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Semi-classical Limit for the Quantum Zakharov System

Yung-Fu Fang*, Hung-Wen Kuo, Hsi-Wei Shih and Kuan-Hsiang Wang

Abstract. In this paper, we prove the semi-classical limit for the quantum Zakharov

system, that is, the quantum Zakharov system converges to the classical Zakharov

system as the quantum parameter goes to zero, including a convergence rate. We

improve the results of Guo-Zhang-Guo [11].

1. Introduction

In this paper, we consider the semi-classical limit for the quantum Zakharov system, which

describes the propagation of Langmuir waves in an ionized plasma. Langmuir waves are

rapid oscillations of the electron density in conducting media, such as plasmas or metals,

see [6, 13,14]. The system reads as

iEt + ∆E − ε2∆2E = nE, (x, t) ∈ Rd × R;

ntt −∆n+ ε2∆2n = ∆|E|2;

E(0) = E0, n(0) = n0, ∂tn(0) = n1,

(1.1)

where E is slowly varying envelope of the rapidly oscillating electric field and n is the

deviation of the ion density from its mean value. E is complex valued and n is real valued.

The quantum parameter ε typically goes from the values of order 10−5 to the values of

order unity, see [6, 13,14] for more physical background.

When the quantum effect is absent, the system is reduced to the classical Zakharov

system which is as follows:

iEt + ∆E = nE, (x, t) ∈ Rd × R;

ntt −∆n = ∆|E|2;

E(0) = E0, n(0) = n0, ∂tn(0) = n1.

(1.2)

The regular solutions of (1.2) satisfy the conservation of mass∫
|E(t)|2 dx =

∫
|E(0)|2 dx = constant
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and the conservation of the Hamiltonian

‖∇E‖2L2 +
1

2

(
‖nt‖2Ḣ−1 + ‖n‖2L2

)
+

∫
n|E|2 dx = constant.

The Zakharov system (1.2) has been extensively studied for the local and global well-

posedness [1, 4, 7, 16, 18], for blow-up [8, 9], for scattering results [10], and for adiabatic

limit and subsonic limit of the solution [17,21]. In 1992, Ozawa and Tsutsumi proved the

Schrödinger limit for the Zakharov system with the optimal convergence rate, see [19].

Analogous to (1.2), (1.1) has the conservation of mass

(1.3)

∫
|E(t)|2 dx =

∫
|E(0)|2 dx

and the conservation of the Hamiltonian

H(E,n, nt)(t) := ‖|∇|〈ε∇〉E‖2L2 +
1

2

(
‖nt‖2Ḣ−1 + ‖〈ε∇〉n‖2L2

)
+

∫
n|E|2 dx

= constant,

(1.4)

where |∇| and 〈ε∇〉 are defined in (2.1). We list some known results for (1.1). In 2013,

Guo, Zhang, and Guo proved the global well-posedness and the classical limit of (1.1)

for dimensions d = 1, 2, 3, see [11]. In 2016, Jiang, Lin, and Shao proved the local well-

posedness for (1.1) in 1D with initial data (E0, n0, n1) ∈ Hk ⊕H` ⊕H`−2 provided that

|k| − 3/2 < ` < min{k + 3/2, 2k + 3/2} and k > −3/4, see [15]. In 2016, Fang, Lin, and

Segata showes that the Schrödinder limit for the quantum Zakharov system with optimal

convergence rate as the wave speed goes to infinity. In 2017, Chen, Fang, and Wang

obtained the global well-posedness for (1.1) in 1D with (E0, n0, n1) ∈ L2 ⊕ H` ⊕ H`−2

provided that −3/2 ≤ ` ≤ 3/2, see [3]. In 2017, Fang, Shih, and Wang obtained a local

well-posednes for (1.1) in 1D for a wider range of initial data, see [5].

Following an idea used in a work of Masmoudi and Nakanishi, see [17], we can rewrite

the wave equation in (1.1) as follows. We set

(1.5) N = n+
i∂tn

|∇|〈ε∇〉
,

where |∇| and 〈ε∇〉 are defined in (2.1). Thus the quantum Zakharov system (1.1) becomes

iEt + ∆〈ε∇〉2E = Re(N )E, (x, t) ∈ Rd × R;

i∂tN − |∇|〈ε∇〉N = |∇|〈ε∇〉−1|E|2;

E(0, x) = E0(x), N (0, x) = N0(x),

(1.6)

where N0 = n0 + i n1
|∇|〈ε∇〉 and Re(N ) is the real part of N . Invoking (1.5) with ε = 0,
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analogously the Zakharov system (1.2) becomes

iEt + ∆E = Re(N )E, (x, t) ∈ Rd × R;

i∂tN − |∇|N = |∇||E|2;

E(0, x) = E0(x), N (0, x) = N0(x),

(1.7)

where N0 = n0 + i n1/|∇|. Thus the Hamiltonian (1.4) can be rewritten as

(1.8) H(E,N )(t) := ‖|∇|〈ε∇〉E‖2L2 +
1

2
‖〈ε∇〉N‖2L2 +

∫
Re(N )|E|2 dx = constant.

Let 0 < ε ≤ 1 throughout the paper, unless it is specified. For the system (1.6), we define

the function spaces

Vk := Hk(Rd)×Hk−1(Rd) and Wk := Hk(Rd)×Hk(Rd),

where k ≥ 0. The function spaces Vk and Wk are endorsed with the natural norms

‖(f, g)‖Vk := ‖f‖Hk + ‖g‖Hk−1 and ‖(f, g)‖Wk
:= ‖f‖Hk + ‖g‖Hk

respectively. Our main results are as follows. The results of Theorems 1.1 and 1.3 improve

those of [11] with lower regularities. The results of Theorems 1.2 and 1.4 improve those

of [11] with regularities in a wider range.

Theorem 1.1. (Guo-Zhang-Guo [11] Let k ≥ 2 be an integer and d = 1, 2, 3. Assume

(E0,N0) ∈ Vk. Then the system (1.6) with initial data (E0,N0) admits a unique solution

(E,N ) ∈ C(R;Vk), and the solution depends continuously on the initial data, that is,

lim
j→∞

sup
t∈[−T,T ]

‖(Ej − E,N j −N )(t)‖Vk = 0

for all T > 0, where (Ej ,N j) are the solutions to (1.6) with initial datum (Ej0,N
j
0 )

such that (Ej0,N
j
0 ) → (E0,N0) in Vk as j → ∞. Moreover, the solution (E,N ) satisfies

‖E(t)‖L2 = ‖E0‖L2 and H(t) = H(0), where H is defined in (1.8).

Theorem 1.2. Under the same assumptions in Theorem 1.1 with the space Vk replaced by

the space Wk, we have the same conclusion as those of Theorem 1.1 in the corresponding

space Wk for k ≥ 0.

