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Chromatic Number and Orientations of Graphs and Signed Graphs

Hao Qi, Tsai-Lien Wong and Xuding Zhu*

Abstract. Assume D is a digraph, and D′ is a spanning sub-digraph of D. We say D′

is a modulo-k Eulerian sub-digraph of D if for each vertex v of D′, d+D′(v) ≡ d−D′(v)

(mod k). A modulo-k Eulerian sub-digraph D′ of D is special if for every vertex v,

d+D(v) = 0 implies d−D′(v) = 0 and d+D′(v) = d+D(v) > 0 implies d−D′(v) > 0. We denote

by OEk(D) or EEk(D) (respectively, OEs
k(D) or EEs

k(D)) the sets of spanning modulo-

k Eulerian sub-digraphs (respectively, the sets of spanning special modulo-k Eulerian

sub-digraphs) of D with an odd number or even number of edges. Matiyasevich

[A criterion for vertex colorability of a graph stated in terms of edge orientations,

(in Russia), Diskretnyi Analiz, issue 26, 65–71 (1974)] proved that a graph G is k-

colourable if and only if G has an orientation D such that |OEk(D)| 6= |EEk(D)|. In

this paper, we give another characterization of k-colourable graphs: a graph G is k-

colourable if and only if G has an orientation D such that |OEs
k−1(D)| 6= |EEs

k−1(D)|.
We extend the characterizations of k-colourable graphs to k-colourable signed graphs:

If k is an even integer, then a signed graph (G, σ) is k-colourable if and only if G has an

orientation D such that |OEk(D)| 6= |EEk(D)|; if k is an odd integer, then (G, σ) is k-

colourable if and only if G has an orientation D such that |OEs
k−1(D)| 6= |EEs

k−1(D)|,
where a (special) modulo-k Eulerian sub-digraph is even or odd if it has an even or

odd number of positive edges. The characterization of k-colourable signed graphs for

even k (respectively, for odd k) fails for odd k (respectively, for even k).

1. Introduction

Colourings and orientations of graphs are closely related to each other. In 1962, Minty [8]

and Vitaver [12] proved that a graph G is k-colourable if and only if G has an orientation

such that every cycle C of G contains at least |C|/k edges in each of the two directions

around the cycle. This result is generalized by Goddyn and Zhang [4] to circular colouring

of graphs, who proved that a graph G is circular r-colourable if and only if G has an
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orientation such that every cycle C of G contains at least |C|/r edges in each of the two

directions around the cycle. The result of Minty and Vitaver is strengthened in another

direction by Tuza in [11], where it was proved that it suffices to put this constraint on

cycles of lengths 1 (mod k), and in [14], the result of Goddyn and Zhang is strengthened,

where it was proved that for r = k/d (with (k, d) = 1), it suffices to put this constraint on

cycles of lengths q (mod k) for q ∈ {1, 2, . . . , 2d− 1}. In 1966–67, Gallai [3] and Roy [10]

proved that a graph G is k-colourable if and only if it has an acyclic orientation which

contains no directed path of length k. A digraph D is called Eulerian if for each vertex v of

D, d+D(v) = d−D(v). For a digraph D, we denote by OE(D) (respectively, EE(D)) the set of

spanning Eulerian sub-digraphs of D with an odd (respectively, an even) number of edges.

In 1992, Alon-Tarsi [1] proved that if a graph G has an orientation D with maximum

out-degree ∆+(D) < k and with |EE(D)| 6= |OE(D)|, then G is k-choosable. We call a

digraph D modulo-k Eulerian if for each vertex v of D, d+D(v) ≡ d−D(v) (mod k). For a

digraph D, we denote by OEk(D) (respectively, EEk(D)) the set of spanning modulo-k

Eulerian sub-digraphs of D with an odd number (respectively, an even number) of edges.

The following result was proved by Matiyasevich [7] in 1974.

Theorem 1.1. [7] A graph G is k-colourable if and only if G has an orientation D such

that |OEk(D)| 6= |EEk(D)|.

