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The 2D problem of linear waves generated by an arbitrary pressure distribution p0(x, t)
on a uniform viscous stream of finite depth h is examined. The surface displacement ζ is
expressed correct to O(ν) terms, for small viscosity ν, with a restriction on p0(x, t). For
p0(x, t)= p0(x)eiωt, exact forms of the steady-state propagating waves are next obtained
for all x and not merely for x� 0 which form a wave-quartet or a wave-duo amid lo-
cal disturbances. The long-distance asymptotic forms are then shown to be uniformly
valid for large h. For numerical and other purposes, a result essentially due to Cayley is
used successfully to express these asymptotic forms in a series of powers of powers of ν1/2

or ν1/4 with coefficients expressed directly in terms of nonviscous wave frequencies and
amplitudes. An approximate thickness of surface boundary layer is obtained and a nu-
merical study is undertaken to bring out the salient features of the exact and asymptotic
wave motion in question.

Copyright © 2006 Arghya Bandyopadhyay. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The classical problem of waves due to any initial variable pressure distribution on the
surface of an ocean of finite depth has attracted the attention of many researchers mainly
because of its connection with several important physical problems such as ship-waves,
impact of aerial blast waves on the ocean, storms, tsunamis, and so forth. Although the
physical settings of these problems are different, there exists a similarity in the analyses of
the wave integrals and also of the wave behavior in many cases. For example, the linear
waves generated by initial surface disturbances in an inviscid liquid exhibits the same
qualitative behavior as that of the tsunamis (cf. Wehausen and Laitone [11, page 618]).
Our objective here, however, is to study the effect of viscosity on the waves in question
without any further elaboration of such interrelationships.
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2 A study of the waves and boundary layers

It is well known that while the formal solution of the linear problem of waves produced
by surface disturbances on a stationary or moving viscous fluid of finite depth is easily
obtained, substantial difficulty arises in evaluating or analyzing this solution which can be
seen in the work of Bandyopadhyay [1], Nikitin and Potetyunko [6], and Pramanik [7].
Such analyses have so far remained confined to derivation of an asymptotic expression
of the surface displacement ζ for small viscosity ν at large times and distances, and there
seems to have no attempt at analytical and numerical studies of the wave integrals in its
exact form (I). Also the approximation of ζ for smallness of ν is generally carried out in a
rather heuristic way without paying attention to the restriction that may have to be placed
on the pressure models for the approximation to succeed (II).

In this paper, we examine the two-dimensional form of the problem stated above for a
uniformly flowing stream of small viscosity, our main objective being to find the restric-
tion mentioned in (II) for a general pressure model p0(x, t) and to achieve (I) for a special
model p0(x)eiωt. For the former, we first express ζ correct to O(ν) terms by a proven ap-
proximation formula of Bandyopadhyay [1], and show incidentally that an O(

√
ν) anal-

ysis of ζ (cf. Pramanik [7] for p0(x)eiωt) fails to bring out the effect of viscosity on ζ for
large depths, while an O(ν) analysis succeeds in correcting this shortcoming (cf. (3.9) to-
gether with (3.7), (3.8), and (3.10)). Secondly, in Section 4 we initiate the study (I) for
the special pressure distribution p0(x)eiωt, and verify that a steady-state exists everywhere
and not merely for large distances (contrast Pramanik [7]). This steady state as it is shown
in Section 4.2 consists of a propagating wave system ζ∗P compounded by standing local
disturbances for all times and distances. After the exact evaluation of the former, we find
that this system of propagating waves ζ∗P is either a damped and constant-velocity wave-
duo or a wave-quartet according to the fact that the stream speed u0 does or does not
exceed a certain critical value. At large distances, the standing waves fade out in compari-
son to the leading term, denoted by ζ∗∗, of the asymptotic expression of ζ∗P . When ζ∗∗ is
retained correct up to O(

√
ν) terms, it agrees with the corresponding result obtained by

Pramanik [7]; this expression, however, as is shown here makes the long-distance wave
form inaccurate for large h, while in our case the presence of O(ν) terms in ζ∗P rectifies
such inappropriate result for large depth (Section 5).

We next show (Sections 6.1 and 6.2) that it is advantageous to write ζ∗∗ in the follow-
ing form by a result essentially due to Cayley (Whittaker and Watson [12, page 147]):

ζ∗∗ =
⎧
⎪⎨

⎪⎩

ζ0 +
√

νζ2 + νζ4, when u0 �= u∗0 ,

ζ ′0 + ν1/4ζ ′1 + ν1/2ζ ′2 + ν3/4ζ ′3 + νζ ′4, when u0 = u∗0 ,
(1.1)

where each ζj (or ζ ′j ) is wave-quartet or wave-duo, and in either case the wave amplitudes
and wave frequencies are all directly expressed in terms of their nonviscous values. Such
expansions also facilitate a numerical study of the wave motion. Some interesting features
of the wave motion are brought out through a computational study of the exact wave
integral ζ∗P and its asymptotic forms which are discussed in Section 8. Finally, since the

motion may be considered to have a high Reynolds number
√

gh3/ν, a question naturally
arises as to the formation of boundary layers both at the surface and the bottom and the
shapes they assume vis-à-vis those of waves. In this regard, in Section 7, we determine the
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cross-vertical vorticity ωz(x, y, t) and find its approximate value correct to O(ν) terms. Its
Cayley expansion is next derived for |x| →∞ by the same procedure as adopted for ζ∗∗.
These expressions are utilized for the determination of the approximate thickness of the
boundary layer at the surface at large horizontal distances from the source.

In passing, mention may be made of two important papers, one by Beale [2] who
is concerned about the existence of solution of the above problem in a general three-
dimensional nonlinear setting when the initial surface and velocity fields are prescribed,
and the other paper by Ehrenmark and Body [4] who are however interested in the solu-
tion of the inviscid problem in the presence of a plane beach under the varying conditions
on the surface as well as on the bed.