Theorem 1.3. Let k ≥ 6 be an integer, (Eε0,N ε
0 ) and (E0

0 ,N 0
0 ) ∈ Vk, and satisfy

(1.9) (Eε0,N ε
0 ) uniformly bounded in Vk

and

(Eε0,N ε
0 )→ (E0

0 ,N 0
0 ) in Vk−2 as ε→ 0.
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Assume that (Eε,N ε) and (E0,N 0) are solutions to (1.6) and (1.7) with initial datum

(Eε0,N ε
0 ) and (E0

0 ,N 0
0 ) respectively. Then, for any T > 0 when d = 1 and for some T > 0

when d = 2, 3, there holds that

(1.10) ‖(Eε−E0,N ε−N 0)‖Vk−4
. ‖(Eε0−E0

0 ,N ε
0 −N 0

0 )‖Vk−4
+ε‖∆(N ε

0 −N 0
0 )‖Hk−6 +ε2

and

(1.11) ‖(Eε−E0,N ε−N 0)‖Vs . ‖(Eε0−E0
0 ,N ε

0 −N 0
0 )‖αVk−4

+εα‖∆(N ε
0 −N 0

0 )‖αHk−6 +ε2α,

where α = (k − 2 − s)/2, s ∈ [k − 4, k − 2) for all t ∈ [−T, T ], and the constants in the

inequalities are independent of ε. Moreover, we have

(1.12) (Eε,N ε)→ (E0,N 0) in C([−T, T ];Vk−2) as ε→ 0.

Theorem 1.4. Let k ≥ 6 be an integer, (Eε0,N ε
0 ) and (E0

0 ,N 0
0 ) ∈Wk, and satisfy

(Eε0,N ε
0 ) uniformly bounded in Wk

and

(Eε0,N ε
0 )→ (E0

0 ,N 0
0 ) in Wk−3 as ε→ 0.

Assume that (Eε,N ε) and (E0,N 0) are solutions to (1.6) and (1.7) with initial datum

(Eε0,N ε
0 ) and (E0

0 ,N 0
0 ) respectively. Then, for any T > 0 when d = 1 and for some T > 0

when d = 2, 3, there holds that

(1.13) ‖(Eε−E0,N ε−N 0)‖Wk−5
. ‖(Eε0−E0

0 ,N ε
0−N 0

0 )‖Wk−4
+ε‖∆(N ε

0−N 0
0 )‖Hk−6 +ε2

and

(1.14) ‖(Eε−E0,N ε−N 0)‖Ws . ‖(Eε0−E0
0 ,N ε

0−N 0
0 )‖βWk−4

+εβ‖∆(N ε
0−N 0

0 )‖β
Hk−6+ε2β,

where β = (k − 3 − s)/2, s ∈ [k − 5, k − 3) for all t ∈ [−T, T ], and the constants in the

inequalities are independent of ε. Moreover, we have

(1.15) (Eε,N ε)→ (E0,N 0) in C([−T, T ];Wk−3) as ε→ 0.

The outline of the paper is as follows. In Section 2, we introduce some notations and

solution formulae. In Section 3, we apply energy method to derive some uniform bounds of

solutions in time for global well-posedness and some uniform bounds for the semi-classical

limit. We state some Strichartz estimates of the 4th order Schrödinger equation and that

of the 4th order wave equation for the global well-posedness of (1.6). In Section 4, we

prove the global well-posedness of the quantum Zakharov system. In Section 5, we prove

that solution to the quantum Zakharov system converges to the solution to Zakharov

system in an appropriate norm.
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2. Notations and solution formulae

Let us denote

(2.1) |∇| :=
√
−∆ and 〈ε∇〉 := (1 + ε2|∇|2)1/2 = (1− ε2∆)1/2.

We also denote the projection on the low frequency part by PL and the projection on the

high frequency part by PH ,

P̂Lu(ξ) = ψε(|ξ|)û(ξ) and P̂Hu(ξ) = (1− ψε(|ξ|))û(ξ),

where the cut-off function ψε(|ξ|) is 1 for ε|ξ| ≤ 1, 0 for ε|ξ| ≥ 2.

For s ∈ R, we denote Hs(Rd) and Ḣs(Rd) the standard inhomogeneous and homoge-

neous Sobolev spaces equipped with the norms

‖u‖Hs := ‖〈∇〉su‖L2 = ‖(1 + |ξ|2)s/2û‖L2 and ‖u‖Ḣs := ‖|∇|su‖L2 = ‖|ξ|sû‖L2

respectively, where û is the Fourier transform of u over space variables. Also we denote

the Sobolev space Hk
r = W k,r.

Consider the 4th order Schrödinger equation

iEt + ∆E − ε2∆2E = F, (x, t) ∈ Rd × R;

E(0) = E0.
(2.2)

We have the solution formula

(2.3) E(t, x) = Uε(t)E0(x)− i
∫ t

0
Uε(t− s)F (s, x) ds,

where Uε(t) := eit∆〈ε∇〉
2

is the 4th order Schrödinger propagator. In general, for the

equation of N ,

i∂tN − |∇|〈ε∇〉N = h, (x, t) ∈ Rd × R;

N (0, x) = N0(x),
(2.4)

we can obtain the solution formula

(2.5) N (t, x) = Φε(t)N0(x)− i
∫ t

0
Φε(t− s)h(s, x) ds,

where Φε(t) := e−it|∇|〈ε∇〉 is the propagator of (2.4). The Duhamel operators for (2.3)

and (2.5) are respectively

Uε ∗RF (t, x) = −i
∫ t

0
Uε(t−s)F (s, x) ds and Φε ∗RF (t, x) = −i

∫ t

0
Φε(t−s)F (s, x) ds.
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3. Energy estimates and Strichartz estimates

A pair (q, r) is called Schrödinger admissible, for short S-admissible, if 2 ≤ q, r ≤ ∞,

(q, r, d) 6= (2,∞, 2), and
2

q
+
d

r
=
d

2
.

A pair (q, r) is called biharmonic admissible, for short B-admissible, if 2 ≤ q, r ≤ ∞,

(q, r, d) 6= (2,∞, 4), and
4

q
+
d

r
=
d

2
.

A pair (q, r) is called wave admissible, for short W-admissible, if 2 ≤ q, r ≤ ∞, (q, r, d) 6=
(2,∞, 3), and

2

q
+
d− 1

r
≤ d− 1

2
.

We recall some known results.

Lemma 3.1. (Pausader [20]) Let E ∈ C([0, T ], H−4(Rd)) be a solution of (2.2) with

ε = 1. For any B-admissible pairs (q, r) and (q̃, r̃), it satisfies

(3.1) ‖E‖Lq
t ([0,T ];Lr

x(Rd)) ≤ C
(
‖E0‖L2

x(Rd) + ‖F‖
Lq̃′
t ([0,T ];Lr̃′

x (Rd))

)
,

where C depends only on q̃ and r̃. Besides, for any S-admissible pairs (q, r) and (a, b),

and any s ≥ 0, we have

(3.2)

‖|∇|sE‖Lq
t ([0,T ];Lr

x(Rd)) ≤ C
(
‖|∇|s−2/qE0‖L2

x(Rd) + ‖|∇|s−2/q−2/aF‖
La′
t ([0,T ];Lb′

x (Rd))

)
,

where C depends only on a′ and b′.

Consider the quantum effect, the Strichartz estimates (3.1) and (3.2) can be derived

as follows.

