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This paper studies the behavior of a predator-preymodelwith switching and stage-structure for predator. Bounded positive solution,
equilibria, and stabilities are determined for the system of delay differential equation. By choosing the delay as a bifurcation
parameter, it is shown that the positive equilibrium can be destabilized through a Hopf bifurcation. Some numerical simulations
are also given to illustrate our results.

1. Introduction

The predator-prey system is important in dynamical popula-
tion models and has been discussed by many authors [1–15].

In the related studies, a switching predator-prey model
which has the switching property of predator was introduced
by [7]. It was assumed that the predators catch prey in an
abundant habitat. After a decrease in prey species population,
the predator moves to another abundant habitat. In [8], the
authors investigated a switching model of a two-prey one-
predator system and they have shown that the system under-
goes a Hopf bifurcation. They used the carrying capacity
of prey as the bifurcations parameter. More examples on
switching models can be found in [9–11]. Saito and Takeuchi
[12] proposed a stage-structure model of a species’ growth
consisting of immature and mature individuals. It is assumed
that the predators are divided into two-stage groups: juveniles
and adults. Only the adult predators are able to catch prey
species. As for the juvenile predators, they live with the adult
predators. It is assumed that juveniles survive on prey already
caught by adults. They live on a different resource which is
available in the abundant habitat from the adult predators.
Consequently, stage-structure model is more realistic than
the model without stage-structure. In [14], it was further
assumed that the time from juveniles to adults is itself state
dependent. Qu andWei [15] studied the asymptotic behavior
of a predator-prey model with stage-structure. They found

that an orbitally asymptotically stable periodic orbit exists in
that model.

The purpose of the present paper is to study nonlinear
delayed differential equations each of which describes a
switching and stage structured predator-prey model. The
present paper is organized as follows. In the next sec-
tion, the main mathematical model is formulated and
the positivity and boundedness of solutions are presented.
In Section 3, we discuss the local stability of equilibria
by analyzing the corresponding characteristic equations
and we prove the existence of Hopf bifurcations for the
model. Finally, numerical results and a brief discussion are
provided.

2. Model

In this paper, we extend the switching predator-prey model
in [8] by introducing stage structured with time delay into
the model. We consider the switching with stage-structure
predator-prey model of the following form:

𝑑𝑥1𝑑𝑡 = 𝑟𝑥1 (1 − 𝑥1𝑘 ) + 𝑝𝑞𝑥2 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 𝑟𝑥2 (1 − 𝑥2𝑘 ) + 𝑝𝑞𝑥1 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
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𝑑𝑦𝑑𝑡 = 2𝛿𝛽𝑒−𝛾𝜏 𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝜇𝑦
𝑑𝑦𝑗𝑑𝑡 = 2𝛿𝛽 𝑥1𝑥2𝑦𝑥1 + 𝑥2

− 2𝛿𝛽𝑒−𝛾𝜏 𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏)
− 𝛾𝑦𝑗

(1)

with initial conditions

𝑥1 (𝜃) , 𝑥2 (𝜃) , 𝑦 (𝜃) , 𝑦𝑗 (𝜃) ≥ 0
continuous on [−𝜏, 0) ,

𝑥1 (0) , 𝑥2 (0) , 𝑦 (0) > 0,
𝑦𝑗 (0) > 0.

(2)

The model is formulated under the following assumptions:

(1) It is assumed that two-prey species, denoted by 𝑥1
and 𝑥2, respectively, can be modelled by a logistic
equation when the predator is absent. The parameter𝑟 is the prey intrinsic growth rate and 𝑘 is its carrying
capacity.

(2) The prey lives in two different habitats and each prey
is able to migrate among two different habitats. The
parameter 𝑝 is the probability of successful transition
from each habitat and 𝑞 is inverse barrier strength in
going out of the first habitat and the second habitat.

(3) The functions 𝛽𝑥1/(𝑥1 + 𝑥2) and 𝛽𝑥2/(𝑥1 + 𝑥2) have
a characteristic property of a switching mechanism,
where 𝛽 is capturing rate.