2. The problem and its integral solution

For the two-dimensional motion of a horizontally unbounded viscous liquid of constant
depth h parallel to the xy-plane, a coordinate system is chosen such that the origin is in
the undisturbed free surface which is the xy-plane; the y-axis is vertically upwards and
the x-axis is positive to the right, while the stream moves in the Ox direction with speed
u0 relative to the frame of reference.

Waves of height ζ(x, y) above the undisturbed surface are generated by the action of
the pressure distribution p0(x, t) which is suddenly applied on y = 0 at t = 0. p0(x, t) is
assumed to have a Fourier transform in x and also to have a Laplace transformation in
t. If ζ and the disturbance velocity components (u,v) parallel to the axes are small, the
equation of continuity and the linearized Stokes-Navier equations are, respectively,

∂u

∂x
+
∂v

∂y
= 0,

(
∂

∂t
+u0

∂

∂x

)

(u,v)=−1
ρ

(
∂

∂x
,
∂

∂y

)

p+ ν∇2(u,v),

(2.1)

where p = p1 + ρg y,∇2 ≡ ∂2/∂x2 + ∂/∂y2, −∞ < x <∞, −h≤ y ≤ ζ ≈ 0, t ≥ 0. For a fluid
at rest, the initial conditions are

u= v = 0, ζ = 0 for t = 0. (2.2)

The linearized normal stress and the no-shear stress condition on the surface together
with the surface boundary condition are, respectively,

−p0(x, t)=−p+ ρgζ + 2μvy , uy + vx = 0, ζt +u0ζx = v for y = 0, t > 0. (2.3)

The condition of no-slip at the bottom is

u= v = 0 for y =−h, t > 0. (2.4)

Lastly the conditions at infinity are u, v, p and their x-derivatives are zero as |x| →∞.



4 A study of the waves and boundary layers

Here subscripts t, x, y refer to partial differentiation. Our main interest is in the ex-
pression for ζ .

For convenience, we will suppress arguments of the functions and their transforms in
general. Let U , V , H , P, P0 denote the Fourier transforms of u, v, ζ , p, p0, respectively, in
x, and let Ũ , Ṽ , H̃ , P̃, P̃0 denote the Laplace transforms of the former in t, k, and s being
the respective transform parameters.

The formal solution of the problem may be written as

[u,v, p,ζ]= 1
(2π)3/2i

∫∞

−∞
e−ikxdk

∫ c+i∞

c−i∞
[Ũ ,Ṽ , P̃,H̃]etsds, (2.5)

where the constant c has its usual meaning, and the transform integrals are given by

Ũ = isgnk
ρ
(
s− iku0

)
[|k|Ã{cosh|k|(y +h)− coshm(y +h)

}

+ B̃
{|k|sinh|k|(y +h)−msinhm(y +h)

}]
,

Ṽ = |k|
ρ
(
s− iku0

)
m

[
Ã
{|k|sinhm(y +h)−msinh|k|(y +h)

}

+mB̃
{

coshm(y +h)− cosh|k|(y +h)
}]

,

H̃ =−|k|{μD(s− iku0
)
m
}−1(

msinh|k|hcoshmh−|k|sinhmhcosh|k|h),

DÃ= (
k2 +m2)coshmh− 2k2 cosh|k|h,

mDB̃ = 2mk2 sinh|k|h−|k|(k2 +m2)sinhmh,

−P̃0
(
s− iku0

)
Dν−1 = 4k2(k2 +m2)− coshmhcosh|k|h

{
(
k2 +m2)2

+ 4k4 +
σ2

ν2

}

+ |k|m−1 sinhmhsinh|k|h
{
(
k2 +m2)2

+ 4k2m2 +
(
gk

σν

)2
}

,

(2.6)

where

σ2 = [
σ(k)

]2 = g|k| tanh|k|h, m2 = k2 +
s

ν
− iku0

ν
. (2.7)

By (2.6), we have

H̃ = |k|P̃0

ρ

F
(
ν1/2

)

f
(
ν1/2

) , −P̃0 =−P + ρgH̃ + 2μṼy , (2.8)
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where

F
(
ν1/2)= (

s− iku0 + νk2)1/2
tanh|k|h− ν1/2|k| tanh

(
s− iku0 + νk2

ν

)1/2

h,

f
(
ν1/2)= 4

(
s− iku0 + νk2)1/2(

s− iku0 + 2νk2)νk2 sech|k|hsech
(
s− iku0 + νk2

ν

)1/2

h

− (
s− iku0 + νk2)1/2{(

s− iku0 + 2νk2)2
+ 4ν2k4 + σ2}+ |k|ν1/2

× {(
s− iku0 + 2νk2)2

+ 4νk2(s− iku0 + νk2)+ g|k|coth|k|h}

× tanh|k|h× tanh
(
s− iku0 + νk2

ν

)1/2

h.

(2.9)

By the inversion theorem for Laplace transform and the convolution theorem, one then
gets

H = |k|
2πiρ

[∫ t

0
P0(k, t− τ)dτ

∫ c+i∞

c−i∞
esτ
F
(
ν1/2

)

f
(
ν1/2

)ds
]

. (2.10)

The Fourier inversion theorem now gives the exact integral expression for ζ ,

ζ = 1
(2π)3/2iρ

∫∞

−∞

[∫ t

0
P0(k, t− τ)dτ

∫ c+i∞

c−i∞
esτ
F
(
ν1/2

)

f
(
ν1/2

)ds
]

|k|e−ikxdk. (2.11)

The corresponding integral expressions for u, v, p follow in a similar way.

3. Waves in a slightly viscous fluid

If the kinematic coefficient of viscosity ν of the fluid is small, it may be shown that

ζ =− 1
(2π)3/2iρ

∫∞

−∞
|k|e−ikxdk

[∫ t

0
P0(k, t− τ)× eiku0τdτ

∫ c+i∞

c−i∞
es
′τ
(
T1

Δ1

)

ds′
]

+O
(
ν3/2), as ν−→ 0,

(3.1)

provided as k→∞, P0(k1,k2,τ) is of the order O(k−17/4−n), n > 0, uniformly in ψ, and τ
with k1 = k cosψ, k2 = k sinψ [11].

