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Gap Theorems on Critical Point Equation of the Total Scalar Curvature with

Divergence-free Bach Tensor

Gabjin Yun and Seungsu Hwang*

Abstract. On a compact n-dimensional manifold, it is well known that a critical metric

of the total scalar curvature, restricted to the space of metrics with unit volume is

Einstein. It has been conjectured that a critical metric of the total scalar curvature,

restricted to the space of metrics with constant scalar curvature of unit volume, will

be Einstein. This conjecture, proposed in 1987 by Besse, has not been resolved except

when M has harmonic curvature or the metric is Bach flat. In this paper, we prove

some gap properties under divergence-free Bach tensor condition for n ≥ 5, and a

similar condition for n = 4.

1. Introduction

Let M be an n-dimensional compact manifold, and let M1 be the set of all smooth

Riemannian structures of unit volume on M . The total scalar curvature S onM1 is given

by

S(g) =

∫
M
sg dvg,

where sg is the scalar curvature of g ∈ M1. Hilbert showed that critical points of S on

M1 are Einstein. In [6], Koiso introduced the space C of constant scalar curvature metrics

of unit volume. The Euler-Lagrange equation of S restricted to C may be written in the

form of the following critical point equation

(1.1) zg = s′∗g (f).

Here, zg is the traceless Ricci tensor corresponding to g, and the operator s′∗g is the L2

adjoint of the linearization s′g of the scalar curvature, given by

s′∗g (f) = Dg df − (∆gf)g − frg,
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where Dgd and ∆g denote the Hessian and the (negative) Laplacian, respectively, and rg

is the Ricci curvature of g. If f = 0 in (1.1), then g is clearly Einstein. By taking the

trace of (1.1), we obtain

∆gf = − sg
n− 1

f.

Thus, if sg/(n−1) is not in the spectrum of ∆g, then the critical metric g is again Einstein.

For example, if sg ≤ 0, then g is Einstein. Note that if a non-trivial solution (g, f) of (1.1)

is Einstein, then (1.1) is reduced to the Obata equation, and so (M, g) should be isometric

to a standard n-sphere (see [7]).

We remark that the existence of a non-trivial solution is a strong condition. The only

known case satisfying this is that of the standard sphere. It was conjectured in [2] that

this is the only possible case.

Besse Conjecture. Let (g, f) be a solution of (1.1) on an n-dimensional compact man-

ifold M . Then, (M, g) is Einstein.

There are some partial answers to this conjecture. For example, it was proved that the

Besse conjecture holds if M has harmonic curvature (see [10, Theorem 1.2] and also [12]).

A Riemannain manifold (M, g) is said to have harmonic curvature if divR = 0, where

R is the full Riemann tensor, and δ is the negative divergence operator. In particular, a

locally conformally flat non-trivial solution (g, f) of (1.1) with sg > 0 is clearly isometric

to a standard sphere. Note that when sg is constant, divR = 0 if and only if divW = 0

(cf. (2.1) below), whereW is the Weyl tensor. Qing and Yuan showed in [9] that the Besse

conjecture holds if g is Bach-flat, i.e., B = 0, where B is the n-dimensional Bach tensor

(see Section 2 for its definition). In fact, they proved that Bach-flatness implies harmonic

curvature.

On the other hand, in [4] Catino, Mastrolia, and Monticelli classified gradient Ricci

solitons satisfying a fourth-order vanishing condition on the Weyl tensor. This condition

on the Weyl tensor is clearly weaker than divW = 0. Similarly, it is natural to consider

the divergence-free Bach tensor condition in the critical point equation (1.1) as a way to

generalize Bach-flat condition. It turns out that δB vanishes automatically when n = 4,

and δB = 0 if and only if 〈iXC, zg〉 = 0 for any vector X when n ≥ 5 (see Proposition 2.2

below). Here, C is the Cotton tensor defined by (2.2) below.

In this paper, we will prove some gap properties under the assumption δB = 0. For a

non-trivial solution (g, f) of (1.1), we define µ by

µ = max
M
|1 + f |.

If f satisfies f ≥ −1, we can easily show that (M, g) is Einstein. In fact, one can show

from (1.1) that div(zg(∇f, · )) = (1 + f)|zg|2, and so rigidity follows from the divergence
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theorem. Note that µ ≥ 1, because we have

0 =

∫
M

∆f = − s

n− 1

∫
M
f,

which implies that there exists a point p ∈M satisfying f(p) = 0. In fact, µ > 1 unless f

is trivial.

