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A derivation of a multiple-porosity model for the flow of a single phase,
slightly compressible fluid in a multiscale, naturally fractured reservoir
is presented by means of recursive use of homagnetization theory. We
obtain a model which generalizes the double-porosity model of Arbo-
gast et al. (1990) to a flow system with an arbitrary finite number of
scales.

1. Introduction

A model for single-phase flow in porous media that are hierarchically
fissured in regular patterns was derived by a recursive asymptotic ex-
pansion technique in [16] and part of [24]. This work rigorously justifies
that model. Through recursive homogenization, we extend the double-
porosity model in [5], which has one fracture system and a matrix (rock)
block system, to a triple-porosity model that has two levels of fracture
systems and a matrix block system. See [9, 22] for an introduction to
homogenization theory. Then, a multiple-porosity model with N levels
of fracture systems and a matrix block system is derived, resulting in a
general (N + 1)-scale model.

A dual-porosity concept was first introduced in [8, 25] using a spe-
cific transmissibility function (see [7]) for the interaction of the matrix-
fracture flow. For petroleum-reservoir engineering problems, a new
treatment of the coupling of the flow through the fracture system with
that in the matrix system was introduced over the past two decades in
[2, 3, 4, 5, 6, 13, 14, 17, 18, 19]. The models discussed in this work are
based on these ideas. Our focus on the nested levels of fracture systems
is appropriate for further studies on high-level nuclear waste transport
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Figure 1.1. The periodic structure in a reservoir exhibiting two lev-
els of fractures.

in porous media. It is the long-time scales, due to the length of the half-
lives of some high-level nuclear elements, that allow for the possibility
of nested levels of fracture systems in porous media (see [15, 20]).

Since we are interested in the mathematical details of the problem
here, we refer to the introductions of [16, 24] for further details on the
applicability of the models.

This work deals with modeling a single-phase, constant-compress-
ibility fluid flowing in a geometrically complicated structure given (ini-
tially) by a naturally fractured reservoir that has a hierarchy of fracture
systems, with the first being defined by an interconnected system of pla-
nar fractures dividing the reservoir into a collection of disjoint blocks.
A second system of fractures divides each of the previous blocks into a
collection of equally sized smaller blocks, and so forth, until a last level
is reached in which the disjoint blocks behave as a collection of disjoint
unfractured matrix blocks. The geometric structure is idealized by the
assumption that each fracture system is periodic. See Figure 1.1 for a
cross-sectional view of the idealized reservoir in the case of two levels
of fracturing.

We begin by posing the flow equations on three different scales of
the domain. This involves using three different porosity and permeabil-
ity coefficients, one for each scale, since the fluid flows more readily
through the fracture systems than it does through the matrix blocks. Via
a parameter ε1, which represents the linear size of a matrix block and
half of its surrounding fractures, we first homogenize the flow equations
on the smallest level of fractures and the matrix blocks. This gives an
overall fracture flow in each of the fractured blocks. The porous ma-
trix blocks provide a source term to the surrounding system of small-
scale fractures which, after homogenization, are treated as a continuous
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porous medium. Thus, a continuous medium approach takes place be-
tween the smallest level of fractures and the matrix blocks. This is a
scaled mesoscopic description since the equations depend on the param-
eter ε0, which represents the linear size of the scaled fractured blocks.
Following this averaging, we couple the equations for flow in the largest
level of fractures with the fractured blocks, each of which is represented
now by a double-porosity system. Averaging the flow in the first level
of fractures then gives a macroscopic description of the flow in a three-
sheeted covering of the domain; this extends the concepts of the models
of [13]. Thus, the first level of fractures is now smoothed out to cover
the entire domain and the blocks interact with the first level of fractures
as sources, while the behavior of the flow on a first-level block is that of
a double-porosity system. Overall, the system can be characterized as a
triple-porosity model.

The (N + 1)-scale analysis discussed in this paper can be used as a
tool for analyzing problems with multiple scales of periodicity (i.e., ho-
mogeneous, hierarchically organized media). But in the presence of het-
erogeneities, [11] addresses two-scale convergence in the mean and in-
cludes applications to randomly fractured media [21]. However, such an
approach does not apply immediately to heterogeneities with multiple
scales of correlation, which is the case for many natural porous media.
The extension of the (N + 1)-scale approach introduced here is hence an
alternative that may improve our understanding of the flow phenomena
in some natural porous media.

We first present the triple-porosity model in order to illustrate, in a
simpler and more readily understandable situation, the general tech-
niques that are necessary for the (N + 1)-scale model. However, interme-
diate source terms that are not present in the triple-porosity model ap-
pear in the (N + 1)-scale model and they require additional arguments.

The organization of the paper is as follows. In Section 2, the assump-
tions, notation, and description of the triple-porosity reservoir are given.
Also, two dilation and two location operators are defined. In Section 3,
the microscale model, which involves both the intermediate and micro-
scopic levels, is formulated using the parameters ε1 and ε0 described
above. The coefficients are precisely defined on the appropriate parts
of Ω. Next, in Section 4, the weak formulation of the microscale model
is given, well-posedness is proven, a priori estimates are derived, and
several technical lemmas regarding the dilation operators are presented.
Then, the convergence results for the first homogenization (ε1 → 0) lead
to a well-posed mesoscopic system of equations in Section 5. Then, in
Section 6, a completely new well-posed problem is formulated in terms
of the parameter ε0, using the resulting model in Section 5 with a new
boundary condition that conserves mass flux. In Section 7, a general
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(N + 1)-scale problem withN levels of fractures and the matrix (porous)
level is presented. Previous lemmas and theorems are generalized in
this section, with the double- and triple-porosity models serving as base
cases for the homogenization procedure. The final well-posed system of
equations is presented for the finite scale. Finally, in Section 8, conclud-
ing remarks on generalizations of the model are made.

2. Notation, assumptions, and preliminary lemmas

We begin this section by defining the nested periodic structure of the
domain Ω in the presence of N levels of fractures. First, for i = 0, . . . ,
N − 1, let Yi be a parallelepiped and let δi ∈ (0, 1) be such that |Y0| �
δ0|Ω| and, for i = 1, . . . ,N − 1, |Yi| � δi|Yi−1|. Then, with Y−1B = Ω, define
Aif to be a finite lattice containing the origin such that

Y (i−1)B =
⋃

ci∈Aif

(
Y i + ci

)
, (2.1)

where

Yi = YiB ∪ ∂YiB ∪YiF. (2.2)

Now, extend the lattice Aif into an infinite lattice Ai, containing the
origin and define Ωε0

F , Ωε0
B by

Ωε0
F = Ω∩

( ⋃
c0∈A0

ε0
(
Y0F + c0)), Ωε0

B = Ω∩
( ⋃

c0∈A0

ε0
(
Y0B + c0)),

(2.3)
and for i = 1,2, . . . ,N − 1, define

Ωε0···εi
B,H = Ωε0···εi−1

B,B ∩
( ⋃

c0∈A0

· · ·
⋃
ci∈Ai

(
ε0 · · ·εi

(
YiH + ci

)
+ ε0 · · ·εi−1c

i−1 + · · ·+ ε0c
0)), (2.4)

where H = B or F (see Figure 2.1).
Since we are assuming that there are N levels of fractures in Ω, we

let ε0, . . . , εN−1 be the parameters associated with the homogenization. In
order to define dilation operators that incorporate each of these param-
eters, we proceed as follows. For i = 0, . . . ,N − 1, let

ci,εi : Y(i−1)B −→ εiA
i, (2.5)
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Figure 2.1. The parts of the reservoir.

where, for xi ∈ Y(i−1)B, ci,εi ∈ εiAi is the lattice translation point of the εiYi-
cell containing xi, that is, ci,εi is the lattice translation vector such that
xi ∈ εiYi + ci,εi(xi).

Then define the dilation operator ∼(i), from the set of functions defined
on Ωε0···εi−1

B,H (H = B,F) to functions defined on Ω× · · · ×Y(i−2)B ×Y(i−1)H , by

f∼(i)(x0, . . . ,xi
)
= f
((
ε0 · · ·εi−1

)
xi +
(
ε0 · · ·εi−2

)
c(i−1),εi−1

(
xi−1
)

+ · · ·+ ε0c
1,ε1(x1) + c0,ε0

(
x0
))
.

(2.6)

We also make heavy use of the definition of ∼(i) for functions defined
on Ωε0···εi−2

B,B in the same way, except that in this case, ∼(i) maps to functions
defined on Ω×Y0B × · · · ×Y(i−2)B ×Yi−1.

For convenience, we recursively define the following location opera-
tors:

L−1
(
x0
)
= x0, L0

(
x0
)
=
x0 − c0,ε0

(
x0
)

ε0
∈ Y 0 for x0 ∈Ω, (2.7)

and, in general, for x0 ∈Ωε0···εi−1
B,B ,

Li
(
x0
)
=
Li−1
(
x0
)
− ci,εi

(
Li−1
(
x0
))

εi
∈ Y i for i = 1, . . . ,N − 1. (2.8)

Let ρε0···εi
i , for i = 0, . . . ,N − 1, be the density of the fluid on the (i+ 1)st

level of fractures, and let ρε0···εN−1
N be the density of the fluid in the porous

matrix blocks. The following definitions reflect the nested periodic prop-
erty of Ω. Let φ0 and K0 be the scalar porosity and scalar permeability,
respectively, on the first level of fractures, extended throughout Ω. For
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i = 1, . . . ,N − 1, we define the porosities φi and permeabilities Ki on the
(i+ 1)st level of fractures as follows. First, we assume that φi and Ki are
defined on Y(i−1)B. So, φi = φi(xi) and Ki = Ki(xi), for xi ∈ Y(i−1)B. Then,
we extend these definitions to all of Ωε0···εi−1

B,B by defining φε0···εi−1
i (x0) =

φi(Li−1(x0)) and Kε0···εi−1
i (x0) =Ki(Li−1(x0)). Similarly, we first define φN

and KN on Y(N−1)B, and then extend their definitions to Ωε0···εN−1
B,B by defin-

ing φε0···εN−1
N (x0) = φN(LN−1(x0)) and Kε0···εN−1

N (x0) = KN(LN−1(x0)). All co-
efficients are uniformly positive and bounded, and KN is a bounded,
symmetric, positive-definite tensor.

In order to carry out our recursive homogenization process, we re-
quire that the fracture and matrix geometry satisfy

∂Ω ⊆ ∂Ωε0
F , ∂Ωε0···εi−1

B,F ⊆ ∂Ωε0···εi
B,F , i = 1, . . . ,N − 1. (2.9)

Let J = (0,T) be the time interval of interest. Also, throughout this
paper, we denote by nD the outward unit normal to the boundary of D,
where D is the relevant domain.

