2 thereafter) which are not necessary L∞-spaces. Therefore, the techniques

and methodology used in the paper [9] cannot directly be applied here. Instead, we use

the duality arguments together with generalized Hölder inequalities to obtain necessary

estimates corresponding to the dichotomy of the evolution family. Then we apply our

techniques and results in [8] (see also [10]) of using admissibility of function spaces to

construct the solutions of Lyapunov-Perron equation which will be used to derive the

existence of admissibly stable manifolds of E-class.

Moreover, using these results and rescaling procedures we prove the existence of center-

stable manifolds of E-class for the mild solutions to (1.1) in the case of trichotomic linear

parts under the same conditions on the nonlinear delay term Φ as in the dichotomic case.

Our main results are contained in Theorems 2.8, and 3.3.

We now recall some notions. Let X is a Banach space (with a norm ‖ · ‖) and for a

given r > 0 we denote by C := C([−r, 0], X) the Banach space of all continuous functions

from [−r, 0] into X, equipped with the norm ‖φ‖C = supθ∈[−r,0] ‖φ(θ)‖ for φ ∈ C.
For a continuous function w : [−r,∞) → X the history function wt ∈ C is defined by

wt(θ) = v(t+ θ) for all θ ∈ [−r, 0].

An evolution family is now defined as follows.

Definition 1.1. A family of bounded linear operators {U(t, s)}t≥s≥0 on a Banach space

X is a (strongly continuous, exponentially bounded) evolution family if

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s ≥ 0,

(ii) the map (t, s) 7→ U(t, s)x is continuous for every x ∈ X,

(iii) there are constants K, c ≥ 0 such that ‖U(t, s)x‖ ≤ Kec(t−s)‖x‖ for all t ≥ s ≥ 0

and x ∈ X.

The notion of an evolution family arises naturally from the theory of well-posed, non-

autonomous abstract Cauchy problem

(1.2)

du
dt = B(t)u(t) t > s ≥ 0,

u(s) = x ∈ X.
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Roughly speaking, the well-posedness of Problem (1.2) means that there exists an evolution

family {U(t, s)}t≥s≥0 such that the solution of (1.2) is given by u(t) = U(t, s)u(s). Also,

in this case we say that the family (B(t))t>0 generates the evolution family {U(t, s)}t≥s≥0.

For more details on the notion of evolution families, conditions for the existence of such

families and applications to partial differential equations we refer the readers to Pazy

[15] (see also Nagel and Nickel [12] for a detailed discussion of well-posedness for non-

autonomous abstract Cauchy problems on the whole line R).

We then briefly recall some notions on function spaces taken from Massera and Schäffer

[11], Räbiger and Schnaubelt [19] and Huy [7,8].

Definition 1.2. Let E be a Banach function space defined as in [7, 8] (see also [11]) and

let X be a Banach space endowed with the norm ‖ · ‖. We set

E := E(R+, C) = {f : R+ → C : f is strongly measurable and ‖f(·)‖C ∈ E}

(modulo λ-nullfunctions) endowed with the norm ‖f‖E = ‖‖f(·)‖C‖E . One can easily

see that E is a Banach space. We call it the Banach space corresponding to the Banach

function space E.

In case E = L∞(R+) we denote

E∞ := {f : R+ → C : f is strongly measurable and ‖f(·)‖C ∈ L∞(R+)}.

In order to study the invariant manifolds of E-class for semi-linear evolution equa-

tions we need some restrictions on the admissible Banach function spaces and assume the

following hypothesis.

Standing Hypothesis 1.3. Throughout this paper we consider the admissible Banach func-

tion space E such that its associate space E′ is also an admissible Banach function space.

Moreover, for such an admissible Banach function space E we suppose that E′ contains an

exponentially E-invariant function, that is the function ϕ ≥ 0 having the property that,

for any fixed ν > 0 the function hν defined by

hν(t) := ‖e−ν|t−·|ϕ(·)‖E′ for t ≥ 0

belongs to E.

2. Exponential dichotomy and stable manifolds

In order to prove the existence of invariant stable manifolds we need the following notion

of exponential dichotomies of the evolution family {U(t, s)}t≥s≥0.
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Definition 2.1. An evolution family {U(t, s)}t≥s≥0 on the Banach space X is said to

have an exponential dichotomy on [0,∞) if there exist bounded linear projections P (t),

t ≥ 0, on X and positive constants N , ν such that

(i) U(t, s)P (s) = P (t)U(t, s), t ≥ s ≥ 0,

(ii) the restriction U(t, s)| : KerP (s)→ KerP (t), t ≥ s ≥ 0, is an isomorphism, and we

denote its inverse by U(s, t)| := (U(t, s)|)
−1, 0 ≤ s ≤ t,

(iii) ‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ P (s)X, t ≥ s ≥ 0,

(iv) ‖U(s, t)|x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ KerP (t), t ≥ s ≥ 0.

The projections P (t), t ≥ 0, are called the dichotomy projections, and the constants N , ν

are the dichotomy constants.

Note that the exponential dichotomy of {U(t, s)}t≥s≥0 implies that H := supt≥0 ‖P (t)‖
< ∞ and the map t 7→ P (t) is strongly continuous (see [20, Lemma 4.2]). We can then

define the Green’s function on the half-line as follows:

(2.1) G(t, τ) =

P (t)U(t, τ) for t > τ ≥ 0,

−U(t, τ)|(I − P (τ)) for 0 ≤ t < τ.

It follows from the exponential dichotomy of {U(t, s)}t≥s≥0 that

‖G(t, τ)‖ ≤ N(1 +H)e−ν|t−τ | for all t 6= τ , t, τ ∈ R.

Next, using the projections (P (t))t≥0 on X, we can define the family of operators

(P̃ (t))t≥0 on C as follows:

(2.2) P̃ (t) : C → C, (P̃ (t)φ)(θ) = U(t− θ, t)P (t)φ(0) for all θ ∈ [−r, 0].

Then, we have that (P̃ (t))2 = P̃ (t), and therefore the operators P̃ (t), t ≥ 0, are projections

on C. Moreover,

Im P̃ (t) = {φ ∈ C : φ(θ) = U(t− θ, t)ν0,∀ θ ∈ [−r, 0] for some ν0 ∈ ImP (t)}.

To obtain the existence of invariant stable manifolds we also need the following notion of

the ϕ-Lipschitz of the nonlinear delay term Φ.

Definition 2.2 (ϕ-Lipschitz functions). Let E be an admissible Banach function space

and ϕ be a positive function belonging to E. A function Φ: [0,∞)× C → X is said to be

ϕ-Lipschitz if Φ satisfies

(i) ‖Φ(t, 0)‖ ≤ ϕ(t) for all t ∈ R+,
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(ii) ‖Φ(t, φ1)− Φ(t, φ2)‖ ≤ ϕ(t)‖φ1 − φ2‖C for all t ∈ R+ and all φ1, φ2 ∈ C.

For the reader’s convenience we now collect all the hypotheses on F , B(t), and Φ in

the following assumption.

Standing Hypothesis 2.3. We assume the following hypotheses on F , B(t), and Φ.

(1) The family of operators (B(t))t≥0 generates an evolution family (U(t, s))t≥s≥0 as

defined in Definition 1.1. Furthermore, the domain of each B(t) is independent of

t, and is denoted by D(B) which is a Banach space with norm ‖ · ‖D(B) such that

‖B(t)x‖ ≤ K̃‖x‖D(B) for all x ∈ D(B).

(2) The difference operator F : C → D(B) is of the form Fφ = φ(0) − Ψφ for all φ ∈ C
where Ψ ∈ L(C, D(B)) satisfies ‖Ψ‖ < 1.

(3) The delay operator Φ is ϕ-Lipschitz as defined in Definition 2.2.

Note that if Φ(t, φ) is ϕ-Lipschitz, then ‖Φ(t, φ)‖ ≤ ϕ(t)(1 + ‖φ‖C) for all φ ∈ C and

t ≥ 0. Using the operators F , B(t), and Φ we can now define the operator

Φ̃ : R+ × C([−r,∞), D(B))× C → X

by

(2.3) Φ̃(t, v, φ) = −B(t)Fvt +B(t)v(t) + Φ(t, φ).