(4) The parameter 𝛿 is the rate of conversion of prey to
predator and 𝜇 is the death rate of predator.

(5) The predators are derived into two-stage groups:
juveniles and adults, which are divided by age 𝜏, and
they are denoted by 𝑦𝑗(𝑡) and 𝑦(𝑡), respectively. It is
assumed that juveniles take 𝜏 units of time to mature
and 𝑒−𝛾𝜏 is the surviving rate of juveniles to adults.
Notice, we assume that the juveniles suffer amortality
rate of 𝛾.

For ecological reasons, we always assume that the initial data𝑥1(𝜃), 𝑥2(𝜃), 𝑦(𝜃), 𝑦𝑗(𝜃) ≥ 0 continuous on [−𝜏, 0), and 𝑥1(0),𝑥2(0), 𝑦(0), 𝑦𝑗(0) > 0. If (𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡), 𝑦𝑗(𝑡)) is a solution
of system (1) through that initial data, it is easy to verify
that (𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡), 𝑦𝑗(𝑡)) is positive on the maximum
existence interval of solution. Such solutions will be called
positive solution. Moreover, if such a solution is bounded
above and below, it is called a positive solution. Furthermore,
we discuss the bounded positive solutions of system (1) which
implies a natural restriction; that is, our system (1)must have a
bounded positive solution.The following theorem guarantees
that our stage-structure predator-prey model (1) with initial

condition (2) always has a bounded solution.Therefore, every
solution to system (1) is positive and bounded.

Theorem 1. Every solution of system (1) with initial condition
(2) is bounded for all 𝑡 ≥ 0 and all of these solutions are
ultimately bounded.

Proof. Let 𝑉(𝑡) = 𝛾(𝛿𝑥1 + 𝛿𝑥2 + 𝑦 + 𝑦𝑗). By calculating the
derivative of𝑉(𝑡)with respect to 𝑡 along the positive solution
of the system of system (1), we have

𝑉̇ (𝑡) = 𝛾𝛿𝑥̇1 + 𝛾𝛿𝑥̇2 + 𝛾 ̇𝑦 + 𝛾 ̇𝑦𝑗
= 𝛾𝛿 (𝑟𝑥1 − 𝑟𝑘𝑥21 + 𝑝𝑞𝑥2)

+ 𝛾𝛿 (𝑟𝑥2 − 𝑟𝑘𝑥22 + 𝑝𝑞𝑥1) − 𝛾𝜇𝑦 − 𝛾2𝑦𝑗.
(3)

Let 𝛾 > 𝜇. We have

𝑉̇ (𝑡) + 𝜇𝑉 (𝑡) = (𝛾𝛿𝑟 + 𝑝𝑞 + 𝛾𝜇𝛿) (𝑥1 + 𝑥2)
− 𝛾𝛿𝑟𝑘 (𝑥21 + 𝑥22) − 𝛾 (𝛾 − 𝜇) 𝑦𝑗

< (𝛾𝛿𝑟 + 𝑝𝑞 + 𝛾𝜇𝛿) (𝑥1 + 𝑥2)
− 𝛾𝛿𝑟𝑘 (𝑥21 + 𝑥22) .

(4)

Hence, there exists a positive constant 𝐶, such that

𝑉̇ (𝑡) + 𝜇𝑉 (𝑡) ≤ 𝐶. (5)

Thus, we get

𝑉 ≤ (𝑉 (0) − 𝐶𝜇) 𝑒−𝜇𝑡 + 𝐶𝜇 . (6)

Therefore, 𝑉(𝑡) is ultimately bounded; that is, each solution
of system (1) is ultimately bounded.

3. Local Stability and Existence of
Hopf Bifurcation

Themain goal in this section is to investigate the stability of a
positive equilibrium and the existence of a Hopf bifurcation.