A signed graph is a pair (G, σ), where G is a graph and σ : E(G) → {1,−1} is a

signature of G which assigns to each edge e of G a sign σe ∈ {1,−1}. Colouring of signed

graphs was first studied by Zaslavsky in the 1980’s [13], and has attracted some recent

attention [2,5,6,9]. There are a few definitions of k-colourings of signed graphs that are not

equivalent. We adopt the definition given in [6]. For a positive integer k, if k = 2q is even,

then let Mk = {±1,±2, . . . ,±q}; if k = 2q + 1 is odd, then let Mk = {0,±1,±2, . . . ,±q}.
A k-colouring φ of G is a mapping φ : V (G) → Mk such that for each edge e = uv,

φ(u) 6= σeφ(v). The chromatic number χ(G, σ) of a signed graph (G, σ) is the minimum

integer k such that (G, σ) has a k-colouring.

Assume (G, σ) is a signed graph and D is an orientation of G. A modulo-k Eulerian

sub-digraph of D is called even or odd if it has an even or odd number of positive edges.

We denote by OEk(D) and EEk(D) the set of odd and even spanning modulo-k Eulerian

sub-digraphs of D, respectively.

We first show that when k is an even integer, the conclusion of Theorem 1.1 holds also

for colourability of signed graphs.

Theorem 1.2. Assume k = 2q is an even integer. A signed graph (G, σ) is k-colourable

if and only if G has an orientation D such that |OEk(D)| 6= |EEk(D)|.

Our proof of Theorem 1.2 also gives an alternate proof of Theorem 1.1, as when (G, σ)
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has no negative edges, then the condition that k be even is not needed.

When k is odd, one direction of Theorem 1.2 still holds, but the other direction fails.

Theorem 1.3. Assume k = 2q+ 1 is an odd integer. If (G, σ) is k-colourable then G has

an orientation D such that |OEk(D)| 6= |EEk(D)|. However, for any odd integer k, there

is a signed graph (G, σ) which has an orientation D with |OEk(D)| 6= |EEk(D)| and yet

(G, σ) is not k-colourable.

Assume D is a digraph and D′ is a modulo-k Eulerian sub-digraph of D. We say D′

is a special modulo-k Eulerian sub-digraph of D if the following hold:

• If d+D(v) = 0, then d−D′(v) = 0.

• If d+D(v) = d+D′(v) > 0, then d−D′(v) > 0.

We denote by OEsk(D) and EEsk(D) the set of odd and even spanning special modulo-

k Eulerian sub-digraphs of D, respectively. We present a new characterization of k-

colourable graphs.

Theorem 1.4. A graph G is k-colourable if and only if G has an orientation D such that

|OEsk−1(D)| 6= |EEsk−1(D)|.

If k is an odd integer, then Theorem 1.4 holds for signed graphs.

Theorem 1.5. Assume k = 2q+1 is an odd integer. A signed graph (G, σ) is k-colourable

if and only if G has an orientation D such that |OEsk−1(D)| 6= |EEsk−1(D)|.

When k is even, both directions of Theorem 1.5 fail.

Theorem 1.6. For any even integer k, there is a signed graph (G, σ) which has an ori-

entation D with |OEsk−1(D)| 6= |EEsk−1(D)| and yet (G, σ) is not k-colourable, and there

is also a signed graph (G, σ) which is k-colourable, but G has no orientation D with

|OEsk−1(D)| 6= |EEsk−1(D)|.

2. Proofs

The result of Alon-Tarsi [1] and the result of Matiyasevich [7] are both proved by using

the graph polynomial. Our proof of Theorem 1.2 also uses graph polynomial. As the class

of signed graphs contains unsigned graphs as special cases, our proof of Theorem 1.2 also

provides an alternate proof of Theorem 1.1 (when the signed graph (G, σ) has no negative

edges, i.e., it is an unsigned graph, then the condition that k be even is not needed).

Indeed, we did not know Matiyasevich’s result (it was published in Russian) when we

proved it. We thank Professor Reza Naserasr who informed us Matiyasevich’s paper [7]

and sent us a copy of the English translation of the paper.
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Proof of Theorem 1.2. Assume the vertex set of G is V = {v1, v2, . . . , vn}. The graph

polynomial of (G, σ) is defined as

PG,σ(x1, x2, . . . , xn) =
∏

e=vivj∈E(G)
i<j

(xi − σexj).

