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This paper deals with an alternative approximate analytic solution to time fractional partial differential equations (TFPDEs) with
proportional delay, obtained by using fractional variational iteration method, where the fractional derivative is taken in Caputo
sense. The proposed series solutions are found to converge to exact solution rapidly. To confirm the efficiency and validity of
FRDTM, the computation of three test problems of TFPDEs with proportional delay was presented. The scheme seems to be very
reliable, effective, and efficient powerful technique for solving various types of physical models arising in science and engineering.

1. Introduction

The idea of derivatives of fractional order was described
first by great mathematician Newton and Leibnitz in the
seventh century and has achieved a great attention due to
their numerous applications in nonlinear complex systems
arising in various important phenomena in the fluidmechan-
ics, damping laws, electrical networks, signal processing,
diffusion-reaction process relaxation processes, mathemati-
cal biology, and other fields of science and engineering [1–
7]. Fractional derivatives offer more accurate models of real-
world problems as compared to integer-order derivatives.The
fractional calculus plays a critical role in describing a complex
dynamical behavior in tremendous scope of application
fields and helps to understand the nature of matter as well
as simplifying the controlling design without any loss of
hereditary behaviors. Further, the nonlinear oscillation of
earthquake can be modeled via fractional derivatives [8]; the
fluid-dynamic traffic model with fractional derivatives [9]
can eliminate the deficiency arising from the assumption of
continuum traffic flow and the fractional nonlinear complex
model for seepage flow in porous media [10].

Indeed, it is too tough task to compute an exact solution
of a wide class of the differential equations of fractional

order. In the past years, different kind of vigorous techniques
has been introduced to find an approximate solution of
such type of fractional model of differential equations, such
as generalized differential transform method [11], Adomian
decomposition method [12], homotopy analysis method [13],
homotopy analysis transform method [14], modified Laplace
transform method [15], and homotopy perturbation trans-
form method (HPTM) [16–18]. FRDTM have been adopted
to solve vigorous types of differential equations arising in
mathematics, physics, and engineering by Saravanan and
Magesh [19], Srivastava et al. [20, 21], Singh and Srivastava
[22], Singh and Kumar [23, 24], Singh [25], and Singh and
Mahendra [26]. Recently, a fractional model of differential-
difference equationmodel (appeared in nanohydrodynamics,
heat conduction in nanoscale, and electronic current that
flows through carbon nanotubes) has been studied ana-
lytically by adopting homotopy analysis transform method
[27], and a hybrid computational approach based on local
fractional Sumudu transform with HPM has been employed
for numerical study of Klein–Gordon equations on Cantor
sets [28]. Atangana and Baleanu [4] proposed a much better
version of fractional derivative with a nonsingular and non-
local kernel, based upon the well-known generalized Mittag-
Leffler function, to answer some outstanding questions raised
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by many researchers within the field of fractional calculus. A
relationship of their derivatives with some integral transform
operators was presented by Atangana and Koca [29] who
show the existence and uniqueness of the system solutions
of the fractional system in detail and also obtained a chaotic
behavior which was not obtained by local derivative. Goufo
[30] adopted newly developed Caputo-Fabrizio fractional
derivative without singular kernel to obtain an analytical
solution of Korteweg-de Vries-Burgers equation with two
perturbations’ levels.The two-parameter derivativewith non-
singular and nonlocal kernel has been introduced by [31] to
study the chaotic processes of the fractional system. Goufo
[32] used the concept of variable-order derivative to study the
stability and convergence analysis of thewell-knownvariable-
order replicator-mutator dynamics in a moving medium. For
more details in fractional derivatives, we refer the readers to
[4, 29–32] and the references therein.

The variational iteration method (VIM) has been devel-
oped by Chinese mathematician He [10]. After the seminal
work of He, various modification of VIM has been employed
to solve various nonlinear problems, such as diffusion and
wave equations on cantor sets [33], Riccati differential equa-
tion [34], fractional model of coupled Burgers equations [35],
and time fractional Fornberg-Whitham equation [36]. For
more details, the readers are referred to [33–38] and the
references therein.

The partial functional differential equations with pro-
portional delays, a special class of delay partial differential
equation, arise specially in the field of biology, medicine,
population ecology, control systems, and climatemodels [39],
and complex economic macrodynamics [40].