Our first main result for gap property on the critical point equation is the following.

Theorem 1.1. Let (g, f) be a non-trivial solution of (1.1) on an n-dimensional compact

manifold M . Assume that 〈iXC, zg〉 = 0 for any vector X and n ≥ 4. If |zg|2 ≤ s2g/[4n(n−
1)µ2], then (M, g) is isometric to a standard n-sphere.

As mentioned above, when n ≥ 5, the condition that the Bach tensor is divergence-free

implies the first hypothesis in Theorem 1.1. Thus, for n ≥ 5 we have the following result.

Corollary 1.2. Let n ≥ 5 and (g, f) be a non-trivial solution of (1.1) on an n-dimensional

compact manifold M having divergence-free Bach tensor. If |zg|2 ≤ s2g/[4n(n− 1)µ2], then

(M, g) is isometric to a standard n-sphere.

In [10, 12], we proved the Besse conjecture is true when (M, g) has harmonic curva-

ture. In this case, the traceless Ricci tensor zg can be decomposed into ∇f -direction and

its orthogonal complement. In other words, for a vector X orthogonal to ∇f , we have

zg(∇f,X) = 0, and so zg can be controlled by zg(N, · ) = iNzg with N = ∇f/|∇f | on

each hypersurface given by a level set of f . Related to iNzg, we have the following gap

property.

Theorem 1.3. Let (g, f) be a non-trivial solution of (1.1) on an n-dimensional compact

manifold M . Assume that 〈iXC, zg〉 = 0 for any vector X and n ≥ 4. If

|zg|2 ≤ min

{
2|iNzg|2,

s2g
4n(n− 1)

}
,

then (M, g) is isometric to a standard sphere.

It is comparable with Theorem 2 of [1], which states that a non-trivial solution (g, f)

of (1.1) has zero radial Weyl curvature with

|zg|2 ≤
s2g

n(n− 1)
,

then (M, g) is isometric to a standard sphere. We say that g has zero radial Weyl curvature

if ĩ∇fW = 0, where ĩX is defined in (3.1).

This paper is organized as follows. In Section 2, we give some properties of Bach

tensor and Cotton tensor with their divergences. In particular, we include the fact that
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the divergence of Bach tensor is given by the inner product of the Cotton tensor with

traceless Ricci tensor (Proposition 2.2). In Section 3, we introduce a covariant 3-tensor

and derive some properties of it to handle the critical point equation. In Sections 4 and

5, we prove our main results, Theorems 1.1 and 1.3.

2. Divergences of a Bach tensor

Let (M, g) be an n-dimensional Riemannian manifold. For convenience, we denote sg, rg

and zg by s, r and z, respectively, if there is no ambiguity. Throughout the paper, we will

assume that the dimension n ≥ 4.

Let D be the Levi-Civita connection on (M, g) and let us denote by C∞(S2M) the

space of sections of symmetric 2-tensors on (M, g). Then, the differential operator dD

from C∞(S2M) to C∞(Λ2M ⊗ T ∗M) is defined by

dDη(X,Y, Z) = (DXη)(Y,Z)− (DY η)(X,Z)

for η ∈ C∞(S2M) and vectors X, Y , and Z. In particular, the following result is well

known (see [2, p. 435]): under the identification of C∞(T ∗M ⊗ Λ2M) with C∞(Λ2M ⊗
T ∗M),

(2.1) divR = dDr.

For a function ϕ ∈ C∞(M) and η ∈ C∞(S2M), dϕ ∧ η is defined by

(dϕ ∧ η)(X,Y, Z) = dϕ(X)η(Y, Z)− dϕ(Y )η(X,Z).

Here, dϕ denotes the usual total differential of ϕ.

The Cotton tensor C ∈ Γ(Λ2M ⊗ T ∗M) is defined by

(2.2) C = dDr − 1

2(n− 1)
ds ∧ g

and the n-dimensional Bach tensor B is defined by

B = − 1

n− 3
δD divW +

1

n− 2
W̊z.

Here, δD is the L2 adjoint operator of dD, and

W̊z(X,Y ) =
n∑

i=1

z(W(X,Ei)Y,Ei)

for an orthonormal frame {Ei}ni=1. R̊r is defined similarly. From now on, we will omit the

summation notation, as we employ the Einstein convention.
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Because

divW =
n− 3

n− 2
dD
(
r − s

2(n− 1)
g

)
,

we have

(2.3) C =
n− 2

n− 3
divW and divC = −n− 2

n− 3
δD divW.

