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Weighted Lp Boundary Value Problems for Laplace’s Equation on

(Semi-)Convex Domains

Sibei Yang

Abstract. Let n ≥ 2 and Ω be a bounded (semi-)convex domain in Rn. Assume that

p ∈ (1,∞) and ω ∈ Ap(∂Ω), where Ap(∂Ω) denotes the Muckenhoupt weight class

on ∂Ω, the boundary of Ω. In this article, the author proves that the Dirichlet and

Neumann problems for Laplace’s equation on Ω with boundary data in the weighted

space Lp
ω(∂Ω) are uniquely solvable. Moreover, the unique solvability of the Regularity

problem for Laplace’s equation on Ω with boundary data in the weighted Sobolev

space Ẇ p
1,ω(∂Ω) is also obtained. Furthermore, the weighted Lp

ω(∂Ω)-estimates for

the Dirichlet, Regularity and Neumann problems are established.

1. Introduction

Let Ω be a bounded Lipschitz domain in Rn with n ≥ 2. Denote by ν := (ν1, . . . , νn) the

outward unit normal to ∂Ω, the boundary of Ω. Let p ∈ (1,∞) and ω ∈ Ap(∂Ω), where

Ap(∂Ω) denotes the Muckenhoupt weight class on ∂Ω. Recall that the weighted space

Lpω(∂Ω) is defined by

Lpω(∂Ω) := {f is measurable on ∂Ω : ‖f‖Lp
ω(∂Ω) <∞},

where ‖f‖Lp
ω(∂Ω) := {

∫
∂Ω |f(x)|pω(x) dσ(x)}1/p and dσ is the surface measure on ∂Ω.

Moreover, for a measurable function F on Ω, the non-tangential maximal function of F is

defined by, for any P ∈ ∂Ω,

(1.1) (F )∗(P ) := sup{|F (x)| : x ∈ Ω, |x− P | < 2 dist(x, ∂Ω)}.

Then, the Dirichlet problem with the Lpω(∂Ω)-boundary data for Laplace’s equation is as

follows:

(1.2)


∆u = 0 in Ω,

u = f ∈ Lpω(∂Ω) on ∂Ω,

(u)∗ ∈ Lpω(∂Ω),
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where (u)∗ is as in (1.1). Furthermore, the Neumann problem with the Lpω(∂Ω)-boundary

data for Laplace’s equation is as follows:

(1.3)


∆u = 0 in Ω,

∂u
∂ν = f ∈ Lpω(∂Ω) on ∂Ω,

(∇u)∗ ∈ Lpω(∂Ω),

where f satisfies
∫
∂Ω f(x) dσ(x) = 0 and (∇u)∗ is as in (1.1). Moreover, for p ∈ (1,∞)

and ω ∈ Ap(∂Ω), let

Ẇ p
1,ω(∂Ω) := {f is measurable on ∂Ω : ∇tf ∈ Lpω(∂Ω)}

and for any f ∈ Ẇ p
1,ω(∂Ω), ‖f‖Ẇ p

1,ω(∂Ω) := ‖∇tf‖Lp
ω(∂Ω), where ∇tf denotes the tangential

gradient of f on ∂Ω, namely, ∇tf := ∇f − (ν · ∇f)ν. When ω ≡ 1, denote the space

Ẇ p
1,ω(∂Ω) simply by Ẇ p

1 (∂Ω). Then, the Regularity problem with the Ẇ p
1,ω(∂Ω)-boundary

data for Laplace’s equation is as follows:

(1.4)


∆u = 0 in Ω,

u = f ∈ Ẇ p
1,ω(∂Ω) on ∂Ω,

(∇u)∗ ∈ Lpω(∂Ω).

We point out that in (1.2), (1.3) and (1.4), the boundary values are taken in the sense of the

non-tangential convergence almost everywhere with respect to the surface measure on ∂Ω.

When ω ≡ 1 in (1.2), (1.3) and (1.4), (1.2), (1.3) and (1.4) are just the classical Lp(∂Ω)-

Dirichlet problem, the Lp(∂Ω)-Neumann problem and the Ẇ p
1 (∂Ω)-Regularity problem for

Laplace’s equation, respectively.

Assume that Ω is a bounded Lipschitz domain in Rn. It is well known that there

exists ε ∈ (0,∞), depending on n and the Lipschitz character of Ω, such that the Lp(∂Ω)-

Dirichlet problem and the Ẇ p
1 (∂Ω)-Regularity problem are uniquely solvable for the ranges

p ∈ (2 − ε,∞] and p ∈ (1, 2 + ε), respectively (see, for example, [5, 23]). Moreover, the

Lp(∂Ω)-Neumann problem is uniquely solvable for p ∈ (1, 2 + ε) (see, for example, [6,13]).

Moreover, it is also worth pointing out that the ranges p ∈ (2 − ε,∞] and p ∈ (1, 2 + ε)

are sharp for the Lp(∂Ω)-Dirichlet problem, the Ẇ p
1 (∂Ω)-Regularity problem and the

Lp(∂Ω)-Neumann problem on general Lipschitz domain Ω, respectively (see, for example,

[5,14,23]). See also the monograph [14] for the unique solvability of the Lp(∂Ω)-Dirichlet

problem, the Ẇ p
1 (∂Ω)-Regularity problem and the Lp(∂Ω)-Neumann problem and more

progress. However, if Ω is a bounded C1 domain in Rn, the Lp(∂Ω)-Dirichlet problem,

the Ẇ p
1 (∂Ω)-Regularity problem and the Lp(∂Ω)-Neumann problem are uniquely solvable

for any p ∈ (1,∞) (see, for example, [8]). Furthermore, if Ω is a bounded (semi-)convex
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domain in Rn, it was proved in [11,15,18,25] that the Lp(∂Ω)-Dirichlet problem (see [18,

Theorem 3.10]), the Ẇ p
1 (∂Ω)-Regularity problem (see [18, Theorem 3.11]) and the Lp(∂Ω)-

Neumann problem (see [11, 15, 25]) are uniquely solvable for any p ∈ (1,∞). Recall that

C1 domains and (semi-)convex domains in Rn are special Lipschitz domains and convex

domains in Rn are semi-convex domains (see, for example, [17, 18]). Moreover, we refer

the readers to [3, 12, 16, 27] for more recent progress about boundary value problems of

Laplace’s, second order elliptic and high order elliptic equations on non-smooth domains

in Rn.

