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We will be concerned with the existence result of unilateral problem associated to the
equations of the form Au+g(x,u,Vu) = f, where A is a Leray-Lions operator from its
domain D(A) C WLy (Q) into W~'Ez(Q). On the nonlinear lower order term g(x,u,
Vu), we assume that it is a Carathéodory function having natural growth with respect to
|Vul, and satisfies the sign condition. The right-hand side f belongs to W~Ez;(Q).
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1. Introduction

Let Q) be an open bounded subset of RN, N > 2, with segment property. Let us consider
the following nonlinear Dirichlet problem:

—div (a(x,u, Vu)) +g(x,u,Vu) = f (1.1)
Au = —diva(x,u,Vu) is a Leray-Lions operator defined on its domain %(A) C

W4 Ly (Q), with M an N-function and where g isanonlinearity with the “natural” growth
condition

|g(x,5,8)] < b(Is]) (h(x) + M(I€])) (1.2)
and which satisfies the classical sign condition
g(x,5,8) -s=0. (1.3)

The right-hand side f belongs to W !Ez;(Q).
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2 Variational unilateral problems

An existence theorem has been proved in [15] where the nonlinearity ¢ depend only
on x and u, and in [3] where g depends also on the Vu but the author’s suppose the
A,-condition, while in [8] the author’s were concerned of the above problem without
assuming a A,-condition on M.

It is our purpose, in this paper, to prove an existence result for unilateral problems
associated to (1.1) without assuming the A,-condition.

In our paper, the mean difficulty is the second and the third steps where we study
the a priori estimate. To overcome this difficulty, we have changed the classical coercivity
condition by the following one:

a(x,5,0)({ = V) =2 aM(|{]) —8(x) see (A4) below, (1.4)

(this idea is inspired from the work [16]).

Note that in the case of the equation, the a priori estimate is easily proved in [8] thanks
to the some classical technique (see [16]).

Furthermore, in our work, we have not supposed any regularity assumption on the
obstacle. Note that this type of equations can be applied in sciences physics. Non-standard
examples of M(#) which occur in the mechanics of solids and fluids are M(¢) = tlog(1 +
t), M(t) = [;s'“(arcsinhs)®ds (0 < a < 1) and M(t) = tlog(1 +log(1 + 1)) (see [10, 11,
13, 12] for more details).

This paper is organized as follows. Section 2 contains some preliminaries and some
technical lemmas. Section 3 is concerned with basic assumptions and the main result
which is proved in Section 4.

2. Preliminaries

2.1. Let M :R* — R* be an N-function, that is, M is continuous, convex, with M(t) >0
fort >0, M(t)/t — 0ast— 0and M(t)/t — o ast — oo.

Equivalently, M admits the representation: M(t) = [, a(s)ds where a: R* — R* is non-
decreasing, right continuous, with a(0) = 0, a(¢) >0 for £ >0 and a(¢) tends to co as
t — oo.

The N-function M conjugate to M is defined by M = [; a(s)ds, where a: R* — R* is
given by a(t) = sup{s:a(s) < t}.

The N-function M is said to satisfy the A,-condition if, for some k

M(Q2t) <kM(t) Vt=0. (2.1)

When (2.1) holds only for t = some £, > 0, then M is said to satisfy the A,-condition near
infinity.

We will extend these N-functions even functions on all R.

Moreover, we have the following Young’s inequality:

Vs,t =0, st<M(t)+M(s). (2.2)

Let P and Q be two N-functions. P < Q means that P grows essentially less rapidly than
Q, that is, for each € > 0, P(¢)/Q(€t) — 0 as t — oo.
This is the case if and only if lim;_.. (Q~!(¢)/P~1(t)) = 0.
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2.2. Let Q be an open subset of RN. The Orlicz class Ky/(Q) (resp., the Orlicz space
L(€)) is defined as the set of (equivalence classes of) real valued measurable functions
u on Q such that

L}M(u(x))dx < +oo (resp., L}M(@)dx < +oo for some A > 0>. (2.3)

Ly(Q)) is a Banach space under the norm

u(x)

||u||M,Q=inf{/\>0,I M<T)dxs 1} (2.4)

Q
and Ky(Q) is a convex subset of Ly (Q).

The closure in Ly(Q)) of the set of bounded measurable functions with compact sup-
port in Q is denoted by Ej(Q).