Here s′ = s− iku0, and

T1 ≡ T1(s′,k)= s′ tanh|k|h−|k|(νs′)1/2 +
1
2

νk2 tanh|k|h,

Δ1 ≡ Δ1(s′,k)= s′3 + s′σ2− (νs′)1/2g−1(s′2σ2 + g2k2)+
1
2

νk2(9s′2 + σ2).

(3.2)
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This approximation process leaves the conditions unaffected since we have from (2.5),
(2.8), and Sneddon [9, page 184] that

p(x,0,0+)= 1√
2π

∫∞

−∞
lim
s→∞

[
s
{
P̃(k,0,s)

}

(F/ f )→(−T1/Δ1)

]
e−ikxdk

= 1√
2π

∫∞

−∞
lim
s→∞

[
s
{
P̃0(k,s)

}

(F/ f )→(−T1/Δ1)

]
e−ikxdk

= 1√
2π

∫∞

−∞
P0(k,0)e−ikxdk = p0(x,0).

(3.3)

Evaluation of the s′-integral (3.1). The s′-integrand in (3.1) has a branch point at s′ = 0
as well as possible poles arising from those zeros of Δ1 for which T1 �= 0. We suppose that
the s′-plane is cut along the negative real axis from 0 to −∞, and that s′1/2 is real and
positive when s′ is real and positive. Considered as a sixth-degree polynomial in s′1/2, Δ1

has, for ν = 0, a double zero at the point zero and four other simple zeros at
√
σe±iπ/4,√

σe±3iπ/4.
For the three corresponding values of s′, namely

s′00 = 0, s′10 = iσ , s′20 =−iσ , (3.4)

we may assume the following expansion for the possible zeros s′j , j = 0,1,2 ofΔ1 in powers
of ν1/2:

s′j = s′j0 + s′j1ν1/2 + s′j2ν + s′j3ν3/2 + ··· . (3.5)

It is then found that

s′01 = 0, s′02− s′1/202

(
k

tanhkh

)

+
1
2
k2 = 0. (3.6)

To our degree of accuracy, this shows that T1(s′0,k)= T1(νs′02,k−)= 0.
Leaving aside then the zero s0 of Δ1 and determining the other coefficients s j
 for


 = 1,2,3, we find that the s′-integrand of (3.1) has two simple poles at s′ = s′j , j = 1,2,
given by

s′j = αj +
1
2

[
1 + (−1) j i

]
ν3/2(2σ)−1/2|k|3 cosech3 2|k|h

×
(−13

4
+

1
2

cosh4kh− cosh6kh
)

+ ··· ,

(3.7)

where

αj = αj(k)= (−1) j−1iσ − {
1 + (−1) j−1i

}|k|
(
σν

2

)1/2

cosech2|k|h

− 2νk2 cosh2kh+ cosh4kh− 1
cosh4kh− 1

, j = 1,2.

(3.8)

(cf. Biesel’s result cited by Wehausen and Laitone in [11, page 644].)
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Using a modified Bromwich contour (Tranter [10]) now completes the s′-integration
of (3.1) and the result is

ζ =− 1√
2πρ

∫∞

−∞
|k|e−ikx

[∫ t

τ=0
P0(k, t− τ)× eiku0τ f2(k,τ)dτ

]

dk, (3.9)

where

f2(k, t)=
2∑

j=1

T1
(
s′j ,k

)

Δ′1
(
s′j ,k

)es
′
j τ − 1

2πi

∫∞

0
e−tχ

{[
T1

Δ1

]

s′=χeiπ
−
[
T1

Δ1

]

s′=χe−iπ

}

dχ. (3.10)

Introducing conditions similar to those of evaluating (3.1), we may show that the use of
the values s′j (given by (3.7)) instead of s′ = αj for the roots would add only a term of
order ν3/2 to ζ as calculated on the basis of (3.9) and (3.10), correct to the first power of ν
in the amplitude. We also have

2∑

j=1

T1
(
s j ,k

)

Δ′1
(
s j ,k

)esj t = (
g|k|)−1

e−σ2t
[(

σ − σ1

2

)

sin
(
σ − σ1

)
t+

σ2

2
cos

(
σ − σ1

)
t
]

,

(3.11)

where

σ1 = |k|
(
σν

2

)1/2

cosech2|k|h, σ2 = σ1 + 2νk2
(

1 +
cosh2kh

cosh4kh− 1

)

. (3.12)

The final expression for ζ results when f2(k, t) in (3.10) is modified in accordance with
(3.11) and (3.12). The surface displacement thus consists of damped gravity waves cor-
responding to the part of (3.9) containing the integral free term of (3.10) together with a
diffusive disturbance pattern corresponding to the remaining part of (3.9). We also note
that in the former part, there also appears to be a phase lag as we combine the sine and
cosine terms into a single sine or cosine term (cf. Prosperetti [8]).

4. General character of the steady-state surface motion for an oscillatory
pressure distribution

When the applied pressure distribution is of the form p0(x, t)= p0(x)eiωtH(t),H(t) is the
Heaviside unit function, we have by (3.11)-(3.12) that

ζ =− 1√
2πρg

eiωt
∫∞

−∞
P0(k)e−ikx

K(k)
2

dk
∫ t

0
exp

[
i
(
σ − σ1

)− iω+ iku0− σ2
]
τdτ

− 1√
2πρg

eiωt
∫∞

−∞
P0(k)e−ikx

K(k)
2

dk
∫ t

0
exp

[− i(σ − σ1
)− iω+ iku0− σ2

]
τ dτ

+
eiωt

ρi(2π)3/2

∫∞

−∞
P0(k)|k|e−ikxdk

∫ t

0
e(−iω+iku0−χ)τdτ

×
∫∞

0

{[
T1

Δ1

]

s′=χeiπ
−
[
T1

Δ1

]

s′=χe−iπ

}

dχ.