Because of the last equation of system (1), 𝑦𝑗(𝑡) is
completely determined by 𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡). Therefore, in the
rest of this paper, we will study the following system:

𝑑𝑥1𝑑𝑡 = 𝑟𝑥1 (1 − 𝑥1𝑘 ) + 𝑝𝑞𝑥2 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 𝑟𝑥2 (1 − 𝑥2𝑘 ) + 𝑝𝑞𝑥1 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
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𝑑𝑦𝑑𝑡 = 2𝛿𝛽𝑒−𝛾𝜏 𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝜇𝑦
(7)

with the initial conditions 𝑥1(𝜃), 𝑥2(𝜃), 𝑦(𝜃) ≥ 0 continuous
on [−𝜏, 0) and 𝑥1(0), 𝑥2(0), 𝑦(0) > 0.

Before we proceed further, let us scale (7) by putting

𝑥1 = 𝑥1𝑘 ,
𝑥2 = 𝑥2𝑘 ,
𝑦 = 𝑒𝛾𝜏𝑦
𝛼 = 2𝛿𝛽𝑝𝑞 𝑘𝑒−𝛾𝜏

𝑔 = 𝑟𝑝𝑞 ,

𝑏 = 𝑒−𝛾𝜏𝛽𝑝𝑞 ,
𝑑 = 𝜇𝑝𝑞 ,
𝑡 = 𝑝𝑞𝑡,
𝜏 = 𝑝𝑞𝜏,

(8)

and dropping the bars for the sake of simplicity. We obtain
the following system containing dimensionless quantities:

𝑑𝑥1𝑑𝑡 = 𝑔𝑥1 (1 − 𝑥1) + 𝑥2 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 𝑔𝑥2 (1 − 𝑥2) + 𝑥1 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 𝛼𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝑑𝑦.

(9)

Next, we find equilibria of system (9) by equating the
derivatives on the left-hand sides to zero. The equilibria are
solutions of the system

𝑔𝑥1 (1 − 𝑥1) + 𝑥2 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2 = 0
𝑔𝑥2 (1 − 𝑥2) + 𝑥1 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2 = 0

𝛼𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝑑𝑦 = 0.
(10)

This gives two possible equilibria which are

(i) boundary equilibrium 𝐸1 = (𝑥∗1 , 𝑔𝑥∗1 (𝑥∗1 − 1), 0),
which is corresponding to extinction of the predator,
where 𝑥∗1 > 1 is a real positive root of the cubic
equation

𝑔3𝑥∗31 − 2𝑔3𝑥∗21 + (𝑔3 − 𝑔2) 𝑥∗1 + (𝑔2 − 1) = 0. (11)

(ii) positive equilibrium 𝐸2 = (𝑥1, 𝑥2, 𝑦), which is corre-
sponding to coexistence of prey and predator and

𝑥1 = 𝑑𝛼 (𝑥 + 1)
𝑥2 = 𝑑𝛼𝑥 (𝑥 + 1)
𝑦 = 𝑥 + 1𝑏𝑥 (𝑔 (1 − 𝑥2) + 𝑥) ,

(12)

Here 𝑥 = 𝑥1/𝑥2 is a real positive root of the cubic
equation

𝑔𝑑𝑥3 + (𝑔𝑑 − 𝑔𝛼 + 𝛼) 𝑥2 + (𝑔𝛼 − 𝛼 − 𝑔𝑑) 𝑥 − 𝑔𝑑 = 0 (13)

or

(𝑥 − 1) (𝑔𝑑𝑥2 + (2𝑔𝑑 − 𝑔𝛼 + 𝛼) 𝑥 + 𝑔𝑑) = 0. (14)

Obviously, 𝑥 = 1 is the one real positive root of (13).
The other two values of 𝑥 will be real and positive if

𝑔 > 𝛼𝛼 − 4𝑑 . (15)

We now analyze the stability of each equilibrium.
Let 𝐸 = (𝑥1, 𝑥2, 𝑦) be any arbitrary equilibrium. The

characteristic equation about 𝐸 is given by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 − 2𝑔𝑥1 − 𝑏𝑦𝑥22(𝑥1 + 𝑥2)2 − 𝜆 1 − 𝑏𝑦𝑥21(𝑥1 + 𝑥2)2 − 𝑏𝑥1𝑥2𝑥1 + 𝑥2
1 − 𝑏𝑦𝑥22(𝑥1 + 𝑥2)2 𝑔 − 2𝑔𝑥2 − 𝑏𝑦𝑥21(𝑥1 + 𝑥2)2 − 𝜆 − 𝑏𝑥1𝑥2𝑥1 + 𝑥2