We begin the study of our model at the microscopic level, which con-
sists of equations describing Darcy flow on all parts of Ω, that is, we will
pose the flow equations separately on the disjoint regions that compose
the domain. For the homogenization process, the equations on the dif-
ferent parts of Ω will have to be scaled appropriately to conserve flow,
just as was necessary in the derivation of the double-porosity model
(see [13]). Actually, it is convenient to scale the equations on Ωε0ε1

B,B with
respect to the equations on Ωε0ε1

B,F and then again with respect to those
on Ωε0

F . This will allow us to derive, recursively, a triple-porosity model
through rigorous homogenization.

For convenience, assume that gravity is negligible. This assumption is
only used to simplify the presentation. A note regarding the inclusion of
gravity is made just after the derivation of the equations in terms of the
density of the fluid. Assume that the fluid has viscosity µ and constant
(small) compressibility c, so that the equation of state is given by

dρ = cρdp, (2.10)

where ρ is the density of the fluid and p is its pressure. In a single-
porosity model, if K is the permeability (which can be a tensor), then
the volumetric flow rate v of the fluid is given by Darcy’s law:

v = −K
µ
∇p. (2.11)
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If φ denotes the porosity of the medium, the conservation of mass re-
quires that

φ
∂ρ

∂t
+∇ · (ρv) = S, (2.12)

where S is the external source. Rewriting this in terms of ρ, we obtain

φ
∂ρ

∂t
−∇ ·

(
K
µc

∇ρ
)
= S. (2.13)

We remark that if the gravity term −∇ · ((K/µc)(cgρ2)) is added to the
left-hand side of the above equation, then everything that follows holds
if we linearize the equation as in [5] by defining a reference density ρref

and approximating the effects of gravity by ρ2 ≈ ρref(2ρ− ρref).
The verification of our homogenization procedure will make a crucial

use of the following technical lemmas. In the interest of brevity, we omit
their proofs.

Lemma 2.1. For ψ,ϕ ∈ L2(Ωε0···εi−1
B,r ), where r = B,F, or blank, and Ωε0···εi−1

B, ≡
Ωε0···εi−2
B,B ,

(
ψ∼(i),ϕ∼(i))

Ω×Y0B×···×Y(i−2)B×Y(i−1)r
=
∣∣Y0
∣∣∣∣Y1
∣∣ · · ·∣∣Yi−1

∣∣(ψ,ϕ)Ωε0 ···εi−1
B,r

,

∇xiψ
∼(i) = ε0 · · ·εi−1(∇ψ)∼(i),∥∥ψ∼(i)∥∥

L2(Ω×Y0B×···×Y(i−1)r)
=
(∣∣Y0

∣∣∣∣Y1
∣∣ · · ·∣∣Yi−1

∣∣)1/2‖ψ‖L2(Ω
ε0 ···εi−1
B,r ),∥∥∇xiψ

∼(i)∥∥
L2(Ω×Y0B×···×Y(i−2)B×Y(i−1)r)

= ε0 · · ·εi−1
(∣∣Y0

∣∣∣∣Y1
∣∣ · · ·∣∣Yi−1

∣∣)1/2

× ‖∇ψ‖L2(Ω
ε0 ···εi−1
B,r ),

(2.14)

for i = 1, . . . ,N.

Lemma 2.2. If ψ ∈ L2(Ω), then the following holds strongly in L2(Ω×Y0B ×
· · · ×Y(i−2)B ×Y(i−1)r):

lim
εi−1→0

ψ∼(i) = ψ∼(i−1), (2.15)

for i = 1, . . . ,N, where ∼(0) is the identity operator.

In what follows, ej denotes the jth standard basis vector in the appro-
priate Euclidean space.
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Lemma 2.3. Let f ∈ L2(Ω) and g ∈ L2(Ω × Y0B × Y1B × · · · × Y(i−2)B × Yi−1).
Then, for i = 2,3, . . . ,

∫
Ω×Y0B×···×Y(i−2)B×Yi−1

f̃ (i)(x0,x1, . . . ,xi
)
g
(
x0,x1, . . . ,xi

)
dxi · · ·dx0

=
∫
Ω
ε0 ···εi−2
B,B ×Y0×Y1×···×Yi−1

f
(
x0
)
g

(
i−1∑
k=0

(
εkxk+1 + ck,εk

(
Lk−1

(
x0
)))

ek

+Li−1
(
x0
)
ei

)
dxi · · ·dx0. (2.16)

Lemma 2.4. Let f ∈ L2(Ω) and g ∈ L2(Ω × Y0B × · · · × Y(i−1)B). Then, for i =
1,2, . . . ,

∫
Ω×Y0B×···×Y(i−1)B

f̃ (i)(x0,x1, . . . ,xi
)
g
(
x0,x1, . . . ,xi

)
dxi · · ·dx0

=
∫
Ω
ε0 ···εi−1
B,B ×Y0×···×Yi−1

f
(
x0
)
g

(
i−1∑
k=0

(
εkxk+1 + ck,εk

(
Lk−1

(
x0
)))

ek

+Li−1
(
x0
)
ei

)
dxi · · ·dx0.

(2.17)

Lemma 2.5. Let f,g ∈ L2(Y(i−2)B). Then, with Y−1B ≡ Ω, for i = 1,2, . . . , the
following equation holds:

∫
Y(i−2)B×Yi−1

f
(
εi−1yi + c(i−1),εi−1

(
xi−1
))
g
(
xi−1
)
dyi dxi−1

=
∫
Y(i−2)B×Yi−1

f
(
xi−1
)
g
(
εi−1yi + c(i−1),εi−1

(
xi−1
))
dyi dxi−1.

(2.18)

3. The initial microscopic equations for a triple-porosity model

Denote by ρε0(x0, t) the density on Ωε0
F . Equations involving ρε0 will be

posed once the initial homogenization has been completed (i.e., after let-
ting ε1 → 0). Let σε0ε1(x0, t) and θε0ε1(x0, t) denote the densities on Ωε0ε1

B,F

and Ωε0ε1
B,B , respectively.

The assumptions made above lead to the sets (3.1) and (3.2) of equa-
tions for the micromodel. The scaling rules are explained immediately
after the equations.
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On the second level of fractures,

φε0
σ
∂σε0ε1

∂t
− ε2

0∇ ·
(
Kε0
σ

µc
∇σε0ε1

)
= 0 in Ωε0ε1

B,F × J,

Kε0
σ

µc
∇σε0ε1 ·nΩε0ε1

B,B
= ε2

1

Kε0ε1
θ

µc
∇θε0ε1 ·nΩε0ε1

B,B
on ∂Ωε0ε1

B,B × J,

Kε0
σ

µc
∇σε0ε1 ·nΩε0

B
= 0 on ∂Ωε0

B × J, σε0ε1 = ρinit in Ωε0ε1
B,F × {0}.

(3.1)

On the second level of matrix blocks,

φε0ε1
θ

∂θε0ε1

∂t
− ε2

0ε
2
1∇ ·
(

Kε0ε1
θ

µc
∇θε0ε1

)
= 0 in Ωε0ε1

B,B × J,

θε0ε1 = σε0ε1 on ∂Ωε0ε1
B,B × J, θε0ε1 = ρinit in Ωε0ε1

B,B × {0}.
(3.2)

The aim of this work is to use homogenization theory to rigorously
determine the equations that describe the flow. Since we let ε1 → 0 first,
we do not, at this stage, consider the fluid flow across ∂Ωε0

B . Instead, we
assume no-flow boundary conditions because we are interested in deter-
mining the interior behavior of the flow on Ωε0

B . Then, once the equations
are discovered, we will impose boundary conditions on Ωε0

B and develop
a completely new system of partial differential equations that describe
the flow. Then, we let ε0 → 0 to obtain the final model. The case in which
a flow across ∂Ωε0

B is considered at the microscopic level will be taken up
elsewhere.

4. Preliminary analysis of the microscopic model

Multiply (3.1) by a test function ϕ ∈H1(Ωε0
B ), and multiply (3.2) by a

test function ψ ∈H1
0(Ω

ε0ε1
B,B ). Then, use the boundary conditions and the

divergence theorem to find that the weak form of the microscale model
for fixed ε1 is given by

(
φε0
σ σ

ε0ε1
t ,ϕ

)
Ω
ε0ε1
B,F

+ ε2
0

(
Kε0
σ

µc
∇σε0ε1 ,∇ϕ

)
Ω
ε0ε1
B,F

+ ε2
0ε

2
1

(
Kε0ε1
θ

µc
∇θε0ε1 ,∇ϕ

)
Ω
ε0ε1
B,B

+
(
φε0ε1
θ θε0ε1

t ,ϕ
)
Ω
ε0ε1
B,B

= 0 ∀ϕ ∈H1(Ωε0
B

)
,

(4.1)(
φε0ε1
θ

θε0ε1
t ,ψ

)
Ω
ε0ε1
B,B

+ ε2
0ε

2
1

(
Kε0ε1
θ

µc
∇θε0ε1 ,∇ψ

)
Ω
ε0ε1
B,B

= 0 ∀ψ ∈H1
0

(
Ωε0ε1
B,B

)
.

(4.2)
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Now, let

βε0ε1 =

σ
ε0ε1 for x0 ∈Ωε0ε1

B,F ,

θε0ε1 for x0 ∈Ωε0ε1
B,B .

(4.3)

Then, (4.1) is the weak form of

αε0ε1βε0ε1
t −∇ ·

(
κε0ε1∇βε0ε1

)
= 0 on Ωε0

B × J,
κε0ε1∇βε0ε1 ·nΩε0

B
= 0 on ∂Ωε0

B × J, βε0ε1 = ρinit on Ωε0
B × {0},

(4.4)

where

αε0ε1 = χΩ
ε0ε1
B,F
φε0
σ +χΩ

ε0ε1
B,B
φε0ε1
θ

,

κε0ε1 = ε2
0χΩ

ε0ε1
B,F

Kε0
σ

µc
I+ ε2

0ε
2
1χΩ

ε0ε1
B,B

Kε0ε1
θ

µc
.

(4.5)

The initial-boundary value problem (4.4) is a standard parabolic prob-
lem with Neumann boundary conditions and it is well known that it has
a unique weak solution in H1(J ;L2(Ωε0

B )) ∩ L∞(J ;H1(Ωε0
B )). By restrict-

ing βε0ε1 , we have the following theorem.