Then, the operator Φ̃ satisfies

(i) ‖Φ̃(t, 0, 0)‖ ≤ ϕ(t) for all t ∈ R+,

(ii) ‖Φ̃(t, u, φ)− Φ̃(t, v, ψ)‖ ≤ K̃‖Ψ‖‖ut − vt‖C + ϕ(t)‖φ− ψ‖C

for all t ∈ R+, φ, ψ ∈ C and all u, v ∈ C([−r,∞), D(B)).

We next rewrite the equation (1.1) in the form

(2.4)

 ∂
∂tFut = B(t)Fut + Φ̃(t, u, ut) t ∈ (0,∞),

u0 = φ ∈ C := C([−r, 0], X).

In the space of infinite dimension, instead of (2.4) we consider the following integral

equation

(2.5) Fut = U(t, 0)Fu0 +

∫ t

0
U(t, ξ)Φ̃(ξ, u, uξ) dξ for all t > 0, herewith given u0 ∈ C.

We note that, if the evolution family {U(t, s)}t≥s≥0 is generated by (B(t))t>0 (as in the

situation of well-posed Cauchy problem (1.2)), then the function u : [−r,∞)→ X, which
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satisfies (2.5) for some given function φ, is called a mild solution of the semi-linear prob-

lem (2.4). The reader is referred to J. Wu [22] for detailed treatments on the relations

between classical and mild solutions of functional evolution equations. Also, the direct

calculations yield that the function u satisfies (2.5) if and only if it satisfies

(2.6) Fut = U(t, s)Fus +

∫ t

s
U(t, ξ)Φ̃(ξ, u, uξ) dξ for all t > s ≥ 0, herewith us ∈ C.

We now give the notion of an invariant stable manifold for the solutions of the integral

equation (2.5) in the next definition.

Definition 2.4. A set S ⊂ R+ × C is said to be an invariant stable manifold of E-class

for the solutions to (2.5) if for every t ∈ R+ the phase spaces C splits into a direct sum

C = Im P̃ (t) ⊕ Ker P̃ (t) with corresponding projections P̃ (t) and there exists a family of

Lipschitz continuous mappings

ỹt : Im P̃ (t)→ Ker P̃ (t), t ∈ R+

with the Lipschitz constants independent of t such that

(i) S = {(t, ψ+ ỹt(ψ)) ∈ R+× (Im P̃ (t)⊕Ker P̃ (t)) | t ∈ R+, ψ ∈ X̃0(t)}, and we denote

by

St := {ψ + ỹt(ψ) : (t, ψ + ỹt(ψ)) ∈ S},

(ii) St is homeomorphic to Im P̃ (t) for all t ≥ 0,

(iii) to each φ ∈ Ss there corresponds one and only one solution u(t) to (2.6) on [s−r,∞)

satisfying the conditions that ũs = φ, and the function χ[s,∞)(t)ut, t ∈ R, belongs to

E ∩ E∞ where the function ũs is defined by ũs(θ) = Fus−θ for all −r ≤ θ ≤ 0.

(iv) S is positively F -invariant under (2.5) in the sense that if u(t), t ≥ s − r, is a

solution to (2.6) satisfying conditions that ũs ∈ Ss and the function χ[s,∞)(t)ut,

t ∈ R, belongs to E , then we have ũt ∈ St for all t ≥ s, where the function ũt is

defined by

(2.7) ũt(θ) = Fut−θ for all −r ≤ θ ≤ 0 and t ≥ 0.

Note that if we denoted by X̃0(t) = Im P̃ (t), X̃1(t) = Ker P̃ (t) and we identify X̃0(t)⊕
X̃1(t) with X̃0(t)× X̃1(t), then we can write St = graph(ỹt).

The following lemma gives the form of bounded solutions to (2.5). To do this, we first

recall the notion of the integral translation operators Λ1, Λ′ν , Λ′′ν (see [8, Definition 2.4,

Proposition 2.7]) as follows: for ϕ ∈ E, Λ1ϕ is defined by Λ1ϕ(t) :=
∫ t+1
t ϕ(τ) dτ belong

to E for all t ∈ R+; if ϕ ∈ L1,loc(R) such that ϕ ≥ 0 and Λ1ϕ ∈ E; ν > 0 then Λ′ν , Λ′′ν are

defined by Λ′νϕ(t) =
∫ t

0 e
−ν(t−s)ϕ(s) ds; Λ′′νϕ(t) =

∫∞
t e−ν(s−t)ϕ(s) ds belong to E.
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Lemma 2.5. Assume Standing Hypothesis 1.3 and let ϕ ∈ E′ be an exponentially E-

invariant function defined as in that Standing Hypothesis. Suppose that F , (B(t))t>0, and

Φ satisfy Standing Hypothesis 2.3 and let Φ̃ be defined as in (2.3). Let the evolution family

{U(t, s)}t≥s≥0 generated by (B(t))t>0 have an exponential dichotomy with the dichotomy

projections P (t), t ≥ 0, and constants N, ν > 0. Suppose that u(t) is a solution to (2.6)

such that, for fixed s ≥ 0 the function χ[s,∞)(t)ut, t ∈ R, belongs to E ∩ E∞. Then, for

t ≥ s the function u(t) satisfies

(2.8) Fut = U(t, s)ν0 +

∫ ∞
s
G(t, τ)Φ̃(τ, u, uτ ) dτ

for some ν0 ∈ X0(s) = P (s)X, where G(t, τ) is the Green’s function defined as in (2.1).

Proof. Put

y(t) =


∫∞
s G(t, τ)Φ̃(τ, u, uτ ) dτ for t ≥ s,∫∞
s G(2s− t, τ)Φ̃(τ, u, uτ ) dτ for s− r ≤ t < s.

We have, for t ≥ s

‖y(t)‖ ≤
∫ ∞
s

N(1 +H)e−ν|t−τ |
[
K̃‖Ψ‖‖uτ‖C + ϕ(τ)(1 + ‖uτ‖C)

]
dτ

≤ NK̃(1 +H)‖Ψ‖ sup
ξ≥s−r

‖u(ξ)‖
∫ ∞
s

e−ν|t−τ | dτ

+N(1 +H)

(
1 + sup

ξ≥s−r
‖u(ξ)‖

)∫ ∞
s

e−ν|t−τ |ϕ(τ) dτ

≤ 2

ν
NK̃(1 +H)‖Ψ‖ sup

ξ≥s−r
‖u(ξ)‖

+N(1 +H)

(
1 + sup

ξ≥s−r
‖u(ξ)‖

)∫ ∞
0

e−ν|t−τ |ϕ(τ) dτ

and, for s− r ≤ t < s

‖y(t)‖ ≤
∫ ∞
s

N(1 +H)e−ν|2s−t−τ |
[
K̃‖Ψ‖‖uτ‖C + ϕ(τ)(1 + ‖uτ‖C)

]
dτ

≤ 2

ν
NK̃(1 +H)‖Ψ‖ sup

ξ≥s−r
‖u(ξ)‖

+N(1 +H)

(
1 + sup

ξ≥s−r
‖u(ξ)‖

)∫ ∞
0

e−ν|2s−t−τ |ϕ(τ) dτ.

Since t+ θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and all r ∈ [−r, 0], we have that

‖yt‖C = sup
θ∈[−r,0]

y(t+ θ) ≤ 2

ν
NK̃(1 +H)‖Ψ‖ sup

t≥s
‖u(t)‖
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+N(1 +H)

(
1 + sup

t≥s
‖u(t)‖

)
eνr
∫ ∞

0
e−ν|t−τ |ϕ(τ) dτ

≤ 2

ν
NK̃(1 +H)‖Ψ‖ sup

t≥s
‖u(t)‖

+N(1 +H)

(
1 + sup

t≥s
‖u(t)‖

)
eνr
(
Λ′νϕ(t) + Λ′′νϕ(t)

)
for t ≥ s.

