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A theoretical analysis of the Saint-Venant one-dimensional flow model is performed in
order to define the nature of its instability. Following the Brigg criterion, the investiga-
tion is carried out by examining the branch points singularities of dispersion relation in
the complex ω and k planes, where ω and k are the complex pulsation and wave num-
ber of the disturbance, respectively. The nature of the linearly unstable conditions of flow
is shown to be of convective type, independently of the Froude number value. Starting
from this result a linear spatial stability analysis of the one-dimensional flow model is
performed, in terms of time asymptotic response to a pointwise time periodic distur-
bance. The study reveals an influence of the disturbance frequency on the perturbation
spatial growth rate, which constitutes the theoretical foundation of semiempirical criteria
commonly employed for predicting roll waves occurrence.

1. Introduction

High velocity flows in steep channels may exhibit surface instabilities, perceivable as a
train of water waves. As these waves propagate downstream they increase in amplitude
and eventually break forming hydraulic bores. The series of waves just described are the
so-called “roll waves” and occur usually in man-made channels, such as draining systems
and dam spill ways. Generally, roll waves presence is undesirable since they may deter-
mine a water overflow from the channel sides and excessive intermittency at the outlet.
In studying this phenomenon, two basic issues arise:

(1) identifying the necessary conditions under which roll waves appear;
(2) predicting the roll waves evolution along the channel.

Only the former question will be addressed herein.
From the theoretical point of view, the roll waves generation process has been thor-

oughly and deeply investigated. In what follows the discussion is restricted to analyses
performed with reference to the linearized one-dimensional flow model (Saint-Venant
equations) in which the field variables, mean velocity, and flow depth are assumed to be
smooth. Under such assumptions roll waves generation process has been fruitfully inter-
preted in terms of instability of the linearized flow model.
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Many temporal linear stability analyses have been performed [1, 2, 6, 14] in order to
individuate the critical values of relevant dimensionless Reynolds and Froude numbers
corresponding to the appearance of roll waves. For instance, assuming the channel to be
sufficiently wide and expressing the bottom shear stress as a quadratic function of the
mean velocity, a critical value of the Froude number, Fc = 2, below which roll waves can-
not occur, has been found [6]. Furthermore, all conditions of flow characterized by F > Fc
are unstable, independently of the perturbation wave-length values. Several experiments
(see, e.g., [5]) confirmed the absence of roll waves for F < Fc, while their presence was not
always detected for F > Fc.

In contrast with temporal analysis and to take into account the developing character of
roll waves, spatial linear stability analyses have been performed, starting from the hyper-
bolic character of the Staint-Venant equations [9, 10, 18, 19]. The pointwise perturbation
is assumed to propagate downstream with the celerity of the faster shallow water wave,
according to the hyperbolic wave theory.

In terms of stability region the results of the temporal analysis are essentially con-
firmed, despite the strong different space-time evolution of the perturbation.

Whether temporal or spatial technique is more appropriate to investigate the insta-
bility of Saint-Venant flow model depends on the nature (convective or absolute) of the
instability [8]. An instability is defined as convective if a localized initial small perturba-
tion, growing in time, is swept away from the source only in one direction, whereas the
instability is absolute if it spreads in all directions. Only when the instability is convective,
spatial analysis may describe fruitfully its evolution.

Even in a linear analysis framework, definition of the instability nature allows to ver-
ify the theoretical assumptions embodied in some semiempirical criteria used for defin-
ing the minimum channel length below which the roll waves presence is not detected.
These criteria, tested and calibrated using many available experimental data, start from
the space-time evolution of perturbations resulting from the spatial linear hyperbolic
analysis.

Montuori [11, 12], and later Liggett [10], proposed to relate the critical Froude num-
ber value with the channel length L; for sufficiently small values of L no roll waves appear.

Considering the process as Reynolds independent, in a wide channel the critical Froude
number is expressed as a monotone decreasing function of the channel length tending to
the limit Fc = 2, for sufficiently large L. Similar conclusions have been drawn by Julien
and Hartley [9] in studying the roll waves formation process in highly viscous mud flows
observable in steep mountain channels. It is worth noting that the above semiempirical
criteria share some similarities with the en-method, originally proposed by Van Ingen
[17] and by Smith and Gamberoni [15], commonly used to give an engineering predic-
tion of the boundary layers transition location.