The dual of Ey(Q) can be identified with L3;(Q) by means of the pairing [, uvdx, and
the dual norm of L3;(Q)) is equivalent to || - [I37,0-

2.3. We now turn to the Orlicz-Sobolev space, WLy (Q) (resp., W!Ep(Q)) is the space
of all functions u such that u and its distributional derivatives of order 1 lie in Ly (Q)
(resp., Epr(Q))). It is a Banach space under the norm

lulliape= D 1D, (2.5)

lal<1

Thus, WLy (Q) and W!Ey(Q) can be identified with subspaces of the product of N +
1 copies of Ly (). Denoting this product by ITLy;, we will use the weak topologies
0 (I1Lyg, T1Eg7) and o (I1Lpg, T1L7).

The space W Ey(Q) is defined as the (norm) closure of the Schwartz space D(Q) in
W'Ep(Q) and the space W} Ly(Q) as the o(I1Ly, T1Eg;) closure of D(Q) in WLy (Q).

2.4. Let W Ly(Q) (resp., W 1E;;(Q)) denote the space of distributions on Q which
can be written as sums of derivatives of order < 1 of functions in Lz;(Q) (resp., Ezr(Q2)).
It is a Banach space under the usual quotient norm (for more details see [1]).

We recall some lemmas introduced in [3] which will be used later.

LemMa 2.1. Let F: R — R be uniformly Lipschitzian, with F(0) = 0. Let M be an N-func-
tion and let u € WLy (Q) (resp., W'Ep(Q)). Then F(u) € WLy (Q) (resp., W' Ep(Q)).
Moreover, if the set D of discontinuity points of F' is finite, then

iF(u) _ F’(u)a%iu ae in{x € Q:u(x) ¢ D}, 06

0% 0 ae in {x € Q:u(x) € D}.

LemMA 2.2. Let F: R — R be uniformly Lipschitzian, with F(0) = 0. We assume that the
set of discontinuity points of F' is finite. Let M be an N-function, then the mapping F :
WLy (Q) — WLy (Q) is sequentially continuous with respect to the weak* topology
o (T1Lys, TIExp).
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We give now the following lemma which concerns operators of Nemytskii type in Or-
licz spaces (see [3]).

LEmMA 2.3. Let Q be an open subset of RN with finite measure.
Let M, P and Q be N-functions such that Q < P, and let f:Q X R — R be
a Carathéodory function such that, for a.e. x € Q and all s € R:

| f(x,9)] < c(x)+kiP'M(ksls]), (2.7)

where ki, k, are real constants and c(x) € Eq(Q).
Then the Nemytskii operator N defined by N¢(u)(x) = f(x,u(x)) is strongly continuous
from P(Ep(Q),1/ky) = {u € Ly (Q) : d(u, Em(Q)) < 1/ky } into Eq(Q).

Below, we will use the following technical lemma.

LemMma 2.4. Let (fy), f € LY(Q) such that
(i) fa=0a.e inQ,
(ii) fu — f ae inQ,
(iii) Jo fu(x)dx = [q f(x)dx,
then f, — f strongly in L*(Q).

3. Main results

Let Q be an open bounded subset of RN, N > 2, with the segment property.
Given an obstacle function y : Q — R, we consider

Ky ={ue WiLy(Q); u=yae.inQ}, (3.1)

this convex set is sequentially o(I1Ly,I1E7;) closed in Wo' Ly (Q). (See [16].) We now
state conditions on the differential operator

Au= —div (a(x,u, Vu)). (3.2)

(A1) a(x,s,8) : QxR x RN — RN is a Carathéodory function.
(A;) There exist two N-functions M and P with P < M, function ¢(x) in Ez(Q),
constant ki, k», k3, k4 such that, for a.e. xin Q for all s, € R

|a(x,5,0)] < c(x)+ kP M(kals|) +ksM M (k[ {). (3.3)

(A3) [a(x,5,0) —alx,s,{)]({ =) >0forae. xin Q,sin Rand ' in RN, with { # .

(A4) There exists 8(x) in L'(Q) and a strictly positive constant « such that, for some
fixed element v, in Ky, N WEEMm(Q) N L (Q).

a(x,5,¢)({ = Dvy) = aM(I{]) — 8(x) (3.4)

fora.e.xin Q,s € Rand all { € RV,
(As) For each v € Ky, N L*(Q) there exists a sequence v; € Ky, N Wi Epm(Q) N L®(Q)
such that v; — v for the modular convergence.
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Furthermore let g: O X R X RN — R be a Carathéodory function such that for a.e.
x€ Qandforalls€ Randall { € RN.

(Gl) g(xJS)()S = 0)

(G2) Ig(x,s,0)1 < b(Is))(h(x) + M(IC1)),
where b: R, — R is continuous non decreasing function, / is given nonnegative func-
tion in L' (Q).

We define, for s and k in R, k > 0T (s) = max(—k,min(k,s)).