Corollary 3.2. Let E ∈ C([0, T ], H−4(Rd)) be a solution of (2.2). For any B-admissible

pairs (q, r) and (q̃, r̃), it satisfies

(3.3) ‖E‖Lq
t ([0,T ];Lr

x(Rd)) ≤ C
(
ε−2/q‖E0‖L2

x(Rd) + ε−2/q−2/q̃‖F‖
Lq̃′
t ([0,T ];Lr̃′

x (Rd))

)
,

where C depends only on q̃′ and r̃′. Besides, for any S-admissible pairs (q, r) and (a, b),

and any s ≥ 0, we have

‖|∇|sE‖Lq
t ([0,T ];Lr

x(Rd))

≤ C
(
ε−2/q‖|∇|s−2/qE0‖L2

x(Rd) + ε−2/q−2/a‖|∇|s−2/q−2/aF‖
La′
t ([0,T ];Lb′

x (Rd))

)
,

(3.4)

where C depends only on a′ and b′. For ε = 1, we also have

(3.5) ‖〈∇〉s−2/qE‖Lq
t ([0,T ];Lr

x(Rd)) ≤ C
(
‖〈∇〉sE0‖L2

x(Rd) + ‖〈∇〉s−2/aF‖
La′
t ([0,T ];Lb′

x (Rd))

)
.
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Proof. To derive the homogeneous terms of (3.3) and (3.4), we use the L2-norm invariant

scaling, E0,λ(x) = λd/2E0(λx) and the homogeneous estimates of (3.1) and (3.2).

To derive the inhomogeneous terms of (3.3) and (3.4), we use the La
′
t (Lb

′
x )-norm in-

variant scaling, Fλ(t, x) = λ2/a′+d/b′F (λ2t, λx) and the inhomogeneous estimates of (3.1)

and (3.2). (3.5) is an inhomogeneous version of (3.2).

Lemma 3.3. (Gustafson-Nakanishi-Tsai [12, Theorem 2.1]) Let N be a solution of (2.4).

If (qi, ri) are S-admissible with ri <∞ for i = 1, 2, we have∥∥∥∥∥
(
|∇|
〈∇〉

)−γ1
N

∥∥∥∥∥
L
q1
t ([0,T ];L

r1
x (Rd))

. ‖N0‖L2(Rd) +

∥∥∥∥( |∇|〈∇〉
)γ2

h

∥∥∥∥
L
q′2
t ([0,T ];L

r′2
x (Rd))

,

where the constant depends on d and

γi =

(
1− 2

d

)
1

qi
.

For the proof, the readers are referred to the work of Gustafson-Nakanishi-Tsai [12].

Lemma 3.4. (Gagliardo-Nirenberg inequality [2]) We have the following estimates

‖u‖4L4(Rd) . ‖∇u‖
d
L2(Rd)‖u‖

4−d
L2(Rd)

,(3.6)

‖u‖4L4(Rd) . ‖∆u‖
d
L2(Rd)‖u‖

8−d
L2(Rd)

(3.7)

and

(3.8) ‖u‖Hk−6(Rd) . ‖u‖
(k−6)/(k−4)

Hk−4(Rd)
‖u‖2/(k−4)

L2(Rd)
.

Proposition 3.5. For smooth solutions to (1.6), there hold two conserved quantities:

(3.9) ‖E(t)‖2L2 = ‖E0‖2L2 , H(t) = H(0) for all t ∈ R,

where H(t) = H(E(t),N (t)) is given in (1.8).

Moreover, if (E0,N0) ∈ V2, then

(3.10) ‖(E(t),N (t))‖V2 ≤ C for all t ∈ R,

where C depends only on ‖(E0,N0)‖V2 and ε. If (E0,N0) ∈ Vk for k ≥ 3, then

(3.11) ‖(E(t),N (t))‖Vk ≤ C for t ∈ [−T, T ],

where C depends only on ‖(E0,N0)‖Vk , T and ε.
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Proof. The derivations of conservation of mass and the conservation of the Hamiltonians

(1.4) for (1.1) and (1.8) for (1.6) are standard.

To prove (3.10), we define HN :=
∫

Re(N )|E|2 dx. To estimate the inhomogeneous

part of the Hamiltonian, we apply (3.7),

‖E(t)‖L4
x
. ‖E(t)‖1−d/8

L2
x
· ‖∆E(t)‖d/8

L2
x
.

Hence we have

|HN | ≤
1

4
‖N (t)‖2L2

x
+ C‖E0‖4(1−d/8)

L2
x

· ‖∆E(t)‖d/2
L2
x

≤ 1

4
‖N (t)‖2L2

x
+

1

2
ε2‖∆E(t)‖2L2

x
+ C.

Now we can estimate the homogeneous part of the Hamiltonian:

HL(t) = H(t)−HN (t)

≤ |H(0)|+ 1

4
‖N (t)‖2L2

x
+

1

2
ε2‖∆E(t)‖2L2

x
+ C.

Thus we obtain

HL(t) . |H(0)|+ C.

Hence we get

‖(E(t),N (t))‖V2 ∼ HL(t) ≤ C.

To show (3.11) for k ≥ 3, we proceed the proof by induction on k. First we show

(3.11) for k = 3. We apply (3.10) to obtain ‖E(t)‖H2 ≤ C for all t ∈ R. Since H2(Rd) is

a Banach algebra for d ≤ 3, we have ‖∆|E|2‖L2 ≤ ‖E‖2H2 ≤ C. Taking the inner product

of the second equation of (1.6) with 〈∇〉4N and then taking the imaginary part of the

resulting equation gives

Re

∫
〈∇〉2Nt〈∇〉2N dx = − Im

∫
〈∇〉2(|∇|〈ε∇〉−1|E|2)〈∇〉2N dx.

Hence we obtain
d

dt
‖〈∇〉2N‖2L2 . ‖〈∇〉2N‖2L2 + C.

Invoking Gronwall’s inequality, we get

‖〈∇〉2N‖L2 . C

for t ∈ [−T, T ].

To estimate E, we differentiate the first equation of (1.6) to get

(3.12) iEtt + ∆〈ε∇〉2Et = Re(Nt)E + Re(N )Et.
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Analogously we take the inner product of the above equation with 〈∇〉−2Et and then take

the imaginary part of the resulting equation, thus we have

Re

∫
〈∇〉−1Ett〈∇〉−1Et dx = Im

∫
〈∇〉−1(Re(Nt)E + Re(N )Et)〈∇〉−1Et dx.

Hence we obtain

d

dt
‖Et‖2H−1 . ‖NtE‖2H−1 + ‖NEt‖2H−1 + ‖Et‖2H−1 . ‖Et‖2H−1 + C.

Since

‖NtE‖H−1 = sup
‖ϕ‖H1≤1

|〈NtE,ϕ〉| ≤ sup
‖ϕ‖H1≤1

‖Nt‖L2‖E‖H1‖ϕ‖H1 ≤ C

and

‖NEt‖H−1 = sup
‖ϕ‖H1≤1

|〈NEt, ϕ〉| ≤ sup
‖ϕ‖H1≤1

‖Et‖H−1‖N‖H2‖ϕ‖H1 ≤ ‖Et‖2H−1 + C.

Notice that using the second equation of (1.6), we have ‖Nt‖L2 ≤ C. Invoking Gronwall’s

inequality, we get

‖Et‖H−1 . C for t ∈ [−T, T ].

Finally we use the first equation of (1.6),

(3.13) ∆E = 〈ε∇〉−2(−iEt + Re(N )E)

to obtain

‖E‖H3 . C for t ∈ [−T, T ].

Hence we have

‖(E(t),N (t))‖V3 ≤ C for all t ∈ [−T, T ].

Now we assume that the estimate (3.10) holds for k = 3, 4, . . . ,m. Now we want to show

that (3.10) holds for k = m + 1. Notice that ‖E(t)‖Hm ≤ C implies ‖∆E(t)‖Hm−2 ≤ C.

We take the inner product of the second equation of (1.6) with 〈∇〉2mN and then we take

the imaginary part of the resulting equation to get

Re

∫
〈∇〉mNt〈∇〉mN dx = − Im

∫
〈∇〉m(|∇|〈ε∇〉−1|E|2)〈∇〉mN dx.

