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This paper gives very significant and up-to-date analytical and numerical results to the
three-dimensional heat radiation problem governed by a boundary integral equation.
There are two types of enclosure geometries to be considered: convex and nonconvex
geometries. The properties of the integral operator of the radiosity equation have been
thoroughly investigated and presented. The application of the Banach fixed point theo-
rem proves the existence and the uniqueness of the solution of the radiosity equation. For
a nonconvex enclosure geometries, the visibility function must be taken into account. For
the numerical treatment of the radiosity equation, we use the boundary element method
based on the Galerkin discretization scheme. As a numerical example, we implement
the conjugate gradient algorithm with preconditioning to compute the outgoing flux for
a three-dimensional nonconvex geometry. This has turned out to be the most efficient
method to solve this type of problems.

1. Introduction

Heat radiation is a very important phenomenon in our modern technology. One of the
factors that account for the importance of the thermal radiation in some applications
is the manner in which radiant emission depends on temperature. For conduction and
convection, the transfer of energy between two locations depends on the temperature dif-
ference of the locations. The transfer of energy by thermal radiation, however, depends
on the differences of the individual absolute temperatures of the bodies, each raised to
a power in the range of about 4 or 5. It is also evident that the importance of radiation
becomes intensified at high absolute temperature levels. Consequently, radiation con-
tributes substantially to the heat transfer in furnaces and combustion chambers and in the
energy emission from a nuclear explosion. Also heat radiation must often be considered
when calculating thermal effects in devices such as a rocket nozzle, a nuclear power plant,
or a gaseous-core nuclear rocket. One of the most interesting features about transport of
heat radiative energy between two points on the diffuse grey surface is its formulation as
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an integral equation. An important consequence of this fact is that the pencil of rays emit-
ted at one point can impinge another point only if these two points can “see” each other,
that is, the domain is convex. The presence of the shadow zones should also be taken into
consideration in heat radiation analysis whenever the domain where the radiation heat
transfer takes place is nonconvex. Shadow zones computation in some respect is not easy,
but we were able to develop an efficient geometrical algorithm to determine the shadow
function in the two-dimensional case for polygonal domains and then this algorithm was
transformed to the three-dimensional case for an enclosure with polyhedral boundary
[5, 8].

In [1, 2], a boundary element method was implemented for two-dimensional enclo-
sures to obtain a direct numerical solution for the integral equation; however, this permits
quite high error bounds. In [6], two-dimensional convex and nonconvex geometries have
been considered and some solution methods for the discrete heat equation, for example,
the conjugate gradient method, direct solvers, and multigrid methods, have been com-
pared.

Our main concern in this paper is to focus on the analytical aspect of the radiosity
equation and to show how the boundary element method based on the Bubnov-Galerkin
discretization scheme can be used for the solution of the radiosity equation. Now we give
a short overview of this paper.

In Section 2, we present a systematic derivation of the heat radiosity equation. This
is preceded by thorough definitions of the quantities needed to derive this equation. In
Section 3, we present some important analytical results concerning the integral operator
of the radiosity equation. In Section 4, we prove with the help of the Banach fixed point
theorem the existence and the uniqueness of the solution of the radiosity equation. In
Section 5, we describe the Bubnov-Galerkin discretization scheme for the solution of the
radiosity equation and present a numerical example for the calculation of the outgoing
flux for a nonconvex enclosure.

2. The formulation of the heat radiation problem

We consider an enclosure Ω⊂Rd, d = 2,3, with boundary Γ. The boundary of the enclo-
sure is composed of N elements as shown in Figure 2.1.

The heat balance for an element k with area dAk reads as

Qk = qkdAk =
(
q0,k − qi,k

)
dAk, (2.1)

where

(i) qi,k is the rate of incoming radiant energy per unit area on the element k,
(ii) q0,k is the rate of outgoing radiant energy per unit area on the element k,

(iii) dAk is the area of element k,
(iv) qk is the energy flux supplied to the element k by some means other than the

radiation inside the enclosure to make up for the net radiation loss and maintain
the specified inside surface temperature.
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Elements j

Element k

Figure 2.1. Boundary of the enclosure.

A second equation results from the fact that the energy flux leaving the surface is com-
posed of emitted and reflected energy. This yields to

q0,k = εkσT
4
k + ρkqi,k, (2.2)

where

(i) εk is the emissivity coefficient (0 < εk < 1),
(ii) σk is the Stefan-Boltzmann constant which has the value 5.669996·10−8W/(m2K4),

(iii) ρk is the reflection coefficient with the relation ρk = 1− εk for opaque grey sur-
faces.

The incident flux qi,k is composed of the portions of the energy leaving the viewable
surfaces of the enclosure and arriving at the kth surface. If the kth surface can view itself
(is nonconvex), a portion of its outgoing flux will contribute directly to its incident flux.
The incident energy is then equal to

dAkqi,k = dA1q0,1F1,kβ(1,k) +dA2q0,2F2,kβ(2,k) + ···+dAjq0, jF j,kβ( j,k)

+ ···+dAkq0,kFk,kβ(k,k) + ···+dANq0,NFN ,kβ(N ,k).
(2.3)

From the view factor, reciprocity relation [10] follows:

dA1F1,kβ(1,k)= dAkFk,1β(k,1),

dA2F2,kβ(2,k)= dAkFk,2β(k,2),

...

dANFN ,kβ(N ,k)= dAkFk,Nβ(k,N).