Theorem 4.1. Assume that ρinit ∈H1(Ω). Then, for each ε1, there exists a
unique solution to the microscopic model posed on Ωε0

B × J , and σε0ε1 ∈H1(J ;
L2(Ωε0ε1

B,F ))∩L∞(J ;H1(Ωε0ε1
B,F )) and θε0ε1∈H1(J ;L2(Ωε0ε1

B,B ))∩L∞(J ;H1(Ωε0ε1
B,B )).

Lemma 4.2. There exists a constant C > 0, independent of ε0 and ε1, such that∥∥σε0ε1
t

∥∥
L2(J×Ωε0ε1

B,F ) +
∥∥σε0ε1

∥∥
L∞(J ;H1(Ω

ε0ε1
B,F )) ≤ C

(
1+ ε0ε1

)
,∥∥∇θε0ε1

∥∥
L∞(J ;L2(Ω

ε0ε1
B,B )) ≤ C

(
1+
(
ε0ε1
)−1)

,∥∥θε0ε1
t

∥∥
L2(J×Ωε0ε1

B,B ) +
∥∥θε0ε1

∥∥
L∞(J ;L2(Ω

ε0ε1
B,B )) ≤ C

(
1+ ε0ε1

)
.

(4.6)

Proof. These are the standard parabolic energy estimates for the weak
form (4.1) on Ωε0

B . To derive these estimates, start by taking ψ = θε0ε1 and
then ψ = θε0ε1

t on a smooth dense subspace. �

5. Homogenization as ε1 → 0 for fixed ε0 > 0

We now begin to find the unique weak solution of the limit problem as
ε1 → 0. Throughout, we use C to denote a generic positive constant that
is independent of ε1 and which can be different at different occurrences.
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For fixed ε0 > 0, it follows from the a priori estimates in Lemma 4.2
that

χΩ
ε0ε1
B,F
σε0ε1 is bounded in H1(J ;L2(Ω)

)
,

χΩ
ε0ε1
B,F

Kε0
σ

µc
∇σε0ε1 is bounded in L2(Ω× J),

χΩ
ε0ε1
B,B
θε0ε1 is bounded in H1(J ;L2(Ω)

)
,

ε1χΩ
ε0ε1
B,B

∇θε0ε1 is bounded in L2(Ω× J).

(5.1)

It follows from (5.1) and Lemma 2.1 that

(
θε0ε1

)∼(2) is bounded in L2(Ω×Y0B;H1(Y1B × J
))
, (5.2)(

σε0ε1
)∼(2) is bounded in L2(Ω×Y0B;H1(Y1F × J

))
, (5.3)∥∥∥∇x2

(
σε0ε1

)∼(2)∥∥∥
L2(Ω×Y0B×Y1F×J)

≤
(
Cε0

)
ε1. (5.4)

Hence, upon passing to a subsequence in ε1, as ε1 → 0, the following
limits take place weakly in the indicated spaces:

χΩ
ε0ε1
B,F
σε0ε1 ⇀ σ̂ε0 in H1(J ;L2(Ω)

)
, (5.5)

χΩ
ε0ε1
B,F

Kε0
σ

µc
∇σε0ε1 ⇀ ξε0 in L2(Ω× J), (5.6)(

σε0ε1
)∼(2)

⇀σε0 in L2(Ω×Y0B;H1(Y1F × J
))
, (5.7)(

θε0ε1
)∼(2)

⇀ θε0 in L2(Ω×Y0B;H1(Y1B × J
))
. (5.8)

From (5.4) and the connectedness of Y1F , σε0 is independent of x2.

Lemma 5.1. The following relation holds:

(
σ̂ε0
)∼(1) = ∣∣Y1F

∣∣∣∣Y1
∣∣ σε0 . (5.9)

Proof. We first note that for R = B,F, or blank,

(
χΩ

ε0ε1
B,R

)∼(2)(
x0,x1,x2

)
= χΩ×Y0B×Y1R

(
x0,x1,x2

)
. (5.10)
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Now, let ϕ ∈ C∞(Ω×Y0B × J). Then by (5.7),

Iε0ε1 =
∫
J×Ω×Y0B×Y1F

(
σε0ε1

)∼(2)
ϕdx2dx1dx0dt

−→
∫
J×Ω×Y0B×Y1F

σε0ϕdx2dx1dx0dt

=
∣∣Y1F

∣∣∫
J×Ω×Y0B

σε0ϕdx1dx0dt

(5.11)

since σε0 , ϕ do not depend on x2.
On the other hand,

Iε0ε1 =
((
σε0ε1

)∼(2)
,χΩ×Y0B×Y1Fϕ

)
J×Ω×Y0B×Y1×J

=
((

χΩ
ε0ε1
B,F
σε0ε1

)∼(2)
,ϕ

)
Ω×Y0B×Y1×J

=
∫
J×Ωε0

B ×Y0×Y1

χΩ
ε0ε1
B,F
σε0ε1ϕ

(
ε0x1 + c0,ε0

(
x0
)
, ε1x2

+ c1,ε1
(
L0
(
x0
))
, t
)
dx2dx1dx0dt,

(5.12)

where (5.10) and Lemma 2.3 were used.
Now, let ε1 → 0; by Lemma 2.2,

ϕ
(
ε0x1 + c0,ε0

(
x0
)
, ε1x2 + c1,ε1

(
L0
(
x0
))
, t
)

−→ ϕ
(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
, t
) (5.13)

strongly in L2(Ωε0
B × Y0 × Y1 × J), and this, combined with (5.5), (5.12),

and Lemma 2.4, yields

Iε0ε1 −→
∫
J×Ωε0

B ×Y0×Y1

σ̂ε0
(
x0, t
)
ϕ
(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
, t
)
dx2dx1dx0dt

=
∣∣Y1
∣∣∫

J×Ωε0
B ×Y0

σ̂ε0
(
x0, t
)
ϕ
(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
, t
)
dx1dx0dt

=
∣∣Y1
∣∣∫

J×Ω×Y0B

(
σ̂ε0
)∼(1)(

x0,x1, t
)
ϕ
(
x0,x1, t

)
dx1dx0dt.

(5.14)

Since ϕ is arbitrary, (5.11) and (5.14) imply the lemma. �
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We now derive an equation satisfied by θε0 . Let ψ ∈ L2(Ω × Y0B × J ;
H1

0(Y1B)). Set

ψ̂
(
x0,x1,z, t

)

=


ψ

(
x0,x1,

z− ε0c
1,ε1
(
x1
)
− c0,ε0

(
x0
)

ε0ε1
, t

)
if z ∈ ε0ε1Y1B + ε0c

1,ε1
(
x1
)
+ c0,ε0

(
x0
)
,

0 elsewhere.

(5.15)

Then ψ̂ ∈ L2(Ω × Y0B × J ;H1
0(ε0ε1Y1B + ε0c

1,ε1(x1) + c0,ε0(x0))). For fixed
(x0,x1) ∈Ω×Y0B, use ψ̂ as a test function in (4.2) to obtain∫
ε0ε1Y1B+ε0c1,ε1 (x1)+c0,ε0 (x0)

φε0ε1
θ (z)θε0ε1

t (z)ψ

×
(
x0,x1,

z− ε0c
1,ε1
(
x1
)
− c0,ε0

(
x0
)

ε0ε1
, t

)
dz

+ ε2
0ε

2
1

∫
ε0ε1Y1B+ε0c1,ε1 (x1)+c0,ε0 (x0)

Kε0ε1
θ

µc
(z)∇zθ

ε0ε1(z) · ∇zψ

×
(
x0,x1,

z− ε0c
1,ε1
(
x1
)
− c0,ε0

(
x0
)

ε0ε1
, t

)
dz = 0.

(5.16)

Use the dilation z �→ ε0ε1x2 + ε0c
1,ε1(x1) + c0,ε0(x0) and integrate over Ω×

Y0B × J to get∫
J×Ω×Y0B×Y1B

φθ
(
x2
)(
θε0ε1
t

)∼(2)
ψ
(
x0,x1,x2, t

)
dx2dx1dx0dt

+
∫
J×Ω×Y0B×Y1B

Kθ

µc

(
x2
)
∇x2

(
θε0ε1

)∼(2) · ∇x2ψ
(
x0,x1,x2, t

)
dx2dx1dx0dt = 0,

(5.17)

where we used

(
φε0ε1
θ

)∼(2) = χΩ×Y0B×Y1Bφθ,

(
Kε0ε1
θ

µc

)∼(2)

= χΩ×Y0B×Y1B

Kθ

µc
. (5.18)

Next, let ε1 → 0 and use the weak limits to get

(
φθθ

ε0
t ,ψ
)
Ω×Y0B×Y1B×J +

(
Kθ

µc
∇x2θ

ε0 ,∇x2ψ

)
Ω×Y0B×Y1B×J

= 0, (5.19)
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that is, θε0 is a weak solution of

φθθ
ε0
t −∇x2 ·

(
Kθ

µc
∇x2θ

ε0

)
= 0 (5.20)

in L2(Ω×Y0B;H1(Y1B × J)).
We now begin to derive an equation for σ̂ε0 . Let ϕ ∈ L2(J ;H1(Ωε0

B ))
and integrate (4.1) over J to get

(
φε0
σ σ

ε0ε1
t ,ϕ

)
J×Ωε0ε1

B,F
+ ε2

0

(
Kε0
σ

µc
∇σε0ε1 ,ϕ

)
J×Ωε0ε1

B,F

+ ε2
0ε

2
1

(
Kε0ε1
θ

µc
∇θε0ε1 ,∇ϕ

)
J×Ωε0ε1

B,B

+
(
φε0ε1
θ

θε0ε1
t ,ϕ

)
J×Ωε0ε1

B,B

= T1 + T2 + T3 + T4 = 0.

(5.21)

We now let ε1 → 0;

T1 −→
∫
J×Ωε0

B

φε0
σ σ̂

ε0
t ϕdx0dt by (5.5),

T2 −→ ε2
0

∫
J×Ωε0

B

ξε0 · ∇ϕdx0dt by (5.6),

T3 −→ 0 since the term is bounded by a multiple of ε2
1.

(5.22)

We now investigate the convergence of T4. By Lemmas 2.1, 2.2, (5.8),
and Lemma 2.4, we have

T4 =
(∣∣Y0

∣∣∣∣Y1
∣∣)−1
((
φε0ε1
θ

)∼(2)(
θε0ε1
t

)∼(2)
,ϕ∼(2)

)
J×Ω×Y0B×Y1B

=
(∣∣Y0

∣∣∣∣Y1
∣∣)−1
(
φθ
(
θε0ε1
t

)∼(2)
,ϕ∼(2)

)
J×Ω×Y0B×Y1B

−→
(∣∣Y0

∣∣∣∣Y1
∣∣)−1(

φθθ
ε0
t ,ϕ

∼(1))
J×Ω×Y0B×Y1B

=
(∣∣Y0

∣∣∣∣Y1
∣∣)−1
∫
J×Ωε0

B ×Y0×Y1B

φθθ
ε0
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)
×ϕ
(
x0, t
)
dx2dx1dx0dt.