Consider the following Dirichlet problem:

A(u)+g(x,u,Vu) = f inQ. (3.5)

Remark 3.1. Remark that the condition (As) is holds if the one of the following conditions
is verified.
(i) There exist ¥ € K, such that y — ¥ is continuous in Q) (see [16, Proposition 9]).
(i) v € W} Epm(Q) (see [16, Proposition 10]).

We will prove the following existence theorem.

THEOREM 3.2. Assume that (A;)—(As), (G1) and (G,) hold and f € W 'Ez;(Q). Then
there exists at least one solution of the following unilateral problem:

ueKy(Q), glxuVu)e LY(Q), g(x,u, Vu)u € L'(Q),

J a(x,u,Vu)V(u—v)dx+J g, u, Vu)(u—v)dx (P)
Q Q
<{(f,u—-v), VveK,nL*(Q).

Remark 3.3. 'We remark that the statement of the previous theorem does not exists in the

case of Sobolev space. But, some existence result in this sense have been proved under the
. . 1,

regularity assumption y* € W, P(Q) N L2 (Q) (see [7]).

Remark 3.4. We recall that, differently from the methods used in [7, 9], we do not
introduce the function y* in the test function used in the step of a priori estimate.
4. Proof of Theorem 3.2

To prove the existence theorem, we proceed by steps.
Step 1. Approximate unilateral problems.
Let us define

&lost) =1y (15;5?122,&5) | -y
and let us consider the approximate unilateral problems:
u, € K, nD(A),
(Aup,u, —v) + Jﬂgn (2, n, V) (thy — v)dx < (fun —v), (P,)

Vv € Ky.
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From Gossez and Mustonen [16, Proposition 5], the problem (P,) has at least one solu-
tion.

Step 2. A priori estimates.
Let k = ||vyllo and let g (s) = se’’, where y = (2b(k)/a)>.
It is well known that

b(k)

lok(s)| = ! Vs eR (see [7]). (4.2)

¢i(s) == >
Since f € W E(Q) then f can be written as follows:
f=fo—divF with fy € E(Q), F € (Egr(0)". (4.3)
Taking u, — ner(Ti(u, — vo)) as test function in (P,), where [ = k + ||yl ., we obtain

Jﬂa(x,un,Vun)VTz(un —v0) @y (T1(un — vo))dx+Jggn(x,un,Vun)¢k(T1(un —v))dx

sj fo(pk(Tl(u,,—vo))dx+J FV Tyt — v0) @) (Ti (s — v0) ) .
Q Q

(4.4)
Since g, (x, Uy, V) @i (Ti (1, — vo)) = 0 on the subset {x € Q: |u,(x)| >k}, then
LW il a(x,un, Vi)V (1 — vo) @) (T1(un — vo) ) dx
< J o Tt D) Tty = o)) e [ e (T, = 0))
o V(T =)= [ FTwe(Tilu, =),
(4.5)
by using (A4), (G;) and Young’s inequality, we have
af MOV (T~ o))
< b(1kI) [ (h)+ MUV Tiw) D) i (T = ) »
4.6

+Lﬁﬂﬁﬂﬂw—mﬂﬂ+kﬁmﬂﬂw—mﬂﬂ

+%L‘ i ‘I}M(|wﬂ|)¢L(Tz(un—v0))dx+cl(k),
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which implies that

o
— M v n ’ T - d
2 J{ug—vol=y (I Vun | ) @i (Ti(un — o) ) dx

<b(Ik]) L) (h(x) + M(| VTe () ) | @6 (To(ttn = vo)) | dx (4.7)

+J O(x)pr (T1 (un — vo))dx+J Soor (Ti(un — vo) ) dx + Cy (k).
Q Q

Since {x € Q, |u,(x)| <k} = {x € Q: |u, — vo| <1} and the fact that b, & and f, € L}(Q),
then

| MOVT ) DTty = )

b(k) (4.8)
<2 JQM( VT () ) | 96 (Ty (10— v0)) | dxc + Ca(),
which implies that
, b(k)
L)M( | VT (un)|) [q’k(Tl(un -0)) - B | @ (T (1 — v0)) |]dx <G(k). (4.9)
By using (4.2), we deduce
j M|V Te(w) |)dx < G (k). (4.10)
Q
On the other side, taking v = v as test function in (P,), we get
[ a(x,uy, Vu,) (Vu, — Vvo)dx+J 2 (%6 tny Vuy) (un — vo) dx
@ Q (4.11)

< Jgﬁ)(un —vo)dx + JQFV(M” —vp)dx.