Observe that PG,σ(x1, x2, . . . , xn) is a homogeneous polynomial of degree |E|. Let I =

{(i1, i2, . . . , in) : ij ≥ 0,
∑n

j=1 ij = |E(G)|}. Assume

PG,σ(x1, x2, . . . , xn) =
∑

(i1,i2,...,in)∈I

ci1,i2,...,inx
i1
1 x

i2
2 · · ·x

in
n .

For a non-negative integer a, let ma, ra be the unique non-negative integers such that

a = mak + ra, 0 ≤ ra ≤ k − 1.

Let

PG,σ(x1, x2, . . . , xn) =
∑

(i1,i2,...,in)∈I

ci1,i2,...,inx
ri1
1 x

ri2
2 · · ·x

rin
n

and

Q(x1, x2, . . . , xn) =
∑

(i1,i2,...,in)∈I

ci1,i2,...,inx
ri1
1 x

ri2
2 · · ·x

rin
n

(
x
mi1

k
1 x

mi2
k

2 · · ·xmink
n − 1

)
.

Then

PG,σ(x1, x2, . . . , xn) = PG,σ(x1, x2, . . . , xn) +Q(x1, x2, . . . , xn).

Let ω1, ω2, . . . , ωk be the k roots of the polynomial xk − 1 in the complex field C. For

a polynomial P (x1, x2, . . . , xn) ∈ C[x1, x2, . . . , xn] and for φ : V (G) → {ω1, ω2, . . . , ωk},
let P (φ) = P (φ(v1), φ(v2), . . . , φ(vn)). When k is even, then (G, σ) is k-colourable if and

only if there is a mapping φ : V (G) → {ω1, ω2, . . . , ωk} such that PG,σ(φ) 6= 0. (If G is

an ordinary graph, i.e., there is no negative edges, then the condition k be even is not

needed.)

Observe that for any φ : V (G) → {ω1, ω2, . . . , ωk}, Q(φ) = 0. So G is k-colourable

if and only if there is a mapping φ : V (G) → {ω1, ω2, . . . , ωk} such that PG,σ(φ) 6=
0. Since in the polynomial PG,σ(x1, x2, . . . , xn), each variable xi has degree at most

k − 1, we conclude that either PG,σ(x1, x2, . . . , xn) is a zero polynomial or there exists

φ : V (G) → {ω1, ω2, . . . , ωk} such that PG,σ(φ) 6= 0. Therefore G is k-colourable if and

only if PG,σ(x1, x2, . . . , xn) is not a zero polynomial.

Observe that in the expression PG,σ(x1, x2, . . . , xn) =
∑

(i1,i2,...,in)∈I ci1,i2,...,inx
ri1
1 x

ri2
2

· · ·xrinn , there may be like-terms not combined yet. This is so because there may be distinct

vectors (i1, i2, . . . , in), (j1, j2, . . . , jn) ∈ I such that (ri1 , ri2 , . . . , rin) = (rj1 , rj2 , . . . , rjn).
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Let I ′ = {(s1, s2, . . . , sn) : 0 ≤ sj ≤ k − 1}. Assume (after combining like-terms)

PG,σ(x1, x2, . . . , xn) =
∑

(s1,s2,...,sn)∈I′
c′s1,s2,...,snx

s1
1 x

s2
2 · · ·x

sn
n .

It follows from the definition that

c′s1,s2,...,sn =
∑

(i1,i2,...,in)∈I
(ri1 ,ri2 ,...,rin )=(s1,s2,...,sn)

ci1,i2,...,in .

The polynomial PG,σ(x1, x2, . . . , xn) is not a zero polynomial if and only if for some

(s1, s2, . . . , sn) ∈ I ′, c′s1,s2,...,sn =
∑

(i1,i2,...,in)∈I,(ri1 ,ri2 ,...,rin )=(s1,s2,...,sn)
ci1,i2,...,in 6= 0.

The coefficients of monomials in the expansion of PG,σ(x1, x2, . . . , xn) can be expressed

in terms of orientations of G. For an oriented edge e = (vi, vj) of G, if i < j, then let

w(e) = xi; if i > j, then let w(e) = −σexi. For an orientation D of G, let w(D) =∏
e∈E(D)w(e). Then PG,σ(x1, x2, . . . , xn) =

∑
w(D), where the summation is taken over

all orientations D of G. We call an oriented edge (vi, vj) of G decreasing if i > j. An

orientation D of G is called even if it has an even number of positive decreasing edges;

otherwise, it is called odd.