(4.1)
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Here

K(k)= σ2

2
− i

(

σ − σ1

2

)

. (4.2)

Following the evaluation of the τ-integrals in the first two terms of (4.1), we apply Wat-
son’s lemma (see Bleistein and Handelsman [3, page 103]) to the resulting k-integral to
obtain its limit as t→∞, x remaining fixed. For the third term of (4.1), we have

C3 =
∫∞

−∞
P0(k)|k|dk

∫ 1

0
te(−iω+iku0)tτ′dτ′

×
∫∞

0

χ5/2ν1/2 sech2kh
[
χ− (1/2)νk2

(
8cosh2 kh+ 1

)]
e−χtτ′dχ

Δ1
(
χeiπ ,k

) ·Δ1
(
χe−iπ ,k

) .

(4.3)

Considering Δ1(s′,k) as a sixth-degree polynomial in
√
s′, we may approximately express

the product Δ1]χeiπ ·Δ1]χe−iπ as

(
χ+ a2

o

)(
χ+ a′2o

)(
χ+α′1

)2(
χ+α′2

)2
, (4.4)

where ao, a′o are the two values of
√

νx, where x is given by x2− x(k/ tanhkh) + (1/2)k2 = 0
and α′1, α′2 are the same as α1, α2 of (3.8) but correct only up to the term in

√
ν therein.

It is easy to see that t × χ-integral tends to zero as t →∞ for 0 < ε < τ′ ≤ 1, while the
continuity of the χ− τ′ integral in 0≤ ε < 1 ensures that

C3 −→ 0 as t −→∞. (4.5)

The steady-state surface displacement ζ∗ thus comes out to be

ζ∗ ∼

eiωt√
2πρg

(
C1 +C2

)
, (4.6)

where

C1 =
∫∞

−∞
P0(k)

(
σ − σ1/2

)
+ iσ2/2

2
(− σ + σ1 +ω− ku0− iσ2

)e−ikxdk, (4.7)

C2 =
∫∞

−∞
P0(k)

−(σ − σ1/2
)

+ iσ2/2
2
(
σ − σ1 +ω− ku0− iσ2

)e−ikxdk. (4.8)

The picture of the ocean surface presented by ζ∗ is, as will be shown below, one of a
damped propagating plane wave system proceeding amid local standing disturbances at
any distance which need not necessarily be far away from the origin. This view necessitates
the identification of the infinities of the integrands, of C1 and C2, or more precisely, the
zeros of the denominatorsD∓ of these integrands, which are pertinent to our assumption
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of small ν,

D− = ω− ku0− 2iνk2
(

1 +
cosh2kh

cosh4kh− 1

)

− (i− 1)σ1− σ = 0, (4.9)

D+ = ω− ku0− 2iνk2
(

1 +
cosh2kh

cosh4kh− 1

)

− (i+ 1)σ1 + σ = 0. (4.10)

Such zeros may be obtained in the form of perturbation expression of (4.9), (4.10) in
positive powers of ν with the corresponding zeros of (D∓)ν=0 as initial values.

4.1. Zeros of D∓ for small ν. First we note the following. The equation D−(k,0)= 0 has
only real roots; there are either

(a) three distinct roots k01(> 0) and k0 j(< 0) j = 2,3 or;
(b) one single root k01(> 0) and a double root K0(< 0), where k02 < K0 < k03 or;
(c) a single root k01(> 0).

These three cases arise accordingly as u0≤ or −(d/dk)(
√

gk tanhkh)]k=K0
= u∗0 (say)

(see Figure 4.1).
(I) Correspondingly, under the same condition on u0, and for small ν, we may con-

clude that the equation D−(k,ν) = 0 possesses either (i) three roots kj , j = 1,2,3 or (ii)
three roots k1, K2, K3, the last 2 corresponding to the double root K0, or (iii) only one
root k1; these roots (kj ;K
) j=1,2,3,
=2,3 again reduce to the roots k0 j or K0 j = 1,2,3 of
D−(k,0)= 0 in the respective cases, as ν→ 0+.

(II) The equation D+(k,0) = 0 has only one real root k04(> 0) (Figure 4.2), and also
complex roots outside the circle |k| = ω′/u′0 in the second and third quadrants of the

k-plane for −π/4 ≤ Im(k) ≤ π/4 in directions less than 2sin−1(1/2
√

u′0ω′). For small ν,
and corresponding to these roots, the equation D+(k,ν)= 0 then possesses, respectively,
the root k4 and a set of distinct complex roots which, however, leads to waves with en-
hanced damping due to presence of viscosity. Consequently, we ignore these latter roots
and confine attention only to the root k4 which again, as mentioned in (I), tends to k04 as
ν→ 0+.

4.2. Exact form of propagating waves. Considering C1 of (4.7) first for the case u0 < u
∗
0 ,

we use the result of Section 4.1(I) to rewrite it as

C1 = C10 +C11 +C12, (4.11)

where

[
C10,C11,C12

]=
∫∞

−∞
e−ikxdk

[

N1(k)
∂

∂k

{


n
D−(k)

Π3
1

(
k− kj

)

}

,
3∑

1

N1(k)−N1
(
kj
)

k− kj ,
3∑

1

N1
(
kj
)

k− kj

]

,

N1(k)= P0(k)
2D′−(k)

·
(

σ − σ1

2
+
iσ2

2

)

.

(4.12)
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(a) Three distinct real zeros when ω′ = 0.2 and
u′0 = 0.5.
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when ω′ = 0.42 and u′0 = 0.5.
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(c) Only a single real zero when ω′ = 3.5 and u′0 = 1.5.

Figure 4.1. Illustrative graphs of D−(k,0) for the three cases of possible real zeros.
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Figure 4.2. Illustrative graph of D+(k,0) showing the occurrence of its real zero. ω′ = 0.3 and u′0 = 0.7.

Observing thatC10 is independent of kj , and that the integrands ofC10 andC11 are regular
functions in the immediate vicinity (indented at k = 0) of the real axis in the lower or up-
per half (for x < or > 0) of the complex k-plane, we conclude that C10 and C11 contribute
only standing waves to ζ∗ of the same frequency as that of the applied pressure.