𝛼𝑦𝑥22(𝑥1 + 𝑥2)2 𝑒
−𝜆𝜏 𝛼𝑦𝑥21(𝑥1 + 𝑥2)2 𝑒

−𝜆𝜏 −𝑑 + 𝛼𝑥1𝑥2𝑥1 + 𝑥2 𝑒−𝜆𝜏 − 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0 (16)
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The next lemma gives conditions for the stability of
equilibrium 𝐸1 = (𝑥∗1 , 𝑥∗2 , 0).
Theorem 2. The equilibrium 𝐸1 = (𝑥∗1 , 𝑥∗2 , 0) is

(i) unstable if 𝑑 < 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1));
(ii) locally asymptotically stable if 𝑑 > 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 +𝑔(𝑥∗1 − 1)).

Proof. We consider the characteristic equation of (16) at the
equilibrium 𝐸1. It follows that

(𝜆 + 𝑑 − 𝑔𝛼 𝑥∗1 (𝑥∗1 − 1)
1 + 𝑔 (𝑥∗1 − 1)𝑒−𝜆𝜏)

⋅ ((𝑔 − 2𝑔𝑥∗1 − 𝜆) (𝑔 − 2𝑔2𝑥∗1 (𝑥∗1 − 1) − 𝜆) − 1)
= 0.

(17)

Hence, one characteristic root is the solution of the equation

𝑓1 (𝜆) ≡ 𝜆 + 𝑑 − 𝑔𝛼 𝑥∗1 (𝑥∗1 − 1)
1 + 𝑔 (𝑥∗1 − 1)𝑒−𝜆𝜏 = 0. (18)

If 𝑑 < 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1)), then 𝑓1(0) =𝑑 − 𝑔𝛼(𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1))) < 0, and 𝑓1(+∞) =∞. Therefore, 𝑓1(𝜆) has at least one positive root and the
equilibrium 𝐸1 is unstable.

On the other hand, let 𝑑 > 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1));
that is,

𝑑 − 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)
1 + 𝑔 (𝑥∗1 − 1) > 0. (19)

Then 𝑓1(−∞) = −∞ and 𝑓1(0) > 0. Thus, a root of 𝑓1(𝜆)
has negative real part. Hence, the other characteristic roots
are the solution of the equation

(𝑔 − 2𝑔𝑥∗1 − 𝜆) (𝑔 − 2𝑔2𝑥∗1 (𝑥∗1 − 1) − 𝜆) − 1 = 0; (20)

that is,

𝑓2 (𝜆) ≡ 𝜆2 + (𝑥∗1 − 1) (2𝑔 + 2𝑔2𝑥∗1 ) 𝜆 + 4𝑔3 (𝑥∗1 )3
− 6𝑔3 (𝑥∗1 )2 + 2 (𝑔3 − 𝑔2) 𝑥∗1 + (𝑔2 − 1)

= 0.
(21)

Since 𝑥∗1 > 1 is a real positive root of the cubic equation𝑔3𝑥∗31 − 2𝑔3𝑥∗21 + (𝑔3 − 𝑔2)𝑥∗1 + (𝑔2 − 1) = 0, we have(𝑥∗1 − 1)(2𝑔 + 2𝑔2𝑥∗1 ) > 0. We, then, consider the last few
terms from (21)

4𝑔3 (𝑥∗1 )3 − 6𝑔3 (𝑥∗1 )2 + 2 (𝑔3 − 𝑔2) 𝑥∗1 + 𝑔2 − 1
= (𝑔3 (𝑥∗1 )3 − 2𝑔3 (𝑥∗1 )2 + (𝑔3 − 𝑔2) 𝑥∗1 + 𝑔2 − 1)