Hence we obtain
d

dt
‖〈∇〉mN‖2L2 . ‖〈∇〉mN‖2L2 + C.

Invoking Gronwall’s inequality, we get

‖〈∇〉mN‖L2 . C for t ∈ [−T, T ].
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To estimate E, analogously we take the inner product of (3.12) with 〈∇〉2m−6Et and

then take the imaginary part of the resulting equation, thus we have

Re

∫
〈∇〉m−3Ett〈∇〉m−3Et dx = Im

∫
〈∇〉m−3(Re(Nt)E + Re(N )Et)〈∇〉m−3Et dx.

Hence we obtain

d

dt
‖Et‖2Hm−3 . ‖NtE‖2Hm−3 + ‖NEt‖2Hm−3 + ‖Et‖2Hm−3

. ‖Nt‖2Hm−3‖E‖2Hm−1 + ‖N‖2Hm−1‖Et‖2Hm−3 + ‖Et‖2Hm−3

. ‖Et‖2Hm−3 + C.

Notice that using the second equation of (1.6) gives ‖Nt‖Hm−3 ≤ C. Invoking Gron-

wall’s inequality, we get

‖Et‖Hm−3 . C for t ∈ [−T, T ].

Finally we use (3.13) to obtain

‖E‖Hm+1 . C for t ∈ [−T, T ].

This completes the proof.

Proposition 3.6. Let T > 0, k ≥ 2 and (E0,N0) ∈Wk. Then

‖(E(t),N (t))‖Wk
≤ C for all t ∈ [−T, T ],

where the constant C depends on ‖(E0,N0)‖Wk
, T and ε.

Proof. Since the initial data (E0,N0) ∈ Hk × Hk ⊂ Hk × Hk−1, we can then apply

Proposition 3.5 to get

‖(E(t),N (t))‖Hk×Hk−1 ≤ C for all t ∈ [−T, T ].

As in the proof of Proposition 3.5, we take the inner product of the second equation of

(1.6) with 〈∇〉2kN and then we take the imaginary part of the resulting equation to get

Re

∫
〈∇〉kNt〈∇〉kN dx = − Im

∫
〈∇〉k(|∇|〈ε∇〉−1|E|2)〈∇〉kN dx.

Hence we obtain
d

dt
‖〈∇〉kN‖2L2 . ‖〈∇〉kN‖2L2 + C.

Invoking Gronwall’s inequality, we get

‖〈∇〉kN‖L2 . C for t ∈ [−T, T ].

Hence we have the desired result.
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Proposition 3.7. Let d = 1 and k ≥ 4. Assume that (Eε0,N ε
0 ) ∈ Vk and

(3.14) ‖(Eε0,N ε
0 )‖Vk ≤ C0,

where C0 is independent of ε. If (Eε,N ε) ∈ C(R;Vk) is the solution to (1.6) with the

initial data (Eε0,N ε
0 ), then for all T > 0, we have

(3.15) ‖(Eε(t),N ε(t))‖Vk−2
+ ‖Eεt (t)‖Hk−4 ≤ C for all t ∈ [−T, T ],

where C depends on C0 and T , but not depends on ε.

Proof. We first prove the case for k = 4. From Proposition 3.5, we have the conservation

of mass and conservation of Hamiltonian in (3.9), that is

‖E(t)‖2L2 = ‖E0‖2L2 , H(t) = H(0) for all t ∈ R.

Invoking (3.6),

(3.16) ‖u‖4L4 . ‖u‖3L2‖ux‖L2 ,

we get∣∣∣∣∫ Re(N ε)|Eε|2 dx
∣∣∣∣ ≤ 1

4
‖N ε‖L2 + ‖Eε‖4L4 ≤

1

4
‖N ε‖2L2 +

1

2
‖Eεx‖2L2 +

1

2
‖Eε0‖6L2 .

Thus we have ∣∣∣∣∫ Re(N ε)|Eε|2 dx
∣∣∣∣− 1

4
‖N ε‖2L2 −

1

2
‖Eεx‖2L2 ≤ C

and then

‖|∇|〈ε∇〉Eε‖2L2 +
1

2
‖〈ε∇〉N ε‖2L2 ∼ H(Eε,N ε)(t)− 1

4
‖N ε‖2L2

− 1

2
‖Eεx‖2L2 −

∫
Re(N ε)|Eε|2 dx

. H(Eε,N ε)(0) + C.

(3.17)

We also have that

(3.18) ‖Eε‖L∞ ≤ ‖Eε‖H1 ≤ C.

Now we want to estimate ‖Eε‖Ḣ2 and ‖N ε‖Ḣ1 . Taking inner product of (3.12) and

the second equation of (1.6) with Eεt and |∇|2〈ε∇〉2N ε respectively, then we apply (3.16)

and (3.18) to obtain

1

2

d

dt
‖Eεt ‖2L2 = Im

∫
Im(|∇|〈ε∇〉N ε)EεE

ε
t dx

. ‖|∇|〈ε∇〉N ε‖2L2 + ‖Eεt ‖2L2

(3.19)
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and

1

2

d

dt
‖|∇|〈ε∇〉N ε‖2L2 = Im

∫
|∇|2|Eε|2|∇|〈ε∇〉N ε

dx

.
(
‖∆Eε‖2L2 + 1

)
‖|∇|〈ε∇〉N ε‖L2 .

(3.20)

Since

(3.21) i〈ε∇〉−2Eεt + ∆Eε = 〈ε∇〉−2(Re(N ε)Eε),

we have

‖∆Eε‖L2 ≤ ‖〈ε∇〉−2Eεt ‖L2 + ‖〈ε∇〉−2(Re(N ε)Eε)‖L2

≤ ‖Eεt ‖L2 + C.
(3.22)

Combining (3.19)–(3.22), we have

d

dt

(
‖Eεt ‖2L2 + ‖|∇|〈ε∇〉N ε‖2L2

)
. ‖Eεt ‖2L2 + ‖|∇|〈ε∇〉N ε‖2L2 + C.

Invoking Gronwall’s inequality, (3.14) and (3.17), one can derive

sup
t∈[−T,T ]

(
‖Eε‖2H2 + ‖Eεt ‖2L2 + ‖|∇|〈ε∇〉N ε‖2L2 + ‖〈ε∇〉N ε‖2L2

)
≤ C,

where C is independent of ε. Hence we have proved (3.15) for k = 4.

Repeating the same arguments as above, we can prove (3.15) for k > 4.

Proposition 3.8. Let d = 2, 3 and k ≥ 4. Assume that (Eε0,N ε
0 ) ∈ Vk and ‖(Eε0,N ε

0 )‖Vk ≤
C0, where C0 is independent of ε. If (Eε,N ε) ∈ C(R;Vk) is the solution to (1.6) with the

initial data (Eε0,N ε
0 ), then there exist constants T and C such that

(3.23) ‖(Eε(t),N ε(t))‖Vk−2
+ ‖Eεt (t)‖Hk−4 ≤ C for all t ∈ [−T, T ],

where C and T are independent of ε.

Proof. In the case of d = 2, 3, the Hamiltonian possesses a nonlinear part which can not

be absorbed by the linear part. Thus, unlike the case for d = 1 in Proposition 3.7, we use

a different approach at the cost of that the size of the time interval T is not arbitrary.

Let us consider the case of k = 4. First we compute

∂

∂t
|Eε|2 = 2 Im

[(
−∆Eε + ε2∆2Eε + Re(N ε)Eε

)
Eε
]

. 2 Im
[(
−∆Eε + ε2∆2Eε

)
Eε
]
.