(2.4)
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Then (2.3) can be rewritten in such a way that the only area appearing is dAk:

dAkqi,k = dAkFk,1β(k,1)q0,1 +dAkFk,2β(k,2)q0,2

+ ···+dAkFk, jβ(k, j)q0, j + ···+dAkFk,kβ(k,k)q0,k

+ ···+dAkFk,Nβ(k,N)q0,N ,

(2.5)

so that the incident flux can be expressed as

qi,k =
N∑
j=1

Fk, jβ(k, j)q0, j . (2.6)

The visibility factor β(k, j) is defined as (see, e.g., [6])

β(k, j)=


1 when there is a heat exchange between the surface element k

and the surface element j,

0 otherwise.

(2.7)

Substituting (2.6) into (2.2) and using the relation ρk = 1− εk, we finally get

q0,k = εkσT
4
k +

(
1− εk

) N∑
j=1

Fk, jβ(k, j)q0, j . (2.8)

2.1. The calculation of the view factor Fk, j . The total energy per unit time leaving the
surface element dAk and incident on the element dAj is given through

Qk, j = LkdAk cosθkdωk, (2.9)

where dωk is the solid angle subtended by dAj when viewed from dAk (see Figure 2.2)
and Lk is the total intensity of a black body for the surface element dAk.

The solid angle dωk is related to the projected area of dAj and the distance Sk, j between
the elements dAk and dAj and can be calculated as

dωk =
dAj cosθj

S2
k, j

, (2.10)

where θj denotes the angle between the normal vector nj and the distance vector Sk, j .
Substituting (2.10) into (2.9) gives the following equation for the total energy per unit
time leaving dAk and arriving at dAj :

Qk, j =
LkdAk cosθkdAj cosθj

S2
k, j

. (2.11)

In [10], we have the relation between the total intensity Lk and the total emissivity Ek of
a black body, that is,

Lk = Ek
π
= σT4

k

π
, (2.12)
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Figure 2.2. Calculation of the view factor.

and consequently (2.11) becomes

Qk, j =
σT4

k cosθk cosθjdAkdAj

πS2
k, j

. (2.13)

From the definition of the view factor Fk, j (see [10]), together with (2.13), we get

Fk, j := Qk, j

σT4
k dAk

= cosθk cosθjdAj

πS2
k, j

. (2.14)

2.2. The boundary integral equation. Now we are able to derive the boundary integral
equation describing the heat balance in a grey body. The substitution of (2.14) into (2.8)
leads to

q0,k = εkσT
4
k +

(
1− εk

) N∑
j=1

cosθk cosθjdAj

πS2
k, j

β(k, j)q0, j . (2.15)

If the number of the area elements N →∞, then for all x ∈ dAk, we obtain the boundary
integral equation

q0(x)= ε(x)σT4(x) +
(
1− ε(x)

)∫
Γ
G(x, y)q0(y)dΓy for x ∈ Γ, (2.16)

where the kernel G(x, y) denotes the view factor between the points x and y of Γ.
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From the above considerations and for general enclosure geometries, G(x, y) is given
through

G(x, y) :=G∗(x, y)β(x, y) :=
[
n(y) · (y− x)

] · [n(x) · (x− y)
]

c0|x− y|d+1
β(x, y), (2.17)

where c0 = 2 for d = 2 and c0 = π for d = 3.
For convex enclosure geometries, β(x, y) ≡ 1. If the enclosure is not convex, then we

have to take into account the visibility function β(x, y),

β(x, y)=
1 for n(y) · (y− x) > 0∧n(x) · (x− y) > 0∧ �xy∩Γ=∅,

0 for �xy∩Γ 
= ∅,
(2.18)

where �xy denotes the open straight segment between the points x and y. Definition (2.18)
implies that β(x, y)= β(y,x). Since G∗(x, y) is symmetric, then G(x, y) is also symmetric.

3. Properties of the integral operator

Equation (2.16) is a Fredholm boundary integral equation of the second kind. We intro-
duce the integral operator K̃ : L∞(Γ)→ L∞(Γ) with

K̃q0(x) :=
∫
Γ
G(x, y)q0(y)dΓy for x ∈ Γ, q0 ∈ L∞(Γ). (3.1)

This integral operator has the following properties.

Lemma 3.1. Let Γ be a Ljapunow surface in C1,δ with δ ∈ [0,1). Then for any arbitrary
point x ∈ Γ, ∫

Γ
G∗(x, y)dΓy = 1, (3.2)

where G∗(x, y) is given by (2.17).