In the present paper, the convective nature of the instability is proved by examining the
linear impulse response of a given uniform base flow. Following the Briggs criterion [4],
an analysis concerning the behavior of the spatial branches associated with the disper-
sion equation is carried out in the complex k and ω planes. Furthermore, a spatial linear
stability analysis in terms of flow response to a pointwise time periodic perturbation is
performed. The analysis naturally accounts for dispersive effects. The strict dependence
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on the source frequency of the perturbation spatial growth rate, whose expression con-
stitutes the theoretical starting point of some criteria commonly employed in hydraulic
engineering applications, is finally discussed.

2. Governing equations

The system under investigation is an incompressible fluid flowing in a broad rectangular
channel, without lateral inflow or outflow and with a nonerodible plane sloping bed.
The one-dimensional equations governing the motion are the well-known Saint-Venant
equations

∂u

∂t
+u

∂u

∂x
+ g

∂h

∂x
+
τb
ρh
= gS0,

∂h
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+u

∂h

∂x
+h

∂u
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(2.1)

in which x is the streamwise coordinate, t the time, g the gravity, ρ the water density, u
the depth-averaged velocity, h the depth of the water surface, S0 the bed slope, and τb the
bed shear stress. A small perturbation (u′,h′) is superposed to a base state uniform flow
(u0,h0). The substitution of the perturbed variables in (2.1) leads, after the linearization,
to the following problem:
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in which τb = τb0 + τ′b, being τb0 = S0ρh0g. Expressing the bed shear stress in terms of the
bulk velocity square (τb = ρCf u2), and assuming a constant value of the friction coeffi-
cient (Cf = Cf 0), (2.2) may be rewritten in the following dimensionless form:
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in which
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, (2.4)

and F = u0/
√
gh0 denotes the unperturbed Froude number.

The first order system (2.3) may be easily reformulated only in terms of depth pertur-
bation h̃′:
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Following the classical linear stability theory, the perturbation h̃′ is decomposed into
elementary waves like exp i(kx̃−ωt̃), with k = kr + ki the dimensionless complex wave
number and ω = ωr + iωi the dimensionless complex pulsation. The substitution of such
a perturbation into (2.5) leads to the quadratic dispersion equation

D(k,ω,F)= F2i(ω− k)2− k2i− 2ω+ 3k = 0. (2.6)

In a temporal stability analysis, the wave number k is assumed to be real and unstable
conditions are related to the existence of complex frequencies ω, roots of (2.6), with neg-
ative imaginary part. On the other hand, in a spatial stability analysis the pulsation ω is
considered real and the instability is related to the occurrence of complex wave numbers
k, roots of (2.6), with positive imaginary part.

In order to ascertain which of the two techniques is the most appropriate to describe
an unstable process, a study on the response of the flow model to a wave packet is needed.
The analysis of asymptotic temporal behavior of the solution allows to classify the insta-
bility nature as convective or absolute. In the convective instability an initial disturbance,
localized in space, is swept away from the source. By contrast, instability is absolute if a
preferential direction of propagation does not exist. In such an instance the disturbance
spreads both in downstream and upstream directions contaminating the whole domain
as time tends to infinity. A spatial analysis leads to a well-posed problem only when the
instability is of convective type. Contributions to the theoretical foundations underly-
ing these notions have been brought out in studies concerning plasma [3] and hydrody-
namic stability (see the review of Huerre and Monkewitz [8]). In a morphodynamic con-
text, the nature of bar formation process has been recently investigated by Federici and
Seminara [7].