For C12, we use the result of Gradshteyn and Ryzhik [5, page 445, (2), (4), (6), (8)],

∫∞

−∞
e−ikx

k− kj dk = π
⎛

⎝

√
√
√
√− 1

k2
j

k j cosh
[

x
√

−k2
j

]

− icos
[

x
√

k2
j

]

Sign[x]

+
{√

−k4
j Sign[x]sin

[

x
√

k2
j

]}

÷
√
√
√
√− 1

k2
j

· k3
j + isinh

[

x
√

−k2
j

]
⎞

⎠ .

(4.13)

It is then easily verified that the three components of ζ∗ arising from three terms of C12

each satisfies the wave equation

∂2y

∂t2
= c2

j
∂2y

∂x2
, ∀x, t, where cj = ω

kj
, (4.14)

and hence each of these components represents a propagating wave with complex velocity
ω/kj . Thus the progressive wave part of ζ∗ arising from C1 is

ζ∗P1=
eiωt√
2πρg

3∑

1

N1
(
kj
)
π

⎛

⎝

√
√
√
√− 1

k2
j

k j cosh
[

x
√

−k2
j

]

− icos
[

x
√

k2
j

]

Sign[x]

+
{√

−k4
j Sign[x]sin

[

x
√

k2
j

]}

÷
√
√
√
√− 1

k2
j

· k3
j + isinh

[

x
√

−k2
j

]
⎞

⎠ .

(4.15)
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For u0 = u∗0 , we have, in view of Section 4.1(I), three progressive waves again together
with standing disturbances for all x and t, the former being given by an expression of the
same form as above with K2 and K3 replacing k2 and k3, respectively.

For u0 > u
∗
0 , Section 4.1(I) shows that ζ∗P1 consists of only one progressive wave for all

x and t given by the first term of ζ∗P1 above.
C2 of (4.8) may be treated similarly, and yields only one progressive wave ζ∗P2 with

complex velocity ω/k4 together with standing disturbances for all x and t, ζ∗P2 being of
the same form as the first term of ζ∗P1 with N1(k1) replaced by N2(k4), where N2(k) =
(P0(k)/2D′+(k)) · (σ1/2− σ + iσ2/2).

The final expression for the propagating part of ζ∗ arising from C1 and C2 is then

ζ∗P = ζ∗P1 + ζ∗P2,

= eiωt√
2πρg

3∑

1

N1
(
kj
)
π

⎛

⎝

√
√
√
√− 1

k2
j

k j cosh
[

x
√

−k2
j

]

− icos
[

x
√

k2
j

]

Sign[x]

+
{√

−k4
j Sign[x]sin

[

x
√

k2
j

]}

÷
√
√
√
√− 1

k2
j

· k3
j + isinh

[

x
√

−k2
j

]
⎞

⎠

+N2
(
k4
)
π

(√

− 1
k2

4
k4 cosh

[

x
√

−k2
4

]

− icos
[

x
√

k2
4

]

Sign[x]

+
{√

−k4
4 Sign[x]sin

[

x
√

k2
4

]}

÷
√

− 1
k2

4
· k3

4 + isinh
[

x
√

−k2
4

]
)

.

(4.16)

It may be noted that the progressive wave part of ζ∗ forms a wave-quartet when u0 ≤ u∗0 ,
and a wave-duo when u0 > u

∗
0 , for all x and t.

5. Asymptotic expression of ζ∗ for large |x|
We first observe that the contributions of the standing waves associated with ζ∗P1 and ζ∗P2,
as referred to in Section 4.2, to ζ∗ are insignificant compared to the dominant terms of
ζ∗P1 and ζ∗P2 for large |x|. The dominant term of the asymptotic expression of ζ∗, for large
|x|, denoted by ζ∗∗, can then be obtained from the asymptotic expansion of ζ∗P , given by
(4.16). We have then

ζ∗∗ ∼= eiωt

ρg
(2π)1/2i

[{
N1

(
k1
)
e−ik1x +H

(
u∗0 −u0

)
N1

(
k3
)
e−ik3x +N2

(
k4
)
e−ik4x

}
H(x)

+H
(
u∗0 −u0

)
N1

(
k2
)
e−ik2xH(−x)

]
,

ζ∗∗ ∼= eiωt

ρg
(2π)1/2i

[{
N1

(
k1
)
e−ik1x +N1

(
K3

)
e−iK3x +N2

(
k4
)
e−ik4x

}
H(x)

+N1
(
K2

)
e−iK2xH(−x)

]
, u0 = u∗0 .

(5.1)
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Although these two asymptotic expressions ζ∗∗ of ζ∗ are in agreement in form with those
of Pramanik [7], who performed an O(

√
ν) analysis, there are sharp distinctions with

regard to the content which arises mainly due to our O(ν) analysis of the problem. It will
be seen later (Section 6) that a restriction to an O(

√
ν) analysis makes the long-distance

wave form inaccurate for large h.

6. Cayley expansions of kj , N
(kj), and of ζ∗∗

6.1. Expansions of kj and N
(kj) in terms of their nonviscous values in a power series
of ν1/2 or ν1/4 for small ν. For actual as well as numerical calculations of the roots (kj ;K
)
of D∓(k,ν) = 0 and also of the wave amplitudes N
(kj) for small ν, we may use a result
essentially due to Cayley (see Whittaker and Watson [12, page 147]). This enables us
to express the above quantities in terms of the corresponding roots in the nonviscous
problem in a power series of ν1/2 or ν1/4, respectively, for the two types of roots. To this
purpose, we rewrite (4.9) and (4.10) in their equivalent forms ((a) and (b)) for the (first,
second types) of roots, respectively,

(a) for

u0 �= u∗0 , (6.1)

[
(4.9),(4.10)

]−→ ϕ∓(k)−√ν f (k)= 0, f (k) �= 0, (6.2)

where

ϕ−(k)= e−3iπ/4 sinh2|k|h
{

σ1/2−
√

−4
(
2sinh2 2kh+ cosh2kh

)(
ω− ku0− σ

)
+ σ

}

,

f (k)= 2|k|(2sinh2 2kh+ cosh2kh
)
,

(6.3)

and ϕ+(k) is obtained from ϕ−(k) on replacing e−(3iπ)/4 and (ω− ku0− σ) by e(3iπ)/4 and
(ω− ku0 + σ), respectively. We have (Cayley), for the three roots of (4.9) corresponding
to the nonrepeated roots of D−(k,0)= 0, and for the single root of (4.10) corresponding
to the root of D+(k,0)= 0, the result

kj = k0 j +
√

νk1 j + νk2 j + ··· , (6.4)

where

k1 j =
f
(
k0 j

)