Furthermore, the unique solvability of the Lpω(∂Ω)-Dirichlet problem, the Ẇ p
1,ω(∂Ω)-

Regularity problem and the Lpω(∂Ω)-Neumann problem for Laplace’s equation on bounded

Lipschitz domains was studied in [7,19,21]. More precisely, let Ω be a bounded Lipschitz

domain in Rn. For the Lpω(∂Ω)-Dirichlet problem, it was proved in [19, 21] that there

exists η ∈ (0, 1], depending on n and the Lipschitz character of Ω, such that, for any

ω ∈ A1+η(∂Ω), the Dirichlet problem (1.2) with boundary datum f ∈ L2
ω(∂Ω) has the

unique solution u, which satisfies ‖(u)∗‖L2
ω(∂Ω) ≤ C‖f‖L2

ω(∂Ω), where C is a positive con-

stant independent of u and f . In particular, if Ω is a C1 domain, one may take η = 1.

For the Ẇ p
1,ω(∂Ω)-Regularity problem, it was proved in [19] that, there exists η ∈ (0, 1],

depending on n and the Lipschitz character of Ω, such that, for any ω ∈ A1+η(∂Ω), the

Regularity problem (1.4) with boundary datum f ∈ Ẇ 2
1,1/ω(∂Ω) has the unique solution u

satisfying ‖(∇u)∗‖L2
1/ω

(∂Ω) ≤ C‖∇tf‖L2
1/ω

(∂Ω), where C is a positive constant independent

of u and f . Furthermore, if Ω is a C1 domain, one may take η = 1. For the Lpω(∂Ω)-

Neumann problem, it was proved in [21] that, there exists η ∈ (0, 1], depending on n and

the Lipschitz character of Ω, such that, for any ω ∈ A1+η(∂Ω), the Neumann problem (1.3)

with boundary datum f ∈ L2
1/ω(∂Ω) satisfying

∫
∂Ω f(x) dσ(x) = 0 has the unique solution

u, which satisfies ‖(∇u)∗‖L2
1/ω

(∂Ω) ≤ C‖f‖L2
1/ω

(∂Ω), where C is a positive constant inde-

pendent of u and f . Furthermore, as pointed out in [21, Remark 8.4], the above condition

ω ∈ A1+η(∂Ω) for the Dirichlet and Neumann problems is sharp in the context of Ap(∂Ω)

weights.

In particular, if Ω is a bounded C1 domain, by the unique solvability of the L2
ω(∂Ω)-

Dirichlet problem (1.2) and the Ẇ p
1,ω(∂Ω)-Regularity problem (1.4) with ω ∈ A2(∂Ω)

obtained in [19, 21], the extrapolation theorem (see, for example, [9]) and the unique

solvability of the Lp(∂Ω)-Dirichlet problem and the Ẇ p
1 (∂Ω)-Regularity problem for any

p ∈ (1,∞) established in [8], we know that the Lpω(∂Ω)-Dirichlet problem (1.2) and the

Ẇ p
1,ω(∂Ω)-Regularity problem (1.4) are uniquely solvable for any p ∈ (1,∞) and ω ∈

Ap(∂Ω), which were remarked in [7, Remark 1.2]. Very recently, the unique solvability

of the Lpω(∂Ω)-Neumann problem (1.3) for any p ∈ (1,∞) and ω ∈ Ap(∂Ω) was obtained

in [7] via studying the boundedness, convergence and compactness of the boundary double
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layer potential and its adjoint operator on the weighted space Lpω(∂Ω).

Then, there are the natural questions whether or not the Lpω(∂Ω)-Dirichlet prob-

lem (1.2), the Lpω(∂Ω)-Neumann problem (1.3) and the Ẇ p
1,ω(∂Ω)-Regularity problem (1.4)

on the bounded (semi-)convex domain Ω are uniquely solvable for any p ∈ (1,∞) and

ω ∈ Ap(∂Ω). The main purpose of this article is to give an affirmative answer to these

questions. Furthermore, for any f ∈ Lpω(∂Ω) or f ∈ Ẇ p
1,ω(∂Ω) with p ∈ (1,∞) and

ω ∈ Ap(∂Ω), the weighted Lpω(∂Ω)-estimates

‖(u)∗‖Lp
ω(∂Ω) ≤ C‖f‖Lp

ω(∂Ω), ‖(∇u)∗‖Lp
ω(∂Ω) ≤ C‖f‖Lp

ω(∂Ω)

and

‖(∇u)∗‖Lp
ω(∂Ω) ≤ C‖∇tf‖Lp

ω(∂Ω)

are obtained, respectively, for the Dirichlet problem (1.2), the Neumann problem (1.3)

and the Regularity problem (1.4), where u denotes the unique solution for the Dirichlet

problem, the Neumann problem or the Regularity problem and C is a positive constant

independent of u and f . It is worth pointing out that the method dealing with the

Lpω(∂Ω)-Neumann problem (1.3) in this paper is also valid for the case of bounded C1

domains.

To state our main result, we first recall some necessary definitions and notation.

Definition 1.1. (i) Let O be an open set in Rn. The collection of semi-convex functions

on O consists of continuous functions u : O → R with the property that there exists a

positive constant C such that, for all x, h ∈ Rn with the ball B(x, |h|) ⊂ O,

2u(x)− u(x+ h)− u(x− h) ≤ C|h|2.

The best constant C above is referred as the semi-convexity constant of u.

(ii) A nonempty, proper open subset Ω of Rn is said to be semi-convex provided that

there exist b, c ∈ (0,∞) with the property that, for every x0 ∈ ∂Ω, there exist an (n− 1)-

dimensional affine variety H ⊂ Rn passing through x0, a choice N of the unit normal to

H, and an open set

C := {x̃+ tN : x̃ ∈ H, |x̃− x0| < b, |t| < c}

(called a coordinate cylinder near x0 with axis along N) satisfying, for some semi-convex

function ϕ : H → R,

C ∩ Ω = C ∩ {x̃+ tN : x̃ ∈ H, t > ϕ(x̃)},

C ∩ ∂Ω = C ∩ {x̃+ tN : x̃ ∈ H, t = ϕ(x̃)},

C ∩ Ω
{

= C ∩ {x̃+ tN : x̃ ∈ H, t < ϕ(x̃)},

ϕ(x0) = 0 and |ϕ(x̃)| < c/2 if |x̃− x0| ≤ b,
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where Ω and Ω
{
, respectively, denote the closure of Ω in Rn and the complementary set

of Ω in Rn.

Remark 1.2. (i) The Lipschitz domain in Rn can be defined via replacing the semi-convex

function ϕ by a Lipschitz function ψ : H → R in Definition 1.1(ii).