Let k > [[voll o> since g, (x, tn, Vi, )(uy — v9) = 0 in the subset {x € Q; |u,(x)| = k}, we
deduce

J a(x,un, V) (Vu, — VvO)dx*'J 8n (%, s Vi) (4 — vo) dx
Q {un ()| <k} (4.12)

SI fo(un—VO)dx+J FVundx—J FVvydx,
Q Q Q

thus, implies that, by using (4.10) and (G3)

j a(x, un, Vu,) (Vu, — Vvg)dx < J foundx+J FVu,dx+ Cy(k). (4.13)
Q Q o
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By using [14, Lemma 5.7] and Young’s inequality, we deduce
J foundx < C+ QJ M(|Vu,|)dx,
Q 4 Ja
J FVu,dx < C + 5J M(| Vi, |)dx.
Q 4 Ja

Combining (4.13), (4.14), we get

(4.14)

J a(x,up, Vi) (Vu, — Vg )dx < EJ M(|Vun|)dx+gj M(|Vuy|)dx+ Cs(k),
Q 4 Jo 4 )o

which implies, by using (A4)
ocJ M(| Vi, |)dx < ﬁj M(| Vi, |)dx+ Cs(k)
Q 2J)a
hence
J M(|Vuy|)dx < C;(k).
Q

Hence u, is bounded in WLy (Q). So there exists some u € W{ Ly (Q) such that

u, — u  weakly in Wi Ly (Q) for o (ITLyr, T1Ez;),

u, — u strongly in Ey(Q) and a.e. in Q.

Step 3. Boundedness of (a(x,u,, Vuy)), in (L (Q)N .
Let w € (Ep(Q))N be arbitrary, by (A3) we have

(a(x,tun, Vin) —a(x,up,w)) (Vu, —w) =0,

this implies that

a(x,un, Vuy) (w— Vo) <a(x,un, V) (Vu, — Vvg) — a(o,up, w) (Vu, —w)
hence,
JQa(x,un,Vu,,) (w—Vwg)dx < Jﬂa(x,un, Vu,)(Vu, — Vvg)dx
+Jﬂa(x,un,w)(w— Vu,)dx.
We claim that

J a(x, un, Vuy) (Vu, —vo)dx < C,
Q

with C is positive constant.

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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Indeed, if we take v = v as test function in (P, ), we get

J a(x,uy, Vu,) (Vu, — Vvo)dx+J &n (% un, Vy) (y —vo)dx < (f,un — vo).
Q Q
(4.23)

Since g, (x, Uy, Vu,)(u, — vo) = 0 on the subset {x € Q, |u,| = vl }, which implies

J a(x,uy, Vuy) (Vu, — Vg)dx
@ (4.24)
sb<||v0||oo)L)h(x)dx+b(||vo||oc>L)M(|Vun|)dx+(f,un—v0>.

Combining (4.17) and (4.24), we deduce (4.22).

On the other hand, there exists an N-function Q such that M < Q and the space
WLy (Q) is continuously embedded in Lg(Q2). Since the sequence {Vu,} is bounded
in Ly(Q), we can choose an ¢ > 0 such that [, M(eVu,)dx < C; and [, Q(eu,)dx < C;.
We have by (A;) la(x,u,,w)| < c(x) + koM ' Qew,) + kM M(kyw) + Ce. When A large
enough we obtain

JQM(W>(1 <7J M(c dx+—J Q(euy)

b M(C)
i) M (kyw) dx+ 1

(4.25)

< G,

thus implies that [, a(x,u,, w)(w — Vu,)dx is bounded, therefore by using (4.21) and
(4.22), we get

J a(x,uy, Vu,) (w— Vvy)dx < Cy. (4.26)
Q

Since w is arbitrary, we deduce [, a(x,uy, Vu,)wdx < Cs.

Finally by theorem of Banach-Steinhaus, the sequence a(x, u,, Vu,) remains bounded
in L37(Q).
Step 4. Almost everywhere convergence of the gradient.

We fix k > [|vo]l . Let Q, = {x € Q, |V Tx(u(x))| <r} and denote by y, the character-
istic function of Q,. Clearly, Q, C Q,4+; and meas(Q\Q,) — 0 asr — oo.