An orientation D contributes 1 or −1 to the coefficient ci1,i2,...,in if and only if D is an

even or an odd orientation of G with d+D(vj) = ij for j = 1, 2, . . . , n. Thus D contributes 1

or −1 to c′s1,s2,...,sn if and only if D is an even or an odd orientation of G with rd+D(vj)
= sj

for j = 1, 2, . . . , n.

Assume D is an orientation with rd+D(vj)
= sj for j = 1, 2, . . . , n. Hence D makes a

contribution to the coefficient c′s1,s2,...,sn . By symmetry, we may assume the contribution

is 1, i.e., D is an even orientation. If D′ is another orientation which also makes a

contribution to the coefficient c′s1,s2,...,sn , then for any vertex vj of G, d+D′(vj) ≡ d+D(vj)

(mod k). Hence the edge set

E′ = {e : D and D′ orient e in opposite directions}

induces a modulo-k Eulerian sub-digraph of D.

Conversely, if E′ is a subset of E(D) which induces a modulo-k Eulerian sub-digraph

of D, and D′ is obtained from D by reversing the directions of edges in E′, then D′ makes

a contributes to c′s1,s2,...,sn . Moreover, if |E′| contains an even number of positive edges,

then the contribution of D′ to c′s1,s2,...,sn is 1, and if |E′| is contains an odd number of

positive edges, then the contribution of D′ to c′s1,s2,...,sn is −1. Therefore

c′s1,s2,...,sn = |EEk(D)| − |OEk(D)|.

So PG,σ is not a zero polynomial if and only if there is an orientation D of G such that

|EEk(D)| − |OEk(D)| 6= 0.
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Assume D is a digraph, k is a positive integer and f : V (G) → Zk is a mapping. We

say D is a modulo-k f -sub-digraph if for every vertex v, d+D(v) − d−D(v) ≡ f(v) (mod k).

For an orientation D of a signed graph (G, σ), a modulo-k f -sub-digraphs D′ of D is odd

or even if D′ has an odd number or an even number of positive edges.

Corollary 2.1. Assume (G, σ) is a signed graph, and k is an even positive integer, and

D is an orientation of G. Then (G, σ) is k-colourable if and only if there is a mapping

f : V (G)→ Zk for which |EEfk(D)| 6= |OEfk(D)|.

Proof. Assume E′ is the edge set of a modulo-k f -sub-digraph of D, and let D′ be the

obtained from D by reserving the orientations of the edges in E′. It is easy to verify

that if |E′| is even, then EEk(D
′) = EEfk(D) and OEk(D

′) = OEfk(D); if |E′| is odd, then

EEk(D
′) = OEfk(D) and OEk(D

′) = EEfk(D). So the conclusion follows from Theorem 1.2.

Proof of Theorem 1.3. Assume k = 2q + 1 is a positive odd integer. Let ω1, ω2, . . . , ωk be

the k roots of xk − 1. We may assume that ω1 = 1 and for i = 1, 2, . . . , q, ω2i = −ω2i+1.

By the proof of Theorem 1.2, there is an orientation D of G with |OEk(D)| 6= |EEk(D)|
if and only if there is a mapping φ : V (G) → {ω1, ω2, . . . , ωk} such that PG,σ(φ) 6= 0.

Assume ψ : V (G) → Mk is a k-colouring of (G, σ). Let φ : V (G) → {ω1, ω2, . . . , ωk} be

defined as

φ(v) =


1 if ψ(v) = 0,

ω2i if ψ(v) = i,

ω2i+1 if ψ(v) = −i.

Then it follows from the definition of PG,σ that PG,σ(φ) 6= 0. Hence there is an orientation

D of G with |OEk(D)| 6= |EEk(D)|.
Let (G, σ) be the signed graph, where G = K2k is a complete graph with vertex

set {v1, v2, . . . , vk, u1, u2, . . . , uk} and σ is the signature of G defined as σuivi = −1 for

i = 1, 2, . . . , k and σe = 1 otherwise.