If Ω is a bounded Lipschitz domain in Rn, by the definition of Ω, we know that there

exist finite sets {Qj}N0
j=1 ⊂ ∂Ω of points, {δj}N0

j=1 ⊂ (0,∞) of numbers and {ψj}N0
j=1 of

Lipschitz functions such that

(a) ∂Ω ⊂
⋃N0
j=1B(Qj , δj);

(b) for any j ∈ {1, . . . , N0}, ψj(Qj) = 0;

(c) for any j ∈ {1, . . . , N0},

Ω ∩B(Qj , δj) = {(x, t) : x ∈ Rn−1, t ∈ R and t > ψj(x)} ∩B(Qj , δj)

and

∂Ω ∩B(Qj , δj) = {(x, t) : x ∈ Rn−1, t ∈ R and t = ψj(x)} ∩B(Qj , δj),

where N0 is a positive integer depending on Ω and

B(Qj , δj) := {x ∈ Rn : |x−Qj | < δj}

denotes the ball in Rn with the center Qj and the radius δj .

(ii) It is well known that bounded (semi-)convex domains in Rn are bounded Lipschitz

domains, and convex domains in Rn are semi-convex domains (see, for example, [17,18,26]).

Now we recall the definition of Ap(∂Ω) weights (see, for example, [22, p. 4] and [19,

(7.1)]).

Definition 1.3. Let Ω ⊂ Rn be a domain and p ∈ (1,∞). A non-negative and locally

integrable function ω on ∂Ω is called an Ap(∂Ω) weight, if there exists a positive constant

C such that, for any Q ∈ ∂Ω and r ∈ (0, diam(∂Ω)),

(1.5)

{
1

rn−1

∫
I(Q,r)

w(x) dσ(x)

}{
1

rn−1

∫
I(Q,r)

[w(x)]−1/(p−1) dσ(x)

}p−1

≤ C <∞,

where diam(∂Ω) := sup{|x − y| : x, y ∈ ∂Ω} and I(Q, r) := B(Q, r) ∩ ∂Ω. The smallest

constant C such that (1.5) holds true is called the Ap(∂Ω) weight constant of ω and

denoted by [ω]Ap(∂Ω).

Then the main results of this article read as follows.
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Theorem 1.4. Let Ω be a bounded (semi-)convex domain in Rn with n ≥ 2. Assume that

p ∈ (1,∞) and ω ∈ Ap(∂Ω). Then the Lpω(∂Ω)-Dirichlet problem (1.2) on Ω is uniquely

solvable. Namely, for any given f ∈ Lpω(∂Ω), there exists a harmonic function u in Ω

such that (u)∗ ∈ Lpω(∂Ω) and u = f on ∂Ω. Moreover, there exists a positive constant C,

depending on n, p, ω and Ω, such that

(1.6) ‖(u)∗‖Lp
ω(∂Ω) ≤ C‖f‖Lp

ω(∂Ω).

Theorem 1.5. Let Ω be a bounded (semi-)convex domain in Rn with n ≥ 2. Assume that

p ∈ (1,∞) and ω ∈ Ap(∂Ω). Then the Lpω(∂Ω)-Neumann problem (1.3) in Ω is uniquely

solvable. Namely, for any given f ∈ Lpω(∂Ω) with
∫
∂Ω f(x) dσ(x) = 0, there exists a

harmonic function u in Ω, up to constants, such that (∇u)∗ ∈ Lpω(∂Ω) and ∂u/∂ν = f on

∂Ω. Moreover, there exists a positive constant C, depending on n, p, ω and Ω, such that

(1.7) ‖(∇u)∗‖Lp
ω(∂Ω) ≤ C‖f‖Lp

ω(∂Ω).

Theorem 1.6. Let Ω be a bounded (semi-)convex domain in Rn with n ≥ 2. Assume

that p ∈ (1,∞) and ω ∈ Ap(∂Ω). Then the Ẇ p
1,ω(∂Ω)-Regularity problem (1.4) on Ω is

uniquely solvable. Namely, for any given f ∈ Ẇ p
1,ω(∂Ω), there exists a harmonic function

u in Ω such that (∇u)∗ ∈ Lpω(∂Ω) and u = f on ∂Ω. Moreover, there exists a positive

constant C, depending on n, p, ω and Ω, such that

(1.8) ‖(∇u)∗‖Lp
ω(∂Ω) ≤ C‖∇tf‖Lp

ω(∂Ω).

We prove Theorem 1.4 by using the unique solvability of the Lp(∂Ω)-Dirichlet problem

on bounded (semi-)convex domains for any p ∈ (1,∞) obtained in [18, Theorem 3.10] and

a key pointwise estimate for (u)∗ in [18, p. 2541] (see also (2.3) below).

The proof of Theorem 1.5 is based on a weighted real variable argument (see Lemma 2.4

below), which was obtained by Shen [21, Theorem 3.4] and inspired by [4] (see also [24]),

a criterion for the solvability of the Lp(∂Ω)-Neumann problem on bounded Lipschitz do-

mains (see Lemma 2.7 below), which is essentially established in [15, Theorem 1.1] (see

also [20]), and the unique solvability of the Lp(∂Ω)-Neumann problem on bounded (semi-

)convex domains for any p ∈ (1,∞) obtained in [11,15,25]. We also remark that a similar

real variable argument with the different motivation was also used in [1,2]. Moreover, the

proof of Theorem 1.6 is similar to that of Theorem 1.5. More precisely, by the weighted

real variable argument in Lemma 2.4, the criterion for the solvability of the Ẇ p
1 (∂Ω)-

Regularity problem on bounded Lipschitz domains obtained in Lemma 2.9 below and the

unique solvability of the Ẇ p
1 (∂Ω)-Regularity problem on bounded (semi-)convex domains

for any p ∈ (1,∞) established in [18, Theorem 3.11] (see also Lemma 2.10 below), we

prove Theorem 1.6.
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Remark 1.7. Let Ω be a bounded C1 domain in Rn. For any p ∈ (1,∞) and ω ∈ Ap(∂Ω),

via replacing Lemma 2.8 below by the unique solvability of the Lq(∂Ω)-Neumann problem

for any q ∈ (1,∞) established in [8] and then repeating the proof of Theorem 1.5, we

can obtain the unique solvability of the Lpω(∂Ω)-Neumann problem (1.3) on Ω and the

weighted estimate (1.7). Thus, this gives another proof for [7, Theorem 1.3]. Recall

that, [7, Theorem 1.3] was proved by the boundedness, convergence and compactness

of the boundary double layer potential and its adjoint operator on the weighted space

Lpω(∂Ω).