Fix r and let s > r, we have

0< J [a(x, Tk (tn), VT (un)) — a(x, Tic(un), VTk(0)) [V Tk (un) — V Tic(u) ] dx

J,!
Jo

Qs

IA

a(%, Tic(tn), VT (un)) — ax, Te (un), VTi () | [V Tk () — VTi(u) ] dx

a(x, T (un), VT (un)) —a(x, T (un), VTi(w)xs) | [V Ti (un) = V Ti(u)ys | dx

JQ (%, T (t4n), VT (1)) — a6, T (t4n), V Tic () xs) [V T (t4) — V Tie(14) x5 ] dx
(4.27)
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By the condition (As) there exists a sequence v; € Ky N W4 Ep(Q) N L*(Q) which con-
verges to Tx(u) for the modular converge in WLy (Q).
Here, we define w,, j = Ti(u,) — Tr(vj), wj = T(u) — T (v)).
For n = exp(—4yk?), we defined the following function as
Vn,j = Un — W(Pk(wn,]‘)- (4.28)
By taking v, ; as test functions in (P,), we get

(A G191 (w1)) + | oGt Vit g (o) < (Fungom)). (4.29)
Since # is nonnegative, then
(A0 0)) + [ gt Vi) gl < (Fogulmn)). (430)
It follows that

L)a(x,un,Vun)an,jgoL(wn,j)dx+Jogn(x,un,wn)w(wn,j)dx < (fror(wn;)).

(4.31)
Denoting by €(n, j) any quantity such that
JIE& nllrilwe(n,]) =0. (4.32)
We get, by (4.31),
[ a0, V10 (9T ) = VTi3)) g o)l
o (4.33)

|0 (ot V1)1 o)t = (F ).

In view of (4.18), we have ¢i(w,,;) — @x(w;) weakly in W4 Ly (Q) for o(T1Ly, T1Ey;) as
n — +o0, and then

(fook(Wnj)) — (foor(w))) asn— +oo. (4.34)

Again, tends j to infinity, we get
(frou(wj)) — 0 asj— +o. (4.35)

Therefore,

(f>or(wnj)) = €(n, j). (4.36)
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On the set {x € Q, [u,(x)| >k}, we have g(x, u,, Vu,)@r(wy ;) = 0, so by (4.31)

L)a(x,un,Vu,,)(VTk(un) — VTi(vj)) 9y (wn,j)dx

(4.37)

+J Zn (XU, Vi) @ (W j) dx < €(n, j).
{lun| <k}

Splitting the first integral on the left-hand side of (4.37) where |u,| < k and |u,| > k,
we can write

Jﬂa(x, un,vun)vwn,j‘Pllc(W",f)dx
= L) a(x, Tic(un), V Tic(un) ) [V Ti (un) = VT (v)) 1 9f (W) dx (4.38)

- ¢.(2k) ok |a(x, 10, Viuy) — a(x, Tx (un),0) | | VTk(v;) | dx.
Since |a(x,u,, Vuy,) — a(x, Tx(u,),0)| bounded in L3;(Q) there exists a function hy €
L3;(Q) such that |a(x,u,, Vu,) — a(x, Tx(u,),0)| — hi for o(X37,En) as n — +oo, while
IVTe(vi) xtiussky = IV Tk(vi) | xiu>k) strongly in Ep(€), and by the modular conver-
gence of Ti(v;), we deduce that the second term of the right-hand side of (4.38) tends to
Oasn — coand j — oo, hence

J a(x, tn, Vin) VWi, j) (Wi, ) dx
Q

(4.39)
> Jﬂa(x,Tk(un),VTk(un))[VTk(u,,) VT (), () dx £, ),
which implies that
Jﬂa(x,un,Vun)an,j(p;c(wn,j)dx
> JQ [a(x,Tk(un),VTk(un)) —a(x,Tk(un),VTk(vj)Xg”
X [VTk(un) - VTk(vj)ij]gol'c(wn,j)dx (4.40)

+ j( Te (1), YTk (v ) [ V T () = VT (v | 0 (wn ) dx
_L)\QJ_a(x,Tk(un),VTk(un))VTk(ijp,;(Wn,j)dHe(n,j),

where Xﬁ denotes the characteristic function of the subset Q] = {x € Q: IVTi(vj)| < st

Let a function Ik € (Ly;(Q))N such that a(x, Tx(u,), V Tk (u,)) — Ik for o(I1L35, I1Ey),
since V Tk(vj)XQ\Qg @i (wy ;) tends to V Ty (v; )XQ\Q_{ @1 (w;) strongly in (Ep (Q))V, the third
term of the right-hand side of (4.40) tends to quantity fQ\ o IV Tk (vj) @ (w;)dx as n tend
to infinity.
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Letting now j to infinity, by using the modular convergence of v; and

lkXQ\QgX{\Vj\Sk}(Pl,((Wj)’ (4.41)

we have
L) lkVTk(vj)XQ\Qg(p,'((wj)dx — L}\Q IV Ti(u) ;. (0)dx (4.42)