ϕ′∓
(
k0 j

) , k2 j = 1

2
{
ϕ′∓

(
k0 j

)}3

∣
∣
∣
∣
∣

ϕ′∓ f 2

ϕ′′∓
(
f 2
)′

∣
∣
∣
∣
∣
k=k0 j

,

upper sign for u0 < u
∗
0 , j = 1,2,3 the lower sign when j = 4;

(6.5)

(b) for u0 = u∗0 , we replace (4.9) by the two equations

ϕ1(k)− (−1)
ν1/4 f1(k)= 0, 
 = 2,3, (6.6)

where

ϕ1(k)=
√

ϕ−(k), f1(k)=
√

f (k) (6.7)
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so that by the same result cited above, the roots Kj corresponding to a double root K0 ≡
K02 ≡ K03 may be expressed in a positive integral powers of ν1/4 as

Kj = K0 j + (−1) jν1/4K1 j + ν1/2K2 j + (−1) jν3/4K3 j + νK4 j ±··· , j = 2,3, (6.8)

here K02 = K03 = K0 and the coefficients Kij , i= 1,2,3,4 are given by the same formula as
in the case (6.2) with ϕ1 and f1 replacing ϕ− and f .

For N
(kj), series expansions similar to the above follow from Cayley’s general expan-
sion formula [12, page 147]. The corresponding coefficients are the same as those given
later (Section 6.2) in consideration with the asymptotic expression of ζ∗∗.

An interesting conclusion from the above expansions is that ζ∗P in (4.16) is obtained
correctly for large depth only when an O(ν) analysis of the problem is carried out instead
of restricting it to an O(

√
ν) (or, O(ν3/4)) one. For instance, in the case u0 < u

∗
0 , if kh�

1ϕ∓ ∼ (1/2)e∓3iπ/4e4kh
√
ω− ku0∓ σ and f ∼ |k|e4kh, k1 j → 0 as h→∞ but k2 j does not

tend to zero in the same limit. Hence if we keep ζ∗P in (4.16) correct up to O(
√

ν) terms,
we get the paradoxical result that ζ∗P is independent of ν as h→∞. The presence of O(ν)
term in ζ∗P shows that there is no such paradox, and leads to a correct value of ζ∗P for large

depths. When u0 = u∗0 , since ϕ′1 =
√

ϕ′′−/2, we may show similarly that K
 j → 0, 
 = 1,2,3,
as h→∞ but K4 j does not tend to zero as h→∞; it follows as before that ζ∗P for large
depths is given correctly only when terms at least of the order O(ν) are retained. This
justifies our assertion in Section 1 regarding the uniform validity of ζ∗P for large h.

6.2. Cayley expansion of ζ∗∗. Use of Cayley expansion of kj and N
(kj) as mentioned
above helps us to visualize ζ∗∗ in a novel way. For then ζ∗∗ assumes the following form
(a) or (b):

(a) when u0 �= u∗0 ,

ζ∗∗ =
√

2πi
ρg

[
ζ0 +

√
νζ2 + νζ4

]
, (6.9)

where

ζ
 =H(x)
{
M
 ×E1

}
+H(−x)H

(
u∗0 −u0

)
N
1

(
k02

)
e−i(k2x−ωt), 
 = 0,2,4,

M
 =
[

N
1
(
k01

)
H
(
u∗0 −u0

)
N
1

(
k03

)
N
2

(
k04

)]

1×3
, 
 = 0,2,4,

E1 =
[

e−i(k1x−ωt) e−i(k3x−ωt) e−i(k4x−ωt)
]T

,

N0 j(α)=Nj(α), N2 j = f (α)
ϕ′∓(α)

N ′
j (α),

N4 j = 1

2
{
ϕ′∓(α)

}3

∣
∣
∣
∣
∣
∣

ϕ′∓
(
f 2N ′

j

)

ϕ′′∓
(
f 2N ′

j

)′

∣
∣
∣
∣
∣
∣
k=α

, j = 1,2,

(6.10)

where f and ϕ∓ are given by (6.4), ϕ− is to be taken when α = k01, k02, k03, while ϕ− of
(6.4) is to be modified to ϕ+ as mentioned in Section 4.2 when α= k04;
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(b) when u0 = u∗0 ,

ζ∗∗ =
√

2πi
ρg

[
ζ ′0 + ν1/4ζ ′1 + ν1/2ζ ′2 + ν3/4ζ ′3 + νζ ′4

]
, (6.11)

where

ζ ′
 =H(x)
{
J
 ×E2

}
+H(−x)J
1

(
K02

)
e−i(k2x−ωt), 
 = 0,1,2,3,4,

J
 =
⎧
⎨

⎩

[

N
1
(
k01

)
N
1

(
K03

)
N
2

(
k04

)]

1×3
, 
 = 0,2,4,

[

0 −N
1
(
K03

)
0
]

1×3
, 
 = 1,3,

E2 =
[

e−i(k1x−ωt) e−i(K3x−ωt) e−i(k4x−ωt)
]T

,

N0 j(α)=Nj(α),

N2 j = 1

2
{
ϕ′∓(α)

}3

∣
∣
∣
∣
∣

ϕ′∓
(
f 2
1 N

′
j

)

ϕ′′∓
(
f 2
1 N

′
j

)′

∣
∣
∣
∣
∣
k=α

when α= k01,k04, j = 1,2,

N11 = f1
(
K03

)

ϕ′1
(
K03

)N ′
j

(
K03

)
, and so forth.

(6.12)

We note that each ζj is a wave-quartet or a wave-duo and the terms of (6.9) and (6.11)
are scaled down in powers of ν1/2 or ν1/4, respectively. Further the exponential parts of the
four or two components of ζj remain invariant for all j while the nonexponential parts
are independent of ν, these being functions of koj only. The strength of these expansions
becomes more evident as we proceed to make a numerical study of the wave motion and
also compare these solutions in exact form with those of their asymptotic counterpart.

