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The paper is concerned with the development and numerical analysis of mathematical models used to describe complex biological
systems in the framework of Integrated Pest Management (IPM). Established in the late 1950s, IPM is a pest management paradigm
that involves the combination of different pest control methods in ways that complement one another, so as to reduce excessive use
of pesticides andminimize environmental impact. Since the introduction of the IPM concept, a rich set ofmathematical models has
emerged, and the present work discusses the development in this area in recent years. Furthermore, a comprehensive parametric
study of an IPM-based impulsive control scheme is carried out via path-following techniques. The analysis addresses practical
questions, such as how to determine the parameter values of the system yielding an optimal pest control, in terms of operation
costs and environmental damage. The numerical study concludes with an exploration of the dynamical features of the impulsive
model, which reveals the presence of codimension-1 bifurcations of limit cycles, hysteretic effects, and period-doubling cascades,
which is a precursor to the onset of chaos.

1. Introduction

Food losses due to pests and plant diseases are nowadays one
of the major threats to food security, particularly in large
parts of the developing world. As reported by the United
Nations [1], the world’s population in 2014 was estimated at
7.2 billion, with an approximate yearly growth of 82 million, a
quarter of which occurs in the least developed countries.This
unprecedented amount of people in the world poses serious
challenges for food producers and policy-makers, especially
regarding the minimization of crop losses due to pests and
plant diseases, which have been estimated to be as high as
40% of the world production [2].This issue has been a matter
of active research formany decades, where themain challenge
lies in the unavoidable trade-off between pest reduction,
financial costs, effects on human health, and environmental
impact.Therefore, the problem of pest control has necessarily
to be addressed in an integratedmanner, which hasmotivated

the development of various integrated approaches, such as
Integrated Pest Management (IPM) [2, 3]. IPM’s basic princi-
ple consists in the judicious and coordinated use of multiple
pest control mechanisms (e.g., biological control, cultural
practices, and selected chemical methods) in ways that
complement one another, maintaining pest damage below
acceptable economic levels, while minimizing hazards to
humans, animals, plants, and the environment.The literature
on Integrated Pest Management is vast, and Section 2 will
present a discussion of the historical development of the IPM
concept over the past decades, which will serve as motivation
for the mathematical description of the underlying pest
control methods (see below).

One of the critical factors of success in the implementa-
tion of IPM programmes is the fundamental understanding
of the interplay between the different elements of the asso-
ciated agricultural ecosystems, such as crops, pests, natural
enemies, and biopesticides, which quite often can only be
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achieved via a certain degree of mathematical abstraction.
The mathematical description of ecological processes is one
of the main subjects of study in the field of Ecological
Modeling, which can be considered to a great extent as a
nonlinear science, since almost all ecological interactions,
both trophic and competitive, are nonlinear. In this respect,
one of the main challenges in this area is the construction
of mathematical models that provide reliable predictions and
understanding of field observations in real ecosystems, in
such a way that these models can be used as decision support
tools.The possible approaches that can be employed to tackle
this issue have been a matter of extensive debate among
scientists for at least four decades [4, 5], and discussions on
this topic are still going on [6–11]. In the particular case of
agricultural pest control, the challenge consists in developing
robust mathematical models able to at least qualitatively
describe different pest control methods, so as to make
the development of pest control strategies and policies less
intuitive or empirical.

Since the origins of the IPM concept in the late 1950s
[12, 13], a rich set of mathematical models has emerged
in the literature focusing on different features of IPM-
based applications, and in the present work we will briefly
discuss several aspects of the recent development in this area
(Section 3). One of the first systematic reviews of IPM-related
mathematicalmodels was published by Shoemaker [5], which
was based upon her doctoral dissertation submitted in 1971.
She considered suitable combinations of chemical and biolog-
ical pest control applied to simplified ecosystems consisting of
crops, pests, and parasites. The parasites are able to naturally
control the pest population to a certain extent, but this effect
is compromised by the pesticides applications, as Shoemaker
assumed that the parasites are also killed by the chemical. As
a practical example, she developed charts that the growers
can use to determine whether pesticides should be sprayed,
given in terms of the time until harvest and pest and parasite
densities. Subsequent surveys of mathematical models for
controlling pest populations have been carried out by Jaquette
[4], Wickwire [14], Beddington et al. [15], and Barclay [16],
and Section 3 will discuss some representative models that
have been further introduced since then.