So we have that

(3.24) ‖Eε(t)‖4L4 − ‖Eε(0)‖4L4 =

∫ t

0

∫
2|Eε|2 ∂

∂s
|Eε|2 dxds .

∫ t

0
‖Eε(s)‖4H2 ds.
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Analogously we have

(3.25) ‖ReN ε(t)‖4L4 . ‖ReN ε(0)‖4L4 +

∫ t

0
‖ReN ε(s)‖6H1 + ‖ReN ε

t (s)‖2L2 ds.

Invoking (3.21), (3.24) and (3.25), we then obtain

‖∆Eε(t)‖2L2 . ‖Eεt (t)‖2L2 + ‖Re(N ε)(t)‖4L4 + ‖Eε(t)‖4L4

. C + C

∫ t

0
‖Eε(s)‖4H2 + ‖ReN ε(s)‖6H1 + ‖ReN ε

t (s)‖2L2 ds.
(3.26)

Next we apply (3.24) to bound the integral∣∣∣∣∫ Re(N ε)|Eε|2 dx
∣∣∣∣ ≤ 1

4
‖Re(N ε)‖2L2 + C + C

∫ t

0
‖Eε(s)‖4H2 ds.

Thus we can apply (3.19) and (3.20) to estimate the following terms

1

2

d

dt

(
‖Eεt (t)‖2L2 + ‖|∇|〈ε∇〉N ε(t)‖2L2

)
= Im

∫
Im(|∇|〈ε∇〉N ε)EεE

ε
t dx+ Im

∫
|∇|2|Eε|2|∇|〈ε∇〉N ε

dx

. ‖|∇|〈ε∇〉N ε
t ‖2L2 + ‖Eε(s)‖4H2 + ‖Eεt (s)‖4L2 .

Thus we integrate the above estimate over the time interval [0, T ] and then we get

‖Eεt (t)‖2L2 + ‖|∇|〈ε∇〉N ε(t)‖2L2

≤ C + C

∫ t

0
‖|∇|〈ε∇〉N ε

t ‖2L2 + ‖Eε(s)‖4H2 + ‖Eεt (s)‖4L2 ds.

Now we apply the conservation of mass, the conservation of Hamiltonian and (3.24)

to compute

‖Eε(t)‖2H1 + ‖〈ε∇〉N ε(t)‖2L2

∼ ‖Eε‖2L2 + ‖∇Eε‖2L2 +
1

4
‖ReN ε‖2L2 +

1

2
‖ ImN ε‖2L2 +

1

2
‖ε∇N ε‖2L2

≤ ‖Eε(t)‖2L2 +Hε(t)− 1

4
‖ReN ε‖2L2 −

∫
Re(N ε)|Eε|2 dx

≤ ‖Eε(0)‖2L2 +Hε(0) + ‖Eε(t)‖4L4

≤ C + C

∫ t

0
‖Eε(s)‖4H2 ds.

(3.27)

Now we set

Φ(t) = ‖Eε(t)‖2H2 + ‖Eεt (t)‖2L2 + ‖〈ε∇〉N ε(t)‖2L2 + ‖|∇|〈ε∇〉N ε(t)‖2L2 .
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Invoking (3.26), (3.27) and (3.19), we can show that

Φ(t) . C + C

∫ t

0
(1 + Φ(s))3 ds.

By Gronwall’s inequality, there exist T > 0 and C > 0 such that (3.23) holds.

Finally, for k > 4, we set

Φk(t) = ‖Eε(t)‖2Hk−2 + ‖Eεt (t)‖2Hk−4 + ‖〈ε∇〉N ε(t)‖2Hk−4 + ‖|∇|〈ε∇〉N ε(t)‖2Hk−4 .

Analogously we can prove that

Φ(t) . C + C

∫ t

0
(1 + Φ(s))3 ds.

Again we apply Gronwall’s inequality to obtain that there exist T > 0 and C > 0 such

that (3.23) holds.

Proposition 3.9. Let d = 1 and k ≥ 4. Assume that (Eε0,N ε
0 ) ∈Wk and

‖(Eε0,N ε
0 )‖Wk

≤ C0,

where C0 is independent of ε. If (Eε,N ε) ∈ C(R;Wk) is the solution to (1.6) with the

initial data (Eε0,N ε
0 ), then for all T > 0, we have

‖(Eε(t),N ε(t))‖Wk−2
+ ‖Eεt (t)‖Hk−4 ≤ C for all t ∈ [−T, T ],

where C depends on C0 and T , but not depends on ε.

Proof. The proof is analogous to that of Proposition 3.6 so that we skip it.

Proposition 3.10. Let d = 2, 3 and k ≥ 4. Assume that (Eε0,N ε
0 ) ∈Wk and ‖(Eε0,N ε

0 )‖Wk

≤ C0, where C0 is independent of ε. If (Eε,N ε) ∈ C(R;Wk) is the solution to (1.6) with

the initial data (Eε0,N ε
0 ), then there exist constants T and C such that

‖(Eε(t),N ε(t))‖Wk−2
+ ‖Eεt (t)‖Hk−4 ≤ C for all t ∈ [−T, T ],

where C and T are independent of ε.

The proof is analogous to that of Proposition 3.9 so that we skip it.
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4. Global well-posedness for QZ system

Now we prove Theorem 1.1.

Proof of Theorem 1.1. For the existence and the uniqueness of the solution, the readers

are referred to Theorem 1.1 in [11]. Thus (1.6) admits a unique local solution. The

estimates in Proposition 3.5 imply that the solution (E,N ) obtained by the iteration

argument can be extended globally in time.

Secondly, we prove the continuous dependence of the solution to (1.6) on the initial

data. Let (Ej ,N j) and (E,N ) be the solutions to (1.6) with initial datum (Ej0,N
j
0 ) ∈ Vk

and (E0,N0) ∈ Vk respectively, such that

(4.1) ‖(Ej0,N
j
0 )− (E0,N0)‖Vk → 0 as j →∞.

Let us consider the difference of (Ej ,N j) and (E,N ). Denote

F j := Ej − E and M j := N j −N ,

and then (F j ,M j) solves

iF jt + ∆〈ε∇〉2F j = Re(M j)Ej + Re(N )F j ,

iM j
t + |∇|〈ε∇〉M j = |∇|〈ε∇〉−1(F jEj + EF j).

(4.2)

Invoking (3.10), we have

(4.3) sup
t∈[−T,T ]

‖(Ej ,N j)‖Vk + ‖Ejt ‖Hk−4 ≤ C,

where C is independent of j.

As in the statement of Proposition 3.5, the solution (Ej ,N j) satisfies

‖Ej(t)‖2L2 = ‖Ej0‖
2
L2 , Hj(t) = Hj(0) for all t ∈ R,

where Hj(t) = H(Ej(t),N j(t)) is given in (1.8). Invoking (4.1) and (4.3), one can get

sup
t∈[−T,T ]

‖(Ej − E,N j −N )‖L2×L2 → 0.

Thus we can use the interpolation in Sobolev spaces to derive

(4.4) sup
t∈[−T,T ]

‖(Ej − E,N j −N )‖Hk1×Hk1−1 → 0 for k1 < k.

Hence we can also get

(4.5) (Ej ,N j)→ (E,N ) weakly ∗ in L∞(−T, T ;Vk).
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From (4.3) and the second equation of (4.2), by the energy method, we have

(4.6)
d

dt
‖M j‖Hk−1 ≤ C

(
‖F j‖Hk + ‖M j‖Hk−1

)
.