(5.23)
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It follows from (5.22) and (5.23) that∫
J×Ωε0

B

φε0
σ σ̂

ε0
t ϕdx0dt+ ε2

0

∫
J×Ωε0

B

ξε0 · ∇ϕdx0dt

+
(∣∣Y0

∣∣∣∣Y1
∣∣)−1
∫
J×Ωε0

B ×Y0×Y1B

φθθ
ε0
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)
×ϕ
(
x0, t
)
φθ
(
x2
)
dx2dx1dx0dt

= 0 ∀ϕ ∈ L2(J ;H1(Ω)
)
.

(5.24)

We now relate ξε0 to σ̂ε0 . For j = 1,2,3, letωj =ωj(x2) be the Y1-periodic
solution, modulo constants, to the Neumann problem

∆x2ωj = 0 in Y1F, ∇x2ωj · ν = −ej · ν = −νj on ∂Y1B, (5.25)

where ν is the outer unit normal to ∂Y1B. Define ωε0ε1
j ∈H1(Ωε0

B ) by

ωε0ε1
j

(
x0
)
= ε0ε1Eωj

(
L1
(
x0
))
, (5.26)

where E : H1(Y1F)→H1(Y1) is a bounded extension operator [12].
Hence (ωε0ε1

j )∼(2)(x0,x1,x2)=ε0ε1(Eωj)(x2). A similar argument shows
that

(
∇x0ω

ε0ε1
j

)∼(2)(
x0,x1,x2

)
=
(
∇x2Eωj

)(
x2
)
. (5.27)

Now let

ωij =
1∣∣Y1
∣∣
∫
Y1F

∂iωj

(
x2
)
dx2, (5.28)

where ∂i = ∂/∂x2,i.
An argument as in the proof of [5, Lemma 4.3] can be used to verify

the following lemma.

Lemma 5.2. As ε1 → 0,

ωε0ε1
j −→ 0 strongly in L2(Ωε0

B

)
,

ε0ε1∇ωε0ε1
j −→ 0 strongly in L2(Ωε0

B

)
,

χΩ
ε0ε1
B,F
∂iω

ε0ε1
j −→ωij weakly in L2(Ωε0

B

)
.

(5.29)
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If ψ ∈H1(Ωε0ε1
B,F ), then

(
∇ωε0ε1

j + ej ,∇ψ
)
Ω
ε0ε1
B,F

= 0 (5.30)

since ωj solves the above Neumann problem. Now, for ϕ ∈ C∞((Ωε0
B ×

J)−), take ψ = σε0ε1(Kε0
σ /µc)ϕ in (5.30) and integrate in time to get

0 =
(
∇ωε0ε1

j ,
Kε0
σ

µc
ϕ∇
(
σε0ε1

))
J×Ωε0ε1

B,F

+
(
∇ωε0ε1

j ,σε0ε1∇
(
Kε0
σ

µc
ϕ

))
J×Ωε0ε1

B,F

+
(

ej ,
Kε0
σ

µc
ϕ∇
(
σε0ε1

))
J×Ωε0ε1

B,F

+

(
ej ,σε0ε1∇

(
Kε0
σ

µc
ϕ

))
J×Ωε0ε1

B,F

= T5 + T6 + T7 + T8.
(5.31)

We proceed to let ε1 → 0 in each term of (5.31). We begin with term T5.
Use ωε0ε1

j ϕ as a test function in (4.1) to obtain

ε2
0

(
Kε0
σ

µc
∇σε0ε1 ,ϕ∇

(
ωε0ε1
j

))
Ω
ε0ε1
B,F

= −
(
φε0
σ σ

ε0ε1
t ,ωε0ε1

j ϕ
)
Ω
ε0ε1
B,F

− ε2
0ε

2
1

(
Kε0ε1
θ

µc
∇θε0ε1 ,ωε0ε1

j ∇(ϕ)

)
Ω
ε0ε1
B,B

− ε2
0ε

2
1

(
Kε0ε1
θ

µc
∇θε0ε1 ,ϕ∇

(
ωε0ε1
j

))
Ω
ε0ε1
B,B

−
(
φε0ε1
θ θε0ε1

t ,ωε0ε1
j ϕ

)
Ω
ε0ε1
B,B

− ε2
0

(
Kε0
σ

µc
∇σε0ε1 ,ωε0ε1

j ∇(ϕ)
)

Ω
ε0ε1
B,F

.

(5.32)

It follows from (5.1), Lemma 5.2, and the boundedness of ∇ωε0ε1
j that

T5 −→ 0 as ε1 −→ 0. (5.33)

For term T6, we have

T6 =
(∣∣Y0

∣∣∣∣Y1
∣∣)−1

(
∇x2ωj,

(
σε0ε1

)∼(2)[∇x0

(
Kε0
σ

µc
ϕ

)]∼(2))
J×Ω×Y0B×Y1F

ε1→0−−−−→
(∣∣Y0

∣∣∣∣Y1
∣∣)−1

(
∇x2ωj,σ

ε0

[
∇x0

(
Kε0
σ

µc
ϕ

)]∼(1))
J×Ω×Y0B×Y1F
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=
(∣∣Y0

∣∣∣∣Y1
∣∣)−1
∫
J×Ω×Y0B×Y1F

σε0
(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
, t
)

×∇x2ωj · ∇x0

(
Kε0
σ

µc
ϕ

)
dx2dx1dx0dt

=
(∣∣Y0

∣∣)−1
∫
J×Ω×Y0B

χΩ
ε0
B
σε0
(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
, t
)

×
(∑

i

ωij∂i

(
Kε0
σ

µc
ϕ

)(
x0
))
dx1dx0dt

(5.34)

by Lemma 2.1, (5.7), Lemmas 2.2, 2.4, and the definition of ωij .
But we observe from Lemma 5.1 that

σε0
(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
, t
)
=

∣∣Y1
∣∣∣∣Y1F
∣∣ σ̂ε0
(
x0, t
)
. (5.35)

Hence

T6
ε1→0−−−−→ 0

∣∣Y1
∣∣∣∣Y0

∣∣∣∣Y1F
∣∣
∫
J×Ω×Y0

χΩ
ε0
B

(
x0
)
σ̂ε0
(
x0, t
)

×
(∑

i

ωij∂i

(
Kε0
σ

µc
ϕ
(
x0
)))

dx0dt.

(5.36)

For the term T8, we have by (5.5)

T8
ε1→0−−−−→

(
ej , σ̂ε0∇

(
Kε0
σ

µc
ϕ

))
J×Ωε0

B

=
∫
J×Ωε0

B

σ̂ε0(x0, t)
(∑

i

δij∂i

(
Kε0
σ

µc
ϕ
(
x0
)))

dx0dt.

(5.37)

Hence, by (5.6), (5.31), (5.33), (5.36), and (5.37),

T7
ε1→0−−−−→

(
ξε0
j ,ϕ
)
J×Ωε0

B

=
∫
J×Ωε0

B

∑
i

( ∣∣Y1
∣∣∣∣Y1F
∣∣ωij + δij

)
∂i
(
σ̂ε0
(
x0, t
))Kε0

σ

µc
ϕ
(
x0
)
dx0dt.

(5.38)

So, define

(
Khε0
σ

)
ij ≡K

ε0
σ

(
ωij +

∣∣Y1F
∣∣∣∣Y1
∣∣ δij

)
. (5.39)
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Then, as in [5], Khε0
σ is a bounded, symmetric, positive-definite tensor.

Then we can write the equality in (5.38) as

(
ξε0 ,ϕ

)
J×Ωε0

B
=

( ∣∣Y1
∣∣∣∣Y1F
∣∣ Khε0

σ

µc
∇σ̂ε0 ,ϕ

)
J×Ωε0

B

, (5.40)

that is,

ξε0 =

∣∣Y1
∣∣∣∣Y1F
∣∣ Khε0

σ

µc
∇σ̂ε0 in Ωε0

B × J. (5.41)

Next define

rε0 ≡
∣∣Y1
∣∣∣∣Y1F
∣∣ σ̂ε0 , φhε0

σ ≡
∣∣Y1F

∣∣∣∣Y1
∣∣ φε0

σ . (5.42)

Then we can rewrite (5.24) as

∫
J×Ωε0

B

φhε0
σ rε0

t ϕdx0dt+ ε2
0

∫
J×Ωε0

B

Khε0
σ

µc
∇rε0 · ∇ϕdx0dt

+
(∣∣Y0

∣∣∣∣Y1
∣∣)−1
∫
J×Ωε0

B ×Y0×Y1B

φθ
(
x2
)
θε0
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)
×ϕ
(
x0, t
)
dx2dx1dx0dt

= 0 ∀ϕ ∈ L2(J ;H1(Ωε0
B

))
,

(5.43)

which is a weak form of the following partial differential equation:

φhε0
σ rε0

t + ε2
0∇ ·
(

Khε0
σ

µc
∇rε0

)
+ fε0

B,B = 0 in Ωε0
B × J, (5.44)

where

fε0
B,B =

(∣∣Y0
∣∣∣∣Y1
∣∣)−1
∫
Y0×Y1B

φθ
(
x2
)
θε0
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)
dx2dx1.