+ 3𝑔3 (𝑥∗1 )3 + (𝑔3 − 𝑔2) 𝑥∗1 − 4𝑔3 (𝑥∗1 )2
= (𝑔3 (𝑥∗1 )3 − 2𝑔3 (𝑥∗1 )2 + (𝑔3 − 𝑔2) 𝑥∗1 )

+ 2𝑔3 (𝑥∗1 )2 (𝑥∗1 − 1)
= − (𝑔2 − 1) + 2𝑔3 (𝑥∗1 )2 (𝑥∗1 − 1)
= 𝑔2 (2𝑥∗1𝑥∗2 − 1) + 1 > 0.

(22)

Thus, all the roots of characteristic equation have negative real
part. The equilibrium 𝐸1 is locally asymptotically stable.

Now, we analyze the stability of positive equilibrium𝐸2(𝑥1, 𝑥2, 𝑦). The associated characteristic equation is

𝐺 (𝜆) = 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝑒−𝜆𝜏
+ 𝑎6 = 0, (23)

where

𝑎1 = −𝑏3 − 𝑏4 + 𝑑,
𝑎2 = 𝑏3𝑏4 − (1 − 𝑏1𝑥2) (1 − 𝑏1) − 𝑑 (𝑏3 + 𝑏4) ,
𝑎3 = −𝑑,
𝑎4 = 𝑑 (𝑏1 + 𝑏1𝑥2 + 𝑏3 + 𝑏4) ,
𝑎5 = 𝑑 (1 − 𝑏21𝑥2 − 𝑏3𝑏4 − 𝑏1𝑏4 − 𝑏1𝑏3𝑥2) ,
𝑎6 = 𝑑 (𝑏3𝑏4 − (1 − 𝑏1𝑥2) (1 − 𝑏1)) ,

𝑏1 = 𝑏𝑦
(𝑥 + 1)2 > 0, 𝑏2 = 2𝑏𝑥𝑦𝑥 + 1 > 0, 𝑏3 = 𝑔 + 𝑏2𝑥 − 2𝑥2 − 2𝑔𝑥 − 𝑏1, 𝑏4 = −𝑔 + 𝑏2 − 2𝑥 − 𝑏1𝑥2.

(24)

In the following, we study theHopf bifurcation for system
(9), using the time delay 𝜏 as the bifurcation parameter. We

assume that 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of the characteristic
equation (23). Then we get
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− 𝜔3𝑖 − 𝜔2𝑎1 + 𝑎2𝜔𝑖
+ (−𝜔2𝑎3 + 𝑎4𝜔𝑖 + 𝑎5) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) + 𝑎6

= 0.
(25)

By separating real part and imaginary part, we obtain

(𝑎5 − 𝑎3𝜔2) cos𝜔𝜏 + 𝑎4𝜔 sin𝜔𝜏 = 𝑎1𝜔2 − 𝑎6
(𝑎4𝜔) cos𝜔𝜏 + (𝑎3𝜔2 − 𝑎5) sin𝜔𝜏 = 𝜔3 − 𝑎2𝜔. (26)

By squaring both sides of the equations and using the
property that sin2𝜔𝜏+ cos2𝜔𝜏 = 1, we can simplify the above
equation. As a result,

𝜔6 + (𝑎21 − 2𝑎2 − 𝑎23) 𝜔4
+ (𝑎22 − 2𝑎1𝑎6 + 2𝑎3𝑎5 − 𝑎24) 𝜔2 + (𝑎26 − 𝑎25) = 0. (27)

Denote V = 𝜔2, 𝑒1 = 𝑎21 −2𝑎2−𝑎23 , 𝑒2 = 𝑎22 −2𝑎1𝑎6+2𝑎3𝑎5−𝑎24 ,
and 𝑒3 = 𝑎66 − 𝑎25 . Then (27) becomes

ℎ (V) = V3 + 𝑒1V2 + 𝑒2V + 𝑒3. (28)

By the Routh-Hurwitz criterion, we conclude that if

𝑎1 + 𝑎3 > 0,
𝑎5 + 𝑎6 > 0

(𝑎1 + 𝑎3) (𝑎2 + 𝑎4) > 𝑎5 + 𝑎6,
(29)

(23) has no positive real roots.Therefore, we get the following
results.