The layout of this article is as follows. In Section 2, we recall several key conclusions

and then we give the proofs of Theorems 1.4, 1.5 and 1.6.

Finally we make some conventions on notation. Denote by C a positive constant which

is independent of the solution u and the datum f , but it may vary from line to line. The

symbol A . B means that A ≤ CB. If A . B and B . A, then we write A ∼ B. We also

let N := {1, 2, . . .}. Finally, for the domain Ω in Rn, ω ∈ Ap(∂Ω), with p ∈ (1,∞), and

the measurable set E ⊂ ∂Ω, let σ(E) :=
∫
E dσ(x) and ω(E) :=

∫
E ω(x) dσ(x), where dσ

denotes the surface measure on ∂Ω.

2. Proofs of Theorems 1.4, 1.5 and 1.6

In this section, we give the proofs of Theorems 1.4, 1.5 and 1.6. To show Theorem 1.4, we

first recall a property of Ap(∂Ω) weight and the solvability result for the Lp(∂Ω)-Dirichlet

problem on bounded (semi-)convex domains.

Lemma 2.1. Let Ω ⊂ Rn be a domain, p ∈ (1,∞) and ω ∈ Ap(∂Ω). Then there exists

q ∈ (1, p) such that ω ∈ Aq(∂Ω).

The conclusion of Lemma 2.1 is well known (see, for example, [22, p. 5, Lemma 8]).

The following Lemma 2.2 is just [18, Theorem 3.10].

Lemma 2.2. Let Ω ⊂ Rn be a bounded (semi-)convex domain and p ∈ (1,∞). Then, for

any f ∈ Lp(∂Ω), the Lp(∂Ω)-Dirichlet problem with datum f (taking ω ≡ 1 in (1.2)) is

uniquely solvable. Moreover, the solution u satisfies

‖(u)∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

where C is a positive constant independent of u and f .

Now we prove Theorem 1.4 by using Lemmas 2.1 and 2.2.

Proof of Theorem 1.4. Let p ∈ (1,∞), ω ∈ Ap(∂Ω) and f ∈ Lpω(∂Ω). Then, it follows,

from Lemma 2.1, that there exists q ∈ (1, p) such that ω ∈ Ap/q(∂Ω). By the Hölder
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inequality, we find that

(2.1)

∫
∂Ω
|f(x)|q dσ(x) ≤

{∫
∂Ω
|f(x)|pω(x) dσ(x)

}q/p{∫
∂Ω

[ω(x)]
− 1

p/q−1 dσ(x)

} q
p

(
p
q
−1
)
.

Moreover, from the fact that Ω is bounded, we deduce that there exist finitely many

balls {B(Qj , δj)}N0
j=1, with {Qj}N0

j=1 ⊂ ∂Ω and {δj}N0
j=1 ⊂ (0,diam(∂Ω)), such that ∂Ω ⊂⋃N0

j=1B(Qj , δj), where N0 is a positive integer depending on Ω. By this and the definition

of Ap/q(∂Ω), we further conclude that

{∫
∂Ω

[ω(x)]
− 1

p/q−1 dσ(x)

}p/q−1

.
N0∑
j=1

{∫
B(Qj ,δj)∩∂Ω

[ω(x)]
− 1

p/q−1 dσ(x)

}p/q−1

.
N0∑
j=1

δ
p(n−1)/q
j

{∫
B(Qj ,δj)∩∂Ω

ω(x) dσ(x)

}−1

,

which, together with the fact that, for any j ∈ {1, . . . , N0},
∫
B(Qj ,δj)∩∂Ω ω(x) dσ(x) > 0

and δj < diam(∂Ω), implies that{∫
∂Ω

[ω(x)]
− 1

p/q−1 dσ(x)

}p/q−1

. 1.

From this and (2.1), we deduce that

(2.2) f ∈ Lpω(∂Ω) ⊂ Lq(∂Ω) and ‖f‖Lq(∂Ω) . ‖f‖Lp
ω(∂Ω),

which, combined with Lemma 2.2, further implies that the Lpω(∂Ω)-Dirichlet problem (1.2)

with datum f is uniquely solvable.

Let u be the solution of the Dirichlet problem (1.2) with datum f . Now we prove (1.6).

Indeed, for f ∈ Lq(∂Ω), it was proved in [18, p. 2541] that, for any x ∈ ∂Ω,

(2.3) (u)∗(x) .M(f)(x),

where M(f) denotes the Hardy-Littlewood maximal function of f on ∂Ω, which is defined

by, for any x ∈ ∂Ω,

M(f)(x) := sup
r∈(0,∞)

1

σ(B(x, r) ∩ ∂Ω)

∫
B(x,r)∩∂Ω

|f(y)| dσ(y).

Then, by (2.3) and the boundedness of M on Lpω(∂Ω) with p ∈ (1,∞) and ω ∈ Ap(∂Ω)

(see, for example, [22, p. 5, Theorem 9]), we conclude that (1.6) holds true. This finishes

the proof of Theorem 1.4.

To state the weighted real variable argument established in [21, Theorem 3.4], we first

recall the definition of the Ap(Rn) weight.
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Definition 2.3. Let n ∈ N and p ∈ (1,∞). A non-negative and locally integrable function

ω on Rn is called an Ap(Rn) weight, if

(2.4) [ω]Ap(Rn) := sup
B⊂Rn

{
1

|B|

∫
B
w(x) dx

}{
1

|B|

∫
B

[w(x)]−1/(p−1) dx

}p−1

<∞,

where the supremum is taken over all balls B ⊂ Rn. Moreover, for any given measurable

set E ⊂ Rn, the Ap(E) weight can be defined via replacing the ball B in (2.4) by B ∩ E.

Then the weighted real variable argument established in [21, Theorem 3.4] is as follows.