(5.45)

We now determine the initial and boundary conditions for θε0 and σ̂ε0 .
We begin with the following lemma, which can be established by means
of Lemmas 2.1, 2.2, and 2.4.
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Lemma 5.3. The following is true:

χΩ
ε0ε1
B,F

ε1→0−−−−→
∣∣Y1F

∣∣∣∣Y1
∣∣ weak* in L∞(Ωε0

B

)
. (5.46)

By Lemma 5.3,

χΩ
ε0ε1
B,F
ρinit −→

∣∣Y1F
∣∣∣∣Y1
∣∣ ρinit (5.47)

weakly in L2(Ωε0
B ) as ε1 → 0. Also, by (5.5) and weak continuity of the

appropriate trace map,

χΩ
ε0ε1
B,F
σε0ε1

(
x0,0

)
−→ σ̂ε0

(
x0,0

)
(5.48)

weakly in L2(Ωε0
B ) as ε1 → 0. Therefore, since σε0ε1(x0,0) = ρinit(x0), it

must be true that ∣∣Y1F
∣∣∣∣Y1
∣∣ ρinit = σ̂ε0 in Ωε0

B × {0}. (5.49)

A more convenient way of writing this is

rε0 = ρinit in Ωε0
B × {0}. (5.50)

To obtain the initial condition for θε0 , let T0 : H1(Y1B × J)→H1/2(Y1B ×
{0}) denote the trace map. Then, as ε1 → 0,

T0

((
θε0ε1

)∼(2)) −→T0
(
θε0
)

(5.51)

weakly in L2(Ω×Y0B ×Y1B). But

T0

((
θε0ε1

)∼(2)) = (ρinit
)∼(2) ∀ε0, ε1. (5.52)

Also, by Lemma 2.2, (ρinit)∼(2) → (ρinit)∼(1) strongly as ε1 → 0. Hence

θε0 = ρ∼(1)init in Ω×Y0B ×Y1B × {0}. (5.53)

To obtain a boundary condition on ∂Y1B, for θε0 , let T : H1(Y1B) →
H1/2(∂Y1B × J) denote the trace map. Then

T
((
σε0ε1

)∼(2)) −→T
(
σε0
)
=

∣∣Y1
∣∣∣∣Y1F
∣∣T((σ̂ε0

)∼(1))
,

T
((
θε0ε1

)∼(2)) −→T
(
θε0
) (5.54)
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weakly in L2(Ω×Y0B × ∂Y1B × J). Since, from the boundary condition in
(3.2),

T
((
σε0ε1

)∼(2)) =T
((
θε0ε1

)∼(2))
, (5.55)

it follows that

T
(
θε0
)
=

∣∣Y1
∣∣∣∣Y1F
∣∣T((σ̂ε0

)∼(1))
, (5.56)

that is,

θε0 =

∣∣Y1
∣∣∣∣Y1F
∣∣(σ̂ε0

)∼(1) ≡ (rε0
)∼(1) on Ω×Y0B × ∂Y1B × J. (5.57)

Thus, θε0 is a solution of problems (5.20), (5.57), and (5.53) and rε0 is
a solution of problems (5.44) and (5.50) with the boundary condition

Khε0
σ

µc
∇rε0 ·nΩε0

B
= 0 on ∂Ωε0

B × J. (5.58)

The fact that these problems determine θε0 and σ̂ε0 (and therefore rε0)
uniquely is a special case of Theorem 7.2, which is proved in Section 7.

Our results so far are summarized in the following theorem.

Theorem 5.4. As ε1 → 0, the following weak limits hold in the indicated spaces:

(
θε0ε1

)∼(2)
⇀ θε0 in L2(Ω;L2(Y0B;H1(Y1B × J

)))
,

χΩ
ε0ε1
B,F
σε0ε1 ⇀ σ̂ε0 in H1(J ;L2(Ωε0

B

))
,

χΩ
ε0ε1
B,F

Kε0
σ

µc
∇σε0 ⇀

∣∣Y1
∣∣∣∣Y1F
∣∣ Khε0

σ

µc
∇σ̂ε0 in L2(Ωε0

B × J
)
,

(5.59)

and if

rε0 =

∣∣Y1
∣∣∣∣Y1F
∣∣ σ̂ε0 ,

fε0
B,B =

(∣∣Y0
∣∣∣∣Y1
∣∣)−1
∫
Y0×Y1B

φθ
(
x2
)
θε0
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)
dx2dx1,

φhε0
σ ≡

∣∣Y1F
∣∣∣∣Y1
∣∣ φε0

σ ,
(
Khε0
σ

)
ij ≡ Kε0

σ

(
ωij +

∣∣Y1F
∣∣∣∣Y1
∣∣ δij

)
,

(5.60)
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then (rε0 ,θε0) is the unique weak solution to the following coupled initial-
boundary value problems:

φhε0
σ rε0

t + ε2
0∇ ·
(

Khε0
σ

µc
∇rε0

)
+ fε0

B,B = 0 in Ωε0
B × J, (5.61)

Khε0
σ

µc
∇rε0 ·nΩε0

B
= 0 on ∂Ωε0

B × J, (5.62)

rε0 = ρinit in Ωε0
B × {0}, (5.63)

φθθ
ε0
t −∇x2 ·

(
Kθ

µc
∇x2θ

ε0

)
= 0 in Ω×Y0B ×Y1B × J, (5.64)

θε0 =
(
rε0
)∼(1) on Ω×Y0B × ∂Y1B × J, (5.65)

θε0 =
(
ρinit
)∼(1) in Ω×Y0B ×Y1B × {0}. (5.66)

6. Homogenization as ε0 → 0

With an external source term S defined on Ω× J , we now create a com-
pletely new problem on all of Ω. In order to do this, we use the partial
differential equations for the system (5.61), (5.62), (5.63), (5.64), (5.65),
and (5.66), but we change the boundary condition (5.62) in order to con-
serve mass flux and pressure on ∂Ωε0

B . Thus, we have new unknowns
now, namely, ρε0 ,σh(ε0), and θh(ε0). We pose the following problem based
on the previous homogenization:

φρρ
ε0
t −∇ ·

(
Kρ

µc
∇ρε0

)
= S in Ωε0

F × J, (6.1)

Kρ

µc
∇ρε0 ·nΩ = 0 on ∂Ω× J, (6.2)

Kρ

µc
∇ρε0 ·nΩε0

B
= ε2

0
Khε0
σ

µc
∇σh(ε0) ·nΩε0

B
on ∂Ωε0

B × J, (6.3)

ρε0 = ρinit in Ωε0
F × {0}, (6.4)

φhε0
σ σ

h(ε0)
t − ε2

0∇ ·
(

Khε0
σ

µc
∇σh(ε0)

)
+ fhε0

B,B = 0 in Ωε0
B × J, (6.5)

σh(ε0) = ρε0 on ∂Ωε0
B × J, (6.6)

σh(ε0) = ρinit in Ωε0
B × {0}, (6.7)

φθθ
h(ε0)
t −∇x2 ·

(
Kθ

µc
∇x2θ

h(ε0)
)
= 0 in Ω×Y0B ×Y1B × J, (6.8)
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θh(ε0) =
(
σh(ε0)

)∼(1) on Ω×Y0B × ∂Y1B × J, (6.9)

θh(ε0) =
(
ρinit
)∼(1) in Ω×Y0B ×Y1B × {0}, (6.10)

where

fhε0
B,B =

(∣∣Y0
∣∣∣∣Y1
∣∣)−1
∫
Y0×Y1B

φθ
(
x2
)

× θhε0
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)
dx2dx1.

(6.11)

Theorem 6.1. Problem (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9),
and (6.10) is well posed in

L∞(J ;H1(Ωε0
F

))
∩L2(Ωε0

F ;H1(J)
)
×L∞(J ;H1(Ωε0

B

))
∩L2(Ωε0

B ;H1(J)
)

×L∞(J ;L2(Ω×Y0B;H1(Y1B
)))

∩L2(Ω×Y0B ×Y1B;H1(J)
)
.
(6.12)

This is a specific case of Theorem 7.1 in the more general setting of
Section 7. We prove it there, and we also deduce from it the following
important estimates. There exists C > 0 that is independent of ε0 such
that∥∥ρε0

∥∥
L∞(J ;H1(Ω

ε0
F )) +

∥∥ρε0
t

∥∥
L2(Ω

ε0
F ×J) ≤ C

(
‖S‖L2(Ω×J) +

∥∥ρinit
∥∥
H1(Ω)

)
, (6.13)∥∥σh(ε0)

∥∥
L2(Ω

ε0
B ×J) +

∥∥σh(ε0)
t

∥∥
L2(Ω

ε0
B ×J) ≤ C

∥∥ρinit
∥∥
H1(Ω), (6.14)

ε0
∥∥∇σh(ε0)

∥∥
L∞(J ;L2(Ω

ε0
B ×J)) ≤ C

∥∥ρinit
∥∥
H1(Ω), (6.15)∥∥θh(ε0)

∥∥
L∞(J ;L2(Ω×Y0B);H1(Y1B))

+
∥∥θh(ε0)

t

∥∥
L2(Ω×Y0B×Y1B×J) ≤ C

∥∥ρinit
∥∥
H1(Ω).

(6.16)

We now proceed to determine the limit of (ρε0 ,σh(ε0),θh(ε0)) as ε0 → 0.
By virtue of (6.13), (6.14), (6.15), and (6.16), we can pass to a subse-
quence and deduce that as ε0 → 0, we have the following weak limits in
the indicated spaces:

χΩ
ε0
F
φρρ

ε0 ⇀

∣∣Y0F
∣∣∣∣Y0
∣∣ φρρ in H1(J ;L2(Ω)

)
, (6.17)

χΩ
ε0
F

Kρ

µc
∇ρε0 ⇀ ξ in L2(Ω× J), (6.18)(

σh(ε0)
)∼(1)

⇀σ in L2(Ω;H1(Y0B × J
))
, (6.19)

θh(ε0) ⇀ θ in L2(Ω×Y0B;H1(Y1B × J
))
. (6.20)
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The partial differential equations satisfied by (ρ,σ,θ) will be derived
next. To obtain the equation for θ, we pass to the limit in the equation
defining the weak form of (6.7) by virtue of (6.20) to obtain

(
φθθt,ψ

)
Ω×Y0B×Y1B×J +

(
Kθ

µc
∇x2θ,ψ

)
Ω×Y0B×Y1B×J

= 0 ∀ψ ∈ L2(Ω×Y0B × J ;H1
0

(
Y1B
))
.

(6.21)

To find the equation for σ, we deduce from the weak form of (6.5) and
the argument in [5, page 831] that

(
φhσ
(
σ
h(ε0)
t

)∼(1)
,ψ
)
Ω×Y0B×J

+
(

Kh
σ

µc
∇x1

(
σ
h(ε0)
t

)∼(1)
,∇x1ψ

)
Ω×Y0B×J

+
((
fhε0
B,B

)∼(1)
,ψ
)
Ω×Y0B×J

= T9 + T10 + T11 = 0 ∀ψ ∈ L2(Ω;L2(J ;H1
0

(
Y0B
)))

.

(6.22)

Let ε0 → 0; from (6.19),

T9 −→
(
φhσσt,ψ

)
Ω×Y0B×J , T10 −→

(
Kh
σ

µc
∇x1σ,∇x1ψ

)
Ω×Y0B×J

. (6.23)

For term T11, we write(
fhε0
B,B

)∼(1)(
x0,y, t

)
= fhε0

B,B

(
ε0y + c0,ε0

(
x0
)
, t
)

=
1∣∣Y0
∣∣∣∣Y1
∣∣
∫
Y0×Y1B

φθ
(
x2
)
θ
h(ε0)
t

(
ε0x1 + c0,ε0

(
x0
)
,y,x2, t

)
dx2dx1,

(6.24)

where we have used the fact that c0,ε0(ε0x1 + c0,ε0(x0)) = c0,ε0(x0). Hence,

T11 =
1∣∣Y0
∣∣∣∣Y1
∣∣
∫
J×Ω×Y0B

(∫
Y0×Y1B

φθ
(
x2
)
θ
h(ε0)
t

(
ε0x1 + c0,ε0

(
x0
)
,y,x2, t

)
×ψ
(
x0,y, t

)
dx2dx1

)
dydx0dt

=
1∣∣Y0
∣∣∣∣Y1
∣∣
∫
J×Y0B

[∫
Y1B

φθ
(
x2
)(∫

Ω×Y0

θ
h(ε0)
t

(
ε0x1 + c0,ε0

(
x0
)
,y,x2, t

)
×ψ
(
x0,y, t

)
dx1dx0

)
dx2

]
dydt.