Theorem 3. Suppose conditions in (29) hold and 𝑒1, 𝑒2 > 0,𝑒3 ≥ 0.Then the equilibrium 𝐸2 is locally asymptotically stable.

Proof. For ℎ(V) defined in (28), we have

𝑑ℎ (V)𝑑V = 3V2 + 2𝑒1V + 𝑒2, (30)

and the zeros of (30) are

V1,2 = −𝑒1 ± √𝑒21 − 3𝑒2
3 . (31)

If 𝑒1, 𝑒2 > 0, then √𝑒21 − 3𝑒2 < 𝑒1. Hence, V1 and V2 are
negative. Thus, 𝑑ℎ(V)/𝑑V = 0 has no positive root. Sinceℎ(0) = 𝑒3 ≥ 0, it follows that ℎ(V) = 0 has no positive
roots. Therefore, the equilibrium 𝐸2 is locally asymptotically
stable.

Theorem 4. Suppose that conditions in (29) hold and that

(i) either 𝑒3 < 0,
(ii) or 𝑒3 ≥ 0, 𝑒2 < 0, and 2𝜔60 + (𝑎21 − 2𝑎2 − 2𝑎23)𝜔40 + 2𝑎25 −𝑎26 ̸= 0,

where 𝜔0 satisfies 𝐺(𝑖𝜔0) = 0 with 𝐺 given in (23). Then the
equilibrium 𝐸2 is locally asymptotically stable if 𝜏 < 𝜏0 and is
unstable if 𝜏 > 𝜏0, where
𝜏0 = 1𝜔0

⋅ cos−1((𝑎4 − 𝑎1𝑎3) 𝜔40 + (𝑎1𝑎5 + 𝑎3𝑎6 − 𝑎2𝑎4) 𝜔20 − 𝑎5𝑎6
𝑎24𝜔20 + (𝑎5 − 𝑎3𝜔20)2 ) .

(32)

Furthermore, when 𝜏 = 𝜏0, a Hopf bifurcation occurs; that is, a
family of periodic solutions are bifurcated from 𝐸2 as 𝜏 passes
through the critical value 𝜏0.
Proof. If 𝑒3 < 0, then it follows from (28) that ℎ(0) < 0 and
limV→∞ℎ(V) = ∞. Thus, (27) has at least one positive root. If
𝑒2 < 0, then V1 = (−𝑒1 + √𝑒21 − 3𝑒2)/3 is one positive root of𝑑ℎ(V)/𝑑V = 0. Since ℎ(0) = 𝑒3 ≥ 0, it follows that ℎ(V) = 0
has at least one positive root. As a consequence, (27) has a
positive root 𝜔0. This implies that the characteristic equation
(23) has a pair of purely imaginary roots.

Let 𝑢(𝜏) = 𝜂(𝜏)+ 𝑖𝜔(𝜏) be the eigenvalue of (23) such that𝜂(𝜏0) = 0 and 𝜔(𝜏0) = 𝜔0. If there exists 𝜔0 > 0, such that𝐺(𝑖𝜔) = 0.Then by the first equation of (26), we have

cos (𝜔0𝜏𝑗)
= (𝑎4 − 𝑎1𝑎3) 𝜔40 + (𝑎1𝑎5 + 𝑎3𝑎6 − 𝑎2𝑎4) 𝜔20 − 𝑎5𝑎6

𝑎24𝜔20 + (𝑎5 − 𝑎3𝜔20)2 , (33)

and then

𝜏𝑗
= cos−1

(𝑎4 − 𝑎1𝑎3) 𝜔40 + (𝑎1𝑎5 + 𝑎3𝑎6 − 𝑎2𝑎4) 𝜔20 − 𝑎5𝑎6
𝑎24𝜔20 + (𝑎5 − 𝑎3𝜔20)2

+ 2𝜋𝑗𝜔0 , 𝑗 = 0, 1, 2, . . . .
(34)