Therefore, by Banach lattice properties we have that y(·) ∈ E∞ and

‖y(·)‖E∞ ≤
2

ν
NK̃(1 +H)‖Ψ‖ sup

t≥s
‖u(t)‖

+N(1 +H)

(
1 + sup

t≥s
‖u(t)‖

)
eνr

(N1‖Λ1T
+
1 ϕ‖E +N2‖Λ1ϕ‖E)

1− e−ν
,

where T+
1 is defined as in [8, Definition 2.4].

On the other hand,

U(t, s)y(s) = −
∫ t

s
U(t, s)U(s, τ)|(I − P (τ))Φ̃(τ, u, uτ ) dτ

−
∫ ∞
t

U(t, s)U(s, τ)|(I − P (τ))Φ̃(τ, u, uτ ) dτ

= −
∫ t

s
U(t, τ)(I − P (τ))Φ̃(τ, u, uτ ) dτ

−
∫ ∞
t

U(t, τ)|(I − P (τ))Φ̃(τ, u, uτ ) dτ.

Therefore,

y(t) = U(t, s)y(s) +

∫ t

s
U(t, τ)Φ̃(τ, u, uτ ) dτ.

Since ut is a solution of (2.5) we obtain that Fut − y(t) = U(t, s)(Fus − y(s)). Put now

ν0 = Fus− y(s). The boundedness of Fut and y(t) on [s,∞) implies that ν0 ∈ X0(s) and

P (s)Fus = ν0. Therefore, Fut = U(t, s)ν0 + y(t) for t ≥ s.

Remark 2.6. Equation (2.8) is called the Lyapunov-Perron’s equation. By computing

directly, we can see that the converse of Lemma 2.5 is also true. This means that, all

solutions of the integral equation (2.8) satisfy (2.6) for t ≥ s.

We come to our next result on the existence and partially stability of solutions starting

from a subspace of C.

Theorem 2.7. Assume Standing Hypothesis 1.3 and let ϕ ∈ E′ be an exponentially E-

invariant function and hν be defined as in that Standing Hypothesis. Suppose that F ,

(B(t))t>0, and Φ satisfy Standing Hypothesis 2.3 with (B(t))t>0 generating an evolution
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family (U(t, s))t≥s≥0 having an exponential dichotomy. Let P̃ (t), t ≥ 0, be projections

defined as in (2.2), and set

k := N(1 +H)eνr

×max

{
2K̃‖Ψ‖

ν
+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞

1− e−ν
, K̃‖Ψ‖‖ẽν(·)‖E + ‖hν(·)‖E

}
,

(2.9)

where ẽν(t) = ‖e−ν|t−· |‖E′. Then, if k/(1 − ‖Ψ‖) < 1, there corresponds to each φ ∈
Im P̃ (s) one and only one solution u(t) of the equation (2.8) on [s − r,∞) satisfying the

conditions that P̃ (s)ũs = φ, and function χ[s,∞)(t)ut, t ∈ R, belongs to E ∩ E∞, where the

function ũs is defined as in Definition 2.4. Moreover, the following estimate is valid for

any two solutions u(t), v(t) corresponding to different initial functions φ, ψ ∈ Im P̃ (s):

(2.10) ‖ut − vt‖C ≤ Cµe−µ(t−s)‖φ(0)− ψ(0)‖ for all t ≥ s ≥ 0

where µ is a positive number satisfying

N(1 +H)eνr

1− ‖Ψ‖

(
2K̃‖Ψ‖
ν − µ

+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞
1− e−(ν−µ)

)
< 1,

and

Cµ :=
Neνr

1− ‖Ψ‖ −N(1 +H)eνr
(2K̃‖Ψ‖

ν−µ +
N1‖Λ1T

+
1 ϕ‖∞+N2‖Λ1ϕ‖∞
1−e−(ν−µ)

) .
Proof. First, to prove that there corresponds to each φ ∈ Im P̃ (s) one and only one solution

u(t) in E of equation (2.8) on [s−r,∞), we construct a contraction mapping. To do this, we

consider from (2.2) with φ ∈ Im P̃ (s) = {φ(θ) = U(t− θ, t)ν0 : −r ≤ θ ≤ 0, ν0 ∈ ImP (s)}.
Clearly, ν0 = φ(0).

Denote by Cb([s − r,∞), X) the Banach space of bounded, continuous and X-valued

functions defined on [s− r,∞), which is endowed with the sup-norm ‖ · ‖∞.

We define the operator Ψ̃ : Cb([s− r,∞), X)→ Cb([s− r,∞), X) by

[Ψ̃u](t) =

Ψ(ut) for s ≤ t,

Ψ(us) for s− r ≤ t ≤ s.

Because ‖Ψ‖ < 1 we have ‖Ψ̃‖ ≤ ‖Ψ‖ < 1. Therefore, the operator I − Ψ̃ is invertible.

For ν0 = φ(0) ∈ ImP (s) as above, we define a mapping F̃φ : Cb([s− r,∞), X) → Cb([s−
r,∞), X) by

(F̃φu)(t) =


U(t, s)ν0 +

∫ ∞
s
G(t, τ)Φ̃(τ, u, uτ ) dτ for t ≥ s,

U(2s− t, s)ν0 +

∫ ∞
s
G(2s− t, τ)Φ̃(τ, u, uτ ) dτ for s− r ≤ t ≤ s.
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We now put T := (I − Ψ̃)−1F̃φ. Then, we have

(Tu)(t) =


(I − Ψ̃)−1

[
U(t, s)ν0 +

∫ ∞
s

G(t, τ)Φ̃(τ, u, uτ ) dτ
]

for t ≥ s,

(I − Ψ̃)−1
[
U(2s− t, s)ν0 +

∫ ∞
s

G(2s− t, τ)Φ̃(τ, u, uτ ) dτ
]

for s− r ≤ t ≤ s.

We will prove the transformation T as above acts from E ∩ E∞ into E ∩ E∞ and is a

contraction.

In fact, putting eν(t) = e−ν|t| and we have (T+
s eν)(t) = e−ν(t−s) (see [8, Definition 2.4,

Proposition 2.7])

y(t) =


(I − Ψ̃)−1

[
U(t, s)ν0 +

∫ ∞
s
G(t, τ)Φ̃(τ, u, uτ ) dτ

]
for t ≥ s,

(I − Ψ̃)−1
[
U(2s− t, s)ν0 +

∫ ∞
s
G(2s− t, τ)Φ̃(τ, u, uτ ) dτ

]
for s− r ≤ t ≤ s,

then we have, for t ≥ s

‖y(t)‖ ≤ 1

1− ‖Ψ̃‖

[
Ne−ν(t−s)‖ν0‖+

∫ ∞
s

N(1 +H)e−ν|t−τ |
(
K̃‖Ψ‖‖uτ‖C + ϕ(τ)(1 + ‖uτ‖C)

)
dτ

]
≤ 1

1− ‖Ψ‖

[
N(T+

s eν)(t)‖ν0‖+
2

ν
NK̃(1 +H)‖Ψ‖ sup

ξ≥s−r
‖u(ξ)‖

+N(1 +H)
(

1 + sup
ξ≥s−r

‖u(ξ)‖
)∫ ∞

0

e−ν|t−τ |ϕ(τ) dτ

]
,

and, for s− r ≤ t ≤ s

‖y(t)‖ ≤ 1

1− ‖Ψ̃‖

[
Ne−ν(s−t)‖ν0‖

+

∫ ∞
s

N(1 +H)e−ν|2s−t−τ |
(
K̃‖Ψ‖‖uτ‖C + ϕ(τ)(1 + ‖uτ‖C)

)
dτ

]
≤ 1

1− ‖Ψ‖

[
N(T+

s eν)(t)‖ν0‖+
2

ν
NK̃(1 +H)‖Ψ‖ sup

ξ≥s−r
‖u(ξ)‖

+N(1 +H)
(

1 + sup
ξ≥s−r

‖u(ξ)‖
)∫ ∞

0
e−ν|2s−t−τ |ϕ(τ) dτ

]
.