3. Convective nature of instability

The nature of instability of the linearized Saint-Venant flow model may be ascertained by
studying the impulsive response of (2.5). The usual approach leads to investigating the
asymptotic time behavior of the solution (Green’s function) of the following initial value
problem:
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)
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3
∂G
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)
= δ(x̃)δ(t̃), (3.1)

where δ is the Dirac delta function. The spatial domain is assumed to be unbounded and
homogeneous initial conditions are prescribed. Following Huerre and Monkewitz [8],
the base flow is classified as linearly unstable if there exists a ray x̃/t̃ = cost along which

lim
t̃→∞

G(x̃, t̃)=∞. (3.2)

A linear unstable condition of flow is convective if, along the ray x̃/t̃ = 0,

lim
t̃→∞

G(x̃, t̃)= 0, (3.3)
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whereas it is absolutely unstable when, along the ray x̃/t̃ = 0,

lim
t̃→∞

G(x̃, t̃)=∞. (3.4)

The asymptotic behavior of the Green function (3.2)–(3.4) may be analyzed represent-
ing G(x̃, t̃) as double Fourier integral in the complex ω and k planes

G(x̃, t̃)= 1
(2π)2

∫
L

∫
C
ei(kx̃−ωt̃)

dkdω

D(k,ω,F)
, (3.5)

in which the contours L and C are placed in the region of absolute convergence of G(x̃, t̃)
and D(k,ω,F) is the dispersion operator given by (2.6). The application of the steepest
descend method to (3.5) allows to analyze the asymptotic conditions (3.2)–(3.4) only
through the study of both temporal ω(k) and spatial k(ω) branches of the dispersion
relation D(k,ω,F) in the complex ω and k planes [4, 8].

It may be shown [8] that condition (3.2) is not fulfilled, that is, linearly stable condi-
tions of flow occur, if ωi(kr) < 0 for all k = kr and for all temporal branches ω(kr).

Therefore, the presence of linearly unstable conditions of flow will be detected if the
maximum value ωmax

i of ωi(kr) is positive definite.
The simple structure of the dispersion equation (2.6) allows to deduce in an analytic

form the temporal branches ω(k),

ω = k− i

F2
±
√√√(

k− i

F2

)2

− k2

(
1− 1

F2

)
+ 3i

k

F2
. (3.6)

Setting k = kr in the right-hand side of (3.6), it follows that, according to previous re-
sults [6], linearly unstable conditions of flow are permitted only when the Froude number
exceeds the limit value Fc = 2.

Figure 3.1, in which both temporal branches ω(kr) are depicted in the complex ω-
plane for three different Froude number values, namely, F = 0.5, F = 1.5, F = 2.5, clearly
shows the instability occurrence only in the F = 2.5 case.

In order to ascertain the nature of unstable conditions of flow, occurring when F > Fc,
a careful study of the spatial branches is required. Briggs [4] proved that the absolute
character of the instability may be defined looking for the complex frequencies ω0 for
which two (or more) spatial branches k(ω) merge (pinch-type singularities). The positive
definiteness of ω0

i is the necessary condition for the absolute character of the instability.
The sufficient condition comes from the analysis, for large enough ω values, that is, ωi >
ωmax
i , of the spatial branches k(ω) that coalesce for ω = ω0. The instability will be of

absolute type if for ωi > ωmax
i at least two of such branches are placed on opposite sides

of the real k-axis. The study of the branches location, in condition of spatial evanescence
(ωi > ωmax

i ), ensures that the instability, corresponding to the pinch, will appear as two
waves, propagating in opposite directions, without any discontinuity at the origin of the
spatial coordinates. The time growth of these waves, that behave as only one wave (normal
mode), will lead to the contamination of the whole domain as time tends to infinity.
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Figure 3.1. Imaginary part of temporal branches, where in (a) F = 0.5, in (b) F = 1.5, and in (c)
F = 2.5.

Since the spatial branches merging points correspond to the saddle points of the tem-
poral branches ω(k) [8], the necessary condition of the Briggs criterion may be ana-
lyzed alternatively looking for the complex wave number k0 such that dω/dk = 0, that
is, ω0 = ω(k0). The last technique is the most useful when many spatial branches are
present.

The above procedures may be applied only when pinch-type singularities occur at
finite values of k0. If such an instance does not occur, the singularities will be defined as
essential and the Brigg criterion cannot be straightforwardly applied. In this case, a direct
numerical evaluation of G(x̃, t̃) is needed [13].