By taking the derivative of the characteristic equation (23)
with respect to 𝜏, we have

𝑑𝜆 (𝜏)𝑑𝜏 = (𝑎3𝜆3 + 𝑎4𝜆2 + 𝑎5𝜆) 𝑒−𝜆𝜏(3𝜆2 + 2𝑎1𝜆 + 𝑎2) − (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝜏𝑒−𝜆𝜏 + (2𝑎3𝜆 + 𝑎4) 𝑒−𝜆𝜏 . (35)
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Figure 1: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for Example 5.

Thus,

(𝑑𝜆 (𝜏)𝑑𝜏 )−1 = (3𝜆2 + 2𝑎1𝜆 + 𝑎2) + (2𝑎3𝜆 + 𝑎4) 𝑒−𝜆𝜏𝜆 (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝜏𝑒−𝜆𝜏
− 𝜏𝜆 .

(36)

We can also verify the following transversality condition [16]:

( 𝑑Re𝜆 (𝜏)𝑑𝜏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏0)

−1

= Re((3𝜆2 + 2𝑎1𝜆 + 𝑎2) + (2𝑎3𝜆 + 𝑎4) 𝑒−𝜆𝜏𝜆 (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝜏𝑒−𝜆𝜏

− 𝜏𝜆)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏0

= 2𝜔60 + (𝑎21 − 2𝑎2 − 2𝑎23) 𝜔40 + 2𝑎25 − 𝑎26
𝜔20 ((𝑎5 − 𝑎3𝜔20)2 + (𝑎4𝜔0)2) ̸= 0.

(37)

Therefore, if 𝜏 = 𝜏0, then a Hopf bifurcation occurs; that is,
a family of periodic solutions appear as 𝜏 passes through the
critical value 𝜏0.
4. Numerical Simulations and Discussion

In this section, we present some numerical simulation of
system (9) at different parameters to illustrate our analytic
results.

Example 5. Let 𝑔 = 1.8 𝑏 = 0.6 𝛼 = 2 𝑑 = 3 and we consider
the following system:

𝑑𝑥1𝑑𝑡 = 1.8𝑥1 (1 − 𝑥1) + 𝑥2 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 1.8𝑥2 (1 − 𝑥2) + 𝑥1 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 2𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 3𝑦.

(38)

In this case, we obtain only one boundary equilibrium 𝐸1 =(1.556, 1.557, 0), and the conditions of (ii) in Theorem 2 are
satisfied. Therefore, the equilibrium 𝐸1 is locally asymptoti-
cally stable. The behaviors of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡
are shown in Figure 1. According to the graph in Figure 1, the
predator population decreases and eventually the predator
species becomes extinct. As for prey species, the population
of both species reaches the equilibrium as the predator
population approaches zero.

Example 6. As an example, consider the following system:

𝑑𝑥1𝑑𝑡 = 1.8𝑥1 (1 − 𝑥1) + 𝑥2 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 1.8𝑥2 (1 − 𝑥2) + 𝑥1 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 2𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 0.3𝑦.

(39)

There is a positive equilibrium 𝐸2 = (0.3, 0.3, 7.53). By direct
calculation, we have 𝑒3 = −0.01903, 𝜔0 = 0.639, and2𝜔60 + (𝑎21 − 2𝑎2 − 2𝑎23)𝜔40 + 2𝑎25 − 𝑎26 = 0.2234 ̸= 0. From
Theorem 4, there is a critical value 𝜏0 = 1.1071, and the
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Figure 2: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for Example 6 with 𝜏 = 0.5.
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Figure 3: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for Example 6 with 𝜏 = 1.8.