This paper is concerned with the numerical solution
of the initial valued autonomous system of TFPDEs with
proportional delay [17] defined by

D
𝛼
𝑡 (𝑢 (𝑥, 𝑡)) = 𝑓(𝑥, 𝑢 (𝑎0𝑥, 𝑏0𝑡) , 𝜕𝜕𝑥
⋅ 𝑢 (𝑎1𝑥, 𝑏1𝑡) , . . . , 𝜕𝑚𝜕𝑥𝑚 𝑢 (𝑎𝑚𝑥, 𝑏𝑚𝑡)) ,

𝑢𝑘 (𝑥, 0) = 𝜓𝑘 (𝑥) ,

(1)

where 𝑎𝑖, 𝑏𝑖 ∈ (0, 1) for all 𝑖 ∈ 𝑁 ∪ {0}. 𝜓𝑘 is initial value,𝑓 is the differential operator, and the independent variables(𝑥, 𝑡) (where 𝑡denotes time and𝑥 is space variable) denote the
position in space or size of cells andmaturation level at a time.
The solution of (1) may be the voltage, temperature, densities
of different particles, form instance, chemicals, cells, and so
forth. One significant example of the model, Korteweg-de
Vries (KdV) equation, arising in the research of shallowwater
waves is as follows:

D
𝛼
𝑡 (𝑢 (𝑥, 𝑡)) = 𝑏𝑢 𝜕𝜕𝑥𝑢 (𝑎0𝑥, 𝑏0𝑡) + 𝜕3𝜕𝑥3 𝑢 (𝑎1𝑥, 𝑏1𝑡) ,

0 < 𝛼 < 1,
(2)

where 𝑏 is a constant. Another well-known model, time frac-
tional nonlinear Klein–Gordon equation with proportional
delay, aries in quantum field theory to describe nonlinear
wave interaction:

D
𝛼
𝑡 (𝑢 (𝑥, 𝑡)) = 𝑢 𝜕2𝜕𝑥2 𝑢 (𝑎0𝑥, 𝑏0𝑡) − 𝑏𝑢 (𝑎1𝑥, 𝑏1𝑡)

− 𝐹 (𝑢 (𝑎2𝑥, 𝑏2𝑡)) + ℎ (𝑥, 𝑡) ,
1 < 𝛼 < 2,

(3)

where 𝑏 is a constant, ℎ(𝑥, 𝑡) is known analytic function, and𝐹
is the nonlinear operator of𝑢(𝑥, 𝑡). For details of various types
of models, we refer the reader to [17, 39] and the references
therein.

To the best of my knowledge, there is little literature
of methods to solve TFPDE with delay, such as Chebyshev
pseudospectralmethod for linear differential anddifferential-
functional parabolic equations [41], spectral collocation and
waveform relaxation methods [42], and iterated pseudospec-
tral method [43] for nonlinear delay partial differential equa-
tions. equations. Abazari and Ganji [44] obtained approxi-
mate solutions of PDEswith proportional delay by employing
RDTM. Abazari and Kilicman [45] obtained analytical solu-
tions of nonlinear integrodifferential equations with propor-
tional delay by using DTM. Tanthanuch [46] applied group
analysis method for nonhomogeneous mucilaginous Burgers
equation with proportional delay. The analytical solutions
of TFPDE with proportional delay have been obtained by
employing homotopy perturbation method by Sakar et al.
[17] and Biazar ad Ghanbari [47]. Chena and Wang [48]
have adopted variational iteration method (VIM) for solving
a neutral functional-differential equation with proportional
delays. The main aim of this paper is to propose an alterna-
tive approximate solution of the initial valued autonomous
system of TFPDE with proportional delay [17] by employing
alternative variational iteration method (AVIM).

The paper is sketched into five more sections following
Introduction. Specifically, Section 2 deals with the revisit of
fractional calculus. Section 3 is devoted to the procedure for
the implementation of the AVIM for problem (1). Section 5
is concerned with three test problems with the main aim
of establishing the convergency and effectiveness of AVIM.
Finally, Section 6 concludes the paper with reference to
critical analysis and research perspectives.