Lemma 2.4. Let Q0 be a cube in Rn, F ∈ L1(2Q0), p1 ∈ (1,∞), p2 ∈ (1, p1) and f ∈
Lp2(2Q0). Let 0 < β < 1 < α <∞. Assume further that, for any dyadic subcube Q of Q0

with |Q| ≤ β|Q0|, there exist two functions FQ and RQ on 2Q such that |F | ≤ |FQ|+ |RQ|
on 2Q,{

1

|2Q|

∫
2Q
|RQ(x)|p1 dx

}1/p1

≤ C1

[
1

|αQ|

∫
αQ
|F (x)| dx+ sup

Q̃⊃Q

1

|Q̃|

∫
Q̃
|f(x)| dx

]

and
1

|2Q|

∫
2Q
|FQ(x)| dx ≤ C2 sup

Q̃⊃Q

1

|Q̃|

∫
Q̃
|f(x)| dx,

where C1 and C2 are positive constants independent of F , f , FQ, RQ and Q, and the

suprema are taken over all dyadic cubes Q̃ ⊂ Q0. Then, for any ω ∈ Ap2(2Q0) satisfying

that there exist positive constants C and η ∈ (p2/p1,∞) such that, for any cube Q ⊂ Q0

and any measurable E ⊂ Q, ω(E)/ω(Q) ≤ C[|E|/|Q|]η, where ω(E) :=
∫
E ω(x) dx, it

holds true that {
1

ω(Q0)

∫
Q0

|F (x)|p2ω(x) dx

}1/p2

≤ C

|2Q0|

∫
2Q0

|F (x)| dx+ C

{
1

ω(2Q0)

∫
2Q0

|f(x)|p2ω(x) dx

}1/p2

,

where C is a positive constant independent of F and f .

Let

(2.5) D := {(x′, xn) ∈ Rn : x′ ∈ Rn−1 and xn > ψ(x′)},

where ψ : Rn−1 → R is a Lipschitz function. The projection map Φ: ∂D → Rn−1 is defined

by Φ(x′, ψ(x′)) = x′. Then it is said that S ⊂ ∂D is a (surface) cube of ∂D, if Φ(S) is

a cube of Rn−1. Similarly, it is said that S̃ is a dyadic subcube of S, if Φ(S̃) is a dyadic

subcube of Φ(S) in Rn−1. Moreover, for any a ∈ (0,∞), the dilation aS of the cube S on

∂D may be defined by aS := Φ−1(aΦ(S)).
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Via the facts that

(2.6) ‖∇ψ‖L∞(Rn−1) . 1 and dσ(x) ∼ dx on ∂D

and similar to the proof of [7, Lemma 2.5], we obtain the following relation for Ap(∂D)

and Ap(Rn−1) weights, the details being omitted here.

Lemma 2.5. Let D and ψ be as in (2.5), p ∈ (1,∞) and ω ∈ Ap(∂D). Then ω( · , ψ(·)) ∈
Ap(Rn−1).

Then it is easy to obtain the following weighted real variable argument on ∂D by

Lemmas 2.4 and 2.5.

Lemma 2.6. Let D be as in (2.5) and S0 a cube of ∂D. Assume that F ∈ L1(2S0),

p1 ∈ (1,∞), p2 ∈ (1, p1) and f̃ ∈ Lp2(2S0). Let 0 < β < 1 < α <∞. Assume further that,

for any dyadic subcube S of S0 with σ(S) ≤ βσ(S0), there exist two functions FS and RS

on 2S such that |F | ≤ |FS |+ |RS | on 2S,{
1

σ(2S)

∫
2S
|RS(x)|p1 dσ(x)

}1/p1

≤ C3

{
1

σ(αS)

∫
αS
|F (x)| dσ(x) + sup

S̃⊃S

1

σ(S̃)

∫
S̃
|f̃(x)| dσ(x)

}(2.7)

and

(2.8)
1

σ(2S)

∫
2S
|FS(x)| dσ(x) ≤ C4 sup

S̃⊃S

1

σ(S̃)

∫
S̃
|f̃(x)| dσ(x),

where C3 and C4 are positive constants independent of F , f̃ , FS, RS and S, and the

suprema are taken over all dyadic cubes S̃ ⊂ S0. Then, for any ω ∈ Ap2(2S0) satisfying

that there exist positive constants C and η ∈ (p2/p1,∞) such that, for any cube S ⊂ S0

and any measurable E ⊂ S,

(2.9)
ω(E)

ω(S)
≤ C

[
σ(E)

σ(S)

]η
,

it holds true that{
1

ω(S0)

∫
S0

|F (x)|p2ω(x) dσ(x)

}1/p2

≤ C

σ(2S0)

∫
2S0

|F (x)| dσ(x) + C

{
1

ω(2S0)

∫
2S0

|f̃(x)|p2ω(x) dσ(x)

}1/p2

,

where C is a positive constant independent of F and f̃ .
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To show Theorem 1.5, we need the following equivalent characterization for the unique

solvability of the Lp(∂Ω)-Neumann problem on Ω.

Lemma 2.7. Let p0 ∈ (1,∞) and Ω be a bounded Lipschitz domain in Rn with n ≥ 2.

Assume that the Lp0(∂Ω)-Neumann problem on Ω (taking ω ≡ 1 in (1.3)) is uniquely

solvable. Let p ∈ (p0,∞). Then the following two statements are equivalent.

(i) The Lp(∂Ω)-Neumann problem on Ω is uniquely solvable. Moreover, the solution u

satisfies

‖(∇u)∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

where C is a positive constant depending only on n, p and the Lipschitz character of

Ω.

(ii) There exist positive constants C̃ ∈ (0,∞) and r0 ∈ (0, diam(Ω)) such that, for any

r ∈ (0, r0) and x ∈ ∂Ω, the weak reverse Hölder inequality{
1

rn−1

∫
B(x,r)∩∂Ω

[(∇w)∗(x)]p dσ(x)

}1/p

≤ C̃

{
1

rn−1

∫
B(x,2r)∩∂Ω

[(∇w)∗(x)]p0 dσ(x)

}1/p0

holds for any harmonic function w in Ω satisfying (∇w)∗ ∈ Lp0(∂Ω) and ∂w/∂ν = 0

on B(x, 3r) ∩ ∂Ω.

We point out that Lemma 2.7 was essentially established in [15, Theorem 1.1]. Indeed,

when p0 := 2, Lemma 2.7 is just [15, Theorem 1.1]. For general p0 ∈ (1,∞), by replacing

[15, Lemma 2.2] with Lemma 2.6 (in this case, taking ω ≡ 1) and then repeating the proof

of [15, Theorem 2.1], we obtain the proof of (ii) implying (i) in Lemma 2.7. Notice that,

for any bounded Lipschitz domain Ω, the L2(∂Ω)-Neumann problem is always uniquely

solvable. Via this fact, replacing the exponent 2 with p0 and repeating the proof of [15,

Theorem 3.1], we conclude that (i) implies (ii) in Lemma 2.7. The details are omitted

here.

The following Lemma 2.8 was established in [15, Theorem 1.2], [11, Theorem 1.1]

and [25, Theorem 1.4].

Lemma 2.8. Let Ω ⊂ Rn be a bounded (semi-)convex domain and p ∈ (1,∞). Then, for

any f ∈ Lp(∂Ω), the Lp(∂Ω)-Neumann problem with datum f (taking ω ≡ 1 in (1.3)) is

uniquely solvable. Moreover, the solution u satisfies

‖(∇u)∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

where C is a positive constant independent of u and f .