Since M j has one regularity less than F j , we differentiate the equation of F j to get

iF jtt + ∆〈ε∇〉2F jt = M j
t E

j +M jEjt +N j
t F

j +N jF jt .

Invoking the energy method, we obtain

(4.7)
d

dt
‖F jt ‖Hk−4 ≤ C

(
‖M j

t ‖2Hk−3 + ‖M j‖2Hk−1 + ‖F j‖2Hk + ‖F jt ‖2Hk−4

)
for d = 2, 3 and k ≥ 3. Since N is given in (1.5), we can see that N j and N do not have

L∞-estimates when k = 2 and d = 2, 3. We apply the first equation of (4.2),

∆F j = 〈ε∇〉−2(−iF jt + Re(M j)Ej + Re(N )F j),

together with (4.3) and (4.4),

‖∆F j‖Hk−2 . ‖F jt ‖Hk−4 + ‖M j‖Hk−2‖Ej‖Hk−1 + ‖N‖Hk−2‖F j‖Hk−1 .

Thus we derive

‖F j‖Hk . ‖F jt ‖Hk−4 + o(1).

Combining the the above estimate with (4.1), (4.6) and (4.7), we get

(4.8) sup
t∈[−T,T ]

‖(Ej − E,N j −N )‖Vk → 0 as j →∞ for k ≥ 3.

For k = 2, (4.7) does not hold, so that we apply the conserved quantity H. Let us

denote

Aj(t) := ‖ε∆Ej‖2L2 +
1

2
‖ε|∇|N j‖2L2 and A(t) := ‖ε∆E‖2L2 +

1

2
‖ε|∇|N‖2L2 .

Compute

Aj(t)−A(t) = H(Ej ,N j)−H(E,N )− ‖∇Ej‖2L2 + ‖∇E‖2L2 −
1

2
‖N j‖2L2 +

1

2
‖N‖2L2

−
∫

Re(N j)|Ej |2 dx+

∫
Re(N )|E|2 dx.

Invoking (4.3) and (4.4), we can estimate the inhomogeneous part,

sup
t∈[−T,T ]

∫
Re(N j)|Ej |2 − Re(N )|E|2 dx

. sup
t∈[−T,T ]

(
‖M j‖L2‖Ej‖2L4 + ‖Re(N )‖L2‖F j‖L2‖Ej‖L4 + ‖Re(N )‖L4‖E‖L4‖F j‖L2

)
(4.9)
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which tends to zero as j →∞. Thus we can combine (1.8), (4.1), (4.4) and (4.9) to obtain

(4.10) lim
j→∞

sup
t∈[−T,T ]

|Aj(t)−A(t)| = 0.

Invoking the equality

‖f − g‖2L2 = ‖f‖2L2 − ‖g‖2L2 − 2 Re

∫
(f − g)g dx,

we can rewrite the following quantity

‖ε∆Ej − ε∆E‖2L2 +
1

2
‖ε|∇|N j − ε|∇|N‖2L2

= Aj(t)−A(t)− 2ε2 Re

∫
∆(Ej − E)∆E dx− ε2 Re

∫
|∇|(N j −N )|∇|N dx.

Combining (4.5) and (4.10), we can get

lim
j→∞

sup
t∈[−T,T ]

(
‖ε∆(Ej − E)‖2L2 +

1

2
‖ε|∇|(N j −N )‖2L2

)
= 0.

Therefore we have

(4.11) sup
t∈[−T,T ]

‖(Ej − E,N j −N )‖V2 → 0 as j →∞.

Finally (4.8) and (4.11) imply that the solution to (1.1) depends continuously on the

initial data. For k > 2, the argument is analogous to the previous case. This completes

the proof.

Proof of Theorem 1.2. Denote the notations

q =
8

d
, q̃ =

16

d
, 1 =

1

q′
+

1

q
, α =

1

q′
− 1

q
, β =

1

q′
− 1

q̃
and I = [0, T ].

Invoking the Strichartz estimates in Lemmas 3.1 and 3.3, for k ≥ 0, we estimate the

Schrödinger part E and the wave part N as follows. For d = 1, we have

‖PL〈∇〉sN‖Lq1 (I;L4(Rd)) + ‖PH〈∇〉sN‖Lq(I;L4(Rd))

.

∥∥∥∥∥
{
|∇|
〈∇〉

}1/q1

PL〈∇〉sN

∥∥∥∥∥
Lq1 (I;Lr̃(Rd))

+

∥∥∥∥∥
{
|∇|
〈∇〉

}1/q

PH〈∇〉sN

∥∥∥∥∥
Lq(I;L4(Rd))

. ‖PL〈∇〉sN0‖L2(Rd) +

∥∥∥∥∥
{
|∇|
〈∇〉

}−1/q |∇|
〈∇〉
PL〈∇〉s|E|2

∥∥∥∥∥
Lq′ (I;L4′ (Rd))

+ ‖PH〈∇〉sN0‖L2(Rd) +

∥∥∥∥∥
{
|∇|
〈∇〉

}−1/q |∇|
〈∇〉
PH〈∇〉s|E|2

∥∥∥∥∥
Lq′ (I;L4′ (Rd))

. ‖N0‖Hs(Rd) + ‖〈∇〉sE‖Lq′ (I;L4(Rd))‖E‖L∞(I;L2(Rd))

. ‖N0‖Hs(Rd) + T β‖〈∇〉sE‖Lq̃(I;L4(Rd))‖E‖L∞(I;L2(Rd)),

(4.12)
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where (q, 4) and (q1, r̃) are S-admissible, and 1/4 = 1/r̃ − 1/q1. For d = 2, 3, we have

‖〈∇〉sN‖Lq(I;L4(Rd))

.

∥∥∥∥∥
{
|∇|
〈∇〉

}−(1− 2
d

) 1
q

〈∇〉sN

∥∥∥∥∥
Lq(I;L4(Rd))

. ‖PL〈∇〉sN0‖L2(Rd) +

∥∥∥∥∥
{
|∇|
〈∇〉

}(1− 2
d

) 1
q |∇|
〈∇〉
〈∇〉s|E|2

∥∥∥∥∥
Lq′ (I;L4′ (Rd))

. ‖N0‖Hs(Rd) + ‖〈∇〉sE‖Lq′ (I;L4(Rd))‖E‖L∞(I;L2(Rd))

. ‖N0‖Hs(Rd) + T β‖〈∇〉sE‖Lq̃(I;L4(Rd))‖E‖L∞(I;L2(Rd)).

(4.13)

For d = 1, 2, 3, we can obtain

(4.14) ‖〈∇〉sN‖L∞(I;L2(Rd)) . ‖N0‖Hs(Rd) + T β‖〈∇〉sE‖Lq̃(I;L4(Rd))‖E‖L∞(I;L2(Rd)).