As a consequence, we have

(2.4) (n− 2)B = divC + W̊z.

Proposition 2.1. [2, Corollary 1.22] For any tensor h, we have

D2
X,Y h−D2

Y,Xh = −R(X,Y )h

and

D3
X,Y,Zh−D3

Y,X,Zh = −R(X,Y )DZh+DR(X,Y )Zh.

Recall that the Schouten tensor A is defined by

A = r − s

2(n− 1)
g

so that C = dDA. The following is Lemma 5.1 of [3]. We include the proof for the sake of

completeness.

Proposition 2.2. For any vector field X we have

(n− 2)δB(X) = −n− 4

n− 2
〈iXC, z〉.

Here,

iXC(Y,Z) = C(X,Y, Z), 〈iXC, z〉 =

n∑
i,j=1

iXC(Ei, Ej)z(Ei, Ej),

and a 2-tensor z ◦ z is defined by

z ◦ z(X,Y ) =
n∑

i=1

z(X,Ei)z(Ei, Y )

for any orthonormal frame {Ei}ni=1 and vector fields X, Y , and Z.

Proof. Let {Ei}ni=1 be a geodesic frame. Denoting zij = z(Ei, Ej) and rij = r(Ei, Ej), it

follows from (2.3) and (2.4) that

(n− 2)δB(X) = −div2(C)(X)− div(W̊z)(X)

= −div2(C)(X)− n− 3

n− 2
C(X,Ei, Ej)zij

+
1

2
W(Ei, Ej , Ek, X)C(Ei, Ej , Ek).
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Note that

div2(C)(X) = div2(dDA)(X)

= DEiDEk
(DEk

A(Ei, X)−DEiA(Ek, X))

= (DEiDEk
−DEk

DEi)DEk
A(Ei, X).

Thus, by Proposition 2.1 we have

div2(C)(X) = R(Ek, Ei)DEk
A(Ei, X)−DR(Ek,Ei)Ek

A(Ei, X)

= −DEk
A(R(Ek, Ei)Ei, X)−DEk

A(Ei, R(Ek, Ei)X)− risDEsA(Ei, X)

= rkjDEk
A(Ej , X) + 〈R(Ek, Ei)Es, X〉DEk

A(Ei, Es)− rikDEk
A(Ei, X)

=
1

2
〈R(Ek, Ei)Es, X〉C(Ek, Ei, Es).

Hence,

(n− 2)δB(X) = −n− 3

n− 2
C(X,Ei, Ej)zij +

1

2
(W −R)(Ei, Ej , Ek, X)C(Ei, Ej , Ek).

From the decomposition of Riemann tensor, it follows

Wijkl = Rijkl −
1

n− 2
(gikAjl + gjlAik − gjkAil − gilAjk),

and so

(W −R)(Ei, Ej , Ek, El)C(Ei, Ej , Ek) = − 2

n− 2
(AjlCiji +AikCilk) = − 2

n− 2
rikCilk.

Here, Cijk = C(Ei, Ej , Ek) and we have used the fact that
∑

iC(Ei, Y, Ei) = 0 for any Y .

By substituting these results, we obtain the desired equation

(n− 2)δB(X) = −n− 4

n− 2
C(X,Ej , Ek)zjk.

By Proposition 2.2, it is clear that δB = 0 when n = 4, and 〈iXC, z〉 = 0 for any

vector field X if and only if δB = 0 when n ≥ 5. In particular, when sg is constant, it

follows from δz = 0 and C = dDz that

δ(z ◦ z)(X) = −DEi(z ◦ z)(Ei, X) = δz(Ej)z(Ej , X)− zijDEiz(Ej , X),

implying that

0 = 〈iXC, z〉 = DXz(Ei, Ej)zij −DEiz(X,Ej)zij =
1

2
d|z|2(X) + δ(z ◦ z)(X).

Thus, if sg is constant, for n ≥ 5 we have

(2.5)
1

2
∆|z|2 = δδ(z ◦ z).

The following result holds when the scalar curvature is constant.
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Proposition 2.3. [11, (10)] Assume that sg is constant. Then,

div(dDr) = −D∗Dz − n

n− 2
z ◦ z − s

n− 1
z +

1

n− 2
|z|2g + W̊z.