Since t+ θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and all θ ∈ [−r, 0], we have

‖yt‖C ≤
1

1− ‖Ψ‖

[
Neνr(T+

s eν)(t)‖ν0‖+
2

ν
NK̃(1 +H)‖Ψ‖ sup

t≥s
‖u(t)‖

+N(1 +H)
(

1 + sup
t≥s
‖u(t)‖

)
eνr(Λ′νϕ(t) + Λ′′νϕ(t))

]
for t ≥ s.

Therefore, by Banach lattice properties we have that y(·) ∈ E and

‖y(·)‖E ≤
1

1− ‖Ψ‖

[
NN1e

νr‖ν0‖‖eν‖E +
2

ν
NK̃(1 +H)‖Ψ‖ sup

t≥s
‖u(t)‖

+N(1 +H)eνr
(

1 + sup
t≥s
‖u(t)‖

)(N1‖Λ1T
+
1 ϕ‖E +N2‖Λ1ϕ‖E)

1− e−ν

]
.
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Similarly, we have

‖y(·)‖∞ ≤
1

1− ‖Ψ‖

[
Neνr‖ν0‖+

2

ν
NK̃(1 +H)‖Ψ‖eνr sup

t≥s
‖u(t)‖

+N(1 +H)eνr
(

1 + sup
t≥s
‖u(t)‖

)(N1‖Λ1T
+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞)

1− e−ν

]
.

Hence, the transformation T acts from E ∩ E∞ into E ∩ E∞. Next, we will prove T is

a contraction mapping. To this purpose we first estimate

‖(F̃φu)(t)− (F̃φv)(t)‖ ≤
∫ ∞
s
‖G(t, τ)(Φ̃(τ, u, uτ )− Φ̃(τ, v, vτ ))‖ dτ

≤ N(1 +H)

∫ ∞
s

e−ν|t−τ |
(
K̃‖Ψ‖‖uτ − vτ‖C + ϕ(τ)‖uτ − vτ‖C

)
dτ,

≤ N(1 +H)

[
K̃‖Ψ‖

∫ ∞
0

e−ν|t−τ |‖uτ − vτ‖C dτ

+

∫ ∞
0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C dτ
]

for t ≥ s,

and similarly

‖(F̃φu)(t)− (F̃φv)(t)‖

≤
∫ ∞
s
‖G(2s− t, τ)(Φ̃(τ, u, uτ )− Φ̃(τ, v, vτ ))‖ dτ

≤ N(1 +H)

∫ ∞
s

e−ν|2s−t−τ |
(
K̃‖Ψ‖‖uτ − vτ‖C + ϕ(τ)‖uτ − vτ‖C

)
dτ,

≤ N(1 +H)

[
K̃‖Ψ‖

∫ ∞
0

e−ν|2s−t−τ |‖uτ − vτ‖C dτ

+

∫ ∞
0

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖C dτ
]

for s− r ≤ t ≤ s.

Using the Neumann’s series, we then have

(Tu)(t)− (Tv)(t) =

[( ∞∑
n=0

Ψ̃n

)
F̃φu

]
(t)−

[( ∞∑
n=0

Ψ̃n

)
F̃φv

]
(t)

=
[
(F̃φu)(t)− (F̃φv)(t)

]
+
[
(Ψ̃F̃φu)(t)− (Ψ̃F̃φv)(t)

]
+
[
(Ψ̃2F̃φu)(t)− (Ψ̃2F̃φv)(t)

]
+ · · · .

Next, by induction we can easily see that

‖(Ψ̃nF̃φu)(t)− (Ψ̃nF̃φv)(t)‖

≤ ‖Ψ‖nN(1 +H)

[
K̃‖Ψ‖

∫ ∞
0

e−ν|t−τ |‖uτ − vτ‖C dτ

+

∫ ∞
0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C dτ
]

for t ≥ s and n ∈ N,
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and, for −r + s ≤ t ≤ s and n ∈ N,

‖(Ψ̃nF̃φu)(t)− (Ψ̃nF̃φv)(t)‖ ≤ ‖Ψ‖nN(1 +H)

[
K̃‖Ψ‖

∫ ∞
0

e−ν|2s−t−τ |‖uτ − vτ‖C dτ

+

∫ ∞
0

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖C dτ
]
.

From the above claim it follows that

‖(Tu)(t)− (Tv)(t)‖ ≤

( ∞∑
n=0

‖Ψ‖n
)
N(1 +H)

[
K̃‖Ψ‖

∫ ∞
0

e−ν|t−τ |‖uτ − vτ‖C dτ

+

∫ ∞
0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C dτ
]

for t ≥ s and n ∈ N, and

‖(Tu)(t)− (Tv)(t)‖ ≤

( ∞∑
n=0

‖Ψ‖n
)
N(1 +H)

[
K̃‖Ψ‖

∫ ∞
0

e−ν|2s−t−τ |‖uτ − vτ‖C dτ

+

∫ ∞
0

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖C dτ
]

for −r+s ≤ t ≤ s and n ∈ N. Since t+θ ∈ [−r+ t, t] for fixed t ∈ [s,∞) and all θ ∈ [−r, 0]

we have that,

‖(Tu)(t)− (Tv)(t)‖C = sup
θ∈[−r,0]

‖(Tu)(t+ θ)− (Tv)(t+ θ)‖

≤ N(1 +H)eνr

1− ‖Ψ‖

[
K̃‖Ψ‖

∫ ∞
0

(T+
τ eν)(t)‖uτ − vτ‖C dτ

+

∫ ∞
0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C
]

for t ≥ s.

Since (T+
· eν)(t) ∈ E′, e−ν|t−· |ϕ(·) ∈ E′, ‖uτ − vτ‖C ∈ E, and using the “Hölder’s inequal-

ity” it follows from the above inequality that

‖(Tu)(t)− (Tv)(t)‖C

≤ N(1 +H)eνr

1− ‖Ψ‖
[
K̃‖Ψ‖‖(T+

· eν)(t)‖E′‖u(·) − v(·)‖C‖E

+ ‖e−ν|t−· |ϕ(·)‖E′
∥∥‖u(·) − v(·)‖C

∥∥
E

]
≤ N(1 +H)eνr

1− ‖Ψ‖
[
K̃‖Ψ‖ẽν(t)‖u(·)− v(·)‖E + hν(t)‖u(·)− v(·)‖E

]
for t ≥ s.

According to Definition 1.2 we have

‖(Tu)(·)− (Tv)(·)‖E ≤
N(1 +H)eνr

1− ‖Ψ‖
(
K̃‖Ψ‖‖ẽν(·)‖E + ‖hν(·)‖E

)
‖u(·)− v(·)‖E

≤ k

1− ‖Ψ‖
‖u(·)− v(·)‖E
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where k is defined as in (2.9). In a similar way, we have

‖(Tu)(·)− (Tv)(·)‖E∞

≤ N(1 +H)eνr

1− ‖Ψ‖

(
2K̃‖Ψ‖

ν
+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞

1− e−ν

)
‖u(·)− v(·)‖E∞

≤ k

1− ‖Ψ‖
‖u(·)− v(·)‖E∞ .

Therefore, if k/(1 − ‖Ψ‖) < 1 the transformation T : E ∩ E∞ → E ∩ E∞ is a contraction

mapping. Thus, there exists a unique u(·) ∈ E ∩ E∞ such that Tu = u. This yields that

u(t), t ≥ s− r, is the unique solution of (2.8) with

(F̃φus)(θ) = U(s− θ, s)ν0 +

∫ ∞
s
G(s− θ, τ)Φ(τ, uτ ) dτ for all θ ∈ [−r, 0],

and P (s)Fus = ν0. Therefore, P̃ (s)ũs = φ by definition of P̃ (s) (see Equality (2.2)).