2. Preliminaries

Among the various kinds of definitions of fractional deriva-
tives, the definitions mostly applied are due to Riemann-
Liouville [1], Caputo [3], Yang [7], He [4], Atangana and
Baleanu [4], Caputo-Fabrizio [30], and so forth. This section
revisits some basic definitions of fractional calculus due to
Liouville [1] which we need to complete the paper.

Definition 1. Let 𝜇 ∈ R and 𝑚 ∈ N. A function 𝑓 : R+ → R

belongs to C𝜇 if there exists 𝑘 ∈ R, 𝑘 > 𝜇, and 𝑔 ∈ 𝐶[0,∞)
such that 𝑓(𝑥) = 𝑥𝑘𝑔(𝑥), ∀𝑥 ∈ R+. Moreover, 𝑓 ∈ C𝑚𝜇 if
𝑓(𝑚) ∈ C𝜇.



International Journal of Differential Equations 3

Definition 2. LetJ𝛼𝑡 (𝛼 ≥ 0) be Riemann-Liouville fractional
integral operator and let 𝑓 ∈ C𝜇; then

(∗) J𝛼𝑡 𝑓(𝑡) = (1/Γ(𝛼)) ∫𝑡
0
(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏, if 𝛼 > 0,

(∗∗) J0𝑡𝑓(𝑡) = 𝑓(𝑡), where Γ(𝑧) fl ∫∞
0

𝑒−𝑡𝑡𝑧−1𝑑𝑡, 𝑧 ∈ C.

For 𝑓 ∈ C𝜇, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 > −1, the operator
J𝛼𝑡 satisfies the following properties:

(i) J𝛼𝑡J
𝛽
𝑡 𝑓(𝑥) = J

𝛼+𝛽
𝑡 𝑓(𝑥) = 𝐽𝛽𝑡 J𝛼𝑡 𝑓(𝑥).

(ii) J𝛼𝑡 𝑥𝛾 = (Γ(1 + 𝛾)/Γ(1 + 𝛾 + 𝛼))𝑥𝛼+𝛾.
It is worth mentioning that Riemann-Liouville derivative
exists for any functions that are continuous but Riemann-
Liouville derivative has certain disadvantage for describing
some natural phenomena; for example, Riemann-Liouville
derivative of a constant is not equal to zero. In their work,
Caputo andMainardi [3] proposed a Caputo fractional differ-
entiation operator𝐷𝛼𝑡 , defined below, which is a modification
of definition of Riemann-Liouville to describe the theory
of viscoelasticity in order to overcome the discrepancy of
Riemann-Liouville derivative [1]. It is worth mentioning
that the Caputo fractional derivative allows the utilization
of initial and boundary conditions involving integer-order
derivatives.

Definition 3. Let 𝑓 ∈ C𝜇, 𝜇 ≥ −1, and𝑚−1 < 𝛼 ≤ 𝑚,𝑚 ∈ N.
Then

D
𝛼
𝑡 𝑓 (𝑡) = J

𝑚−𝛼
𝑡 D

𝑚
𝑡 𝑓 (𝑡)

= 1Γ (𝑚 − 𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝑚−𝛼−1 𝑓(𝑚) (𝜏) 𝑑𝜏. (4)

Moreover, the operator D𝛼𝑡 satisfies the following basic
properties.

Lemma 4. Let 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, 𝑓 ∈ C𝑚𝜇 , 𝜇 ≥ −1, and𝛾 > 𝛼 − 1, then
(a) D𝛼𝑡D

𝛽
𝑡 𝑓(𝑥) = D

𝛼+𝛽
𝑡 𝑓(𝑥);

(b) D𝛼𝑡 𝑥𝛾 = (Γ(1 + 𝛾)/Γ(1 + 𝛾 − 𝛼))𝑥𝛾−𝛼,
(c) D𝛼𝑡J

𝛼
𝑡 𝑓(𝑡) = 𝑓(𝑡),

(d) J𝛼𝑡D
𝛼
𝑡 𝑓(𝑡) = 𝑓(𝑡) − ∑𝑚𝑘=0 𝑓(𝑘)(0+)(𝑡𝑘/𝑘!), for 𝑡 > 0.

In the present work, Caputo fractional derivative is consid-
ered as it deals with traditional initial and boundary con-
ditions in the formulation of the physical problems. For
details on fractional derivatives, we refer the interested
readers to [1–7].