Proof. First we choose a local coordinate system in the point x ∈ Γ so that x = (0,0,0)
and the plane (ξ1,ξ2) is tangent to Γ in x. Furthermore, we choose y = (ξ1,ξ2, f (ξ1,ξ2))
in the neighbourhood of ξ1 = ξ2 = 0. Using the assumption that Γ∈ C1,δ with δ ∈ [0,1),
together with the Taylor expansion of y in the local coordinate system and some trivial
estimates (see [6]), we get the following inequalities:∣∣∣∣n(x) · (y− x)

|y− x|2
∣∣∣∣≤ c1

∣∣ξα∣∣δ−1
,

∣∣∣∣n(y) · (x− y)
|x− y|2

∣∣∣∣≤ c2
∣∣ξα∣∣δ−1

(3.3)

with α∈ [1,d− 1] and d = 2 or 3. Consequently, one obtains from (3.3)

∣∣G∗(x, y)
∣∣≤ c3

∣∣ξα∣∣−2(1−δ)+3−d
(3.4)

with an arbitrary constant c3 and d = 2 or 3. This shows that G∗(x, y) is a weakly singular
kernel of type |x− y|−2(1−δ) and hence it is integrable.
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Figure 3.1. Convex case.

In order to calculate
∫
ΓG

∗(x, y)dΓy , we use Stoke’s theorem [6]. For the following, we
consider a closed surface Γ and an arbitrary point y = (y1, y2, y3) ∈ Γ. At this point, the
normal to the area A is constructed. Let the functions P1(y), P2(y), and P3(y) be any
twice differentiable functions of y1, y2, and y3 and n is the normal. Stoke’s theorem in
three dimensions provides the following relation:

∫
∂A

(
P1dy1 +P2dy2 +P3dy3

)
=
∫
A

[(
∂P3

∂y2
− ∂P2

∂y3

)
n1(y) +

(
∂P1

∂y3
− ∂P3

∂y1

)
n2(y) +

(
∂P2

∂y1
− ∂P1

∂y2

)
n3(y)

]
dA.

(3.5)

Hence this relation can now be applied to express area integrals in view factor computa-
tions in terms of boundary integrals. To this end, we consider the surface Γ as shown in
Figure 3.1, let Γγ = Z(x,γ)∩Γ be a small neighbourhood of the point x, and define Γ∗ as
Γ∗ = Γ \Γγ.

Here Z(x,γ) is a cylinder which is defined by the relation x2
1 + x2

2 ≤ γ2. Since Γ∗ is not
independent of x, the integral

∫
ΓG

∗(x, y)dΓy can be expressed as

Fγ(x)=
∫
Γ
G∗(x, y)dΓy =

∫
Γγ
G∗(x, y)dΓy +

∫
Γ∗
G∗(x, y)dΓy , (3.6)

where the first integral tends to zero for γ → 0 because of the weakly singular kernel
G∗(x, y). Hence (3.6) is reduced to

Fγ(x)= lim
γ→0

∫
Γ∗
G∗(x, y)dΓy. (3.7)
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Since the view factor G∗(x, y) is smooth in Γ∗, the application of Stoke’s theorem leads to

Fγ(x)= lim
γ→0

∫
Γ∗
G∗(x, y)dΓy = lim

γ→0

∫
∂Γ∗
∇× �P(y) ·n(y)dy

= lim
γ→0

∮
∂Γ∗

(
P1dy1 +P2dy2 +P3dy3

)
,

(3.8)

where P1(y), P2(y), and P3(y) are given in [6], respectively, by

P1(y)= −n2(x)
(
x3− y3

)
+n3(x)

(
x2− y2

)
2π|x− y|2 ,

P2(y)= n1(x)
(
x3− y3

)−n3(x)
(
x1− y1

)
2π|x− y|2 ,

P3(y)= −n1(x)
(
x2− y2

)
+n2(x)

(
x1− y1

)
2π|x− y|2 .

(3.9)

The normal to the area element is perpendicular to both the x1- and x2-axes and parallel
to the x3-axis. Hence (3.8) becomes

Fγ(x)= 1
2π

lim
γ→0

∮
∂Γ∗

(
x2− y2

)
dy1−

(
x1− y1

)
dy2

|x− y|2

= 1
2π

lim
γ→0

∮
∂Γ∗

−y2dy1 + y1dy2

y2
1 + y2

2 + y2
3

,

(3.10)

using the fact that the area element is located at the origin of the coordinate system. With
the help of the relation y2

1 + y2
2 = γ2, we get

Fγ(x)= 1
2π

lim
γ→0

∮
∂Γ∗

1
γ2

(− y2dy1 + y1dy2
)

︸ ︷︷ ︸
:=I1

+
1

2π
lim
γ→0

∮
∂Γ∗

−y2
3

(− y2dy1 + y1dy2
)(

γ2 + y2
3

)
γ2︸ ︷︷ ︸

:=I2

.