For d = 1, 2, 3 and 0 ≤ s ≤ 2/q, we can obtain estimates for E:

‖〈∇〉sE‖L∞(I;L2(Rd)) + ‖〈∇〉sE‖Lq̃(I;L4(Rd))

. ‖〈∇〉sE‖L∞(I;L2(Rd)) + ‖〈∇〉s+2/q̃E‖Lq̃(I;Lr1 (Rd))

. ‖〈∇〉sE0‖L2(Rd) + ‖〈∇〉s−2/q(NE)‖Lq′ (I;L4′ (Rd))

. ‖E0‖Hs + ‖NE‖Lq′ (I;L4′ (Rd))

. ‖E0‖Hs + ‖N‖Lq′ (I;L4(Rd))‖E‖L∞(I;L2(Rd))

. ‖E0‖Hs + Tα‖N‖Lq(I;L4(Rd))‖E‖L∞(I;L2(Rd)),

(4.15)

where (q̃, 4) is B-admissible and (q̃, r1) is S-admissible. For 2/q ≤ s ≤ 4/q, we can obtain

estimates

‖〈∇〉sE‖L∞(I;L2(Rd)) + ‖〈∇〉sE‖Lq̃(I;L4(Rd))

. ‖〈∇〉sE‖L∞(I;L2(Rd)) + ‖〈∇〉s+2/q̃E‖Lq̃(I;Lr1 (Rd))

. ‖〈∇〉sE0‖L2(Rd) + ‖〈∇〉s−2/q(NE)‖Lq′ (I;L4′ (Rd))

. ‖E0‖Hs + ‖〈∇〉s−2/qNE‖Lq′ (I;L4′ ) + ‖N〈∇〉s−2/qE‖Lq′ (I;L4′ )

. ‖E0‖Hs + ‖〈∇〉s−2/qN‖Lq′ (I;L4)‖E‖L∞(I;L2) + ‖N‖Lq′ (I;L4)‖〈∇〉
s−2/qE‖L∞(I;L2)

. ‖E0‖Hs + Tα
(
‖E‖L∞(I;L2) + ‖〈∇〉s−2/qE‖L∞(I;L2)

)
‖〈∇〉s−2/qN‖Lq(I;L4).

For 2(k − 1)/q ≤ s ≤ 2k/q, we can inductively obtain estimates

‖〈∇〉sE‖L∞(I;L2(Rd)) + ‖〈∇〉sE‖Lq̃(I;L4(Rd))

. ‖E0‖Hs + Tα
(
‖E‖L∞(I;L2) + ‖〈∇〉s−2/qE‖L∞(I;L2)

)
‖〈∇〉s−2/qN‖Lq(I;L4).

(4.16)
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To make the iteration arguments work, we denote the following norms

‖N‖W (Rd)

:=

‖〈∇〉sN‖L∞(I;L2) + ‖PL〈∇〉sN‖Lq1 (I;L4) + ‖PH〈∇〉sN‖Lq(I;L4) if d = 1,

‖〈∇〉sN‖L∞(I;L2) + ‖〈∇〉sN‖Lq(I;L4) if d = 2, 3,

‖E‖S(Rd) := ‖〈∇〉sE‖L∞(I;L2(Rd)) + ‖〈∇〉sE‖Lq̃(I;L4(Rd)).

For 0 ≤ s ≤ 2/q, we combine (4.12), (4.13), (4.14) and (4.15) to obtain

‖N‖W (Rd) ≤ 2‖N0‖Hs + CT β‖E‖L∞(I;L2)‖E‖S(Rd)

and

‖E‖S(Rd) ≤ 2‖E0‖Hs + CTα‖E‖L∞(I;L2)‖N‖W (Rd).

Thus we can show that the iteration argument works for T sufficiently small. Due to the

conservation law (1.3), we can choose the same size of time interval T for each step of

iteration which ensures that the solution exists globally in time.

We proceed the proof by induction on s. Assuming that 2(j − 1)/q ≤ s ≤ 2j/q for

j = 1, 2, . . . , k, there is a unique global solution (E,N ) to (1.6) with initial data in Ws.

For 2k/q ≤ s ≤ 2(k + 1)/q, we combine (4.12), (4.13), (4.14) and (4.16) to obtain

‖N‖W (Rd) ≤ 2‖N0‖Hs + CT β‖E‖L∞(I;L2)‖E‖S(Rd)

and

‖E‖S(Rd) ≤ 2‖E0‖Hs + CTα
(
‖E‖L∞(I;L2) + ‖〈∇〉s−2/qE‖L∞(I;L2)

)
‖N‖W (Rd).

Since 2(k−1)/q ≤ s−2/q ≤ 2k/q such that ‖〈∇〉s−2/qE‖L∞([0,T ];L2) is finite for any finite T ,

we can then perform an iteration argument at any T which is finite. Thus we have solution

(E,N ) ∈ C([0, T ];Ws(Rd)) for any finite T with initial data (E0,N0) ∈Ws(Rd).

5. The limit behavior of the QZ system

Now we prove Theorem 1.3.

Proof of Theorem 1.3. From the works of [7, 21], we know that (E0,N 0) ∈ C(R, Vk).
Denote the difference between the quantum solution and the classical solution by

E = Eε − E0 and N = N ε −N 0.
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(E,N ) satisfies the system

iEt + ∆〈ε∇〉2E = ε2∆2E0 + Re(N )Eε + Re(N 0)E,

iNt − |∇|〈ε∇〉N = |∇|(〈ε∇〉 − I)N 0 + |∇|〈ε∇〉−1[EE
ε

+ E0E]

+ |∇|(〈ε∇〉−1 − I)|E0|2.

(5.1)

First we take the inner product of the first equation of (5.1) with E, and then take the

imaginary part of it. Thus we can obtain

1

2

d

dt
‖E‖2L2 = Im

∫
ε2∆2E0E + Re(N )Eε dx . ε4 + ‖E‖2L2 + ‖N‖2L2 .

Next we take the inner product of the second equation of (5.1) with 〈ε∇〉2N , and then

take the imaginary part of it. Thus we can derive

1

2

d

dt
‖〈ε∇〉N‖2L2

= Im

∫ (
|∇|(〈ε∇〉 − I)N 0 + |∇|〈ε∇〉−1[EE

ε
+ E0E] + |∇|(〈ε∇〉−1 − I)|E0|2

)
〈ε∇〉2N dx

. ε4 + ‖E‖2H1 + ‖〈ε∇〉N‖2L2 .

Combining the above, we have

(5.2)
d

dt
(‖E‖2L2 + ‖〈ε∇〉N‖2L2) . ε4 + ‖E‖2H1 + ‖〈ε∇〉N‖2L2 .

To derive the bounds of higher order derivative of E and N , we invoke (3.8) and

Young’s inequality to get

‖E‖Hk−6 ≤ C‖E‖2/(k−4)
L2 ‖E‖(k−6)/(k−4)

Hk−4

≤ C‖E‖L2 +
1

2
‖E‖Hk−4 ≤ C‖E‖L2 +

1

2
‖∆E‖Hk−6 .

(5.3)

Now we take the Hk−6-norm of the first equation of (5.1) and then we invoke (5.3) and

Propositions 3.7 and 3.8 to get

‖∆E‖Hk−6 = ‖ − iEt + ε2∆2Eε + Re(N )Eε + Re(N 0)E‖Hk−6

≤ Cε2 + C‖Et‖Hk−6 + C‖Re(N )‖Hk−6 + C‖E‖Hk−6

≤ Cε2 + C‖Et‖Hk−6 + C‖Re(N )‖Hk−6 + C‖E‖L2 +
1

2
‖∆E‖Hk−6 .

Thus we can obtain

‖∆E‖Hk−6 . ε2 + ‖Et‖Hk−6 + ‖Re(N )‖Hk−6 + ‖E‖L2 .
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Also we have

‖N‖Hk−5 ∼ ‖N‖L2 + ‖|∇|N‖Hk−6

. ‖N‖L2 + ‖ε|∇|N‖L2 + ‖|∇|N‖Hk−6 + ‖ε∆N‖Hk−6 .