3. Description of Alternative Variational
Iteration Method (AVIM)

Consider an initial valued differential equation:

𝐿𝑢 (𝑡) + 𝑁𝑢 (𝑡) = 𝑔 (𝑡) , 𝑡 > 0,
𝑢(𝑘) (0) = 𝑐𝑘, 𝑘 = 0, 1, . . . , 𝑚 − 1, (5)

where 𝑐𝑘 are real numbers, 𝐿 = 𝑑𝑛/𝑑𝑡𝑛, and 𝑚 ∈ N is a
linear operator;𝑁 → nonlinear operator and 𝑔(𝑡) is a known
analytic function.

The correction functional for (5) can be constructed using
AVIM as defined in [37] as

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡)
+ ∫𝑡
0
[𝜆 (𝜏) (𝐿𝑢𝑘 (𝜏) − 𝑁𝑢𝑘 (𝜏) − 𝑔 (𝜏))] 𝑑𝜏, (6)

where the Lagrange multiplier 𝜆(𝜏) can be identified opti-
mally by means of variation theory. Generally, the following
Lagrange multipliers are used:

𝜆 (𝜏) = (−1)𝑚(𝑚 − 1)! (𝜏 − 𝑡)𝑚−1 , 𝑚 ≥ 1. (7)

Equations (7) and (6) yield the following iteration formula:

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡) + 𝐴 [𝑢𝑘 (𝑡)] , (8)

where the operator 𝐴[𝑢] is defined by

𝐴 (𝑢) fl (−1)𝑚(𝑚 − 1)!
⋅ ∫𝑡
0
((𝜏 − 𝑡)𝑚−1 (𝐿𝑢𝑘 (𝜏) − 𝑁𝑢𝑘 (𝜏) − 𝑔 (𝜏))) 𝑑𝜏.

(9)

Moreover, if we set the components 𝑠𝑘 (𝑘 = 0, 1, 2, . . .) as
𝑠0 = 𝑢0,

𝑠1 = 𝐴 [𝑠0] ,
𝑠2 = 𝐴 [𝑠0 + 𝑠1] ,

...
𝑠𝑘+1 = 𝐴 [𝑠0 + 𝑠1 + ⋅ ⋅ ⋅ + 𝑠𝑘] ,

(10)

then we have 𝑢(𝑡) = lim𝑘→∞𝑢𝑘(𝑡) = ∑∞𝑘=0 𝑠𝑘. Thus, (9) and
(10) yield the series solution of system (5) in the following
form:

𝑢 (𝑡) = ∞∑
𝑘=0

𝑠𝑘 (𝑡) . (11)

The interested readers are referred to [33, 34, 36–38] for
further details.

4. AVIM for FPDEs with Proportional
Delay Equations

Consider the initial valued autonomous system of time
fractional partial differential equation of order 𝛼 with ⌈𝛼⌉ =𝑚 ∈ N as
D
𝛼
𝑡 {𝑢 (𝑥, 𝑡)} + 𝑁𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , 𝑡 > 0,

𝑢(𝑘) (𝑥, 0) = 𝑓𝑘 (𝑥) ,
𝑘 = 0, 1, . . . , 𝑚 − 1, 𝑥 ∈ 𝑅,

(12)
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where 𝑁 → nonlinear operator, 𝑔 = 𝑔(𝑥, 𝑡) → known
analytic function, andD𝛼𝑡 → Caputo fractional derivative of
order 𝛼 and 𝑓𝑘 → a real valued function.

The solution

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛 (𝑥, 𝑡) (13)

to problem (12) can be derived from the following iteration
formula as in [38]:

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡)
− 𝐽𝛼𝑡 [𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) + 𝑁𝑢𝑘 (𝑥, 𝑡) − 𝑔 (𝑥, 𝑡)] . (14)

The variational iteration solution, 𝑢(𝑥, 𝑡) = ∑∞𝑘=0 V𝑘(𝑥, 𝑡), in
the present framework is obtained by the following iteration
formula for ⌈𝛼⌉ = 𝑚 ∈ N as in [37, 38]:

V0 = 𝑛−1∑
𝑘=0

𝑓𝑘 (𝑥)𝑘! 𝑡𝑘,

V𝑘+1 = − Γ (𝛼)Γ (𝛼 − 𝑚 + 1) Γ (𝑚)J𝛼𝑡 [𝐷𝛼𝑡 [V0 + ⋅ ⋅ ⋅ + V𝑘]
+ 𝑁 [V0 + ⋅ ⋅ ⋅ + V𝑘] − 𝑔 (𝑥, 𝑡)] .