Secondly, we now prove Inequality (2.10). Let u(t), v(t) be the two solutions to (2.8)

corresponding to different initial functions φ, ψ ∈ Im P̃ (s), respectively. We have that

u(t)− v(t) = (Tu)(t)− (Tv)(t) =
[
(I − Ψ̃)−1F̃φu

]
(t)−

[
(I − Ψ̃)−1F̃ψv

]
(t).

Using Neumann’s series we arrive at

u(t)− v(t) =
[
(F̃φu)(t)− (F̃ψv)(t)

]
+
[
(Ψ̃(F̃φu)(t))− (Ψ̃(F̃ψv)(t))

]
+
[
(Ψ̃2(F̃φu)(t))− (Ψ̃2(F̃ψv)(t))

]
+ · · · .

(2.11)

By definition of F̃φ the norm of the first term in (2.11) can be estimated by

‖(F̃φu)(t)− (F̃ψv)(t)‖

≤ N(T+
s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)

∫ ∞
s

e−ν|t−τ |
[
K̃‖Ψ‖‖uτ − vτ‖C + ϕ(τ)‖uτ − vτ‖C

]
dτ for t ≥ s.

Again, by induction, for t ≥ s the norm of the nth term in (2.11) can be estimated by

‖(Ψ̃nF̃φu)(t)− (Ψ̃nF̃ψv)(t)‖

≤ ‖Ψ‖n
[
N(T+

s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)

∫ ∞
s

e−ν|t−τ |
[
K̃‖Ψ‖‖uτ − vτ‖C + ϕ(τ)‖uτ − vτ‖C

]
dτ

]
and, for s− r ≤ t ≤ s

‖(Ψ̃nF̃φu)(t)− (Ψ̃nF̃ψv)(t)‖

≤ ‖Ψ‖n
[
N(T+

s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)

∫ ∞
s

e−ν|2s−t−τ |
[
K̃‖Ψ‖‖uτ − vτ‖C + ϕ(τ)‖uτ − vτ‖C

]
dτ

]
.
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Again, since t+ θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and all θ ∈ [−r, 0], and using (2.11) we

obtain

‖ut − vt‖C

≤ 1

1− ‖Ψ‖

[
Neνr(T+

s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)eνr
∫ ∞
s

e−ν|t−τ |
[
K̃‖Ψ‖‖uτ − vτ‖C + ϕ(τ)‖uτ − vτ‖C

]
dτ

]
for t ≥ s. Put h(t) = ‖ut − vt‖C . Then, for t ≥ s

h(t) ≤ 1

1− ‖Ψ‖

[
Neνr(T+

s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)eνr
∫ ∞
s

e−ν|t−τ |
[
K̃‖Ψ‖+ ϕ(τ)

]
h(τ) dτ

]
.

(2.12)

We will use the cone inequality theorem (see [13, Theorem 2.8]) applying to Banach space

E with the cone K being the set of all non-negative functions. We then consider the linear

operator A defined for g ∈ E by

(Ag)(t) =
N(1 +H)eνrK̃‖Ψ‖

1− ‖Ψ‖

∫ ∞
s

e−ν|t−τ |g(τ) dτ

+
N(1 +H)eνr

1− ‖Ψ‖

∫ ∞
s

e−ν|t−τ |ϕ(τ)g(τ) dτ, t ≥ s.

By “Hölder’s inequality” then

‖(Ag)(t)‖ ≤ NK̃(1 +H)eνr‖Ψ‖
1− ‖Ψ‖

ẽν(t)‖g‖E +
N(1 +H)eνr

1− ‖Ψ‖
hν(t)‖g‖E .

By the Banach lactive property of E, we have

‖Ag‖E ≤
N(1 +H)eνr

1− ‖Ψ‖
[
‖K̃‖Ψ‖ẽν‖E + ‖hν‖E

]
‖g‖E .

Therefore A ∈ L(E) and ‖A‖ ≤ k/(1 − ‖Ψ‖) < 1. Clearly, the cone K is invariant under

the operator A. The inequality (2.12) can now be rewritten as

h ≤ Ah+ z for z(t) =
1

1− ‖Ψ‖
[Neνr(T+

s eν)(t)‖φ(0)− ψ(0)‖].

By the cone inequality theorem [13, Theorem 2.8] we obtain that h ≤ g, where g is a

solution in E of the equation g = Ag + z which can be rewritten as

g(t) =
1

1− ‖Ψ‖

[
Neνr(T+

s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)eνr
∫ ∞
s

e−ν|t−τ |
[
K̃‖Ψ‖+ ϕ(τ)

]
g(τ) dτ

]
for t ≥ s ≥ 0.
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Next, to estimate g, we put w(t) = eµ(t−s)g(t) for t ≥ s ≥ 0. Then, we obtain that

w(t) =
1

1− ‖Ψ‖

[
Neνr(T+

s eν−µ)(t)‖φ(0)− ψ(0)‖

+N(1 +H)eνr
∫ ∞
s

e−ν|t−τ |+µ(t−τ)
[
K̃‖Ψ‖+ ϕ(τ)

]
w(τ) dτ

](2.13)

for t ≥ s. We will find w in L∞[s,∞) which is space of real-valued functions defined and

essentially bounded on [s,∞) (endowed with the sup-norm denoted by ‖ · ‖∞). We next

consider the linear operator D defined on L∞[s,∞) as

(Dφ)(t) =
N(1 +H)eνr

1− ‖Ψ‖

∫ ∞
s

e−ν|t−τ |+µ(t−τ)
[
K̃‖Ψ‖+ ϕ(τ)

]
φ(τ) dτ for all t ≥ s.

By Proposition 2.6 in [9], one can easily see that D ∈ L(L∞[s,∞)) and

‖D‖ ≤ N(1 +H)eνr

1− ‖Ψ‖

(
2K̃‖Ψ‖
ν − µ

+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞
1− e−(ν−µ)

)
.

The equation (2.13) can be rewritten as

w = Dw + z̃ for z̃(t) =
1

1− ‖Ψ‖
Neνr(T+

s eν−µ)(t)‖φ(0)− ψ(0)‖.

We have ‖D‖ < 1 if
N(1 +H)eνr

1− ‖Ψ‖

(2K̃‖Ψ‖
ν − µ

+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞
1− e−(ν−µ)

)
< 1. Under

this condition, the equation w = Dw + z̃ has the unique solution w ∈ L∞[s,∞) and

w = (I −D)−1z̃. Hence, we obtain that

‖w‖∞ = ‖(I −D)−1z̃‖∞ ≤
Neνr

(1− ‖D‖)(1− ‖Ψ‖)
‖φ(0)− ψ(0)‖

≤ Neνr‖φ(0)− ψ(0)‖

1− ‖Ψ‖ −N(1 +H)eνr
(2K̃‖Ψ‖

ν−µ +
N1‖Λ1T

+
1 ϕ‖∞+N2‖Λ1ϕ‖∞
1−e−(ν−µ)

)
:= Cµ‖φ(0)− ψ(0)‖.

This yields that w(t) ≤ Cµ‖φ(0)− ψ(0)‖ for t ≥ s. Therefore,

h(t) = ‖ut − vt‖C ≤ g(t) = e−µ(t−s)w(t) ≤ Cµe−µ(t−s)‖φ(0)− ψ(0)‖ for t ≥ s.

We now state and prove our main result of this section.

Theorem 2.8. Assume Standing Hypothesis 1.3 and let ϕ ∈ E′ be an exponentially E-

invariant function and hν be defined as in that Standing Hypothesis. Suppose that F ,

(B(t))t>0, and Φ satisfy Standing Hypothesis 2.3 with (B(t))t>0 generating an evolution

family (U(t, s))t≥s≥0 having an exponential dichotomy. Define k as in (2.9) and k1 by

k1 := N(1 +H)eνr

[
K̃‖Ψ‖
ν

+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞

1− e−ν

]
.



Admissibly Stable Manifolds for PNFDE 913

Then, if

max

{
Nk1e

νr

1− k1 − ‖Ψ‖
,

k

1− ‖Ψ‖

}
< 1

then, there exists an invariant stable manifold S of E-class for the solutions to (2.5).