7. Cross-vertical vorticity and boundary layers and their asymptotic expansion

In what follows, we show how to obtain approximate expressions of the thickness of the
boundary layers which are formed at the surface and at the bottom because of the motion

having a high Reynolds number (
√

gh3)/ν. We note that viscosity generates only the cross-
vertical vorticity ωz which is obtained from (2.5) with the help of (2.6) and (2.9) as

ωz = 1
(2π)23/2iρ

∫∞

−∞
sgnke−ikxdk

∫ c+i∞

c−i∞
P̃0e

stds

× ([
2k2(m− ik2){|k|sinhm(y +h)sechmh−mcoshm(y +h)sechmh tanh|k|h}

+ k2(k2 +m2)(1− i){msinh|k|(y +h)sech|k|h

−|k|cosh |k|(y +h)sech|k|h tanhmh
}

−|k|(k2 +m2)(m2− ik2)sinhmy sechmhsech|k|h

− 2k4(1− i)msinh|k|y sechmhsech|k|h])÷ (
ν−3/2 f

(
ν1/2)).

(7.1)
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If δs, δb are the thicknesses of the surface and bottom boundary layers, ωz = 0 for δs ≤
|y| ≤ h− δb, because the motion is irrotational just outside the boundary layers. An ap-
proximate value of δs may thus be obtained as

δs =−
ωz

)

y=0

∂ωz/∂y
]

y=0

, (7.2)

with a similar expression for δb. To obtain the expression for thickness δ∗s of the layer
below the leading steady-state wave, we analyze the expressions for ω∗z )y=0 and ∂ω∗z /
∂y]y=0 in the same way as done for the determination of ζ correct up to O(ν) terms. This
gives, possibly for further restrictions on the order of P0(k) as |k| →∞, the following:

ω∗z
)

y=0
∼= eiωt√

2πρg

(
C4 +C5

)
,

∂ω∗z
∂y

]

y=0

∼= eiωt√
2πρg

(
C6 +C7

)
,

δ∗s =−
ω∗z

)

y=0

∂ω∗z /∂y
]

y=0

,

(7.3)

here

C4 =
∫∞

−∞
P0(k)S1(k)

−σ + σ1 +ω− ku0− iσ2
e−ikxdk,

C5 =
∫∞

−∞
−P0(k)S1(k)

σ − σ1 +ω− ku0− iσ2
e−ikxdk,

C6 =
∫∞

−∞
P0(k)S2(k)

−σ + σ1 +ω− ku0− iσ2
e−ikxdk,

C7 =
∫∞

−∞
−P0(k)S2(k)

σ − σ1 +ω− ku0− iσ2
e−ikxdk,

(7.4)

where S1(k) and S2(k) are given by

S1(k)= k2
[(

3σσ2

2
+ σ2− σ2

1 −
3σσ1

2

)

+ i
(

3σσ2

2
− σ2− σ2

1 +
3σσ1

2

)]

,

S2(k)= k2σ3/2

21/2

[{

4
(
σ2− σ1

)
+ 2σ +

3σ2
1

4
+ k2 tanh|k|h+ 5|k|σ1ν1/2

}

+ i
{

4
(
σ2 + σ1

)− 2σ − 3σ2
1

4
− 7k2 tanh|k|h+ |k|(5σ1− 2σ

)
}]

.

(7.5)
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Denoting the asymptotic value of ω∗z )y=0 and ∂ω∗z /∂y]y=0 at large distances by ω∗∗z and
∂ω∗∗z /∂y, we have

ω∗∗z ∼= eiωt

ρg
(2π)1/2i

[{
G1

(
k1
)
e−ik1x +H

(
u∗0 −u0

)
G1

(
k3
)
e−ik3x +G2(k4)e−ik4x

}
H(x)

+H
(
u∗0 −u0

)
G1

(
k2
)
e−ik2xH(−x)

]
,

(7.6)

where

G1(α)=
[

P0(k)S1(k)
{− σ + σ1 +ω− ku0− iσ2

}′

]

k=α
,

G2
(
k4
)=

[
−P0(k)S1(k)

{
σ − σ1 +ω− ku0− iσ2

}′

]

k=k4

,

∂ω∗∗z
∂y

∼= eiωt

ρg
(2π)1/2i

[{
H1

(
k1
)
e−ik1x +H

(
u∗0 −u0

)
H1

(
k3
)
e−ik3x +H2

(
k4
)
e−ik4x

}
H(x)

+H
(
u∗0 −u0

)
H1

(
k2
)
e−ik2xH(−x)

]
,

(7.7)

where

H1(α)=
[

P0(k)S2(k)
{− σ + σ1 +ω− ku0− iσ2

}′

]

k=α
,

H2
(
k4
)=

[
−P0(k)S2(k)

{
σ − σ1 +ω− ku0− iσ2

}′

]

k=k4

,

(7.8)

here accent (′) denotes d/dk.
By applying Cayley’s expansions again as in the case of (6.9), we can find the asymp-

totic expansion of ω∗∗z and ∂ω∗∗z /∂y at large distances in powers of ν1/2 as when u0 �= u∗0 ,

ω∗∗z =
√

2πi
ρg

[
ω0 +

√
νω2 + νω4

]
, (7.9)

where

ω
 =H(x)
{
M
 ×E1

}
+H(−x)H

(
u∗0 −u0

)
N
1

(
k02

)
e−i(k2x−ωt), 
 = 0,2,4,

M
 =
[

G
1
(
k01

)
H
(
u∗0 −u0

)
G
1

(
k03

)
G
2

(
k04

)]

1×3
, 
 = 0,2,4,

E1 =
[

e−i(k1x−ωt) e−i(k3x−ωt) e−i(k4x−ωt)
]T

,

G0(α)=Gj(α), G2 j = f (α)
ϕ′∓(α)

G′j(α),

G4 j = 1

2
{
ϕ′∓(α)