(15)

The iteration formula (15) converges to a solution of problem
(12) whenever there exists 𝛾 such that 𝛾 ∈ (0, 1) and 𝑠𝑘+1 ≤𝛾𝑠𝑘 ∀𝑘 ∈ N ∪ {0}; for details see [37, 38].

5. Application of VIM to TFPDEs with
Proportional Delay

This section deals with the effectiveness and validity of VIM,
which are demonstrated by means of three test problems of
TFPDEs with proportional delay.

Problem 1. Consider initial values system of time fractional
order, generalized Burgers equation with proportional delay
as given in [17]:

D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡) + 𝑢 (𝑥2 , 𝑡2) 𝜕𝜕𝑥𝑢 (𝑥, 𝑡2)

+ 12𝑢 (𝑥, 𝑡) ,
𝑢 (𝑥, 0) = 𝑥.

(16)

Keeping (15) in mind, the iteration formula for (16) can be
constructed as

𝑠0 = 𝑥,
𝑠𝑘+1 = −J𝛼𝑡 [D𝛼𝑡 {

𝑘∑
𝑖=0

𝑠𝑖 (𝑥, 𝑡)} − 𝑘∑
𝑖=0

𝜕2𝑠𝑖 (𝑥, 𝑡)𝜕𝑥2
− 12
𝑘∑
𝑖=0

𝑠𝑖 (𝑥, 𝑡)

− { 𝑘∑
𝑖=0

𝑠𝑖 (𝑥2 , 𝑡2)}{ 𝑘∑
𝑖=0

𝜕𝑠𝑖 (𝑥, 𝑡/2)𝜕𝑥 }] .

(17)

On simplifying the above relation, we get

𝑠0 = 𝑥,
𝑠1 = 𝑡𝛼𝑥Γ [𝛼 + 1] ,

𝑠2 = 𝑡2𝛼𝑥 (21−𝛼 + 1)
2Γ [2𝛼 + 1] ,

𝑠3 = 2−2−3𝛼𝑡3𝛼𝑥[(2 + 2𝛼) (2 + 4𝛼) (Γ [1 + 𝛼])2 + 21+𝛼Γ [1 + 2𝛼]
(Γ [1 + 𝛼])2 Γ [1 + 3𝛼] ] ,

...

(18)

The solution of problem (16) is

𝑢 (𝑥, 𝑡) = 𝑠0 (𝑥, 𝑡) + 𝑠1 (𝑥, 𝑡) + 𝑠2 (𝑥, 𝑡) + 𝑠3 (𝑥, 𝑡) + ⋅ ⋅ ⋅

= 𝑥{1 + 𝑡𝛼Γ [𝛼 + 1] +
𝑡2𝛼 (21−𝛼 + 1)
2Γ [2𝛼 + 1]

+ ((2 + 2𝛼) (2 + 4𝛼)
22+3𝛼Γ [1 + 3𝛼] + 2−1−2𝛼Γ [1 + 2𝛼]

(Γ [1 + 𝛼])2 Γ [1 + 3𝛼])

⋅ 𝑡3𝛼 + ⋅ ⋅ ⋅}
(19)
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Figure 1: The solution behavior of AVIM solution 𝑢 of Example 1 for (a) 𝛼 = 0.8; (b) 𝛼 = 0.9; (c) 𝛼 = 1.0.
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Figure 2: Plots of AVIM solution 𝑢(𝑥, 𝑡) of Example 1 for 𝛼 = 0.8, 0.9, 1.0; 𝑡 ∈ [0, 1]; 𝑥 = 1.

which is closed form to the exact solution and the results due
to Sakar et al. [17] and Singh and Kumar [49]. The solution
behavior of 𝑢(𝑥, 𝑡), taking first six terms, for different values
of 𝛼 = 0.8, 0.9, 1.0 at different time levels 𝑡 ≤ 1 with 𝑥 = 1,
is depicted in Figure 1, whereas two dimensional plots are
depicted in Figure 2.