(3.11)

Let the boundary of the domain Γ∗ be described by the triple (y1, y2, f (y, y2)); then the
first integral I1 will be integrated over the circle y2

1 + y2
2 = γ2. Using the polar coordinates

y1 = γ cosθ and y2 = γ sinθ, one obtains directly

I1 = 1
2π
· 1
γ2

∫ 2π

0
γ2dθ = 1. (3.12)

For the second integral, we have y3 = f (y1, y2). Applying Taylor’s expansion, it can easily
be shown that I2 = 0. Hence, we have the desired result for convex enclosure geome-
tries (3.2). Next we have to show that this result holds also for the nonconvex case; see
Figure 3.2. Therefore, we consider the set Γ\Γy , where Γy = {x ∈ Γ | β(x, y)= 1}.

This set consists in general of many disjoint components. For the sake of simplicity, we
take one of these components and denote it by Di, where Di is the boundary of Γi. Clearly,
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Figure 3.2. Nonconvex case.

all Γi are dependent on the choice of Di. Due to the discontinuity of the visibility function
β(x, y), the Stoke theorem cannot be applied directly for G(x, y), but we write first∫

Γ∗
G(x, y)dΓy =

∫
Γ∗
G∗(x, y)dΓy −

∑
i

∫
Di

∇× �P(y) ·n(y)dy. (3.13)

Since the second integral vanishes over the closed surfaceDi, the assertion follows directly.
�

Lemma 3.2. Let Γ be a closed surface of the class C2. Then G∗(x, y) in (2.17) is a bounded
kernel, that is,

∣∣G∗(x, y)
∣∣≤ C̃ (3.14)

with a suitable chosen constant C̃.

Proof. Under the assumption that Γ⊂ C2, the following requirements are fulfilled.

(1) In every point of the surface exists a tangential plane.
(2) If θ is the angle between the normals at the points x and y and r1,2 denotes the

distance between these two points, the inequality

|θ| < Ar1,2, θ ∈ (0,2π), (3.15)

holds, where A is a positive number independent from the choice of the points x
and y.

(3) For all points x0 of the surface, there exists a fixed number d with the property
that the point of the surface which is located within the sphere of radius d around
x0 is intersected by a parallel to the normal in x0 at most in one point.
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Let the ζ-axis be the normal at the surface point x0 and take the two ξ- and η-axes to be
the tangential plane containing the point x0 such that the three axes form an orthonor-
mal system. The corresponding unit vectors are denoted by e1, e2, and e3. As a conse-
quence of the third condition above, a part of the surface which lies inside the Ljapunow
sphere takes the form ζ =Ψ(ξ,η). The existence of the tangential plane and its continuous
change imply the existence of the first partial derivatives Ψξ and Ψη which are continuous
due to requirement (2). Assume that d is sufficiently small, that is,

Ad ≤ 1, (3.16)

so that the angle between the normal at x0 and the normal at any arbitrary point of the
surface which lies inside the sphere does not exceed the value π/2. Denoting with r0 the
distance |x0− y0|, one obtains

cosθ0 ≥ 1− 1
2
θ2

0 ≥ 1− 1
2
A2r2

0 >
1
2
. (3.17)

On the other hand, we have

1
cosθ0

=
√

1 +Ψ2
ξ +Ψ2

η ≤ 1 +A2r2
0 ≤ 2 (3.18)

and therefore,

Ψ2
ξ +Ψ2

η ≤ 2A2r2
0 +A4r2

0 . (3.19)

The introduction of the polar coordinates ξ = ρ0 cosθ, η = ρ0 sinθ leads to

Ψ2
ρ0
= (Ψξ cosθ +Ψη sinθ

)2 ≤Ψ2
ξ +Ψ2

η. (3.20)

Using (3.19) together with the estimate |Ψ| ≤ √3ρ0 and therefore r0 ≤ 2ρ0, we get∣∣Ψρ0

∣∣≤ 2
√

3Aρ0. (3.21)

Finally, it follows from (3.17) that

1− cosθ0 ≤ 2A2ρ2
0. (3.22)

As a consequence of (3.19), the estimate

∣∣cos
(
n,e1

)∣∣=
√
Ψ2

ξ +Ψ2
η√

1 +Ψ2
ξ +Ψ2

η

≤ ∣∣Ψξ

∣∣≤√3Ar0 (3.23)

holds, where n is the unit vector of the outward normal of Γ at an arbitrary point. Anal-
ogously, we get ∣∣cos

(
n,e2

)∣∣≤√3Ar0,
∣∣cos

(
n,e3

)∣∣= cosθ0. (3.24)
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Summarizing the estimates above, we get

|Ψ| ≤ cρ2
0,

∣∣cos
(
n,e1

)∣∣ < cρ0,∣∣cos
(
n,e2

)∣∣≤ cρ0,
∣∣cos

(
n,e3

)∣∣≥ 1
2
.