In the Saint-Venant flow model (2.5) only two spatial branches exist,

k = 2F2ω+ 3i±√4F2ω(ω+ i)− 9 + 8iω
2
(
F2− 1

) , (3.7)
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Figure 3.2. Imaginary part of finite pinch-type singularities versus Froude number.

whose merging points are given by

ω0 = −i
(
F2− 2

)± i
√(

F2− 4
)(
F2− 1

)
2F2

. (3.8)

The inspection of (3.8) and of (3.7) with ω = ω0 allows to conclude that the instabil-
ity of the Saint-Venant flow model has a convective nature, since only finite pinch-type
singularities characterized by negative imaginary part exist, for F > 2. Figure 3.2 gives a
graphical evidence of the negative definiteness of the ω0

i (F) function.

4. Response to a pointwise time-periodic disturbance

The absence of absolute instabilities suggests to analyze roll waves generation process by
linear spatial analysis. In this context we investigate, considering the dispersive effects,
the time-asymptotic response of the flow model to a pointwise external source oscillating
with a prescribed frequency.

Let ωe = 2π fe/S0 be the dimensionless pulsation of the oscillation, fe = h0/(u0Te) be-
ing the source frequency, with Te the dimensional period of oscillation. Assuming the
flow domain to be unbounded, the mathematical model reads

∂2R
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)
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As in the pulse case, the solution of problem (4.1) may be described as double Fourier
integral in the complex ω and k planes
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(2π)2

∫
L

∫
C
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ω−ωe

)
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. (4.2)



266 On the convective nature of roll waves instability

In unstable condition of flow, F > Fc, the time-asymptotic behavior of (4.2) may be writ-
ten in terms of two waves traveling both in the downstream direction [3],

R(x̃, t̃)= i
∑
l=1,2

U(x̃)(
∂D/∂k

)
k=kl

e−i[ωet̃−kl(ωe)x̃], (4.3)

whereU(x̃) is the unit-step function, kl(ωe) l = 1,2, are the two spatial branches, obtained
setting ω = ωe in (3.7),

kl(ωe)=
2F2ωe + 3i±

√
4F2ωe

(
ωe + i

)− 9 + 8iωe

2
(
F2− 1

) , (4.4)

and finally

(
∂D

∂k

)
k=kl

= 2iF2(ωe− kl
(
ωe
))

+ 2ikl
(
ωe
)− 3. (4.5)

Independently of the ωe value, the inspection of (4.4) leads to recognize the existence
of only one spatially excited wave (ki(ωe) < 0); the other one is spatial evanescent. A
graphical evidence of such findings is given in Figure 4.1, in which the imaginary part
of the two spatial branches kl(ωe), for F = 2.5, F = 5.0, and F = 7.5, is represented. The
analysis of the propagation phase speed c = ωe/kr(ωe) suggests that the excited wave is the
primary one (fast), while the evanescent one is the secondary one (slow). In Figure 4.2
the propagation phase speed of both waves versus ωe is depicted, for F = 2.5, F = 5.0, and
F = 7.5. The diagram reveals that the c value of both waves is not constant and strongly
depends on the value of the source pulsation. Similar results have been derived by Supino
[16] in studying the evolution of small waves in a hydraulic channel, starting from the
linearized Saint-Venant flow model.

We focus the attention on the primary unstable wave. Equation (4.4) indicates that,
for a constant Froude number value, the imaginary part of the wave number, that is, the
spatial growth rate, is a bounded monotone function of ωe or, equivalently, of the source
frequency fe, for a fixed value of the bed channel slope. Independently of the Froude
number, very small values of the frequency lead to a vanishing spatial growth rate. On the
other hand, the limit process for very high frequencies ( fe →∞) furnishes the minimum
asymptotic value of the ki, that is, maximum spatial grow rate, that reads

kmin
i (F)= 2−F

2F(F + 1)
. (4.6)

The propagation phase speed shows a monotone dependence upon frequency fe. Its max-
imum cmax = 1.5 occurs at fe = 0, independently of the Froude number, and the asymp-
totic value c∞ = 1 + 1/F represents its minimum.

Spatial growth rates, formally equivalent to the asymptotic value (4.6), have been de-
duced from previous linear analyses which do not consider the dispersive effects [10, 18,
19]. Moreover, these growth rate expressions have constituted the theoretical justification
to semiempirical criteria, for predicting the presence of the roll waves [9, 11].
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Figure 4.1. Imaginary part of the wave number. The solid line represents unstable wave and the
dashed line represents evanescent wave. (a) F = 7.5, (b) F = 5, and (c) F = 2.5.