For 𝛼 = 1, solution (19) reduces to

𝑢 (𝑥, 𝑡) = 𝑥(1 + 𝑡 + 𝑡22! + 𝑡33! + 𝑡44! + ⋅ ⋅ ⋅) (20)

which is same as obtained by DTM and RDTM [44] and
HPTM [49] and is a closed form of the exact solution
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𝑢(𝑥, 𝑡) = 𝑥 exp(𝑡). The approximate AVIM solution for 𝛼 = 1
taking first six terms is reported in Table 1; it is mentioned
that the results agreed well with solutions obtained by DTM
and RDTM [44], HPM [17], and HPTM [49] and approach
the exact solutions.

Problem 2. Consider initial value TFPDE with proportional
delay as given in [17]:

D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡2) 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡2) − 𝑢 (𝑥, 𝑡) ,
𝑢 (𝑥, 0) = 𝑥2.

(21)

The iteration formula for (21) can be constructed as

𝑠0 = 𝑥2,
𝑠𝑘+1 = −J𝛼𝑡 [D𝛼𝑡 {

𝑘∑
𝑖=0

𝑠𝑖 (𝑥, 𝑡)} + 𝑘∑
𝑖=0

𝑠𝑖 (𝑥, 𝑡)

− { 𝑘∑
𝑖=0

𝑠𝑖 (𝑥, 𝑡2)}{ 𝑘∑
𝑖=0

𝜕2𝑠𝑖 (𝑥, 𝑡/2)𝜕𝑥2 }] .

(22)

On solving the above relation, we get

𝑠0 = 𝑥2,
𝑠1 = 𝑡𝛼𝑥2Γ [𝛼 + 1] ,

𝑠2 = 𝑡2𝛼𝑥2 (−2−𝛼 (−4 + 2𝛼))
Γ [2𝛼 + 1] ,

𝑠3 = 8−𝛼𝑡3𝛼𝑥2 [(−4 + 2𝛼) (−2 + 2𝛼) (2 + 2𝛼) Γ [1 + 𝛼]2 + 21+𝛼Γ [1 + 2𝛼]
Γ [1 + 𝛼]2 Γ [1 + 3𝛼] ] ,

...

(23)

The solution of problem (21) leads to

𝑢 (𝑥, 𝑡) = 𝑠0 (𝑥, 𝑡) + 𝑠1 (𝑥, 𝑡) + 𝑠2 (𝑥, 𝑡) + 𝑠3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ (24)

which is closed form to the exact solution and the results due
to Sakar et al. [17] and Singh and Kumar [49]. The solution
behavior of 𝑢(𝑥, 𝑡) for different values of 𝛼 = 0.8, 0.9, 1.0 at
different time levels 𝑡 ≤ 1 with 𝑥 = 1 is depicted in Figure 3,
whereas two dimensional plots are depicted in Figure 4.

In particular, for 𝛼 = 1, solution (24) reduces to

𝑢 (𝑥, 𝑡) = 𝑥2 (1 + 𝑡 + 𝑡22! + 𝑡33! + 𝑡44! + ⋅ ⋅ ⋅) (25)

which is same as obtained by DTM and RDTM [44] and
HPTM[49] and is a closed formof the exact solution𝑢(𝑥, 𝑡) =𝑥2 exp(𝑡). The approximate AVIM solution for 𝛼 = 1 is
reported in Table 2. This confirms that the proposed results
agreedwell with solutions obtained byDTMandRDTM[44],
HPM [17], and HPTM [49] and approach the exact solu-
tions.

Problem 3. Consider initial value TFPDE with proportional
delay as given in [17, 44]:

D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝜕2𝜕𝑥2 𝑢 (𝑥2 , 𝑡2) 𝜕𝜕𝑥𝑢 (𝑥2 , 𝑡2)

− 18 𝜕𝜕𝑥𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) ,
𝑢 (𝑥, 0) = 𝑥2.