as j tend to infinity.
Finally

—J .a(X,Tk(un),VTk(un))VTk(Vj)¢L(Wn,j)dx=—J IV Ti(u) 91 (0)dx + €(n, §).
o o\

\!
(4.43)
Concerning the second term of the right-hand side of (4.40), since

a6, Ti(un), VT ()0 ) 9 (W) — a6 Te(w), VTe(vi) ) @i (wy) - (444)
as n — oo in (Ez;(Q))N by Lemma 2.3 and VT (u,) — VTi(u) weakly in (Ly(Q))N for
Consequently, the second term of the right-hand side of (4.40) tends to quantity
T alx, Te(u), VTi(vi)d ) [V Ti(u) — V T (vi)xd 19} (w;)dx as n — oo, moreover letting j
to infinity it is easy to see that
Jga(x, Tk(u),VTk(vj)ij) [VTk(u) — VTk(vj)ij]goL(wj)dx
— JQa(x, Ti(w), VTk(u)xs) [V T (1) = VTie(u)x: ] 9 (0)dx (4.45)
= [ (e Ti(w),0) VT (g; 0)dx.
o0,
Combining (4.40), (4.43) and (4.45), we get
J a (%, un, Viin) VW j@r (W j) dx
Q
ZJQ [ T (1), VT (1)) — a (36, Ti (1), VT (7)1 ) |
x [V Te(un) = VT (i) |9} (wnj)dx (4.46)

+J LV Ti()9),(0)dx
O\Q;

¥ Lms a(x, Te(u), 0) V T ()9} (0)dx + €(m, ).
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We now return to the second term of the left-hand side of (4.37), we have, by using (A4)
and (G;)

' L\un\sk}gn (x, Uy, vun)(Pk(WnJ)dx’
<500 [ (400 + (1T ) [ i) |

b(k
<600 [ 1) gimn) [+ 22 [ 560 guomny)| -

+ @ Jﬂa(x, Tk (un), VT (1)) VTi () |(Pk (W”’j) |dx
) T, T ) o) L

<en+ 0 || o Ticwn), 9T () 9 i) [ o)

The last term of the last side of this inequality write as

@L} [a(x, Te (tn), VTx (1)) —a(X,Tk(un))VTk(Vj)XSj)]
X [VTk(u,,) — VTk(Vj)ij] |§0k(Wn,j) |dx
+ @)[Qa(x,Tk(un),VTk(vj)ij) [VTk(Mn) - vTk(Vj)ij] | ok (wn,j) | dx

+ @ Jﬂa(x, Tk(un),VTk(un))VTk(vj)X{ | o (W) | dx
(4.48)

and reasoning as above, it is easy to see that

@ Jﬂa(x, Te (1), VTe(v) 1 ) [ VT () = VT () | | oic (W) | dx = €(n, ),

_ @ JQa(x, Tk(un))VTk(un))VTk(Vj)ij [k (wnj) | dx = €(n, j).

(4.49)
So that by (4.47) and (4.48) we deduce that
U{‘ | k}gn(x’”n’vun)¢k(wn,j)dx
bk j
< 0 [ o Tilun), D Tiw) ~ o Tl VT ()id) | (450

X [VTk(uﬂ) - VTk(vj)ij] | ox (Wi j) | dx +€(n, j).
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Combining (4.37), (4.46) and (4.50), we obtain
[ Titwn) 9T () = a5, T ), 9T |
X [VTk(un) - VTk(vj)ij](p,;(wn,.) - @ | x (Wn,j) | dx (4.51)
< J lkVTk(uyp,;(O)derj a(e, T (),0) V T ()}, (0)dx + €(n, ),
Q\Qy O\ Qs
which implies that, by using (4.2)
L [, T (1), V Ti (un)) — @ (6 Te (1), VT (v)) 1! ) | % [ 9 Tk (1) = 9T () | dx

SZJ lkVTk(u)¢;<(0)dx+2J a(x, Te(u),0) V Ti (1) ;. (0)dx + €(n, j).
Q\Q, Q\Q,

(4.52)
Now, remark that
jﬂ [ @, Te(u), VT (1)) = @6, T (), VT | | V T () = V T () | dx
= | a8 i), Y Tilw)) = a5, Te (), 9 Tl ) |
X [VTk(un) - VTk(Vj)ij]dx
) ) (4.53)
+Jﬂa<x,Tk(un),VTk(Vj)Xf> [VTk(un) - VTk(Vj)XS]]dx
- Jﬂa<x, Tk(u,,),VTk(u)Xs) [VTk(un) - VTk(u)Xs]dx
+ L}a(x, Ti(un), VTi(4n)) [VTk(vj)ij - VTk(u)Xs]dx.