Moreover, every two solutions u(t), v(t) on the manifold S of E-class for the solutions

to (2.5) corresponding to different functions φ, ψ ∈ Ss attract each other exponentially in

sense that, there exists positive constants µ and Cµ independent of s ≥ 0 such that

(2.14) ‖ut − vt‖C ≤ Cµe−µ(t−s)‖P̃ (s)φ− P̃ (s)ψ‖C for t ≥ s,

where P̃ (t), t ≥ 0 are defined as in (2.2) and Ss is defined as in Definition 2.4.

Proof. To prove the existence of an invariant stable manifold S = {(t, St)}t≥0 of E-class for

the solution to (2.5) satisfies the conditions of Definition 2.4. We have, since {U(t, s)}t≥s≥0

has an exponential dichotomy, and for each t ≥ 0 the phase space C splits into the direct

sum C = Im P̃ (t)⊕Ker P̃ (t) where the projections P̃ (t), t ≥ 0, are defined as in (2.2). We

determine the surface St for t ≥ 0 by the formula

St := {φ+ ỹt(φ) : φ ∈ Im P̃ (t)} ⊂ C

where the operator ỹt0 is defined for each t0 ≥ 0 by

ỹt0(φ)(θ) =

∫ ∞
t0

G(t0 − θ, τ)Φ̃(τ, u, uτ ) dτ for all θ ∈ [−r, 0],

here u(·) is the unique solution of (2.5) on [−r+ t0,∞) satisfying P̃ (t0)ut0 = φ (note that

the existence and uniqueness of u(·) is guaranteed by Theorem 2.7). On the other hand,

by the definition of the Green’s function G (see (2.1)) we have that ỹt0(φ) ∈ Ker P̃ (t0).

We next show that the stable manifold S satisfies the conditions of Definition 2.4.

First, we prove that ỹt0 is Lipschitz continuity with Lipschitz constant independent of

t0. Indeed, for φ and ψ belonging to Im P̃ (t0) we have

‖ỹt0(φ)(θ)− ỹt0(ψ)(θ)‖

≤ N(1 +H)

∫ ∞
t0

e−ν|t0−θ−τ |
[
K̃‖Ψ‖+ ϕ(τ)

]
‖uτ − vτ‖C dτ

≤ N(1 +H)eνr
∫ ∞
t0

e−ν|t0−τ |
[
K̃‖Ψ‖+ ϕ(τ)

]
‖uτ − vτ‖C dτ

≤ N(1 +H)eνr sup
τ≥t0
‖uτ − vτ‖C

∫ ∞
t0

e−ν|t0−τ |
[
K̃‖Ψ‖+ ϕ(τ)

]
dτ

≤ N(1 +H)eνr
[
K̃‖Ψ‖
ν

+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞

1− e−ν

]
sup
τ≥t0
‖uτ − vτ‖C .

(2.15)
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Moreover, by the Lyapunov-Perron’s equation for u(·) and v(·), for τ ≥ t0 we have

sup
τ≥t0
‖uτ − vτ‖C

≤ 1

1− ‖Ψ‖

[
Neνr‖φ− ψ‖C

+N(1 +H)eνr
(
K̃‖Ψ‖
ν

+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞

1− e−ν

)
sup
τ≥t0
‖uτ − vτ‖C

]
.

It follows that

sup
τ≥t0
‖uτ − vτ‖C ≤

Neνr

1− k1 − ‖Ψ‖
‖φ− ψ‖C .

Substituting this inequality to (2.15) we obtain that

‖ỹt0(φ)− ỹt0(ψ)‖C = sup
θ∈[−r,0]

‖ỹt0(φ)(θ)− ỹt0(ψ)(θ)‖ ≤ Nk1e
νr

1− k1 − ‖Ψ‖
‖φ− ψ‖C .

Therefore, ỹt0 is Lipschitz continuous with the Lipschitz constant Nk1e
νr/(1− k1 − ‖Ψ‖)

independent of t0.

To show St0 is homeomorphic to Im P̃ (t0), we define the transformation D : Im P̃ (t0)

→ St0 by Dφ := φ + ỹt0(φ) for all φ ∈ Im P̃ (t0). Then, applying the Implicit Function

Theorem for Lipschitz continuous mappings (see [21, Lemma 2.7]) we have that if the

Lipschitz constant N2N1(1 + H)e2νr‖eν‖E‖ϕ‖E′/(1 − k − ‖Ψ‖) < 1 (equivalently k <

1 − ‖Ψ‖ − N2N1(1 + H)e2νr‖eν‖E‖ϕ‖E′) then D is a homeomorphism. Therefore, the

condition (ii) in Definition 2.4 is satisfied.

The condition (iii) in Definition 2.4 now follows from Theorem 2.7. We now prove that

the condition (iv) of Definition 2.4 is satisfied. Indeed, let u(·) be solution of (2.5) such

that the function us ∈ Ss. Then, by Lemma 2.5, for t ∈ [s,∞) the solution u(t) satisfies

Fut = U(t, s)ν0 +

∫ ∞
s
G(t, τ)Φ̃(τ, u, uτ ) dτ for some ν0 ∈ ImP (s).

Thus, for t ≥ s and θ ∈ [−r, 0] we have

Fut−θ = U(t− θ, s)ν0 +

∫ ∞
s
G(t− θ, τ)Φ̃(τ, u, uτ ) dτ

= U(t− θ, s)ν0 +

∫ t

s
G(t− θ, τ)Φ̃(τ, u, uτ ) dτ +

∫ ∞
t
G(t− θ, τ)Φ̃(τ, u, uτ ) dτ

= U(t− θ, s)ν0 +

∫ t

s
U(t− θ, τ)P (τ)Φ̃(τ, u, uτ ) dτ +

∫ ∞
t
G(t− θ, τ)Φ̃(τ, u, uτ ) dτ

= U(t− θ, t)
[
U(t, s)ν0 +

∫ t

s
U(t, τ)P (τ)Φ̃(τ, u, uτ ) dτ

]
+

∫ ∞
t
G(t− θ, τ)Φ̃(τ, u, uτ ) dτ for all −r ≤ θ ≤ 0.
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Put z0 = U(t, s)ν0 +
∫ t
s U(t, τ)P (τ)Φ̃(τ, u, uτ ) dτ . We have P (t)z0 = z0, hence z0 ∈

ImP (t). We thus obtain that the function φ(θ) := U(t − θ, t)z0, −r ≤ θ ≤ 0, belongs to

Im P̃ (t) and

Fut−θ = U(t− θ, t)z0 +

∫ ∞
t
G(t− θ, τ)Φ̃(τ, u, uτ ) dτ for all −r ≤ θ ≤ 0.

By the uniqueness of u(·) on [s− r,∞) as in the proof of Theorem 2.7 we have that (2.5)

has a unique solution u(·) on [−r + t,∞) satisfying P̃ (t)ut = φ and

Fuξ = U(2t− ξ, t)z0 +

∫ ∞
t
G(2ξ − t, τ)Φ̃(τ, u, uτ ) dτ

for ξ ∈ [−r + t, t]. Therefore, for t ≥ s the function ũt defined as in (2.7) satisfies

ũt(θ) = Fut−θ = U(t− θ, t)z0 +

∫ ∞
t
G(t− θ, τ)Φ̃(τ, u, uτ ) dτ

= φ(θ) + ỹt(φ)(θ) for all −r ≤ θ ≤ 0

where, as seen above, φ ∈ Im P̃ (t). Hence, ũt ∈ St for t ≥ s.
Finally, the inequality (2.14) follows from inequality (2.10) in Theorem 2.7.

We illustrate our result by the following example.