equilibrium 𝐸2 is locally asymptotically stable as 𝜏 < 𝜏0 =1.1071. A Hopf bifurcation occurs as 𝜏 = 𝜏0 = 1.1071
and the equilibrium becomes unstable and stable periodic
solutions exist for 𝜏 > 𝜏0 = 1.1071. Figures 2 and 3 show
the solutions of that system corresponding to 𝜏 = 0.5 and𝜏 = 1.8. Furthermore, a bifurcation diagram for Example 6
is shown in Figure 4. This is an example when the predator
and prey coexist permanently. If the time that juvenile takes
to be mature is less than 𝜏0, then both predators and prey
population reach the nonzero equilibrium. They can coexist
permanently. On the other hand, if the time that juvenile
predators takes to becomemature and ready to hunt is longer
than 𝜏0, then the population of both predator and prey species
becomes unstable and periodic.

x


0 = 1.1071

1
Stable Unstable

Figure 4: Bifurcation diagram for Example 6.
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Figure 5: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸12 with 𝜏 = 0.6.
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Figure 6: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸12 with 𝜏 = 2.

Example 7. As an example, consider the following system:

𝑑𝑥1𝑑𝑡 = 1.8𝑥1 (1 − 𝑥1) + 𝑥2 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 1.8𝑥2 (1 − 𝑥2) + 𝑥1 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 2𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 0.2𝑦.

(40)

In this case, we obtain three positive equilibria 𝐸12 = (0.2, 0.2,8.133), 𝐸22 = (0.1519, 0.2927, 8.7420), and 𝐸32 = (0.2925,

0.1519, 8.7410). By Theorem 4, we know that the positive
equilibrium 𝐸12 is locally asymptotically stable when 𝜏 < 𝜏0 =1.8227 and unstable when 𝜏 > 𝜏0 = 1.8227, and the system
can also undergo a Hopf bifurcation at the equilibrium 𝐸12
when 𝜏 crosses through the critical value 𝜏 > 𝜏0 = 1.8227;
see Figures 5 and 6. Similarly, at the positive equilibrium 𝐸22,
a Hopf bifurcation occurs as 𝜏 = 𝜏0 = 2.4353. Hence, the
positive equilibrium 𝐸22 is locally asymptotically stable when𝜏 < 𝜏0 = 2.4353 and unstable when 𝜏 > 𝜏0 = 2.4353; see
Figures 7 and 8. For equilibrium 𝐸32, (27) has no positive real
root. Hence, equilibrium 𝐸32 is locally asymptotically stable
and no stability switches can occur; see Figure 9. On this last
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Figure 7: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸22 with 𝜏 = 1.8.
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Figure 8: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸22 with 𝜏 = 2.6.

example, what occurs at the first two equilibria 𝐸12 and 𝐸22
is similar to the previous example where Hopf bifurcations
occur at 𝜏0’s and the stable limit cycle exists. The predator
and prey species coexist. As for the other equilibrium 𝐸32,
the system is locally asymptotically stable where predator and
prey species also coexist. Finally, the bifurcation diagram for
Example 7 is shown in Figure 10.

5. Concluding Remarks

In this paper, we find that system (7) has complex dynamics
behavior. By Theorem 2, our results show that the predator

and prey coexist permanently if 𝑑 < 𝑔𝛼𝑥∗1 (𝑥∗1 −1)/(1+𝑔(𝑥∗1 −1)); that is, the adult predators’ reproductive rate at the peak
of prey abundance is larger than its death rate. On the other
hand, the predator faces extinction, if 𝑑 > 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 +𝑔(𝑥∗1 − 1)), which implies that the predator’s possible highest
reproductive rate is less than its death rate. We also find the
stability switches of the positive equilibrium 𝐸2 due to the
increase of 𝜏. Our results show that when there is no time
delay or the time delay is very small, the positive equilibrium𝐸2 is locally asymptotically stable. As the time delay increases
to the critical value, it can cause a stable equilibrium to
become unstable and Hope bifurcation can occur.
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Figure 9: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸32 with 𝜏 = 2.6.

x


0 = 1.82 0 = 2.44

E3
2 ≡ 1.92

E1
2 ≡ 1

E2
2 ≡ 0.52

Stable
Unstable

Figure 10: Bifurcation diagram for Example 7.
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