832 Sibei Yang

Now we give the proof of Theorem 1.5 by using Lemmas 2.6, 2.7 and 2.8.

Proof of Theorem 1.5. Let p ∈ (1,∞), ω ∈ Ap(∂Ω) and f ∈ Lpω(∂Ω). Then, by (2.2)

and Lemma 2.8, we conclude that the Lpω(∂Ω)-Neumann problem (1.3) with datum f is

uniquely solvable.

Let u be the solution of the Neumann problem (1.3) with datum f . To end the proof

of Theorem 1.5, we only need to show (1.7).

Let Q ∈ ∂Ω and r ∈ (0, r0), where r0 is as in Lemma 2.7. Since Ω is a bounded

semi-convex domain in Rn and hence a Lipschitz domain, by rotation and translation, we

may assume that Q = 0 and

(2.10) B(Q, 100r0

√
n) ∩ Ω = {(x′, xn) ∈ Rn : x′ ∈ Rn−1, xn > ψ(x′)} ∩B(Q, 100r0

√
n),

where ψ : Rn−1 → R is a Lipschitz function satisfying that ψ(0) = 0. Let

(2.11) S0 := S0(r) := {(x′, ψ(x′)) : |x1| < r, . . . , |xn−1| < r}

be a surface cube on the Lipschitz graph ∂D, where D is as in (2.5).

Let q ∈ (1, p) such that ω ∈ Ap/q(∂Ω). To apply Lemma 2.4, let F := |(∇u)∗|q and

f̃ := |f |q. Furthermore, for any dyadic subcube S of S0 with σ(S) ≤ βσ(S0), define

g := fχ8S −
{

1

σ(∂Ω \ 8S)

∫
8S
f(x) dσ(x)

}
χ∂Ω\8S .

Then
∫
∂Ω g(x) dσ(x) = 0 and by (2.2), we find that g ∈ Lq(∂Ω). Let

FS := 2q−1|(∇w)∗|q and RS := 2q−1|(∇v)∗|q,

where v = u− w and w is the solution of the Neumann problem

(2.12)


∆w = 0 in Ω,

∂w
∂ν = g ∈ Lq(∂Ω) on ∂Ω,

(∇w)∗ ∈ Lq(∂Ω).

It follows, from Lemma 2.8, that the Neumann problem (2.12) is uniquely solvable. It is

easy to see that ∂v/∂ν = 0 on 8S and |F | ≤ |FS |+ |RS | on ∂Ω. By Lemma 2.8 again, we

conclude that

1

σ(2S)

∫
2S
FS(x) dσ(x) =

2q−1

σ(2S)

∫
2S

[(∇w)∗(x)]q dσ(x)

≤ 2q−1

σ(2S)

∫
∂Ω

[(∇w)∗(x)]q dσ(x) .
1

σ(2S)

∫
∂Ω
|g(x)|q dσ(x)

.
1

σ(2S)

∫
8S
|f(x)|q dσ(x) +

1

σ(∂Ω \ 8S)

∫
8S
|f(x)|q dσ(x)

.
1

σ(8S)

∫
8S
|f(x)|q dσ(x) ∼ 1

σ(8S)

∫
8S
|f̃(x)| dσ(x),
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which implies that (2.8) holds true.

Moreover, from the fact that Ω is a bounded semi-convex domain and Lemma 2.8,

we deduce that, for any s ∈ (1,∞), the Lsq(∂Ω)-Neumann problem is uniquely solvable,

which, together with the fact that ∂v/∂ν = 0 on 8S, Lemma 2.7 and (2.6), further implies

that, for any s ∈ (1,∞),{
1

σ(2S)

∫
2S

[(∇v)∗(x)]sq dσ(x)

}1/(sq)

.

{
1

σ(4S)

∫
4S

[(∇v)∗(x)]q dσ(x)

}1/q

.

By this estimate, we conclude that, for any s ∈ (1,∞),{
1

σ(2S)

∫
2S

[RS(x)]s dσ(x)

}1/s

=

{
2(q−1)s

σ(2S)

∫
2S

[(∇v)∗(x)]sq dσ(x)

}1/s

.
1

σ(4S)

∫
4S

[(∇v)∗(x)]q dσ(x)

.
1

σ(4S)

∫
4S

[(∇u)∗(x)]q dσ(x) +
1

σ(4S)

∫
4S

[(∇w)∗(x)]q dσ(x)

.
1

σ(4S)

∫
4S
F (x) dσ(x) +

1

σ(8S)

∫
8S
|f̃(x)| dσ(x),

(2.13)

which implies that (2.7) holds true for p1 := s.

Now we prove that ω satisfies (2.9). Recall that, for some s ∈ (1,∞], a non-negative and

locally integrable function V on ∂Ω is said to belong to the reverse Hölder class RHs(∂Ω),

if there exists a positive constant C such that, for any Q ∈ ∂Ω and r ∈ (0,diam(∂Ω)),{
1

rn−1

∫
I(Q,r)

[V (x)]s dσ(x)

}1/s

≤ C

rn−1

∫
I(Q,r)

V (x) dσ(x),

here and hereafter, I(Q, r) := B(Q, r)∩Ω. Then it is well known that, for any q ∈ (1,∞),

(2.14) Aq(∂Ω) ⊂
⋃

s∈(1,∞]

RHs(∂Ω)

(see, for example, [22, p. 9, Theorem 15]). Moreover, if V ∈ RHs(∂Ω) with s ∈ (1,∞], then

for any Q ∈ ∂Ω, r ∈ (0, diam(∂Ω)) and measurable set E ⊂ I(Q, r), V (E)/V (I(Q, r)) .

[σ(E)/σ(I(Q, r))](s−1)/s. Indeed, from the definition of RHs(∂Ω), the Hölder inequality

and the fact that σ(I(Q, r)) ∼ rn−1, it follows that

V (E) ≤
{∫

E
[V (x)]s dσ(x)

}1/s

[σ(E)]1/s
′ ≤

{∫
I(Q,r)

[V (x)]s dσ(x)

}1/s

[σ(E)]1/s
′

. [σ(I(Q, r))]−1/s′V (I(Q, r))[σ(E)]1/s
′
,
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which implies that

V (E)

V (I(Q, r))
.

[
σ(E)

σ(I(Q, r))

](s−1)/s

.