Despite the vast literature onmodeling pest control strate-
gies in agricultural ecosystems, comprehensive parametric
studies of the mathematical models are rather scarce, with
numerical investigations conducted mainly at the simulation
level. This fact motivates the main part of the present work
(Section 4), which will be devoted to the utilization of
specialized numerical techniques in order to address practical
questions relevant to IPMapplications. Specifically, an impul-
sive pest control model will be chosen and reformulated as a
hybrid dynamical system [17], thus allowing the parametric
study of the periodic response of the system by means of
numerical continuation (path-following) methods [18]. In
this way, we will be able to tackle questions as to the optimal
implementation of the impulsive pest control, in terms of
minimizing operation costs and environmental damage. The
paper will end with further numerical investigations of the
dynamic response of the impulsive model, which will reveal
the presence of codimension-1 bifurcations of limit cycles,

hysteretic phenomena, and period-doubling cascades, which
is a precursor to the onset of chaos.

2. A Brief Overview of Integrated
Pest Management

An apparently promising approach to reduce crop losses due
to pests appeared during the 1940s, with the discovery of syn-
thetic pesticides such asDDT,whichmarked a new era in pest
control. Pesticides became soon popular in the agricultural
industry, as they were easy to apply and effectively killed a
significant amount of the targeted pest, due to which their
use spread rapidly worldwide. However, the overreliance on
synthetic pesticides was proven to be unsustainable already
by the end of the 1950s. Just a few years after the first use of
DDT, resistance to the chemical was observed in a variety of
insect pests [2], which meant more frequent applications and
higher dosages of pesticides in order to keep acceptable pest
population levels. Another negative effect was the reduction
of beneficial species (such as natural enemies), which inten-
sified the problem of pest resurgence and allowed nonpest
species to increase in number and become pests themselves.
In addition to these on-site crop problems produced by the
overuse of pesticides, their negative impact extended beyond
the agricultural framework, causing damage to water sources
and further ecosystems, as well as posing serious human
health hazards due to, for example, pesticide residuals in food
and pesticide exposition [19, 20].

Recognition of the problems associated with the indis-
criminate use of synthetic pesticides encouraged the devel-
opment of alternative pest control paradigms, such as the
concept of Integrated Pest Management (IPM) [2, 3, 12,
13]. Having its origins in the seminal work by Stern et
al. [21], IPM is an interdisciplinary pest control approach
that relies heavily upon natural mortality factors, such as
natural predators and environmental conditions, combined
with further control mechanisms. These include biological
control, selected chemical methods, and cultural practices.
The basic idea is that, instead of employing a single control
method, efforts are directed to the judicious and coordinated
use of multiple tactics in ways that complement one another,
maintaining pest damage below acceptable levels, while
minimizing hazards to humans, animals, plants, and the
environment.

Integrated Pest Management (IPM) has been recognized
as one of the most robust constructs in agricultural sciences
to deal with the challenges related to the excessive use of
pesticides [12], already outlined above (see also [22–25]).
The key concept for the implementation of a pest control
programme in an IPM framework is that of economic injury
level. This term was introduced for the first time by Stern et
al. [21] (see also [3]) and means the lowest pest population
density that will cause economic damage. The latter term
can be defined as the amount of injury that justifies the
application of controlmeasures, and it can vary depending on
the area, season, and other economic or ecological factors.

In general, it is assumed that a number of pest control
mechanisms are available, for instance, biological methods,
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cultural practices, natural enemies, habitat management,
and synthetic pesticides. The basic decision rules rely on a
predefined economic injury level and an economic thresh-
old, which gives the pest population density above which
control actions must be taken so as to prevent the pest
population from reaching the economic injury level. An
IPM-based pest control scheme, in its simplest form, will
then require that whenever the amount of pests is less than
the economic threshold only ecologically benign control
measures are applied, that is, those that enhance natural
control. If natural control is not capable of preventing the pest
population from reaching the economic injury level, then
synthetic pesticides come into play, nevertheless, in adequate
combination with environmentally friendly control measures
so as to minimize the amount of pesticides released into
the underlying ecosystem. In practice, however, the task of
developing and implementing an IPM-based pest control
programme sustainable in both ecological and economic
terms is by no means a trivial one.