Proof. The proof follows from the identity (see [2, 4.71])

div(dDr) = −D∗Dr − 1

2
Dds− r ◦ r + R̊r,

and the relation in [11]

R̊r = W̊z +
1

n− 2
|z|2g +

(n− 2)s

n(n− 1)
z − 2

n− 2
z ◦ z +

s2

n2
g,

which comes from the decomposition of the Riemann tensor.

3. Critical metrics

In this section, we turn our attention to a non-trivial solution (g, f) of (1.1). To do this,

we will introduce a covariant 3-tensor T defined by

T =
1

n− 2
df ∧ z +

1

(n− 1)(n− 2)
i∇fz ∧ g.

Also we define the interior product ĩ to the final factor by

(3.1) ĩV ω(X,Y, Z) = ω(X,Y, Z, V )

for a (4, 0)-tensor ω and a vector field V .

Now, from the critical metric equation (1.1) we have

(3.2) (1 + f)z = Ddf +
sf

n(n− 1)
g.

By applying dD to both sides of this equation and using the Ricci identity

dDDdf(X,Y, Z) = R(X,Y, Z,∇f)

for any vector fields X, Y , Z on M , we obtain

(df ∧ z + (1 + f)dDz)(X,Y, Z) = ĩ∇fR(X,Y, Z) +
s

n(n− 1)
df ∧ g(X,Y, Z).

Since C = dDz when s is constant, we obtain

(3.3) (1 + f)C = ĩ∇fR− df ∧ z +
s

n(n− 1)
df ∧ g = ĩ∇fW − (n− 1)T.
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Here, we used the fact that

ĩ∇fR = ĩ∇fW −
1

n− 2
i∇fr ∧ g −

1

n− 2
df ∧ r +

s

(n− 1)(n− 2)
df ∧ g,

which follows from the curvature decomposition (cf. [2, 1.116, p. 48])

R(X,Y, Z,W ) =W(X,Y, Z,W ) +
1

n− 2
(g(X,Z)r(Y,W ) + g(Y,W )r(X,Z)

− g(Y,Z)r(X,W )− g(X,W )r(Y, Z))

− s

(n− 1)(n− 2)
(g(X,Z)g(Y,W )− g(Y,Z)g(X,W )).

From the definition of the Bach tensor (2.4) and (3.3), we have

(3.4) (n− 2)B = divC + W̊z = div

(
1

1 + f
ĩ∇fW − (n− 1)

T

1 + f

)
+ W̊z.

Since

div(̃i∇fW)(X,Y ) =
n− 3

n− 2
dDr(Y,∇f,X)− (1 + f)W̊z(X,Y ),

we have

div

(
1

1 + f
ĩ∇fW

)
(X,Y )

= − 1

(1 + f)2
W(∇f,X, Y,∇f)− 1

1 + f
δ̃i∇fW(X,Y )

=
1

(1 + f)2
W(X,∇f, Y,∇f) +

n− 3

n− 2

1

1 + f
dDr(Y,∇f,X)− W̊z(X,Y ).

Therefore, it follows from (3.3) and (3.4) that

(3.5) (n− 2)(1 + f)B(X,Y ) = C(X,∇f, Y ) +
n− 3

n− 2
C(Y,∇f,X) + (n− 1)δT (X,Y ).

On the other hand, by taking the divergence of T , we have

(n− 1)(n− 2) div T (X,Y )

= −n− 2

n− 1
sfz(X,Y ) + (n− 2)D∇fz(X,Y )− C(Y,∇f,X)

− n(1 + f)z ◦ z(X,Y ) + (1 + f)|z|2g(X,Y ).

(3.6)

By combining (3.5) and (3.6), we obtain the followings.

Proposition 3.1. On M , we have

(n− 1)〈div(T ), z〉 = −(n− 2)(1 + f)〈B, z〉

= − sf

n− 1
|z|2 +

1

2
∇f(|z|2)− n

n− 2
(1 + f)〈z ◦ z, z〉.
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Also we have

Proposition 3.2. On M , we have

(n− 1) div2(T )(X) =
n− 1

n− 2
(1 + f)〈iXC, z〉+ (n− 1)〈iXT, z〉.

Proof. By taking the derivative of (3.5), we have

(n− 2)B(∇f,X) = (n− 2)(1 + f)δB(X) + div(C)(∇f,X)

+
n− 3

n− 2
(1 + f)〈iXC, z〉 − (n− 1) div2(T )(X).