Example 2.9. Consider the following neutral partial functional differential equation

∂w(x, t)

∂t
− l ∂w(x, t− 1)

∂t
= a(t)

[
∂2w(x, t)

∂x2
+ αw(x, t)

]
+ bte−αt

∫ 0

−1
ln(1 + |w(x, t+ θ)|) dθ for 0 ≤ x ≤ π, t ≥ 0,

w(0, t) = w(π, t) = 0 for t ≥ 0,

ws(x, θ) = w(x, s+ θ) for all x ∈ [0, π], θ ∈ [−1, 0],

(2.16)

where l and α are real constants with |l| < 1, α > 1 and α 6= n2, ∀n ∈ N. The function

a(·) ∈ L1,loc(R+) and satisfies the condition γ1 ≥ a(t) ≥ γ0 > 0 for fixed constants γ0,

γ1 and a.e. t ≥ 0. We choose the Hilbert space X := L2[0, π], C := C([−1, 0], X) and let

B : D(B) ⊂ X → X be defined by

B(f) = f ′′ + αf

with the domain D(B) = H2
0 [0, π] := {f ∈W 2,2[0, π] : f(0) = f(π) = 0}.

Also define the difference and delay operators F and Φ as

(2.17)

F : C → D(B), F (f) := f(0)− lf(−1),

Φ: R+ × C → X, Φ(t, φ) := bte−αt
∫ 0

−1
ln(1 + |(φ(θ))(x)|) dθ, x ∈ [0, π].
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Note that the fact that Φ takes value in X = L2[0, π] can be easily seen by using the

Minkowski’s inequality.

Putting now B(t) := a(t)B the equation (2.16) can now be rewritten as ∂
∂tFut(·) = B(t)u(t) + Φ(t, ut( · , θ)) t ≥ s ≥ 0,

us( · , θ) = φ( · , θ) ∈ C

where B is the generator of an analytic semigroup (T (t))t>0, with σ(B) = {−1 + α,−4 +

α, . . .}. Since α 6= n2, ∀n ∈ N, we have that σ(B) ∩ iR = ∅. Applying the spectral

mapping theorem for analytic semigroups we get

σ(T (t)) = etσ(B) = {et(α−1), et(α−4), . . .}

and σ(T (t)) ∩ {z ∈ C : |z| = 1} = ∅ for all t > 0. Therefore, for fixed t0, the spectrum of

the operator T (t0) splits into two disjoint sets σ0, σ1, where σ0 ⊂ {z ∈ C : |z| < 1}, σ1 ⊂
{z ∈ C : |z| > 1}. Next, we choose P = P (t0) to be the Riesz projections corresponding to

the spectral set σ0, and Q = I−P . Clearly, P and Q commute with T (t) for all t > 0. We

denote by TQ(t) := T (t)Q the restriction of T (t) on ImQ. As well-known in Semigroup

Theory, in this case, the semigroup (T (t))t>0 is called hyperbolic (or having an exponential

dichotomy) and the restriction TQ(t) is invertible. Moreover, there are positive constants

N , γ such that

(2.18)
‖T (t)|PX‖ ≤ Ne−γt, ∀ t ≥ 0,

‖TQ(−t)‖ = ‖TQ(t)−1‖ ≤ Ne−γt, ∀ t ≥ 0.

Clearly, the family (B(t))t≥0 = (a(t)B)t≥0 generates the evolution family (U(t, s))t≥s≥0

defined by the formula:

U(t, s) = T

(∫ t

s
a(τ) dτ

)
.

From the dichotomy estimates of (T (t))t>0 in (2.18), it is straightforward to check that

the evolution family (U(t, s))t≥s≥0 has an exponential dichotomy with projections P and

constants N , ν := γγ0 by the following estimates:

‖U(t, s)|PX‖ =

∥∥∥∥T (∫ t

s
a(τ) dτ

)
|PX

∥∥∥∥ ≤ Ne−ν(t−s),

‖U(s, t)|‖ = ‖(U(t, s)|KerP )−1‖ =

∥∥∥∥TQ(−∫ t

s
a(τ) dτ

)∥∥∥∥ ≤ Ne−ν(t−s)

for all t ≥ s ≥ 0.

Clearly, the difference operator F be of form F = δ0−Ψ for Ψ = lδ−1 and ‖Ψ‖ ≤ |l| < 1.

The linear operator B(t) for every fixed t ≥ 0 with norm ‖ · ‖H2
0 [0,π] and ‖B(t)u‖ ≤
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K̃‖u‖H2
0 [0,π]. We now take E = Lp(R+)1 ≤ p ≤ +∞, the delay operator Φ: R+ × C → X

defined as in (2.17) and check that Φ is ϕ-Lipschitz with ϕ(t) = |b|te−αt ∈ E = Lp(R+),

p ≥ 1. Indeed, the condition (i) in Definition 2.2 is evident. To verify the condition (ii) in

that definition we use Minkowski’s inequality and the fact that ln(1+h) ≤ h for all h ≥ 0.

Then,

‖Φ(t, φ1)(x)− Φ(t, φ2)(x)‖2

= |b|te−αt
(∫ π

0

(∫ 0

−1
ln

1 + |(φ1(θ))(x)|
1 + |(φ2(θ))(x)|

dθ

)2

dx

)1/2

≤ |b|te−αt
∫ 0

−1

(∫ π

0
ln2 1 + |(φ1(θ))(x)|

1 + |(φ2(θ))(x)|
dx

)1/2

dθ

= |b|te−αt
∫ 0

−1

(∫ π

0
ln2

(
1 +
|(φ1(θ))(x)| − |(φ2(θ))(x)|

1 + |(φ2(θ))(x)|

)
dx

)1/2

dθ

≤ |b|te−αt
∫ 0

−1

(∫ π

0
|(φ1(θ))(x)− (φ2(θ))(x)|2 dx

)1/2

dθ

= |b|te−αt
∫ 0

−1
‖φ1(θ)− φ2(θ)‖2 dθ

≤ |b|te−αt sup
θ∈[−1,0]

‖φ1(θ)− φ2(θ)‖2.

Hence, Φ is ϕ-Lipschitz. In the space Lp(R+), the constants N1, N2 are defined by

N1 = N2 = 1,

Λ1ϕ(t) =

∫ t+1

t
ϕ(τ) dτ and Λ1T

+
1 ϕ(t) =

∫ t

(t−1)+

ϕ(τ) dτ

where (t− 1)+ = max{0, t− 1}. Thus,

max{‖Λ1ϕ‖∞, ‖Λ1T
+
1 ϕ‖∞} <

|b|(1 + e−1 − e−α)

α2
.

By Theorem 2.8 we obtain that if

|b|(1 + e−1 − e−α)

α2
<

(1− e−ν)

2

[
(1− ‖Ψ‖)e−ν

N(1 +H)(1 +Neν)
− K̃‖Ψ‖

ν

]
then there is an invariant stable manifold S of Lp-class for the mild solutions to the

problem (2.16).

3. Exponential trichotomy and center-stable manifolds

In this section, we will generalize Theorem 2.8 to the case that the evolution family

{U(t, s)}t≥s≥0 has an exponential trichotomy on R+ and the nonlinear forcing term Φ is
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ϕ-Lipschitz. In this case, under similar conditions as in above section we will prove that

there exists a center-invariant stable manifold of E-class for the solutions to (2.5). We now

recall the definition of an exponential trichotomy and a center-invariant stable manifold

of E-class.

Definition 3.1. A given evolution family {U(t, s)}t≥s≥0 is said to have an exponential

trichotomy on the half-line if there are three families of projections {Pj(t)}, t ≥ 0, j =

1, 2, 3, and positive constants N , α, β with α < β such that the following conditions are

fulfilled:

(i) supt≥0 ‖Pj(t)‖ <∞, j = 1, 2, 3.

(ii) P1(t) + P2(t) + P3(t) = Id for t ≥ 0 and Pj(t)Pi(t) = 0 for all j 6= i.

(iii) Pj(t)U(t, s) = U(t, s)Pj(s) for t ≥ s ≥ 0 and j = 1, 2, 3.

(iv) U(t, s)|ImPj(s) are homeomorphisms from ImPj(s) onto ImPj(t), for all t ≥ s ≥ 0

and j = 2, 3, respectively; we also denote the inverse of U(t, s)|ImPj(s) by U(s, t)|,

0 ≤ s ≤ t.