We will pass to the limit in # and j in the last three terms of the right-hand side of the last
inequality, we get

Jﬂa(x, Tk(u,,),VTk(Vj)ij> [VTk(un) - VTk(VJ)XSj]dx
:J a(x, Te(1),0) V Ty (u)dx + €(n, ),
Q\Q
||l Titwn), T 06 [ Tia) = 9 TaCa (439

- J a(x, T (1),0) V Ty (w)dx + €(n, ),
Q\Q;

Jﬂa(x, Tx (u), VTi (1)) [VTk(Vj)ij - VTk(u)XS]dx =€e(n,j),
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which implies that
JQ I:a(x’ Tk(un))VTk(un)) - a<xa Tk(un))VTk(”)Xs):I [VTk(un) - VTk(u)Xs]dx

= | @ i), ¥ Tiw)) = a5, Te (), 9T )

X [VTk(u,,) - VTk(v,-)ij]dx+e(n,j).
(4.55)

Combining (4.27), (4.52) and (4.55), we have
L} [a(x, Tic(n), VTi (un)) — alx, Te (un), VTi(w) ][V Tk (1) — VTi(u) ] dx
< J;; [a(x, Tk (un), VT (tn)) — a(x, Tk(un),VTk(u)Xs)] [VTk(un) — VTk(u)Xs]dx

<2I lkVTk(u)gok(O)dx+2J a(x, T (1),0) V T ()9}, (0)dx + €(n, ).
(4.56)

By passing to the limsup over n, and letting j, s tend to infinity, we obtain
lim [a(x, Te (tn), VT (un)) —a(x, T (), VTi(w)) ][V Tx (un) — VTi(1)]dx = 0,

n—-+oo Q,
(4.57)
thus implies by the same method used in [4] that

Vu— Vu, ae. inQ. (4.58)

Step 5. Modular convergence of the truncation:
Thanks to (4.58), we have [y = a(x, Tx(u), V Tx(u)), which implies by using (4.56)

JQ [a(x, Te (10, V Te (18)) (VT (1) — Vo) +8(x) e
< L, [a(x, Ti (), ¥ T (1)) (9 Tk (w)xs — Vv) +8()]dx
+ | oo Tilu), VI 0K) (VTk(w) - VI dx— (459)
+2Jm05a(x, Te(u), ¥ Te(w) V T ()9, (0)dx

J a(x, Ti(1),0) V Te (1)@}, (0)dx + €(n, ),
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which implies, by using the Fatou’s lemma
[ e T, D T0) (VT4 = V) +60)

< liminf [a(x, Tx (t), V Tk (un)) (VT (un) — Vvo) +6(x)]dx

n—+o  J

< limsup 5 [a(x, Tx (t), VTi (1)) (VT (un) — Vo) +6(x)]dx

n—+oo

< limsup 5 [a(x, Ti(tn), V Tic(un) ) (VTi(u)xs — Vo) + 8(x)]dx

n—-+co

+limsup a(x, Tk(un),VTk(u)Xs) (VTk(un) - VTk(u))(s)dx

n—+oo JQ

+2J lkVTk(u)q),'((O)dx+2J a(x, Ti(u),0) V T (u) 9, (0)dx + €(n, j).
Q\Q, Q\Q,

(4.60)
Reasoning as above, we have
limsup 5 [a(x, Tk (un), V T (1) ) (V T (w)xs — Vvo) +8(x) ] dx
= | a6 i), VTi0) (VT — T0) +(0) ],
(4.61)

limsup a(x, Tk(un),VTk(u)Xs) (VTk(un) - VTk(u)Xs)dx

n—+c JQ
= J a(x, Tx(u),0) V Tx(u)dx,
Q\Q;
which implies that
J;) [a(x, Te(u), VTi(w) (VTr(u) — Vo) +8(x)]dx
<liminf [ [a(s T (1), VT () (9T ) = o) +8(0) ]

<limsup | [a(x, Tk (tn), V T (4n)) (V Ti(un) — Vo) +8(x) ] dx

n—-+oo Q
< JQ [, Tu(w), 9 T(w)) (VT — Vo) +6(x) | dx
+2Lm LV T ()9, (0)dx

+2J a(x, Tk(u),O)VTk(u)¢L(0)dx+J a(x, Tx(4),0) V Ty (u)dx.
Q\Q, Q\Q, (162)
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Using the fact that [a(x, Ti(u), V Ti(u))(V Ti(u)xs — Vvo) +6(x)], bV Tr(u)@;(0), a(x,
Ti(1),0)V Ti (1) (0) and a(x, Ti(4),0)V Ti(u) in L'(Q) and letting s — +o0, we get,
since meas(Q\ Q) — 0,