Thus, by (2.4) and Proposition 2.2 we have

(n− 1) div2(T )(X) = −W̊z(∇f,X) +
1

n− 2
(1 + f)〈iXC, z〉

=
n− 1

n− 2
(1 + f)〈iXC, z〉+ (n− 1)〈iXT, z〉,

where the last equality comes from (3.3).

We also have the following.

Lemma 3.3. We have

|T |2 =
2

n− 2
〈i∇fT, z〉,

and
(n− 2)2

2
|T |2 = |z|2|∇f |2 − n

n− 1
z ◦ z(∇f,∇f).

Proof. It is a straightforward computation. From the definition of T ,

|T |2 =
1

n− 2

∑
i,j,k

T (Ei, Ej , Ek)

(
df ∧ z +

1

n− 1
i∇fz ∧ g(Ei, Ej , Ek)

)
=

2

n− 2
〈i∇fT, z〉.

Also

(n− 2)2|T |2 =
∑
i,j,k

∣∣∣∣df(Ei)zjk − df(Ej)zik +
1

n− 1
(z(∇f,Ei)gjk − z(∇f,Ej)gik)

∣∣∣∣2
= 2|∇f |2|z|2 − 2n

n− 1
z ◦ z(∇f,∇f).

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Throughout the section and the next section, we

assume that 〈iXC, z〉 = 0 for any vector X with n ≥ 4. To prove Theorem 1.1, we first

need the following.
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Lemma 4.1. Let (g, f) be a non-trivial solution of (1.1) on an n-dimensional compact

manifold M , n ≥ 4. Assume that 〈iXC, z〉 = 0. Then∫
M

(1 + f)〈z ◦ z, z〉 =
(n− 2)s

2n(n− 1)

∫
M
|z|2.

Proof. Note that

1

2

∫
M

(1 + f)∆|z|2 =
1

2

∫
M
|z|2∆f = − s

2(n− 1)

∫
M
f |z|2.

Also, by (2.5) we have

1

2

∫
M

(1 + f)∆|z|2 =

∫
M

(1 + f)δδ(z ◦ z) =

∫
M
δ(z ◦ z)(∇f) =

∫
M
〈z ◦ z,Ddf〉

=

∫
M

(1 + f)〈z ◦ z, z〉 − s

n(n− 1)

∫
M
f |z|2.

Thus, ∫
M

(1 + f)〈z ◦ z, z〉 = − (n− 2)s

2n(n− 1)

∫
M
f |z|2.

However, by (1.1) it is easy to see that

div(i∇fz) = (1 + f)|z|2,

which implies that

(4.1)

∫
M
f |z|2 = −

∫
M
|z|2.

The following is the Okumura inequality which can be found in Lemma 2.6 of [8] (see

also [5, Lemma 2.4]).

Lemma 4.2. For any real numbers a1, . . . , an with
∑n

i=1 ai = 0, we have

− n− 2√
n(n− 1)

(
n∑

i=1

a2i

)3/2

≤
n∑

i=1

a3i ≤
n− 2√
n(n− 1)

(
n∑

i=1

a2i

)3/2

,

and equality holds if and only if at least n− 1 of the ai’s are all equal.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since 〈z ◦ z, z〉 = tr(z3), by applying Lemma 4.2 to the traceless

Ricci tensor z, we have

(1 + f)〈z ◦ z, z〉 ≤ n− 2√
n(n− 1)

µ|z|3.



Gap Theorems on Critical Point Equation 851

Recall that µ = maxM |1 + f |. Thus, by Lemma 4.1,

(n− 2)s

2n(n− 1)

∫
M
|z|2 =

∫
M

(1 + f)〈z ◦ z, z〉 ≤ (n− 2)µ√
n(n− 1)

∫
M
|z|3.

Consequently, we obtain

n− 2√
n(n− 1)

∫
M

(
s

2
√
n(n− 1)

− µ|z|

)
|z|2 ≤ 0.

From the assumption,
s

2
√
n(n− 1)

− µ|z| ≥ 0.

As a result, we have either z = 0, or

|z| = s

2µ
√
n(n− 1)

.

From (4.1) and the fact that
∫
M f = 0, the second case should be excluded; otherwise

0 =

∫
M

(1 + f)|z|2 =
s2

4n(n− 1)µ2

∫
M

(1 + f) =
s2

4n(n− 1)µ2
,

which is a contradiction.