By this and (2.14), we conclude that there exists s0 ∈ (1,∞] such that ω ∈ RHs0(∂Ω)

and, for any Q ∈ ∂Ω, r ∈ (0, diam(∂Ω)) and measurable set E ⊂ I(Q, r),

(2.15)
ω(E)

ω(I(Q, r))
.

[
σ(E)

σ(I(Q, r))

](s0−1)/s0

.

Let p2 := p/q. From the fact that (2.13) holds true for any s ∈ (1,∞), we deduce that

there exists p1 := s such that (s0−1)/s0 > p2/p1 and (2.13) holds true for such p1, which,

combined with (2.15), further implies that (2.9) holds true for such p1 and p2. Thus,

applying Lemma 2.6 to F and f̃ , we find that{
1

ω(S0)

∫
S0

[(∇u)∗(x)]pω(x) dσ(x)

}q/p
=

{
1

ω(S0)

∫
S0

[F (x)]p2ω(x) dσ(x)

}1/p2

.
1

σ(2S0)

∫
2S0

F (x) dσ(x) +

{
1

ω(2S0)

∫
2S0

|f̃(x)|p2ω(x) dσ(x)

}1/p2

∼ 1

σ(2S0)

∫
2S0

[(∇u)∗(x)]q dσ(x) +

{
1

ω(2S0)

∫
2S0

|f(x)|pω(x) dσ(x)

}q/p
,

which further implies that{
1

ω(S0)

∫
S0

[(∇u)∗(x)]pω(x) dσ(x)

}1/p

.

{
1

σ(2S0)

∫
2S0

[(∇u)∗(x)]q dσ(x)

}1/q

+

{
1

ω(2S0)

∫
2S0

|f(x)|pω(x) dσ(x)

}1/p

.

(2.16)

Then, from (2.16) and a simple covering argument, it follows that{
1

ω(I(Q, r))

∫
I(Q,r)

[(∇u)∗(x)]pω(x) dσ(x)

}1/p

.

{
1

σ(I(Q, 2r))

∫
I(Q,2r)

[(∇u)∗(x)]q dσ(x)

}1/q

+

{
1

ω(I(Q, 2r))

∫
I(Q,2r)

|f(x)|pω(x) dσ(x)

}1/p

.

(2.17)

By the fact that Ω is bounded and Remark 1.2(i), we conclude that there exist a

positive constant c0, finite sets {Qj}N0
j=1 ⊂ ∂Ω of points and {ψj}N0

j=1 of Lipschitz functions
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such that ∂Ω ⊂
⋃N0
j=1 I(Qj , c0r0), {Qj}N0

j=1 and {ψj}N0
j=1 satisfy (2.10), and the estimate

(2.17) holds true for I(Qj , c0r0) with j ∈ {1, . . . , N0}, where N0 ∈ N is a positive integer

depending on Ω and r0 is as in Lemma 2.7. Then, via covering ∂Ω with the finite collection

of surface balls {I(Qj , c0r0)}N0
j=1, it follows, from (2.17), the Hölder inequality and (2.2)

that

‖(∇u)∗‖Lp
ω(∂Ω) ≤

N0∑
j=1

‖(∇u)∗‖Lp
ω(I(Qj ,c0r0))

.
N0∑
j=1

[ω(I(Qj , c0r0))]1/p

[σ(I(Qj , 2c0r0))]1/q
‖f‖Lq(∂Ω) +

N0∑
j=1

‖f‖Lp
ω(I(Qj ,2c0r0))

. ‖f‖Lq(∂Ω) + ‖f‖Lp
ω(∂Ω) . ‖f‖Lp

ω(∂Ω).

Thus, (1.7) holds true, which completes the proof of Theorem 1.5.

To show Theorem 1.6, we need the following two lemmas.

Lemma 2.9. Let p0 ∈ (1,∞) and Ω be a bounded Lipschitz domain in Rn with n ≥ 2.

Assume that the Ẇ p0
1 (∂Ω)-Regularity problem on Ω (taking ω ≡ 1 in (1.4)) is uniquely

solvable. Let p ∈ (p0,∞). Then the following two statements are equivalent.

(i) The Ẇ p
1 (∂Ω)-Regularity problem on Ω is uniquely solvable. Moreover, the solution

u satisfies

‖(∇u)∗‖Lp(∂Ω) ≤ C‖∇tf‖Lp(∂Ω),

where C is a positive constant depending only on n, p and the Lipschitz character of

Ω.

(ii) There exist positive constants C̃ ∈ (0,∞) and r0 ∈ (0, diam(Ω)) such that, for any

r ∈ (0, r0) and x ∈ ∂Ω, the weak reverse Hölder inequality{
1

rn−1

∫
B(x,r)∩∂Ω

[(∇w)∗(x)]p dσ(x)

}1/p

≤ C̃

{
1

rn−1

∫
B(x,2r)∩∂Ω

[(∇w)∗(x)]p0 dσ(x)

}1/p0
(2.18)

.holds for any harmonic function w in Ω satisfying (∇w)∗ ∈ Lp0(∂Ω) and w = 0 on

B(x, 3r) ∩ ∂Ω.

Proof. The proof of Lemma 2.9 is similar to that of [15, Theorem 1.1] or [10, Theorem 1.1].

For the sake of completeness, we give some details.

We first prove that (ii) implies (i). Let f ∈ Ẇ p
1 (∂Ω), Q ∈ ∂Ω and r ∈ (0, r0), where

r0 is as in Lemma 2.9(ii). By rotation and translation, we may assume that Q = 0 and
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(2.10) holds true in this case. Let S0 be as in (2.11) and S be a dyadic subcube of S0 with

σ(S) ≤ βσ(S0). Assume that ϕ ∈ C∞c (Rn) satisfies 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on 8S, ϕ ≡ 0 on

Rn \ 16S and |∇ϕ| . r−1. Let f1 := ϕ(f − cf ) and f2 := (1− ϕ)(f − cf ), where

cf :=
1

σ(16S)

∫
16S

f(x) dσ(x).

Assume that u = u1+u2+cf , where u1 and u2 are the solutions of the Ẇ p0
1 (∂Ω)-Regularity

problem with data f1 and f2, respectively. Let

F := |(∇u)∗|p0 , f̃ := |∇tf |p0 , FS := 2p0−1|(∇u1)∗|p0

and RS := 2p0−1|(∇u2)∗|p0 . Then u2 = 0 on 8S and |F | ≤ |FS |+ |RS | on ∂Ω. By the fact

that u1 is the solution of the Ẇ p0
1 (∂Ω)-Regularity problem and the Poincaré inequality,

we find that

1

σ(2S)

∫
2S
FS(x) dσ(x)

=
2p0−1

σ(2S)

∫
2S

[(∇u1)∗(x)]p0 dσ(x) .
1

σ(2S)

∫
∂Ω
|∇tf1(x)|p0 dσ(x)

.
1

σ(2S)

∫
16S
|∇tf(x)|p0 dσ(x) +

1

σ(2S)

1

rp0

∫
16S\8S

|f(x)− cf |p0 dσ(x)

.
1

σ(16S)

∫
16S
|∇tf(x)|p0 dσ(x) ∼ 1

σ(16S)

∫
16S
|f̃(x)| dσ(x),

which implies that (2.8) holds true.