(v) For all t ≥ s ≥ 0 and x ∈ X, the following estimates hold:

‖U(t, s)P1(s)x‖ ≤ Ne−β(t−s)‖P1(s)x‖,

‖U(s, t)|P2(t)x‖ ≤ Ne−β(t−s)‖P2(t)x‖,

‖U(t, s)P3(s)x‖ ≤ Neα(t−s)‖P3(s)x‖.

The projections {Pj(t)}, t ≥ 0, j = 1, 2, 3, are called the trichotomy projections, and the

constants N , α, β are the trichotomy constants.

Using the trichotomy projections we can now construct three families of projections

{P̃j(t)}, t ≥ 0, j = 1, 2, 3, on C as follows:

(3.1) (P̃j(t)φ)(θ) = U(t− θ, t)Pj(t)φ(0) for all θ ∈ [−r, 0] and φ ∈ C.

Definition 3.2. Let the evolution family {U(t, s)}t≥s≥0 have an exponential trichotomy

with the trichotomy projections {Pj(t)}t ≥ 0, j = 1, 2, 3, and constants N , α, β given as

in Definition 3.1.

A set S ⊂ R+ × C is said to be a center-invariant stable manifold of E-class for the

solutions to (2.5) if there exists a family of Lipschitz continuous mappings

Φt : Im(P̃1(t) + P̃3(t))→ Im P̃2(t)

with projections {P̃j(t)}, t ≥ 0, j = 1, 2, 3 defined as in (3.1), and Lipschitz constants

being independent of t such that St = graph(Φt) has the following properties:
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(i) St is homeomorphic to Im(P̃1(t) + P̃3(t)) for all t ≥ 0.

(ii) To each φ ∈ Ss there corresponds one and only one solution u(t) to (2.5) on [s−r,∞)

satisfying e−γ(s+θ)Fus−θ = φ(θ) for θ ∈ [−r, 0] and

zt =

e−γ(t+ · )ut(·) for t ≥ s ≥ 0,

0 for t < s
belong to E , where γ =

β + α

2
.

Moreover, for any two solutions u(t) and v(t) to (2.5) corresponding to different

functions φ, ψ ∈ Ss we have the estimate

‖ut − vt‖C ≤ Cµe(γ−µ)(t−s)‖(P̃ (s)φ)(0)− (P̃ (s)ψ)(0)‖ for t ≥ s,

where µ, Cµ are positive constants independent of s, u(·), and v(·) and P̃ (t) =

P̃1(t) + P̃3(t).

(iii) S is positively F -invariant under (2.5) in the sense that, if u(t), t ≥ s − r, is the

solution to (2.5) satisfying the conditions that the function e−γ(s+ · )ũs(·) ∈ Ss and

zt =

e−γ(t+ · )ut(·) for t ≥ s ≥ 0,

0 for t < s
belong to E ,

then the function e−γ(t+ · )ũt(·) ∈ St for all t ≥ s where ũt is defined as in (2.7).

We come to our second main result. It proves the existence of a center-stable manifold

for solutions of (2.5).

Theorem 3.3. Let the evolution family {U(t, s)}t≥s≥0 have an exponential trichotomy

with the trichotomy projections {Pj(t)}, t ≥ 0, j = 1, 2, 3, and constants N , α, β given

as in Definition 3.1. Suppose that Φ: R+ × C → X is ϕ-Lipschitz, where ϕ is a positive

function which belongs to E. Set q := sup{‖Pj(t)‖ : t ≥ 0, j = 1, 3}, N0 := max{N, 2Nq},
ν = (β − α)/2 and

k2 := N0(1 +H)eνr

[
K̃‖Ψ‖
ν

+
N1‖Λ1T

+
1 ϕ‖∞ +N2‖Λ1ϕ‖∞

1− e−ν

]
.

Then, if k2 < (1− ‖Ψ‖)/(1 +N0e
νr), for each fixed β > α there exists a center-invariant

stable manifold of E-class for the solutions to (2.5).

Proof. Set P (t) := P1(t)+P3(t) and Q(t) := P2(t) = Id−P (t) for t ≥ 0. We have that P (t)

and Q(t) are projections complemented to each other on X. We then define the families of

projections {P̃j(t)}, t ≥ 0, j = 1, 2, 3, on C as in Equality (3.1). Setting P̃ (t) = P̃1(t)+P̃3(t)
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and Q̃(t) = P̃2(t), t ≥ 0, we obtain that P̃ (t) and Q̃(t) are complemented projections on

C for each t ≥ 0. We consider the following rescaling evolution family

Ũ(t, s) = e−γ(t−s)U(t, s) for all t ≥ s ≥ 0, where γ :=
β + α

2
.

We now prove that the evolution family Ũ(t, s) has an exponential dichotomy with di-

chotomy projections P (t), t ≥ 0. Indeed,

P (t)Ũ(t, s) = e−γ(t−s)(P1(t) + P3(t))U(t, s)

= e−γ(t−s)U(t, s)(P1(s) + P3(s)) = Ũ(t, s)P (s).

Since U(t, s)|ImP2(s) is a homeomorphism from ImP2(s) onto ImP2(t) and ImP2(t) =

KerP (t) for all t ≥ 0, we have that Ũ(t, s)|KerP (s) is also a homeomorphism from KerP (s)

onto KerP (t), and we denote Ũ(s, t)| := (Ũ(t, s)|KerP (s))
−1 for 0 ≤ s ≤ t. By the definition

of exponential trichotomy we have

‖Ũ(s, t)|Q(t)x‖ ≤ e−(β+γ)(t−s)‖Q(t)x‖ for all t ≥ s ≥ 0.

On the other hand,

‖Ũ(t, s)P (s)x‖ = e−γ(t−s)‖U(t, s)(P1(s) + P3(s))x‖

≤ Ne−γ(t−s)(e−β(t−s)‖P1(s)x‖+ eα(t−s)‖P3(s)x‖
)

= Ne−γ(t−s)(e−β(t−s)‖P1(s)P (s)x‖+ eα(t−s)‖P3(s)P (s)x‖
)

for all t ≥ s ≥ 0 and x ∈ X.

Putting q := sup{‖Pj(t)‖ : t ≥ 0, j = 1, 3}, we finally get the following estimate

‖Ũ(t, s)P (s)x‖ ≤ 2Nqe−
(β−α)

2
(t−s)‖P (s)x‖.

Therefore, Ũ(t, s) has an exponential dichotomy with the dichotomy projections P (t),

t ≥ 0, and constants N0 := max{N, 2Nq}, ν := (β−α)/2. Put û(t) = e−γtu(t), and define

the mapping Φ∗ : R+ × C → X as follows:

Φ∗(t, φ) = e−γtΦ(t, eγ(t+ · )φ(·)) for (t, φ) ∈ R+ × C.

Obviously, Φ∗ is also ϕ-Lipschitz. Therefore, we can also define the operator Φ̃∗ : R+×
C ×D(B)→ X by

Φ̃∗(t, φ, x) = −B(t)Fxt +B(t)x(t) + Φ∗(t, φ).

Thus, we can rewrite (2.5) in the new form

Fût = Ũ(t, s)Fûs +

∫ t

s
Ũ(t, ξ)Φ̃∗(ξ, û, ûξ) dξ for all t ≥ s ≥ 0,

ûs(·) = e−γ(s+ · )φ(·) ∈ C.
(3.2)
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Hence, by Theorem 2.8, we obtain that, if k2 < (1 − ‖Ψ‖)/(1 + N0e
νr), then there

exists an invariant stable manifold of E-class S for the solutions to (3.2). Returning to

(2.5) by using the relation u(t) := eγtû(t) and Theorems 2.7 and 2.8, we can easily verify

the properties of S which are stated in (i), (ii) and (iii) in Definition 3.2. Thus, S is a

center-invariant stable manifold of E-class for the solutions of (2.5).
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