(26)

In particular, for 𝛼 = 1, the exact solution is 𝑢(𝑥, 𝑡) =𝑥2 exp(−𝑡).
The iteration formula for (26) can be constructed as

𝑠0 = 𝑥2,
𝑠𝑘+1 = −J𝛼𝑡 [D𝛼𝑡 {

𝑘∑
𝑖=0

𝑠𝑖 (𝑥, 𝑡)} + 𝑘∑
𝑖=0

𝑠𝑖 (𝑥, 𝑡)

+ 18
𝑘∑
𝑖=0

𝜕𝑠𝑖 (𝑥, 𝑡)𝜕𝑥
− { 𝑘∑
𝑖=0

𝜕𝑠𝑖 (𝑥/2, 𝑡/2)𝜕𝑥 }{ 𝑘∑
𝑖=0

𝜕2𝑠𝑖 (𝑥, 𝑡/2)𝜕𝑥2 }] .

(27)

Simplification of above relations leads to
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Figure 3: The solution behavior of AVIM solution 𝑢 of Example 2 for (a) 𝛼 = 0.8; (b) 𝛼 = 0.9; (c) 𝛼 = 1.0.
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Figure 4: Plots of AVIM solution 𝑢(𝑥, 𝑡) of Example 2 for 𝛼 = 0.8, 0.9, 1.0; 𝑡 ∈ [0, 1]; 𝑥 = 1.
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Table 1: Approximate AVIM solution of Example 1 with first six terms for 𝛼 = 1.
𝑥 𝑡 VIM

Exact Approx. 𝐸abs

0.25
0.25 3.210064𝐸 − 01 3.210063𝐸 − 01 8.789589𝐸 − 08
0.50 4.121803𝐸 − 01 4.121745𝐸 − 01 5.838508𝐸 − 06
0.75 5.292500𝐸 − 01 5.291809𝐸 − 01 6.909595𝐸 − 05
1.00 6.795705𝐸 − 01 6.791667𝐸 − 01 4.037904𝐸 − 04

0.5
0.25 6.420127𝐸 − 01 6.420125𝐸 − 01 1.757918𝐸 − 07
0.50 8.243606𝐸 − 01 8.243490𝐸 − 01 1.167702𝐸 − 05
0.75 1.058500𝐸 + 0 1.058362𝐸 + 0 1.381919𝐸 − 04
1.00 1.359141𝐸 + 0 1.358333𝐸 + 0 8.075809𝐸 − 04

0.75
0.25 9.630191𝐸 − 01 9.630188𝐸 − 01 2.636877𝐸 − 07
0.50 1.236541𝐸 + 0 1.236523𝐸 + 0 1.751553𝐸 − 05
0.75 1.587750𝐸 + 0 1.587543𝐸 + 0 2.072879𝐸 − 04
1.00 2.038711𝐸 + 0 2.037500𝐸 + 0 1.211371𝐸 − 03

Table 2: Approximate AVIM solution of Example 2 for 𝛼 = 1 with first six terms.

𝑥 𝑡 VIM
Exact Approx. 𝐸abs

0.25
0.25 8.025159𝐸 − 02 8.025157𝐸 − 02 2.197397𝐸 − 08
0.50 1.030451𝐸 − 01 1.030436𝐸 − 01 1.459627𝐸 − 06
0.75 1.323125𝐸 − 01 1.322952𝐸 − 01 1.727399𝐸 − 05
1.00 1.698926𝐸 − 01 1.697917𝐸 − 01 1.009476𝐸 − 04

0.50
0.25 3.210064𝐸 − 01 3.210063𝐸 − 01 8.789589𝐸 − 08
0.50 4.121803𝐸 − 01 4.121745𝐸 − 01 5.838508𝐸 − 06
0.75 5.292500𝐸 − 01 5.291809𝐸 − 01 6.909595𝐸 − 05
1.00 6.795705𝐸 − 01 6.791667𝐸 − 01 4.037904𝐸 − 04

0.75
0.25 7.222643𝐸 − 01 7.222641𝐸 − 01 1.977658𝐸 − 07
0.50 9.274057𝐸 − 01 9.273926𝐸 − 01 1.313664𝐸 − 05
0.75 1.190813𝐸 + 0 1.190657𝐸 + 0 1.554659𝐸 − 04
1.00 1.529034𝐸 + 0 1.528125𝐸 + 0 9.085285𝐸 − 04

𝑠0 = 𝑥2,
𝑠1 = − 𝑡𝛼𝑥2Γ [𝛼 + 1] ,
𝑠2 = 2−2+𝛼𝑡2𝛼𝑥 (−2 + 2 [𝛼] (1 + 4𝑥))Γ [1 + 2𝛼] ,
𝑠3 = {81+𝛼𝑥Γ [(1/2) 𝛼] − √𝜋 ((−2 + 2𝛼) (−2 + 4𝛼) + 24+𝛼𝑥 (−1 − 2𝛼 + 4𝛼 (1 + 2𝑥)) Γ [1 + 𝛼])

25+3𝛼√𝜋Γ [1 + 𝛼] Γ [1 + 3𝛼] } 𝑡3𝛼,
...