(6.25)
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Hence, by Lemmas 2.1, 2.2 and (6.20),

T11 =
1∣∣Y0
∣∣∣∣Y1
∣∣
∫
J×Y0×Ω×Y0B×Y1B

φθ
(
x2
)
θ
h(ε0)
t

(
x0,y,x2, t

)
×ψ
(
ε0x1 + c0,ε0

(
x0
)
,y, t
)
dx2dydx0dx1dt

ε0→0−−−−→ 1∣∣Y0
∣∣∣∣Y1
∣∣
∫
J×Y0×Ω×Y0B×Y1B

φθ
(
x2
)
θt
(
x0,y,x2, t

)
×ψ
(
x0,y, t

)
dx2dydx0dx1dt

=

∣∣Y0
∣∣∣∣Y0
∣∣∣∣Y1
∣∣
∫
J×Ω×Y0B×Y1B

φθ
(
x2
)
θt
(
x0,x1,x2, t

)
×ψ
(
x0,x1, t

)
dx2dydx0dx1dt

=
1∣∣Y1
∣∣(φθθt,ψ)J×Ω×Y0B×Y1B

.

(6.26)

Hence, by (6.22), (6.23), and (6.26),

(
φhσσt,ψ

)
Ω×Y0B×J +

(
Kh
σ

µc
∇x1σ,∇x1ψ

)
Ω×Y0B×J

+
1∣∣Y1
∣∣(φθθt,ψ)J×Ω×Y0B×Y1B

= 0 ∀ψ ∈ L2(Ω;L2(J ;H1
0

(
Y0B
)))

.

(6.27)

In order to derive an equation for ρ, we use the weak form of (6.1),
(6.2), and (6.3) to write

T12 + T13 + T14 + T15 + T16

=
(
φρρ

ε0
t ,ϕ
)
Ω
ε0
F ×J +

(
φhε0
σ σ

h(ε0)
t ,ϕ

)
Ω
ε0
B ×J +

(
Kρ

µc
∇ρε0 ,∇ϕ

)
Ω
ε0
F ×J

+ ε2
0

(
Khε0
σ

µc
∇σh(ε0),∇ϕ

)
Ω
ε0
B ×J

+
(
fhε0
B,B,ϕ

)
Ω
ε0
B ×J

= (S,ϕ)Ωε0
F ×J = T17 ∀ϕ ∈ L2(J ;H1(Ω)

)
.

(6.28)

As ε0 → 0, the following convergence results take place by (6.17) for
T12; Lemma 2.1, (6.19), and Lemma 2.2 for T13; (6.18) for T14; (6.15) for T15;
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Lemma 2.4 and (6.20) for T16; and Lemmas 2.1, 2.2 for T17:

T12 −→
(∣∣Y0F

∣∣∣∣Y0
∣∣ φρρt,ϕ

)
Ω×J

,

T13 =
∣∣Y0
∣∣−1
(
φhσ
(
σ
h(ε0)
t

)∼(1)
,ϕ∼(1)

)
Ω×Y0B×J

−→
∣∣Y0
∣∣−1(

φhσσt,ϕ
)
Ω×Y0B×J ,

T14 −→ (ξ,∇ϕ)Ω×J , T15 −→ 0,

T16 =
1∣∣Y0
∣∣∣∣Y1
∣∣
∫
J×Ωε0

B ×Y0×Y1B

φθ
(
x2
)
θ
h(ε0)
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)
×ϕ
(
x0, t
)
dx2dx1dx0dt

=
1∣∣Y0
∣∣∣∣Y1
∣∣
∫
J×Y1B

(∫
Ω×Y0B

φθ
(
x2
)
θ
h(ε0)
t

(
x0,x1,x2, t

)
×ϕ∼(1)(x0,x1, t

)
dx1dx0

)
dx2dt

=
1∣∣Y0
∣∣∣∣Y1
∣∣(φθθh(ε0)

t ,ϕ∼(1))
J×Ω×Y0B×Y1B

−→ 1∣∣Y0
∣∣∣∣Y1
∣∣(φθθt,ϕ)J×Ω×Y0B×Y1B

,

T17 =
1∣∣Y0
∣∣(S∼(1),ϕ∼(1))

Ω×Y0F×J −→
1∣∣Y0
∣∣(S,ϕ)Ω×Y0F×J

=

∣∣Y0F
∣∣∣∣Y0
∣∣ (S,ϕ)Ω×J . (6.29)

We now apply the arguments of [5, pages 831–833] to identify ξ. We
need only to show that the interchange term fhε0

B,B between the micro-
and mesoscales is bounded for ε0 > 0. To this end, we estimate it using
the Cauchy-Schwartz inequality, Lemma 2.4, and (6.20) as follows:

∥∥fhε0
B,B

∥∥2
Ω
ε0
B ×J

≤ C
∫
J×Ωε0

B ×Y0×Y1B

∣∣θh(ε0)
t

(
ε0x1 + c0,ε0

(
x0
)
,L0
(
x0
)
,x2, t

)∣∣2dx2dx1dx0dt

= C
∫
J×Ω×Y0B×Y1B

1∼(1)
∣∣θh(ε0)

t

∣∣dx2dx1dx0dt

= C
∥∥θh(ε0)

t

∥∥2
L2(Ω×Y0B×Y1B×J) ≤ C.

(6.30)

It follows that

(ξ,∇ϕ)Ω×J =

(
Kh
ρ

µc
∇ρ,∇ϕ

)
Ω×J

, (6.31)
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where Kh
ρ is the homogenized permeability tensor corresponding to Kρ,

as defined in [5, page 827] with the Q appearing there replaced by Y0.
Hence, by (6.28), (6.29), and (6.31),

∣∣Y0F
∣∣∣∣Y0
∣∣ (φρρt,ϕ)Ω×J +

1∣∣Y0
∣∣(φhσσt,ϕ)Ω×Y0B×J +

(
Kh
ρ

µc
∇ρ,∇ϕ

)
Ω×J

+
1∣∣Y0
∣∣∣∣Y1
∣∣(φθθt,ϕ)Ω×Y0B×Y1B×J

=

∣∣Y0F
∣∣∣∣Y0
∣∣ (S,ϕ)Ω×J ∀ϕ ∈ L2(J ;H1(Ω)

)
.

(6.32)

We now determine the initial and boundary conditions satisfied by
(ρ,σ,θ). By weak continuity of the appropriate trace operators and
Lemma 2.2, we can pass to the limit in (6.9), (6.10) as in Section 5 to get

θ = σ on Ω×Y0B × ∂Y1B × J, θ = ρinit in Ω×Y0B ×Y1B × {0},
(6.33)

and from (6.4), (6.6), (6.8), and the argument on [5, page 833], it follows
that

ρ = σ on Ω× ∂Y0B × J, ρ = ρinit in Ω× {0},
σ = ρinit in Ω×Y0B × {0}. (6.34)

We have shown that (ρ,σ,θ) satisfies [16, problem (3.29)–(3.31)].
Hence, by [16, Theorem 5.2], (ρ,σ,θ) is uniquely determined by (6.21),
(6.27), (6.32), (6.33), and (6.34). Hence, the limits in (6.17), (6.18), (6.19),
and (6.20) hold as ε0 → 0 through its full range of values.

The results of this section are summarized in the following theorem.

Theorem 6.2. As ε0 → 0, the following limits hold weakly in the indicated
spaces:

χΩ
ε0
F
φρρ

ε0 ⇀

∣∣Y0F
∣∣∣∣Y0
∣∣ φρρ in H1(J ;L2(Ω)

)
,

χΩ
ε0
F

Kρ

µc
∇ρε0 ⇀

Kh
ρ

µc
∇ρ in L2(Ω× J),

(
σh(ε0)

)∼(1)
⇀σ in L2(Ω;H1(Y0B × J

))
,

θh(ε0) ⇀ θ in L2(Ω×Y0B;H1(Y1B × J
))
,

(6.35)
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and if

φhρ =

∣∣Y0F
∣∣∣∣Y0
∣∣ φρ, φhσ =

∣∣Y1F
∣∣∣∣Y1
∣∣ φσ,

(
Kh
σ

)
ij ≡Kσ

(
ωij +

∣∣Y1F
∣∣∣∣Y1
∣∣ δij

)
, Sh =

∣∣Y0F
∣∣∣∣Y0
∣∣ S,

(6.36)

then (ρ,σ,θ) is the unique solution to the following system of coupled initial-
boundary value problems: ρ solves

φhρρt −∇x0 ·
(

Kh
ρ

µc
∇x0ρ

)
+

1∣∣Y0
∣∣
∫
Y0B

φhσσt dx1

+
1∣∣Y0
∣∣∣∣Y1
∣∣
∫
Y0B×Y1B

φθθt dx2dx1 = Sh on Ω× J,

Kh
ρ

µc
∇x0ρ ·nΩ = 0 on ∂Ω× J, ρ = ρinit on Ω× {0},

(6.37)

where to each x0 ∈Ω a block Y0B is associated such that σ solves

φhσσt −∇x1 ·
(

Kh
σ

µc
∇x1σ

)
+

1∣∣Y1
∣∣
∫
Y1B

φθθt dx2 = 0 in Ω×Y0B × J,

σ = ρ on Ω× ∂Y0B × J, σ = ρinit in Ω×Y0B × {0},
(6.38)

where to each x0 ∈Ω a block Y0B is associated, and to each x1 ∈ Y0B a block Y1B

is associated such that θ solves

φθθt −∇x2 ·
(

Kθ

µc
∇x2θ

)
= 0 in Ω×Y0B ×Y1B × J,

θ = σ on Ω×Y0B × ∂Y1B × J, θ = ρinit in Ω×Y0B ×Y1B × {0}.
(6.39)