(3.25)

From (3.23), it follows that

∣∣cos
(
(x− y),n(x)

)∣∣= ∣∣∣∣∣n(x) · (x− y)
r1,2

∣∣∣∣∣≤Ψξ ≤D1r1,2, (3.26)

and similarly the estimate

∣∣cos
(
(y− x),n(y)

)∣∣= ∣∣∣∣∣n(y) · (y− x)
r1,2

∣∣∣∣∣≤D1r1,2 (3.27)

with D1 =
√

3A. Therefore, we get, for the kernel,

∣∣G∗(x, y)
∣∣= ∣∣∣∣∣cos

(
(x− y),n(x)

) · cos
(
(y− x),n(y)

)
r2

1,2

∣∣∣∣∣≤ c̃, (3.28)

where c̃ = 3A2/π with A= supx,y∈Γ(θ/r1,2). �

We remark that in the two-dimensional case for G∗(x, y) in (2.17), the estimate∣∣G∗(x, y)
∣∣≤ c̃r1,2 (3.29)

holds with some constant c̃.

Lemma 3.3. For the integral kernel G(x, y), it holds that G(x, y) ≥ 0. The mapping K̃ :
Lp(Γ)→ Lp(Γ) is compact for 1≤ p ≤∞. Furthermore,

(a) K̃1= 1 and ‖K̃‖ = 1 in Lp for 1≤ p ≤∞,
(b) the spectral radius ρ(K̃)= 1.

Proof. For the convex case,G∗(x, y) is obviously not negative. For the nonconvex case, the
visibility factor β(x, y) ≡ 0 whenever G∗(x, y) < 0, hence G(x, y) ≥ 0 and, consequently,
the integral operator K̃ is not negative.

From Lemma 3.1, it follows that the kernel G(x, y) is integrable and K̃ is a weakly
singular integral operator. Hence the mapping K̃ : Lp(Γ) → Lp(Γ) is compact. We now
estimate the norm of this integral operator K̃ . For 1 < p <∞ and q0 ∈ Lp(Γ), we have
with 1/p+ 1/q = 1,

∣∣K̃q0(x)
∣∣= ∣∣∣∣∫

Γy
G(x, y)1/p+1/qq0(y)dΓy

∣∣∣∣
≤
(∫

Γy
G(x, y)dΓy

)1/q(∫
Γy
G(x, y)

∣∣q0(y)
∣∣pdΓy

)1/p

.

(3.30)
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Since
∫
Γy G(x, y)dΓy = 1 (see Lemma 3.1), it follows that

∣∣K̃q0(x)
∣∣≤ (∫

Γy
G(x, y)

∣∣q0(y)
∣∣pdΓy

)1/p

. (3.31)

Furthermore, we get

∥∥K̃q0(x)
∥∥p
Lp =

∫
Γx

∣∣K̃q0(x)
∣∣pdΓx

≤
∫
Γy

∣∣q0(y)
∣∣p ∫

Γx
G(x, y)dΓxdΓy =

∥∥q0(y)
∥∥p
Lp .

(3.32)

Hence we obtain ‖K̃‖ ≤ 1 in all spaces Lp, 1≤ p ≤∞. Equality can be achieved by choos-
ing q = 1 which is clearly an eigenvector of K̃ with eigenvalue 1.

Finally, it follows from the fact K̃1= 1 and the Hilbert theorem that the integral oper-
ator K̃ has an eigenvalue λ0 with |λ0| = ‖K̃‖ = 1. �

Lemma 3.4. The integral operator K̃ is for the convex case, that is, β(x, y) ≡ 1, a classical
pseudodifferential operator of order α = −2. The kernel of this integral operator possesses a
pseudohomogeneous expansion of the form

G∗(x, y)∼ |u− v|−α−2
∑
ν≥0

Ψν(x,θ)|u− v|ν ∼ r−α−2
∑
ν≥0

Ψν(x,θ)rν. (3.33)

In the two-dimensional case (either convex or nonconvex), the kernel possesses a pseudoho-
mogeneous expansion of the form

G∗(x, y)∼ (s− s0
)∑

ν≥0

Cν(x)
(
s− s0

)ν
. (3.34)

In the two-dimensional convex case, the integral operator K̃ is even a pseudodifferential op-
erator of order −∞.

Proof. One can write the kernel of the integral operator K̃ as a convolution kernel in
a pseudohomogeneous expansion form. In the case when Γ has a quadratic parameter
representation and u=Φ−1(x), one obtains [9]

y− x =Φ(v)= bv1 + cv2 +dv2
1 + 2ev1v2 + f v2

2 (3.35)

with vectors b,c,d,e, f ∈R3. For the normal, one has

n(v)= Φ1×Φ2∣∣Φ1×Φ2
∣∣ , (3.36)
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where Φ1 and Φ2 are given by the parameter representation of Γ as

Φ1 = ∂Φ

∂v1
= b+ 2

(
v1d+ v2e

)
, Φ2 = ∂Φ

∂v2
= e+ 2

(
v1e+ v2 f

)
,

Φ1×Φ2 = b× c+ 2Q1(v) + 4Q2(v)
(3.37)

with

Q1(v)= v1(b× e+d× c) + v2(b× f + e× c),

Q2(v)= v2
1(d× e) + v1v2(d× f ) + v2

2(e× f ).
(3.38)

Consequently, (
Φ1×Φ2

)
(y− x)= v2

1b(d× c) + 2v1v2c(b× e) + v2
2c(b× f ). (3.39)

Using the polar coordinates in the parameter plane v−u= r(cosθ, sinθ)T , we obtain

n(y) · (y− x)= r2∣∣Φ1×Φ2
∣∣[b(d× c)cos2 θ + 2c(b× e)cosθ sinθ + c(b× f )sin2 θ

]
.