[ 10 T, 97100 (VT = Vo) + ()l

< liminf 5 [a(x, Ti (), VT (1)) (V Ti () — Vo) +8(x)]dx

n—-+oo

(4.63)
<limsup | [a(x, Tk(un), VTx(ts)) (V Tk (1) — Vo) +8(x)]dx
n—+oo JQ
< J [a(x, Ti(u), VTi(u)) (VTi(u) = Vvg) +8(x)]dx.
Q
Finally, we have
lim | [a(x, Tk(un), VTi(4n)) (V Tk (un) — Vvo) +6(x)]dx
n—+oo )
(4.64)
- L, [a(x, T(1), VTe(w)) (VT (1) — Vvg) +8(x)]dc
and by using (As), one obtains, by Lemma 2.4
M(VTi(u,)) — M(VTi(u)) inLY(Q). (4.65)
Step 6. Equi-integrability of the nonlinearities.
We need to prove that
n (%, 1y, Vi) — g(x,u,Vu) strongly in L'(Q), (4.66)

in particular it is enough to prove the equi-integrable of g, (x, u,, Vu,). To this purpose,
we take u, — T1 (1, — vo — Th(u, — vo)) as test function in (P,), we obtain

| gn (26, tny V) | dx < (f, Ty (thy — vo — T (un — o)) ) +J S(x)dx

{lun—vol>h}

J{Iunfvo|>h+1}

<] U+ O+ B
' (4.67)

Since | fol + 6 € L1(Q), F € Ez(Q), using [14, Lemma 4.16], for all & > 0, then there exists
h(e) = 1 such that

J | g (x,tn, Vuy) | dx < €/2. (4.68)
{lun—vo|>h(e)}

For any measurable subset E C Q, we have
[ 1ot F100) L = [ b(0Ge)) (600 + MOV Ty ()

(4.69)
+J | g (x,un, Vi) | dx.
{lunl>h(e)}
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In view of (4.65) there exists 7(¢) > 0 such that
Lb(h(e)) (c(x) + M(V Ty (1)) )dx < &/2  VE such that |E| < n(e).
Finally, combining (4.75) and (4.76), one easily has
L | gn (2, tn, Vuy) |dx <& VE such that |E| < 7(e),

which implies (4.66).
Moreover, if we take vy as function test in (P,), we get

Jﬂgn (%t Vi) updx < L}S(x) +dx+ L)gn (%, tn, Vg ) vodx + (f, un — vo),
hence
Jﬂgn (%, tn, Vtdy) tndx < 3,
where f3 is some positive constant, then by using Fatou’s lemma, we have
gt u, Vu)u e L'(Q).

Step 7. Passing to the limit.
We take v € Ky, N WEEMm(Q) N L2 (Q), in (P,), we can write

JQa(x,un,Vun)V(un —v)dx+ JQg(x,un,Vun) (un —v)dx < (foun—v),
which implies that
Jna(x,un,Vu,,)V(un —vo)dx+ Jﬂa(x,un,Vun)V(vo —v)dx
+ Jﬂg(x,un,Vun) (un —v)dx < (frun—v).

By Fatou’s lemma and the fact that

a(x,uy, Vu,) — alx,u, Vu)
weakly in (Ly;(Q))N for o(I1Ly;, I1Ey) one easily sees that

Lla(x,u,Vu)V(u —vo)dx+ J;) a(x,u, Vu)V (vo — v)dx
N L)g(x,u,Vu)(u “v)dx < (fou—v).

Hence

JQ a(x,u, Vu)V(u—v)dx + Jﬂg(x,u,Vu)(u —v)dx < (f,u—v).

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)
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Now, let v € Ky, n L*(Q), by the condition (As) there exists v; € K, N WSEM(Q) N
L= (Q) such that v; converges to v modular, let & > |[vyl«, taking v = Ty(v;) in (4.79),
we have

L)a(x,u,Vu)V(u — Tu(vj))dx+ Jﬂg(x,u,Vu)(u— Tn(vj))dx < (f,u—Tu(vj)).
(4.80)

We can easily pass to the limit as j — +oo to get

Jﬂa(x,u,Vu)V(u — Tp(v))dx+ JQg(x,u,Vu)(u— Tu(v))dx (4.81)

<(fiu—-Tu(v)) VveK,nL"(Q),

the same, we pass to the limit as h — +oo, we deduce

Jﬂa(x,u,Vu)V(u —v)dx+ L}g(x,u,Vu)(u -v)dx < (f,u—v) VveK,nL”(Q).
(4.82)

This completes the proof of the theorem.
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