7. (N + 1)-scale porosity model

In this section, we generalize the triple-porosity model to an (N + 1)-
scale porosity model. For the recursive homogenization procedure, we
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hold ε0, . . . , εm−1 constant and let εm → 0, recursively starting with m =
N − 1 and ending with m = 0. Generalizing the techniques used to de-
rive the triple-porosity model, we recursively derive a flow model for
N > 2 levels of fractures. We begin by assuming that ε0, . . . , εi−1 are held
constant and εi is sent to zero, for a fixed i ≥ 1, giving the following ho-
mogenized system of coupled partial differential equations (where, for
i = 1, we set Ωε0

B,H ≡Ωε0
H, H = B,F):

φ
h(ε0···εi−1)
i

∂ρ
h(ε0···εi−1)
i

∂t
− ε2

0 · · ·ε
2
i−1∇x0 ·

(
Kh(ε0···εi−1)
i

µc
∇x0ρ

h(ε0···εi−1)
i

)
+Lh(ε0···εi−1)

i = 0 in Ωε0···εi−1
B,B × J,

Kh(ε0···εi−1)
i

µc
∇x0ρ

h(ε0···εi−1)
i ·nΩε0 ···εi−1

B,B
= 0 in ∂Ωε0···εi−1

B,B × J,

ρ
h(ε0···εi−1)
i = ρinit in Ωε0···εi−1

B,B × {0},

(7.1)

where

L
h(ε0···εi−1)
i

=
N−1∑
α=i

1∣∣Y0
∣∣ · · ·∣∣Yα∣∣

×
∫
Y0×···×Yi−1×YiB×···×YαB

φhα+1

(
yα+1

)∂ρh(ε0···εi−1)
α+1

∂t

×
(

i−1∑
k=0

(
εkyk+1 + ck,εk

(
Lk−1

(
x0
)))

ek

+Li−1
(
x0
)
ei+

α+1∑
k=i+1

ykek+ teα+2

)
dyα+1 · · ·dy1.

(7.2)

We have the following system of coupled initial-boundary value prob-
lems that are coupled with the above initial-boundary value problem.
We state each of them in terms of j, where j = i + 1, . . . ,N, as follows.
For every x0 ∈ Ω, there exists a block Y0B, and for every x1 ∈ Y0B, there
exists a block Y2B, and so forth, and for every xj ∈ Y(j−1)B, the following
initial-boundary value problem is satisfied:

φhj

∂ρ
h(ε0···εi−1)
j

∂t
−∇xj ·

(
Kh
j

µc
∇xj ρ

h(ε0···εi−1)
j

)

+Sh(ε0···εi−1)
j = 0 in Ω×Y0B × · · · ×Y(j−1)B × J,
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ρ
h(ε0···εi−1)
j =


(
ρ
h(ε0···εi−1)
j−1

)∼(i)
if j = i+ 1,

ρ
h(ε0···εi−1)
j−1 otherwise,

in Ω×Y0B × · · · ×Y(j−2)B × ∂Y(j−1)B × J,

ρ
h(ε0···εi−1)
j =

(
ρinit
)∼(i) in Ω×Y0B × · · · ×Y(j−1)B × {0},

(7.3)

where, for j = i+ 1, . . . ,N − 1,

S
h(ε0···εi−1)
j

=
N−1∑
α=j

(∣∣Yi∣∣∣∣Yi+1
∣∣ · · ·∣∣Yj−1

∣∣∣∣Y0
∣∣∣∣Y1
∣∣ · · ·∣∣Yα∣∣

)

×
∫
Y0×···×Yi−1×YjB×···×YαB

φhα+1

(
yα+1

)∂ρh(ε0···εi−1)
α+1

∂t

×
(

i−1∑
k=0

(
εkyk+1 + ck,εk

(
xk
))

ek +
j∑
k=i

xkek

+
α+1∑
k=j+1

ykek+ teα+2

)
dyα+1 · · ·dyj+1dyi · · ·dy1,

(7.4)

and S
h(ε0···εi−1)
N ≡ 0. Also, φhN ≡ φN and Kh

N ≡ KN .
If we proceed to recursively homogenize the problem at the next level,

that is, if we want to let εi−1 → 0, then we first change the no-flow bound-
ary condition on ∂Ωε0···εi−1

B,B × J in (7.1) to the following boundary condi-
tion:

ρ
h(ε0···εi−1)
i = ρ(ε0···εi−1)

i−1 in ∂Ωε0···εi−1
B,B × J, (7.5)

Then, we impose the following initial-boundary value problem in Ωε0···εi−1
B,F

× J :

φε0···εi−2
i−1

∂ρ
(ε0···εi−1)
i−1

∂t
− ε2

0 · · ·ε
2
i−2∇x0 ·

(
Kε0···εi−2
i−1

µc
∇x0ρ

(ε0···εi−1)
i−1

)

= δi,1S
(
x0, t
)

in Ωε0···εi−1
B,F × J,
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Kε0···εi−2
i−1

µc
∇x0ρ

(ε0···εi−1)
i−1 ·nΩε0 ···εi−1

B,B

= ε2
i−1

Kh(ε0···εi−1)
i

µc
∇x0ρ

h(ε0···εi−1)
i ·nΩε0 ···εi−1

B,B
on ∂Ωε0···εi−1

B,B × J,

Kε0···εi−2
i−1

µc
∇x0ρ

(ε0···εi−1)
i−1 ·nΩε0 ···εi−1

B,F
= 0 on ∂Ωε0···εi−2

B,B × J,

ρ
(ε0···εi−1)
i−1 = ρinit in Ωε0···εi−1

B,F × {0}.
(7.6)

We now prove that the model is well posed.

Theorem 7.1. The problem at stage i− 1, namely, (7.1) (with the new boundary
condition (7.5)), (7.3), and (7.6) is well posed in

L∞(J ;H1(Ωε0···εi−1
B,F

))
∩L2(Ωε0···εi−1

B,F ;H1(J)
)
×L∞(J ;H1(Ωε0···εi−1

B,B

))
∩L2(Ωε0···εi−1

B,B ;H1(J)
)

×
[
×Nj=i+1 L

∞(J ;L2(Ω×Y0B × · · · ×Y(j−2)B;H1(Y(j−1)B × J
)))

∩L2(Ω×Y0B × · · · ×Y(j−1)B;H1(J)
)]
,

(7.7)

and there exists C > 0, independent of εi−1, such that

∥∥ρ(ε0···εi−1)
i−1

∥∥
L∞(J ;H1(Ω

ε0 ···εi−1
B,F )) +

∥∥ρ(ε0···εi−1)
i−1,t

∥∥
L2(Ω

ε0 ···εi−1
B,F ×J)

≤ C
(
δi,1‖S‖L2(Ω×J) +

∥∥ρinit
∥∥
H1(Ω)

)
,∥∥ρh(ε0···εi−1)

i

∥∥
L2(Ω

ε0 ···εi−1
B,B ×J) +

∥∥ρh(ε0···εi−1)
i,t

∥∥
L2(Ω

ε0 ···εi−1
B,B ×J) ≤ C

∥∥ρinit
∥∥
H1(Ω),

εi−1
∥∥∇ρh(ε0···εi−1)

i

∥∥
L∞(J ;L2(Ωε0 ···εi−1×J)) ≤ C

∥∥ρinit
∥∥
H1(Ω),

(7.8)

and for j = i+ 1, . . . ,N,

∥∥ρh(ε0···εi−1)
j

∥∥
L∞(J ;L2(Ω×Y0B×···×Y(j−2)B ;H1(Y(j−1)B×J)))

+
∥∥ρh(ε0···εi−1)

j,t

∥∥
L2(Ω×Y0B×···×Y(j−1)B)

≤ C
∥∥ρinit

∥∥
H1(Ω).

(7.9)
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Proof. This can be established by a straightforward application of [23,
Propositions I.4.1, III.2.1, III.2.5], a standard fixed-point argument, and
the usual energy and Dirichlet problem estimates for parabolic equa-
tions. �

A similar kind of arguments also works to prove the following theo-
rem.

Theorem 7.2. Problem (7.1), (7.3) is well posed in

L∞(J ;H1(Ωε0···εi−1
B,B

))
∩L2(Ωε0···εi−1

B,B ;H1(J)
)

×
[

N∏
j=i+1

L∞(J ;L2(Ω×Y0B × · · · ×Y(j−2)B;H1(Y(j−1)B × J
)))

∩L2(Ω×Y0B × · · · ×Y(j−1)B;H1(J)
)]
.

(7.10)

In order to identify the intermediate source terms which do not ap-
pear in the triple-porosity model, the following lemma is essential.

Lemma 7.3. Let Fε0···εi−1 ,ϕ ∈ L2(Ω × Y0B × · · · × Y(j−1)B × J). Assume that
Fε0···εi−1 ⇀ Fε0···εi−2 weakly in L2(Ω × Y0B × · · · × Y(j−1)B × J). Then, for j =
i, . . . ,N − 1,

∫
J×Ω×Y0B×···×Y(j−1)B

[∫
Y0×···×Yi−1

Fε0···εi−1

(
i−1∑
k=0

(
εkyk+1 + ck,εk

(
xk
))

ek

+
j∑
k=i

xkek + tej+1

)
dyi · · ·dy1

]
×ϕ
(
x0, . . . ,xj , t

)
dxj · · ·dx0dt

εi−1→0−−−−−→
∣∣Yi−1

∣∣
×
∫
J×Ω×Y0B×···×Y(j−1)B

[∫
Y0×···×Yi−2

Fε0···εi−2

×
(

i−2∑
k=0

(
εkyk+1 + ck,εk

(
xk
))

ek

+
j∑

k=i−1

xkek + tej+1

)
dyi−1 · · ·dy1

]
×ϕ
(
x0, . . . ,xj , t

)
dxj · · ·dx0dt.

(7.11)
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Proof. Using Fubini’s theorem, we interchange the integration spaces in
the following convenient way:∫
J×Ω×Y0B×···×Y(j−1)B

∫
Y0×···×Yi−1

Fε0···εi−1

(
i−1∑
k=0

(
εkyk+1 + ck,εk

(
xk
))

ek

+
j∑
k=i

xkek + tej+1

)
dyi · · ·dy1

×ϕ
(
x0, . . . ,xj , t

)
dxj · · ·dx0dt

=
∫
J×Ω×Y0B×···×Y(i−3)B×Y(i−1)B×···×Y(j−1)B

×
∫
Y0×···×Yi−2

[∫
Y(i−2)B×Y(i−1)

Fε0···εi−1
(
. . . , εi−1yi + c(i−1),εi−1

(
xi−1
)
, . . .
)

×ϕ
(
. . . ,xi−1, . . .