Hence we have

‖E‖Hk−4 . ε2 + ‖Et‖Hk−6 + ‖Re(N )‖Hk−6 + ‖E‖L2 ,

‖N‖Hk−5 . ‖〈ε∇〉N‖L2 + ‖|∇|〈ε∇〉N‖Hk−6 .
(5.4)

Here we have an alternative for deriving (5.4). We can take the Hk−6-norm of the first

equation of (5.1) in a slightly different way and then we invoke (5.3) to obtain

‖∆E‖Hk−6 = ‖〈ε∇〉−2(−iEt − ε2∆2E0 + Re(N )Eε + Re(N 0)E)‖Hk−6

≤ Cε2 + C‖Et‖Hk−6 + C‖Re(N )‖Hk−6 + C‖E‖Hk−6

≤ Cε2 + C‖Et‖Hk−6 + C‖Re(N )‖Hk−6 + C‖E‖L2 +
1

2
‖∆E‖Hk−6 .

The computation only requires the uniform boundedness of Eε in a norm with lower

regularity.

Now we take the time derivative of the first equation of (5.1) and we get

(5.5) iEtt + ∆〈ε∇〉2Et = ε2∆2E0
t + Re(Nt)Eε + Re(N )Eεt + Re(N 0

t )E + Re(N 0)Et.

Invoking (1.5), we have

Re(N 0
t ) = Im(|∇|N 0) and Re(Nt) = Im(|∇|〈ε∇〉N ε − |∇|N 0)

which enables us to transfer the time derivative to space derivative. Now we take the inner

product of (5.5) with 〈∇〉2k−12Et and then we take the imaginary part of it. Invoking

(5.4), we can get

(5.6)
d

dt
‖Et‖2Hk−6 . ε4 + ‖E‖2L2 + ‖Et‖2Hk−6 + ‖ Im(|∇|〈ε∇〉N )‖2Hk−6 + ‖Re(N )‖2Hk−6 .

To derive the bound of higher order derivative of N , analogously we take the inner product

of the second equation of (5.1) with 〈∇〉2k−12|∇|2〈ε∇〉2N and then we take the imaginary

part of it. Thus we can get

d

dt
‖|∇|〈ε∇〉N‖2Hk−6 . ε4 + ‖E‖2L2 + ‖Et‖2Hk−6

+ ‖ Im(|∇|〈ε∇〉N )‖2Hk−6 + ‖Re(N )‖2Hk−6 .

(5.7)

Combining (5.2), (5.6) and (5.7), we get

d

dt

(
‖E‖2L2 + ‖Et‖2Hk−6 + ‖〈ε∇〉N‖2L2 + ‖|∇|〈ε∇〉N‖2Hk−6

)
. ε4 + ‖E‖2L2 + ‖Et‖2Hk−6 + ‖〈ε∇〉N‖2L2 + ‖|∇|〈ε∇〉N‖2Hk−6 .

(5.8)
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Notice that

‖N‖Hk−5 . ‖〈ε∇〉N‖L2 + ‖|∇|〈ε∇〉N‖Hk−6 .

Let us denote

(5.9) Ψ(t) = ‖E(t)‖2L2 + ‖Et(t)‖2Hk−6 + ‖〈ε∇〉N (t)‖2L2 + ‖|∇|〈ε∇〉N (t)‖2Hk−6 .

Integrate (5.8) over the time interval [0, t] and invoke the Gronwall’s inequality, we have

Ψ(t) . ε4 + Ψ(0) for t ∈ [0, T ],

where T is given in Propositions 3.7 and 3.8.

Now we analyze the quantity Ψ(0). Invoking (5.9), we get

Ψ(0) = ‖E0‖2L2 + ‖Et(0)‖2Hk−6 + ‖〈ε∇〉N0‖2L2 + ‖|∇|〈ε∇〉N0‖2Hk−6 .

First we estimate the term ‖Et(0)‖Hk−6 . Invoking the first equation of (5.1), we can derive

‖Et(0)‖Hk−6 . ‖∆E0‖Hk−6 + ‖ε2∆2Eε0‖Hk−6 + ‖Re(N )Eε‖Hk−6 + ‖Re(N 0)E‖Hk−6

. ‖E0‖Hk−4 + ε2‖Eε0‖Hk−2 + ‖Re(N0)Eε0‖Hk−6 + ‖Re(N 0
0 )E0‖Hk−6 .

Invoking (1.9), we have ‖Eε0‖Hk−2 ≤ C. Next we have

‖Re(N0)Eε0‖Hk−6 .


‖N0‖L2‖Eε0‖H2 for k = 6,

‖N0‖H1‖Eε0‖H2 for k = 7,

‖N0‖Hk−6‖Eε0‖Hk−6 for k ≥ 8.

Analogously we can get

‖Re(N 0
0 )E0‖Hk−6 .


‖N 0

0 ‖L2‖E0‖H2 for k = 6,

‖N 0
0 ‖H1‖E0‖H2 for k = 7,

‖N 0
0 ‖Hk−6‖E0‖Hk−6 for k ≥ 8.

For the last two terms in the expression of Ψ(0), we can get

‖〈ε∇〉N0‖L2 . ‖ε|∇|N0‖L2 + ‖N0‖L2

and

‖|∇|〈ε∇〉N0‖Hk−6 . ‖ε∆N0‖Hk−6 + ‖|∇|N0‖Hk−6 .

Now we can estimate Ψ(0) as follows:

Ψ(0) . ‖E0‖2Hk−4 + ε4 + ‖N0‖2Hk−6 + ‖ε∆N0‖2Hk−6 + ‖|∇|N0‖2Hk−6 + ‖ε|∇|N0‖2L2

. ‖E0‖2Hk−4 + ε4 + ‖N0‖2Hk−5 + ‖ε∆N0‖2Hk−6 + ‖ε|∇|N0‖2L2 .
(5.10)
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Therefore we can compute

‖(E,N )(t)‖Vk−4
∼ ‖E(t)‖Hk−4 + ‖N (t)‖Hk−5

. ε2 + ‖Et‖Hk−6 + ‖Re(N )‖Hk−6 + ‖E‖L2

+ ‖〈ε∇〉N‖L2 + ‖|∇|〈ε∇〉N‖Hk−6

. ε2 + Ψ1/2(t)

. ε2 + Ψ1/2(0)

. ‖E0‖Hk−4 + ε2 + ‖N0‖Hk−5 + ‖ε∆N0‖Hk−6 + ‖ε|∇|N0‖L2

. ‖(E0,N0)‖Vk−4
+ ‖ε|∇|N0‖L2 + ε2

which implies the result of (1.10). Interpolate between (1.10) with (3.15), we can obtain

(1.11). For the derivation of (1.12), the readers are referred to the proof of Theorem 1.3

in [11].

Remark 5.1. Invoking (1.5), the formula (5.10) can be rewritten as follows:

Ψ(0) . ‖E0‖2Hk−4 + ε4 + ‖n0‖2Hk−5 + ‖n1‖2Hk−6∩Ḣ−1 + ‖ε∆n0‖2Hk−6 .

Now we prove Theorem 1.4.

Proof of Theorem 1.4. Since

‖(Eε − E0,N ε −N 0)‖Wk−5
≤ ‖(Eε − E0,N ε −N 0)‖Vk−4

,

we can apply (1.10) to obtain (1.13)–(1.15). The argument is analogous to that of Theo-

rem 1.3 so that we skip the details.
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