(3.40)

Analogously, n(x)(x− y) has in u=Φ−1(x)= 0 an expansion of the form

n(x) · (x− y)= −(b× c)
|b× c| r2[d cos2 θ + 2ecosθ sinθ + f sin2 θ

]
. (3.41)

From [9], it holds also that

ρ−4 = |x− y|−4 = r−4
∞∑

ν=0

(
�−2−ν

2 (θ)P3ν
(

cosθ, sinθ)
)
rν, (3.42)

where P3ν is a homogeneous polynomial of degree 3ν and �2(θ) is given by

�2(θ)= |b|2 cos2 θ + bc sinθ cosθ + |c|2 sin2 θ. (3.43)

Finally, one obtains for G∗(x, y) in (2.17) the expansion

G∗(x, y)= |b× c|
4π
∣∣Φ1×Φ2

∣∣
{[

Lcos2 θ + 2M cosθ sinθ +N sin2 θ
]2

∞∑
ν=0

(
�−2−ν

2 P3ν
)
(θ)rν

}
,

(3.44)

where L, M, and N are the coefficients of the second fundamental form defined by

d(b× c)=−(d× c)b =−1
2
|b× c|L,

e(b× c)=−(b× e)c =−1
2
|b× c|M,

f (b× c)=−(d× f )c =−1
2
|b× c|N.

(3.45)
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x(2)

D

x(σ)

σ∗2
x(1)

σ∗1

Figure 3.3. Parametric representation.

From (3.44), it follows that the integral operator K̃ is for β(x, y) ≡ 1, that is, for con-
vex Γ, a classical pseudodifferential operator of the order α=−2. The kernel possesses a
pseudohomogeneous expansion of the form

G∗(x, y)∼ |u− v|−α−2
∑
ν≥0

Ψν(x,θ)|u− v|ν ∼ r−α−2
∑
ν≥0

Ψν(x,θ)rν. (3.46)

�

Lemma 3.5. Let Γ be any closed curve of the class C2. Then in the two-dimensional case,
K̃ defines a continuous mapping K̃ : L2(Γ)→H1(Γ) if G(x, y) is the kernel of the radiosity
equation as defined in (2.17) and (2.18).

Proof. First let G∗(x, y) be defined as in (2.17) and

Φ(x)=
∫
Γ
G∗(x, y)β(x, y)q0(y)dΓy. (3.47)

Consider the simple case similar to the situation in Figure 3.3.
We use the following abbreviations: y = y(s), x(i) = x(σ (i)) with σ (i) = σ (i)(σ) for i =

1,2. Γ+ and Γ− are open parts with x(σ∗1 ),x(σ∗2 ) /∈ Γ+,Γ− and x(σ∗1 ),x(σ∗2 )∈ Γ
+

,Γ
−

.
Choose σ (1) in such a way that x(σ∗1 )− x(σ) is for all σ∗1 ∈ (σ ,σ (1)) no longer parallel

to x(2)− x(σ). Then with the help of these abbreviations, (3.47) can be expressed as

Φ
(
x(σ)

)= ∫ x(σ (1))

x(σ (2))
G∗
(
x(σ), y(s)

)
q0
(
y(s)

)
dΓy(s). (3.48)
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Applying Leibniz rule of differentiation, one obtains

dΦ(σ)
dσ

=
∫ x(σ (1))

x(σ (2))

dG∗
(
x(σ), y(s)

)
dσ

· q0
(
y(s)

)
dΓy(s)

+
dx
(
σ (1)

)
dσ

·G∗(x(σ),x
(
σ (1))) · q0

(
x
(
σ (1)))

− dx
(
σ (2)

)
dσ

·G∗(x(σ),x
(
σ (2))) · q0

(
x
(
σ (2))).

(3.49)

Since the normal at the point x(1) is perpendicular to the straight line between x(σ) and
x(2), the kernel G∗(x(σ),x(σ (1)))= 0 and therefore (3.49) is reduced to

dΦ(σ)
dσ

=
∫ x(σ (1))

x(σ (2))

dG∗
(
x(σ), y(s)

)
dσ

· q0
(
y(s)

)
dΓy(s)

− dx
(
σ (2)

)
dσ

·G∗(x(σ),x
(
σ (2))) · q0

(
x
(
σ (2))). (3.50)

For Γ∈ C2, it follows that G∗(x(σ), y(s)), and (dG∗/dσ)(x(σ), y(s)) are continuous ker-
nels and therefore the integral

I =
∫ x(σ (1))

x(σ (2))

dG∗
(
x(σ), y(s)

)
dσ

· q0
(
y(s)

)
dΓy(s) for q0

(
y(s)

)∈ L2(Γ) (3.51)

is bounded in L2(Γ). From the definition of x(2), we obtain

dσ (2) · cos
((
x(2)− x

)
,n
(
σ (2)

))(∣∣x(2)− x(σ)
∣∣−∣∣x(1)− x(σ)

∣∣) = dσ · cos
((
x− x(2)

)
,n(σ)

)∣∣x(1)− x(σ)
∣∣ (3.52)

and since (x− x(2)) and (x− x(1)) are parallel, this leads to

dσ (2)

dσ
G∗
(
x(σ),x

(
σ (2)))

=
(∣∣x(2)− x(σ)

∣∣−∣∣x(1)− x(σ)
∣∣)∣∣x(1)− x(σ)

∣∣∣∣x(2)− x
∣∣ · cos2 ((x− x(1)),n(σ)

)
.