In particular, Montuori [11, 12] related the formation of the roll waves not only to the
Froude number but also to the channel length L. Starting from the results of the spatial
linear analysis of Vedernikov [18, 19], the author introduced a functional dependence of
the critical Froude number value upon the nondimensional channel length LS0/h0, that,
as far as wide rectangular channels are concerned, may be rewritten as follows:

LS0

h0
= ln(ε)

kmin
i (F)

. (4.7)

The amplification factor ε = 10−4 appearing in (4.7) has been calibrated starting from
numerous field data collected in Europe and in Russia. The curve defined by (4.7) indi-
viduates two disjoint regions, in the LS0/h0− F plane. Roll waves formation is inhibited
in flow conditions characterized by (LS0/h0,F) pairs laying below the curve.
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Figure 4.2. Phase speed. The solid line represents growing wave and the dashed line represents the
evanescent wave. (a) F = 7.5, (b) F = 5, and (c) F = 2.5.

Figures 4.3 and 4.4 depict the deviation of the calculated spatial growth rate from
its asymptotic value (α= ki/k

min
i ) versus the frequency fe, for two different channel bed

slope values (S0 = 0.01 and S0 = 0.30). In each figure, three different values of the Froude
number (F = 2.5, F = 5, and F = 7.5) have been considered.

In the S0 = 0.01 case (Figure 4.3) only for very low frequency values (Te > 500 h0/u0)
substantial deviations from the asymptotic value may be detected. In contrast, for higher
bed channel slope value (Figure 4.4) considerable differences appear in a broader fre-
quency range. Independently of the bed channel slope, the deviations reduce when the
Froude number is increased, even though the Froude number effect appears to be less
significant.

From the above results it follows that the spatial evolution of the perturbation, ac-
cording to the dispersion effects in a linear approximation context, is governed by three
dimensionless parameters xS0/h0, F, fe/S0. The conventional approaches employing only
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Figure 4.3. Spatial growth rate α= ki/k
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Figure 4.4. Spatial growth rate α= ki/k
min
i versus the dimensionless frequency fe (S0 = 0.3).

two parameters xS0/h0 and F (see, e.g., [20] and discussions) therefore require an addi-
tional constraint on the minimum value of the physical disturbance frequency. We wish
to stress that such a lower bound may be particularly severe in the presence of channels
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with huge bed slope (see Figure 4.4). Furthermore, neglecting the frequency effects leads
to overestimating the spatial growth of the disturbance. This final remark provides a the-
oretical justification for the experimentally ascertained underestimation of the minimum
channel length above which (4.7) predicts the presence of roll waves [11]. As a matter
of fact, Figure 4.4 clearly shows that for large bed slopes the amplification factor is con-
siderably reduced compared to its asymptotic value, in large range of dimensionless fre-
quencies fe. Therefore, (4.7) would correctly account for the above-quoted experimental
evidences, provided kmin

i is replaced by the correct spatial growth rate of the unstable wave
given in (4.4) and the frequency of the disturbance is not excessively large. Which is the
appropriate disturbance frequency value is still, as far as the authors are aware, an open
question that requires properly designed experiments or direct numerical simulations.

5. Conclusions

In the present paper, the convective instability property of the one-dimensional linearized
flow model has been demonstrated. The Briggs criterion, concerning the analysis of the
branch point singularities of the dispersion relation, has been applied. Starting from the
ascertained convective character of the instability a spatial linear stability analysis has
been carried out. Results showed that, in unstable condition of flow, a pointwise tem-
poral oscillating perturbation generates two waves, both propagating in the downstream
direction. The primary is spatially growing, the secondary is spatially evanescent. The
spatial growth rate of the unstable wave strongly depends on the frequency of the dis-
turbance, particularly as far as high bed slope channels are concerned. It follows that the
description of the spatial evolution of the perturbation only through the Froude number
and the nondimensional distance, commonly assumed in hydraulic engineering criteria,
may lead to overestimating the spatial amplification of the perturbation, depending on
the temporal frequency of the disturbance and on the bed slope of the channel.
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