}3

∣
∣
∣
∣
∣

ϕ′∓
(
f 2G′j

)

ϕ′′∓
(
f 2G′j

)′

∣
∣
∣
∣
∣
k=α

, j = 1,2,

(7.10)
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when u0 �= u∗0 ,

∂ω∗∗z
∂z

=
√

2πi√
νρg

[
ω0 +

√
νω2 + νω4

]
, (7.11)

where

ω̃
 =H(x)
{
M
 ×E1

}
+H(−x)H

(
u∗0 −u0

)
N
1

(
k02

)
e−i(k2x−ωt), 
 = 0,2,4,

M
 =
[

H
1
(
k01

)
H(u∗0 −u0

)
H
1

(
k03

)
H
2

(
k04

)]

1×3
, 
 = 0,2,4,

E1 =
[

e−i(k1x−ωt) e−i(k3x−ωt) e−i(k4x−ωt)
]T

,

H0(α)=Hj(α), H2 j = f (α)
ϕ′∓(α)

H′
j(α),

H4 j = 1

2
{
ϕ′∓(α)

}3

∣
∣
∣
∣
∣

ϕ′∓
(
f 2H′

j

)

ϕ′′∓
(
f 2H′

j

)′

∣
∣
∣
∣
∣
k=α

, j = 1,2,

(7.12)

where f and ϕ∓ are given by (6.4), ϕ− is to be taken when α = k01,k02,k03, while ϕ− of
(6.4) is to be modified to ϕ+ as mentioned in Section 4.2 when α= k04.

From (7.2), we have by the help of (7.9) the approximate thickness of the surface
boundary layer in the asymptotic case as

δ∗∗s = ω0

ω̃0

√
ν +

ω2ω̃0−ω0ω̃2

ω̃2
0

ν. (7.13)

We note that δ∗s and δ∗∗s are both independent of t, in other words, the shape of the
steady-state boundary layer is not affected by the periodicity of the surface forcing.

8. Physical conclusions with numerical illustrations of the exact and asymptotic forms
of steady-state progressive waves and boundary layer thickness

Here we mention some physical features of the exact steady-state progressive waves exact
and asymptotic as expressed by the result derived in Sections 4.2 and 6.2. We also under-
take a numerical evaluation of (4.16), (6.9), and (6.11) to illustrate these features along
with that of the surface boundary layer thicknesses in the exact and asymptotic forms as
shown in (7.3) and (7.13). For this, we assume a general parabolic distribution of applied
surface pressure of the form

p0(x)=

⎧
⎪⎪⎨

⎪⎪⎩

A
(
1−x2

)λ−1
H(t) when |x|≤1, λ>

15
4

,

0 when |x|>1,

H(t) is the Heaviside unit function,

(8.1)

which gradually falls from a maximum value at the origin to zero on a finite strip of the
free surface. Clearly then, we have P0(k)= {8√2AΓ(1/2)J4(k)}/k4, taking λ= 9/2.
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We first provide a numerical evaluation of the progressive part of the exact wave form
represented by ζ∗P (4.16) when u0 > u

∗
0 for moderate distances. If the asymptotic wave

form (6.9) is also computed under the same situation, we notice a close resemblance
between the two wave forms albeit with a lateral shift (Figure 8.1). This indicates the
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role of the damping factor in obliterating quickly the differences between the two with
increasing distances.

Next we show that at large distances, the leading term ζ0 of the Cayley asymptotic
expansion (6.9) is alone a sufficient approximation of ζ∗P , which is the exact progressive
wave component of ζ∗. Another observation of interest is that for any specified range,
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Figure 8.6. When the depth is ten times, and as a result we have taken ω′ = 6.3×√10, u′0 = (1/
√

10)×
10, ν′ = (1/103/2)× 0.0002.

when the distances are doubled, the wave amplitudes are on the average approximately
halved. These are shown in Figures 8.2 to 8.4.

For the long-distance asymptotics (6.9), we note that the other two components
√

νζ2

and νζ4 are insignificant compared to ζ0. However ζ2 and ζ4 are illustrated separately in
Figure 8.5 to emphasize that ultimately ζ4 dominates ζ2 which diminishes to zero with
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Figure 8.7. The form of dominant ζvis, near the critical value of u′0. ω′ = 0.1, u′0 = 0.8, (u′∗0 = 0.787),
ν′ = 0.0002.
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Figure 8.8. The situation of nonviscous ζ , near the critical value of u′0. ω′ = 0.1, u′0 = 0.8, (u′∗0 =
0.787), ν′ = 0.0002.

increasing ocean depth (Figure 8.6). Indeed the orders of magnitude of ζ2 and ζ4 are re-
versed as the ocean depth increases or viscosity diminishes, this also signifies the im-
portance of an O(ν) analysis of the problem. In Figures 8.7 and 8.8, we compare the
wave-heights in the vicinity of a certain critical speed u∗o of the running stream in the
viscous and nonviscous fluids, respectively. The latter demonstrates the exceedingly large
wave heights which are known to occur in this case; the former however illustrates the
finiteness of the wave-amplitude in the same. In Figure 8.9, a comparison sketch of the
waves is shown in the viscous and nonviscous case, and the viscous wave damping is well
observed here.

We next determine the steady-state surface boundary layer thickness δ∗s from (7.3) by
the same numerical process as used for evaluating the exact progressive wave forms in
Section 4.2. The corresponding variation of thickness of the surface boundary layer with
distance, for fixed depth and time, is shown in Figure 8.10 along with that of the exact
steady-state progressive wave form ζ∗P evaluated earlier. In conclusion, we would like to
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mention the following dimensionless parameters:

ω′ = ω
√
h

g
, u′0 =

u0
√

gh
, ν′ = ν

√

gh3
, x′ = x

h
, k′ = kh, (8.2)
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which are being used while performing the computational study of the problem for Fig-
ures 4.1, 4.2, and 8.1–8.10.

In Figures 8.1–8.5 and 8.9–8.10, the values taken for the nondimensional parameters
are ω′ = 6.3, u′0 = 10, ν′ = 0.0002.
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