(3.53)

A continuous curve with nonvanishing curvature is also a C-curve [4], that is, there exist
constants c0 > 0, c1 > 0 such that for all points on the curve, we have∣∣x(σ (1))− x(σ)

∣∣≤ ∣∣σ (1)− σ
∣∣≤ c0

∣∣x(1)− x(σ)
∣∣,∣∣cos

((
x− x(1)),n(σ)

)∣∣≤ c1
∣∣σ (1)− σ

∣∣. (3.54)

Altogether, we obtain the estimate∣∣∣∣∣dσ (2)

dσ
G∗
(
x(σ),x(2))∣∣∣∣∣≤ 1 · c0 · c2

1

∣∣σ (1)− σ
∣∣≤M1 (3.55)
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and from Lemma 3.2 with a constant M0, we know |G∗(x(σ),x(2))| ≤M0. This leads im-
mediately to the following estimate:

∥∥∥∥∥dx
(
σ (2)

)
dσ

·G∗(x(σ),x
(
σ (2))) · q0

(
x
(
σ (2)))∥∥∥∥∥

2

L2(Γ)

=
∫
Γ

∣∣∣∣∣dσ (2)

dσ
·G∗(x(σ),x

(
σ (2)))q0

(
x
(
σ (2)))∣∣∣∣∣

2

dσ

≤M1 ·M0

∫
Γ

∣∣q0
(
σ (2))∣∣2

∣∣∣∣∣dσ (2)

dσ

∣∣∣∣∣dσ ≤M1 ·M0
∥∥q0

∥∥2
L2(Γ),

(3.56)

which shows the assertion. �

Lemma 3.6. The integral operator A = (I −K) is L2-elliptic. Furthermore, A is a positive
definite operator which satisfies the Gårding inequality on Γ.

Proof. Let the integral operator K be defined as K = (1− ε)K̃ , where K̃ is given by (3.1).
From Lemma 3.3, it follows that

∥∥Kq0
∥∥
L2(Γ) ≤ (1− ε)

∥∥q0
∥∥
L2(Γ). (3.57)

Furthermore, K satisfies the inequality

〈
Kq0,q0

〉
L2(Γ) ≤ (1− ε)

〈
q0,q0

〉
L2(Γ). (3.58)

Inequality (3.58) with A= (I −K) leads to

ε
〈
q0,q0

〉
L2(Γ) ≤

〈
Aq0,q0

〉
L2(Γ) ≤ (2− ε)

〈
q0,q0

〉
L2(Γ). (3.59)

Furthermore, A satisfies the Gårding inequality, that is, for all q0 ∈ L2(Γ) and ε ≥ 0, the
following holds:

Re
(
Aq0,q0

)= Re
∫
Γ
q0Aq0dΓx ≥ ε

∥∥q0
∥∥2
L2(Γ). (3.60)

�

4. Existence theorem for the radiosity integral equation

A simple method to prove the existence of the solution of the integral equation (2.16) is
the application of Banach’s fixed point theorem. The successive approximation method
can be used and the convergence of the Neumann series can be proved. We want to show
first that the integral operator

K = (1− ε)K̃ : Lp(Γ)−→ Lp(Γ) for 1 < p <∞ (4.1)
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defines a contraction mapping, that is, there exists a constant 0≤ c < 1 such that∥∥Kq0−Kq̃0
∥∥
Lp(Γ) ≤ c

∥∥q0− q̃0
∥∥
Lp(Γ) (4.2)

holds. From the definition

Kq0−Kq̃0 = (1− ε)
∫
Γ
G(x, y) · (q0(y)− q̃0(y)

)
dΓy (4.3)

and the application of Hölder’s inequality follows

∣∣Kq0−Kq̃0
∣∣≤ ∣∣(1− ε)

∣∣(∫
Γ
G(x, y)dΓy

)1/q

·
(∫

Γ
G(x, y)

∣∣q0− q̃0
∣∣pdΓy

)1/p

(4.4)

with 1/p+ 1/q = 1. Since
∫
ΓG(x, y)dΓy = 1 (see Lemma 3.1), we get

∣∣Kq0−Kq̃0
∣∣≤ ∣∣(1− ε)

∣∣(∫
Γ
G(x, y)

∣∣q0(y)− q̃0(y)
∣∣pdΓy

)1/p

. (4.5)