(28)

Therefore the solution for (26) is

𝑢 (𝑥, 𝑡) = 𝑠0 (𝑥, 𝑡) + 𝑠1 (𝑥, 𝑡) + 𝑠2 (𝑥, 𝑡) + 𝑠3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ (29)

which is the required solution. The similar solution behavior
has been obtained in [17, 49].The solution behavior of 𝑢(𝑥, 𝑡)
for different values of 𝛼 = 0.8, 0.9, 1.0, at different time
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Figure 5: The solution behavior of VIM solution 𝑢 of Example 3 for (a) 𝛼 = 0.8; (b) 𝛼 = 0.9; (c) 𝛼 = 1.0.

levels 𝑡 ≤ 1 with 𝑥 = 1, is depicted in Figure 5, whereas
two dimensional plots are depicted in Figure 6. Thus, the
proposed results agreed well with solutions obtained byHPM
[17] and HPTM [49].

For 𝛼 = 1, solution (29) reduces to

𝑢 (𝑥, 𝑡)
= (1 − 𝑡 + 𝑡23 − 𝑡36 + 𝑡424 − 𝑡5120 + 𝑡6720 − ⋅ ⋅ ⋅) 𝑥2 (30)

which is same as obtained by DTM and RDTM [44] and
HPTM[49] and is a closed formof the exact solution𝑢(𝑥, 𝑡) =𝑥2 exp(−𝑡). The approximate AVIM solution for 𝛼 = 1 is
reported in Table 3. The proposed solution converges to the
exact solution.

6. Conclusion

In this paper,alternative variation iteration method

is successfully implemented for the numerical computation
of initial valued autonomous system of time fractional
model of TFPDE with proportional delay, where we use the
fractional derivative in Caputo sense. The analytical results
have been given in terms of a power series which converges
to the exact solutions.
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Figure 6: Plots of VIM solution 𝑢(𝑥, 𝑡) of Example 3 for 𝛼 = 0.8,0.9, 1.0; 𝑡 ∈ [0, 1]; 𝑥 = 1.

Three test problems are carried out in order to validate
and illustrate the efficiency of the method. The proposed
solutions agreed excellently with HPM [17], HPTM [49], and
DTM [44].These approximate solutions are obtainedwithout
any discretization, perturbation, or restrictive conditions.
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Table 3: Approximate AVIM solution of Example 3 with first six terms for 𝛼 = 1.
𝑥 𝑡 VIM

Exact Approx. 𝐸abs

0.25
0.25 4.867505𝐸 − 02 4.867503𝐸 − 02 2.045889𝐸 − 080.50 3.790817𝐸 − 02 3.790690𝐸 − 02 1.265190𝐸 − 060.75 2.952291𝐸 − 02 2.950897𝐸 − 02 1.393738𝐸 − 051.00 2.299247𝐸 − 02 2.291667𝐸 − 02 7.579841𝐸 − 05

0.50
0.25 1.947002𝐸 − 01 1.947001𝐸 − 01 8.183556𝐸 − 080.50 1.516327𝐸 − 01 1.516276𝐸 − 01 5.060761𝐸 − 060.75 1.180916𝐸 − 01 1.180359𝐸 − 01 5.574951𝐸 − 051.00 9.196986𝐸 − 02 9.166667𝐸 − 02 3.031936𝐸 − 04

0.75
0.25 4.380754𝐸 − 01 4.380753𝐸 − 01 1.841300𝐸 − 070.50 3.411735𝐸 − 01 3.411621𝐸 − 01 1.138671𝐸 − 050.75 2.657062𝐸 − 01 2.655807𝐸 − 01 1.254364𝐸 − 041.00 2.069322𝐸 − 01 2.062500𝐸 − 01 6.821857𝐸 − 04
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