)
dyi dxi−1

]
×dyi−1 · · ·dy1dxj · · ·dxi dxi−2 · · ·dx0dt

=
∫
J×Ω×Y0B×···×Y(i−3)B×Y(i−1)B×···×Y(j−1)B

×
∫
Y0×Y0B×···×Yi−2

[∫
Y(i−2)B×Y(i−1)

Fε0···εi−1
(
. . . ,xi−1, . . .

)
×ϕ
(
. . . , εi−1yi + c(i−1),εi−1

(
xi−1
)
,

. . .
)
dyi dxi−1

]
×dyi−1 · · ·dy1dxj · · ·dxi dxi−2 · · ·dx0dt

εi−1→0−−−−−→
∫
J×Ω×Y0B×···×Y(i−3)B×Y(i−1)B×···×Y(j−1)B

×
∫
Y0×···×Yi−2

[∫
Y(i−2)B×Y(i−1)

Fε0···εi−2
(
. . . ,xi−1, . . .

)
×ϕ
(
. . . ,xi−1, . . .

)
dyi dxi−1

]
×dyi−1 · · ·dy1dxj · · ·dxi dxi−2 · · ·dx0dt

=
∣∣Yi−1

∣∣∫
J×Ω×Y0B×···×Y(i−3)B×Y(i−1)B×···×Y(j−1)B

×
∫
Y0×···×Yi−2

[∫
Y(i−2)B

Fε0···εi−2
(
. . . ,xi−1, . . .

)
×ϕ
(
. . . ,xi−1, . . .

)
dxi−1

]
×dyi−1 · · ·dy1dxj · · ·dxi dxi−2 · · ·dx0dt
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=
∣∣Yi−1

∣∣
×
∫
J×Ω×···×···×Y(j−1)B

[∫
Y0×···×Yi−2

Fε0···εi−2

(
i−2∑
k=0

(
εkyk+1 + ck,εk

(
xk
))

ek

+
j∑

k=i−1

xkek + tej+1

)
dyi−1 · · ·dy1

]

×ϕ
(
x0, . . . ,xj , t

)
dxj · · ·dx0dt,

(7.12)

where Lemma 2.5 gives the second equality, and the weak convergence
of Fε0···εi−1 to Fε0···εi−2 and the strong convergence of φ(x0, . . . , εi−1yi +
c(i−1),εi−1(xi−1), . . . ,xj , t) to φ(x0, . . . ,xi−1, . . . ,xj , t) as εi−1 → 0 give the con-
vergence result. The volume |Yi−1| appears as a result of the integrand’s
independence on the variable yi−2 after εi−1 → 0. Fubini’s theorem gives
the final equality. �

Corollary 7.4. With the definition of Sh(ε0···εi−1)
j in (7.4),

S
h(ε0···εi−1)
j ⇀ S

h(ε0···εi−2)
j weakly as εi−1 −→ 0. (7.13)

Notice now that(
L
h(ε0···εi−1)
i

)∼(i)
=
N−1∑
α=i

1∣∣Y0
∣∣ · · ·∣∣Yα∣∣

×
∫
Y0×···×Yi−1×YiB×···×YαB

φhα+1

(
yα+1

)∂ρh(ε0···εi−1)
α+1

∂t

×
(

i−1∑
k=0

(
εkyk+1 + ck,εk

(
xk
))

ek +xiei

+
α+1∑
k=i+1

ykek + teα+2

)
dyα+1 · · ·dy1

≡ Sh(ε0···εi−1)
i .

(7.14)

We observe that this definition of Sh(ε0···εi−1)
i agrees with the one given by

(7.4), with the empty product in the numerator of the coefficient there
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replaced by 1. Thus, by Lemma 7.3, with j = i, we have the following
weak convergence result in L2(D):

(
L
h(ε0···εi−1)
i

)∼(i) εi−1→0
N−1∑
α=i

∣∣Yi−1
∣∣∣∣Y0

∣∣ · · ·∣∣Yα∣∣
×
∫
Y0×···×Yi−2×YiB×···×YαB

φhα+1

(
yα+1

)∂ρh(ε0···εi−1)
α+1

∂t

×
(

i−2∑
k=0

(
εkyk+1 + ck,εk

(
xk
))

ek +
i∑

k=i−1

xkek

+
α+1∑
k=i+1

ykek + teα+2

)
dyα+1 · · ·dy1

≡ Sh(ε0···εi−2)
i .

(7.15)

The permeability tensors that arise in the intermediate stages of ho-
mogenization are given by

(
Kh(ε0···εi−2)
i−1

)
αβ =K

ε0···εi−2
i−1

(
ωi−1
αβ +

∣∣Y(i−1)F
∣∣∣∣Yi−1
∣∣ δαβ

)
. (7.16)

In the above definition, the geometry of the fractures enters the equa-
tions via ωi−1 ≡ (ωi−1)αβ, which is defined by the Yi−1-periodic solution
ωi−1
β

, modulo constants, of the following Neumann problem:

∆xiw
i−1
β = 0 in Y(i−1)F, ∇xiω

i−1
β · ν = −eβ · ν = −νβ on ∂Y(i−1)B,

ωi−1
αβ =

1∣∣Yi−1
∣∣
∫
Y(i−1)F

∂i,αω
i−1
β

(
xi
)
dxi,

(7.17)
where ∂i,α = ∂/∂xi,α.

Finally, define

φ
h(ε0···εi−2)
i−1 ≡

∣∣Y(i−1)F
∣∣∣∣Yi−1
∣∣ φε0···εi−2

i−1 , ρ
h(ε0···εi−2)
i−1 ≡

∣∣Yi−1
∣∣∣∣Y(i−1)F
∣∣ ρ̂ ε0···εi−2

i−1 . (7.18)

By adapting the arguments employed in the homogenization of the tri-
ple-porosity model, using in addition Corollary 7.4 and (7.15), we arrive
at the following theorem.

Theorem 7.5. For i = 1, . . . ,N, let (ρ(ε0···εi−1)
i−1 ,ρ

h(ε0···εi−1)
i , . . . ,ρ

h(ε0···εi−1)
N ) be the

unique weak solution to problem (7.1) (with the new boundary condition (7.5)),
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(7.3), and (7.6). Then, as εi−1 → 0, the following limits hold weakly in the indi-
cated spaces:

χΩ
ε0 ···εi−1
B,F

ρ
(ε0···εi−1)
i−1 ⇀ ρ̂ε0···εi−2

i−1 in H1(J ;L2(Ωε0···εi−2
B,B

))
,

χΩ
ε0 ···εi−1
B,F

Kε0···εi−2
i−1

µc
∇x0ρ

(ε0···εi−1)
i−1 ⇀

∣∣Yi−1
∣∣∣∣Y(i−1)F
∣∣Kh(ε0···εi−2)

i−1 ∇x0 ρ̂
ε0···εi−2
i−1

in L2(Ωε0···εi−2
B,B × J

)
,(

ρ
h(ε0···εi−1)
i

)∼(i)
⇀ ρ

h(ε0···εi−2)
i in L2(Ω×Y0B × · · · ×Y(i−2)B;H1(Y(i−1)B × J

))
,

(7.19)
and for j = i+ 1, . . . ,N,

ρ
h(ε0···εi−1)
j ⇀ ρ

h(ε0···εi−2)
j in L2(Ω×Y0B × · · · ×Y(j−2)B;H1(Y(j−1)B × J

))
.

(7.20)
Moreover, if

ρ
h(ε0···εi−2)
i−1 =

∣∣Yi−1
∣∣∣∣Y(i−1)F
∣∣ ρ̂ ε0···εi−2

i−1 , (7.21)

then (ρh(ε0···εi−2)
i−1 , . . . ,ρ

h(ε0···εi−2)
N ) is the unique weak solution of problem (7.1),

(7.3) with i replaced by i− 1. In particular, as ε0 → 0, the following weak limits
hold:

χΩ
ε0
F
ρε0

0 ⇀ ρ̂0 in H1(J ;L2(Ω)
)
,

χΩ
ε0
B

Kε0
0

µc
∇ρε0

0 ⇀

∣∣Y0
∣∣∣∣Y0F
∣∣Kh

0∇ρ̂0 in L2(Ω× J),

(
ρ
h(ε0)
1

)∼(1)
⇀ ρ1 in L2(Ω;H1(Y0B × J

))
,

(7.22)

and for j = 2, . . . ,N,

ρ
h(ε0)
j ⇀ ρj in L2(Ω×Y0B × · · · ×Y(j−2)B;H1(Y(j−1)B × J

))
. (7.23)

Moreover, if

ρ0 =

∣∣Y0
∣∣∣∣Y0F
∣∣ ρ̂0, Sh =

∣∣Y0F
∣∣∣∣Y0
∣∣ S, (7.24)
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then (ρ0, . . . ,ρN) is the unique weak solution of the following system of final
homogenized equations:

φh0
∂ρ0

∂t
−∇x0 ·

(Kh
0

µc
∇x0ρ0

)
+

N∑
k=1

1∣∣Y0
∣∣ · · ·∣∣Yk−1

∣∣
∫
Y0B×···×Y(k−1)B

φhk
∂ρk
∂t

dxk · · ·dx1 = Sh in Ω× J,

Kh
0

µc
∇x0ρ0 ·nΩ = 0 on ∂Ω× J,

ρ0 = ρinit in Ω× {0},
(7.25)

and for every xj−1 ∈ Y(j−2)B, there exists a block Y(j−1)B such that ρj solves the
following initial-boundary value problem for j = 1, . . . ,N:

φhj
∂ρj

∂t
−∇xj ·

(
Kh
j

µc
∇xj ρj

)

+
N−1∑
k=j

1∣∣Yj∣∣ · · ·∣∣Yk∣∣
∫
YjB×···×YkB

φhk+1
∂ρk+1

∂t
dxk+1 · · ·dxj+1

= 0 in Ω×Y0B × · · · ×Y(j−1)B × J,
ρj = ρj−1 on Ω×Y0B × · · · ×Y(j−2)B × ∂Y(j−1)B × J,
ρj = ρinit in Ω×Y0B × · · · ×Y(j−1)B × {0}.

(7.26)

8. Concluding remarks

Each equation in the final homogenized system of the (N + 1)-scale prob-
lem contains interchange terms from the relatively smaller scales. This
shows that the recursive homogenization procedure captures the mi-
croscale effects. Instead, if the entire reservoir was homogenized in a
straightforward manner as was done in [1, 10], a single-porosity model
with an average permeability would result. That would be inadequate
here since the porous structures are quite distinct. Here, we retain the
fine microscopic structures, yet we average their effects.

It is worth noting that instead of putting the external source term
solely on the first level of fractures, we could have easily defined it on
each level. If this is desired, then the above analysis still holds with the
modification that in the final homogenized system of equations, the ex-
ternal source term would appear on each level with no modification
from the homogenization.
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