Then one obtains

∥∥Kq0−Kq̃0
∥∥p
Lp(Γ) ≤

∣∣(1− ε)
∣∣p ·∫

Γy

∣∣q0(y)− q̃0(y)
∣∣p ∫

Γx
G(x, y)dΓxdΓy (4.6)

so that we finally have∥∥Kq0−Kq̃0
∥∥p
Lp(Γ) ≤ |1− ε|p ·∥∥q0(y)− q̃0(y)

∥∥
Lp(Γ). (4.7)

Due to the inequality 0 < ε < 1, for the constant c, we get c := |1− ε|p < 1. Hence the
integral operator K is contractive on Lp(Γ) and the iteration scheme q0,n+1 = Kq0,n for
n = 1,2, . . . is convergent. {q0,n} converges to some q0 in the space Lp(Γ), which solves
the equation Kq0 = q0 in Lp(Γ). The uniqueness of q0 ∈ Lp(Γ) follows directly from the
contraction of K due to

0 <
∥∥q0− q̃0

∥∥
Lp(Γ) =

∥∥Kq0−Kq̃0
∥∥
Lp(Γ) ≤ c ·∥∥q0− q̃0

∥∥
Lp(Γ), c < 1. (4.8)

Consequently, we have

(1− c) ·∥∥q0− q̃0
∥∥
Lp(Γ) ≤ 0. (4.9)

Since q0 and q̃0 are two fixed points of K with (1− c) > 0 and ‖q0 − q̃0‖ > 0, then (4.9)
implies q0 = q̃0 and one gains the assertion.

5. The numerical realization in three dimensions

For the numerical simulation of the radiosity equation, we use the boundary element
method. The weak formulation of (2.16) in L2(Γ) reads as follows: find q0 ∈ L2(Γ) such
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that for all v ∈ L2(Γ), there holds∫
Γ
q0(x)v(x)dΓx = σ

∫
Γ
εT4(x)v(x)dΓx

+
∫
Γ

(
1− ε(x)

)∫
Γ
G(x, y)q0(y)dΓyv(x)dΓx.

(5.1)

We consider a Bubnov-Galerkin formulation and choose bilinear trial and basis functions
φk(k=1,...,N) with local support Γk ⊂ Γ. Then the Galerkin equations read as follows: find

q0,h(x)=∑N
i=1 q

(i)
0 φi(x)∈Vh such that

N∑
i=1

q(i)
0

∫
Γ j

φi(x)φj(x)dΓx︸ ︷︷ ︸
=:Mij

−
N∑
i=1

q(i)
0

∫
Γ j

(
1− ε(x)

)∫
Γi
G(x, y)φj(x)φi(y)dΓydΓx︸ ︷︷ ︸

=:Si j

= σ
∫
Γ j

ε(x)T4(x)φj(x)dΓx︸ ︷︷ ︸
=: f j

(5.2)

holds for all j = 1, . . . ,N . We can write (5.2) in the following short form:

Cq0 := (M− S)q0 = f , (5.3)

using the abbreviations M := (Mij)i, j=1,...,N for the mass matrix, S := (Si j)i, j=1,...,N for the
view factor matrix, and f = ( f j) j=1,...,N for the right-hand side of the discretized equation.

Either the mass matrix M and the right-hand side f can be calculated analytically
exact for special geometries or numerical integration is applied. To keep the numerical
integration error small, we handle the weak singularity of the integral kernel in the case
of a nonsmooth boundary by employing double partial integration; see [7, 8].

The main problem is the efficient detection of the shadow zones to calculate the visibil-
ity function β(x, y) appearing as part of the visibility matrix S for nonconvex enclosures.
To reduce the computational effort, in [5] a geometrical algorithm was developed to de-
termine the shadow function in the two-dimensional case for polygonal domains. This
algorithm was transformed to the three-dimensional case for an enclosure with polyhe-
dral boundary and consists of the following steps. First, we decide whether the geometry
is convex or nonconvex using an angle criterion. Then, an element-orientated preview
factor matrix is calculated to reduce the number of elements we have to deal with in
the last step, the nodewise calculation of the view factors. With this algorithm, we ob-
tain reasonable results since less than 5 percent of all view factors have to be calculated
numerically. For more details, see [3, 8, 11].

Some solution methods for the discrete heat equation (5.3), for example, cg-method
with or without preconditioning, direct solvers, multigrid methods, have been compared
in [6]. In the three-dimensional case from our experience, the conjugate gradient algo-
rithm with preconditioning has turned out to be the most efficient method and will be
applied in the following example.
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Figure 5.1. Outgoing radiative flux q0.

As a nonconvex geometry, we take an aperture as depicted and use a quadrangular dis-
cretization of the surface Γ into 480 elements. The emissivity coefficient is chosen as ε =
0.2, the Stefan-Boltzmann constant has the value σ = 5.67 · 10−8 W/(m2K4), and the tem-
perature source on the bottom will be given by the functionT=500 4

√
x(1.5−x)y(0.5−y)K .

The error is controlled a posteriori by the residual.
Then the outgoing radiative flux looks as in Figure 5.1.
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