Let φ be the mapping defined as φ(vi) = φ(ui) = ωi for i = 1, 2, . . . , k. It is straightfor-

ward to verify (by using the definition of PG,σ) that PG,σ(φ) 6= 0. So there is an orientation

D of G with |OEk(D)| 6= |EEk(D)|. However, (G, σ) is not k-colourable, because colour

0 can be used on only one vertex, and each other colour class cannot contain a positive

edge, and hence contains at most two vertices.

Proof of Theorem 1.4. Assume the vertex set of G is V = {v1, v2, . . . , vn} and PG(x1, x2,

. . . , xn) be the graph polynomial defined as PG(x1, x2, . . . , xn) =
∏
e=vivj∈E(G),i<j(xi−xj).

Let I = {(i1, i2, . . . , in) : ij ≥ 0,
∑n

j=1 ij = |E(G)|}. Assume

PG(x1, x2, . . . , xn) =
∑

(i1,i2,...,in)∈I

ci1,i2,...,inx
i1
1 x

i2
2 · · ·x

in
n .
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For a non-negative integer a, let m′a, r
′
a be the unique non-negative integers as follows:

• If a = 0, then m′a = r′a = 0.

• If a > 0, then a = m′a(k − 1) + r′a, 1 ≤ r′a ≤ k − 1.

Let

PG(x1, x2, . . . , xn) =
∑

(i1,i2,...,in)∈I

ci1,i2,...,inx
r′i1
1 x

r′i2
2 · · ·x

r′in
n

and

Q(x1, x2, . . . , xn)

=
∑

(i1,i2,...,in)∈I

ci1,i2,...,inx
r′i1
1 x

r′i2
2 · · ·x

r′in
n

(
x
m′

i1
(k−1)

1 x
m′

i2
(k−1)

2 · · ·xm
′
in

(k−1)
n − 1

)
.

Then

PG(x1, x2, . . . , xn) = PG(x1, x2, . . . , xn) +Q(x1, x2, . . . , xn).

Let ω1, ω2, . . . , ωk be the k roots of the polynomial xk−x in the complex field C. Then

G is k-colourable if and only if there is a mapping φ : V (G)→ {ω1, ω2, . . . , ωk} such that

PG(φ) 6= 0. Now we show that for any φ : V (G) → {ω1, ω2, . . . , ωk}, Q(φ) = 0. For this

purpose, we prove that for any (i1, i2, . . . , in) ∈ I, φ(v1)
r′i1φ(v2)

r′i2 · · ·φ(vn)r
′
in

(
φ(v1)

m′
i1
(k−1)

φ(v2)
m′

i2
(k−1) · · ·φ(vn)m

′
in

(k−1)−1
)

= 0. If there is an index 1 ≤ j ≤ n such that φ(vj) = 0

and r′ij ≥ 1, then φ(v1)
r′i1φ(v2)

r′i2 · · ·φ(vn)r
′
in = 0. Assume for any index j, either φ(vj) 6= 0

or r′ij = 0 (and hence m′ij = 0). Then for each 1 ≤ j ≤ n, φ(vj)
m′

ij
(k−1)

= 1. Hence

φ(v1)
m′

i1
(k−1)

φ(v2)
m′

i2
(k−1) · · ·φ(vn)m

′
in

(k−1) − 1 = 0.

So G is k-colourable if and only if there is a mapping φ : V (G)→ {ω1, ω2, . . . , ωk} such

that PG(φ) 6= 0. Since in the polynomial PG(x1, x2, . . . , xn), each variable xi has degree

at most k − 1, we conclude that either PG(x1, x2, . . . , xn) is a zero polynomial or there

exists φ : V (G) → {ω1, ω2, . . . , ωk} such that PG(φ) 6= 0. Therefore G is k-colourable if

and only if PG(x1, x2, . . . , xn) is not a zero polynomial.

Let I ′ = {(s1, s2, . . . , sn) : 0 ≤ sj ≤ k − 1}. Assume

PG(x1, x2, . . . , xn) =
∑

(s1,s2,...,sn)∈I′
c′s1,s2,...,snx

s1
1 x

s2
2 · · ·x

sn
n .