Furthermore, it is well known that the weak reverse Hölder inequality has the property

of self-improving, which implies that if (2.18) holds true for some p ∈ (p0,∞), then (2.18)

also holds true for p + ε, where ε ∈ (0,∞) is a constant. From this and the fact that

u2 = 0 on 8S, we deduce that{
1

σ(2S)

∫
2S

[(∇u2)∗(x)]p+ε dσ(x)

}1/(p+ε)

.

{
1

σ(4S)

∫
4S

[(∇u2)∗(x)]p0 dσ(x)

}1/p0

,

which further implies that{
1

σ(2S)

∫
2S

[RS(x)](p+ε)/p0 dσ(x)

}p0/(p+ε)
.

1

σ(4S)

∫
4S

[(∇u2)∗(x)]p0 dσ(x)

.
1

σ(4S)

∫
4S

[(∇u)∗(x)]p0 dσ(x) +
1

σ(4S)

∫
4S

[(∇u1)∗(x)]p0 dσ(x)

.
1

σ(4S)

∫
4S
F (x) dσ(x) +

1

σ(16S)

∫
16S
|f̃(x)| dσ(x).
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Thus, (2.7) holds true for p1 := (p+ ε)/p0 in this case. Then, by Lemma 2.6 with ω ≡ 1,

we conclude that, for any q ∈ (p0, p+ ε),{
1

rn−1

∫
B(Q,r)∩∂Ω

[(∇u)∗(x)]q dσ(x)

}1/q

.

{
1

rn−1

∫
B(Q,2r)∩∂Ω

[(∇u)∗(x)]p0 dσ(x)

}1/p0

+

{
1

rn−1

∫
B(Q,2r)∩∂Ω

|∇tf(x)|q dσ(x)

}1/q

.

(2.19)

Thus, (2.19) holds true for q = p. Then, by a simple covering argument, (2.19) with

q = p, the fact that the Ẇ p0
1 (∂Ω)-Regularity problem is uniquely solvable and the Hölder

inequality, we find that

‖(∇u)∗‖Lp(∂Ω) . |∂Ω|1/p−1/p0‖(∇u)∗‖Lp0 (∂Ω) + ‖∇tf‖Lp(∂Ω)

. |∂Ω|1/p−1/p0‖∇tf‖Lp0 (∂Ω) + ‖∇tf‖Lp(∂Ω) . ‖∇tf‖Lp(∂Ω).

This finishes the proof of (ii) implying (i).

Now we show that (i) implies (ii). Let r ∈ (0, r0) and w be a harmonic function in

Ω with the properties that (∇w)∗ ∈ Lp0(∂Ω) and w = 0 on S(3r), where S(3r) is as in

(2.11).

Let

Z(r) := {(x′, xn) ∈ Rn : |x1| < r, . . . , |xn−1| < r, ψ(x′) < xn < C5r},

where the Lipschitz function ψ is as in (2.5) and C5 := 1 + 10
√
n‖∇ψ‖L∞(Rn−1). Observe

that w = 0 on S(3r) implies that the Poincaré inequality holds true for the function w

on Z(2r). Based on this observation and the fact that the Ẇ p
1 (∂Ω)-Regularity problem

is uniquely solvable, repeating the proof of [15, Theorem 3.1], we know that (2.18) holds

true. This finishes the proof of (i) implying (ii) and hence the proof of Lemma 2.9.

The following Lemma 2.10 is just [18, Theorem 3.11].

Lemma 2.10. Let Ω ⊂ Rn be a bounded (semi-)convex domain and p ∈ (1,∞). Then, for

any f ∈ Ẇ p
1 (∂Ω), the Ẇ p

1 (∂Ω)-Regularity problem with datum f (taking ω ≡ 1 in (1.4))

is uniquely solvable. Moreover, the solution u satisfies

‖(∇u)∗‖Lp(∂Ω) ≤ C‖∇tf‖Lp(∂Ω),

where C is a positive constant independent of u and f .
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Now we give the proof of Theorem 1.6 by using Lemmas 2.6, 2.9 and 2.10.

Proof of Theorem 1.6. Let p ∈ (1,∞), ω ∈ Ap(∂Ω) and f ∈ Ẇ p
1,ω(∂Ω). Then, by (2.2)

and Lemma 2.10, we find that the Ẇ p
1,ω(∂Ω)-Regularity problem (1.4) with datum f is

uniquely solvable.

Let u be the solution of the Regularity problem (1.4) with datum f . To finish the

proof of Theorem 1.6, we only need to show (1.8).

Let Q ∈ ∂Ω and r ∈ (0, r0), where r0 is as in Lemma 2.9. Assume that Q = 0 and

S0 := S0(r) is as in (2.11). Let q ∈ (1, p) such that ω ∈ Ap/q(∂Ω). Assume that S

is a dyadic subcube of S0 with σ(S) ≤ βσ(S0). Let ϕ ∈ C∞c (Rn) satisfy 0 ≤ ϕ ≤ 1,

ϕ ≡ 1 on 8S, ϕ ≡ 0 on Rn \ 16S and |∇ϕ| . r−1. Assume that u = u1 + u2 + cf ,

f1 := ϕ(f − cf ) and f2 := (1−ϕ)(f − cf ), where u1 and u2 are, respectively, the solutions

of the Ẇ p0
1 (∂Ω)-Regularity problem with data f1 and f2, and

cf :=
1

σ(16S)

∫
16S

f(x) dσ(x).

Let

F := |(∇u)∗|q, f̃ := |∇tf |q, FS := 2q−1|(∇u1)∗|q

and RS := 2q−1|(∇u2)∗|q. It is easy to see that u2 = 0 on 8S and |F | ≤ |FS | + |RS | on

∂Ω. Then, via replacing Lemmas 2.7 and 2.8, respectively, by Lemmas 2.9 and 2.10, and

repeating the proof of (1.7), we conclude that (1.8) holds true, which completes the proof

of Theorem 1.6.
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