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. To do this, we first show the following integral

identity.

Lemma 5.1. We have

(n− 1)(n− 2)

2

∫
M
|T |2 =

s

n

∫
M
f2|z|2 +

∫
M
z ◦ z(∇f,∇f)

+
2(n− 1)

n− 2

∫
M
f(1 + f)〈z ◦ z, z〉.

(5.1)

Proof. It follows from Proposition 3.2 and Lemma 3.3 together with the assumption

〈iXC, z〉 = 0 for any vector X that

div2(T )(∇f) = 〈i∇fT, z〉 =
n− 2

2
|T |2.

Thus,

(5.2)

∫
M
f div3(T ) = −

∫
M

div2(T )(∇f) = −n− 2

2

∫
M
|T |2.
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By Proposition 3.2 again with 〈iXC, z〉 = 0, we have

(5.3) div2(T )(X) = 〈iXT, z〉.

From the definition of T ,

〈T,C〉 =
1

n− 2
〈df ∧ z, C〉 =

2

n− 2
〈i∇fC, z〉 = 0,

and so, by taking the divergence of div2(T ), it follows from (5.3) that

div3(T ) = 〈div(T ), z〉+
1

2
〈T,C〉 = 〈div(T ), z〉.

Thus, by Proposition 3.1,

(n− 1) div3(T ) = − sf

n− 1
|z|2 +

1

2
∇f(|z|2)− n

n− 2
(1 + f)〈z ◦ z, z〉.

From this together with (5.2), we have

(n− 1)(n− 2)

2

∫
M
|T |2 =

s

n− 1

∫
M
f2|z|2 − 1

2

∫
M
f∇f(|z|2)

+
n

n− 2

∫
M
f(1 + f)〈z ◦ z, z〉.

(5.4)

Next, by Proposition 2.2 with the assumption that 〈iXC, z〉 = 0, we have

1

2

∫
M
f∇f(|z|2) = −

∫
M
δ(z ◦ z)(f∇f)

= −
∫
M
z ◦ z(∇f,∇f)−

∫
M
f〈z ◦ z,Ddf〉

= −
∫
M
z ◦ z(∇f,∇f)−

∫
M
f(1 + f)〈z ◦ z, z〉+

s

n(n− 1)

∫
M
f2|z|2.

Here, the last equality comes from (3.2). Substituting this into (5.4), we obtain (5.1).

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.3,

(n− 1)(n− 2)

2

∫
M
|T |2 =

n− 1

n− 2

∫
M
|z|2|∇f |2 − n

n− 2

∫
M
z ◦ z(∇f,∇f).

Comparing this to (5.1), we have

n− 1

n− 2

∫
M
|z|2|∇f |2 − 2(n− 1)

n− 2

∫
M
z ◦ z(∇f,∇f)

=
s

n

∫
M
f2|z|2 +

2(n− 1)

n− 2

∫
M
f(1 + f)〈z ◦ z, z〉.
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From the assumption

|z|2 ≤ min

{
2|iNz|2,

s2

4n(n− 1)

}
,

we have

|∇f |2|z|2 ≤ 2|i∇fz|2 = 2z ◦ z(∇f,∇f),

and so
s

n

∫
M
f2|z|2 +

2(n− 1)

n− 2

∫
M
f(1 + f)〈z ◦ z, z〉 ≤ 0.

Note that, by Lemma 4.1,∫
M
f(1 + f)〈z ◦ z, z〉 =

∫
M
f2〈z ◦ z, z〉+

∫
M
f〈z ◦ z, z〉

=

∫
M
f2〈z ◦ z, z〉+

(n− 2)s

2n(n− 1)

∫
M
|z|2 −

∫
M
〈z ◦ z, z〉.

Therefore, applying Lemma 4.2

s

n

∫
M

(1 + f2)|z|2 ≤ 2(n− 1)

n− 2

∫
M

(1− f2)〈z ◦ z, z〉 ≤ 2
√
n− 1√
n

∫
M

(1 + f2)|z|3,

which implies

0 ≤
∫
M

(1 + f2)|z|2
(

s

2
√
n(n− 1)

− |z|

)
≤ 0,

where the first inequality follows from the assumption

|z| ≤ s

2
√
n(n− 1)

.

Hence, we may conclude that z = 0 on all of M . If the equality holds,

|z| = s

2
√
n(n− 1)

then we reach a contradiction as in the proof of Theorem 1.1.
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