It follows from the definition that

c′s1,s2,...,sn =
∑

(i1,i2,...,in)∈I
(r′i1

,r′i2
,...,r′in )=(s1,s2,...,sn)

ci1,i2,...,in .
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The polynomial PG(x1, x2, . . . , xn) is not a zero polynomial if and only if for some

(s1, s2, . . . , sn) ∈ I ′, c′s1,s2,...,sn =
∑

(i1,i2,...,in)∈I,(r′i1 ,r
′
i2
,...,r′in )=(s1,s2,...,sn)

ci1,i2,...,in 6= 0.

Similarly as before, PG(x1, x2, . . . , xn) =
∑
w(D), where the summation is taken over

all orientations D of G. An orientation D contributes 1 or −1 to the coefficient cs1,s2,...,sn
if and only if D is an even or odd orientation of G with r′

d+D(vj)
= sj for j = 1, 2, . . . , n.

Assume D is an even orientation with r′
d+D(vj)

= sj for j = 1, 2, . . . , n. If D′ is another

orientation which also makes a contribution to the coefficient c′s1,s2,...,sn , then for any vertex

vj of G, d+D′(vj) ≡ d+D(vj) (mod k − 1). Moreover, d+D′(vj) = 0 if and only if d+D(vj) = 0.

This is equivalent to the condition that the edge set

E′ = {e : D and D′ orient e in opposite directions}

induces a special modulo-(k−1) Eulerian sub-digraph of D. So PG is not a zero polynomial

if and only if there is an orientation D of G such that |EEsk−1(D)| − |OEsk−1(D)| 6= 0.

Proof of Theorem 1.5. This proof is very much similar to that of Theorem 1.4, just use the

graph polynomial for the signed graph (G, σ), which is similar to the proof of Theorem 1.2.

We omit the details.

Proof of Theorem 1.6. Assume k = 2q is an even integer and ω1, ω2, . . . , ωk are the k roots

of xk − x. Assume ωk = 0, ωk−1 = 1 and for i = 1, 2, . . . , q − 1, ω2i−1 = −ω2i.

Let (G, σ) be the signed graph, where G is obtained from the complete graph K2k with

vertex set {v1, v2, . . . , vk, u1, u2, . . . , uk} by deleting the edge vkuk and σ is the signature

of G defined as follows:

σe =


1 if e is incident to vi and e 6= uivi (for 1 ≤ i ≤ k),

or e = u2i−1u2i and 1 ≤ i ≤ q − 1,

−1 otherwise.

Let φ be the mapping defined as φ(vi) = φ(ui) = ωi for i = 1, 2, . . . , k. It is straightfor-

ward to verify (by using the definition of PG,σ) that PG,σ(φ) 6= 0. So there is an orientation

D of G with |OEsk−1(D)| 6= |EEsk−1(D)|. However, (G, σ) is not k-colourable. Indeed, if

ψ is a k-colouring of G, then all the vertices v1, v2, . . . , vk are coloured by distinct colours,

as they induces a complete graph with all edges positive. So v1, v2, . . . , vk use all the k

colours. If i 6= j, the edge uivj is positive. Hence ui, vj are coloured by distinct colours.

So ψ(ui) = ψ(vi) for i = 1, 2, . . . , k. If ψ(ui) = −ψ(uj), then the edge uiuj cannot be

a negative edge. So in the subgraph of G induced by {u1, u2, . . . , uk}, there are at least

q positive edges. But by our definition, this subgraph has only q − 1 positive edges:

u1u2, u3u4, . . . , u2q−3u2q−2. This is a contradiction.
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On the other hand, let (H,σ) be the signed graph, where H = K2k is a complete graph

with vertex set {v1, v2, . . . , vk, u1, u2, . . . , uk}, and σ is defined as

σe =

−1 if e = uivi for 1 ≤ i ≤ k,

1 otherwise.

Then ψ(ui) = ψ(vi) = i for 1 ≤ i ≤ q and ψ(uq+i) = ψ(vq+i) = −i is a k-colouring of

(H,σ).

Now we show that H has no orientation D with |OEsk−1(D)| 6= |EEsk−1(D)|. Other-

wise, there is a mapping φ : V (H) → {ω1, ω2, . . . , ωk} (recall that ωk = 0 and ωk−1 = 1)

such that PG,σ(φ) 6= 0. It follows from the definition that φ−1(0) is edgeless, and hence

|φ−1(0)| ≤ 1, and for any other ωi, φ
−1(ωi) contains no positive edges, and hence contains

at most two vertices. A contradiction.
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