As has been recognized in the past [2, 12, 16], the
implementation of IPM-based control strategies requires a
profound knowledge of the interactions between the different
components of the underlying agricultural ecosystem, for
instance, crops, pests, natural enemies, and habitat condi-
tions. Given the remarkable complexity of such ecosystems,
the required fundamental understanding of the involved
biological interactions can quite often only be obtained via
a certain degree of mathematical abstraction. Ideally, the
final result should be a mathematical model tailored for
a specific application, which provides reliable predictions
and understanding of field observations, in such a way
that the model can be used as a decision support tool
for devising effective pest control schemes [26]. Neverthe-
less, the main challenge lies in the sheer complexity of
the involved biological processes, which often hinders the
search for appropriate mathematical representations of the
laws governing the ecosystem. In the next section we will
discuss in detail some representative mathematical models
used for describing various pest control methods, including
synthetic (pesticides), biological (natural enemy predation,
biopesticides), and cultural (roguing, replanting), which are
precisely some of the most common control mechanisms
used in combination in IPM-based control programmes.

3. Mathematical Models for Pest Control

In this section we will present a short overview on the avail-
able mathematical models used to describe the ecological
interactions in pest control. The discussion will be mainly
guided by two criteria: model type, in a mathematical sense,
and the underlying ecological phenomena in the framework
of agricultural pest control. Special attention will be paid to
those models related to Integrated Pest Management (IPM),
where the main purpose is to minimize damage to nontarget
organisms and harmful environmental effects, by combining
classical chemical strategies with alternative controlmethods,
such as biological control, host-plant resistance breeding,
crop rotation, harvest management, and cultural techniques
(see Section 2).

Before starting our discussion, let us give some remarks
regarding notation. As is well known, biological pest control
is characterized by the reduction of pest population as a
result of the introduction of a natural enemy [15]. The
interaction between a pest and its natural enemies can be
understood in terms of the dynamics observed in prey-
predator models. Therefore, most of the models presented
in our discussion will have in their core a certain type of
prey-predator system. In this context, state variables related
to pest (prey) and natural enemies (predator) populations
will be denoted by scalar, nonnegative variables 𝑥 and 𝑦,
respectively. Furthermore, all system parameters are assumed
to be positive numbers, unless otherwise stated, and they will
be used throughout themanuscript in a consistentmanner, in
such a way that, whenever possible, they will have the same
meaning in different models. Finally, the prime symbol will
denote time differentiation.

3.1. Pest Control as a Time-Continuous Process

Pest Diseases and Natural Enemies as Control Measures. In
the context of Integrated Pest Management, one of the most
representative control strategies is that of an artificial spread
of an infection among a pest population combined with
a different control method, such as continuous pesticide
spraying or natural enemy predation. Typically, the pest pop-
ulation is divided into two classes: susceptible and infective.
The infective population is used to spread a certain disease
or virus created in a laboratory. At the beginning, a small
amount of infected pest is introduced into the ecosystem
with the purpose of generating an epidemic. The susceptible
population becomes infected through direct contact with the
infective pest, thereby causing a significant reduction of the
pest population as a direct consequence of the disease, or due
to a decrease in its reproductive ability. A model describing
this control mechanism has been recently proposed by Jana
and Kar [27], based on the classical susceptible-infective (SI)
paradigm [28]:𝑥󸀠𝑆 (𝑡) = 𝑟𝑥𝑆 (𝑡) (1 − 𝑥𝑆 (𝑡) + 𝜂𝑥𝐼 (𝑡)𝐾 ) − 𝛼𝑥𝑆 (𝑡) 𝑥𝐼 (𝑡)

− 𝛽𝑥𝑆 (𝑡) 𝑦 (𝑡)𝑎 + 𝑥𝑆 (𝑡) ,𝑥󸀠𝐼 (𝑡) = 𝛼𝑥𝑆 (𝑡) 𝑥𝐼 (𝑡) − 𝛾𝑥𝐼 (𝑡) 𝑦 (𝑡) − 𝜎𝑥𝐼 (𝑡) ,𝑦󸀠 (𝑡) = 𝐶𝛽𝑥𝑆 (𝑡) 𝑦 (𝑡)𝑎 + 𝑥𝑆 (𝑡) + 𝛾 (𝑝 − 𝑞) 𝑥𝐼 (𝑡) 𝑦 (𝑡)
+ 𝑑𝑦 (𝑡) (1 − 𝑥𝑆 (𝑡) + 𝜂𝑥𝐼 (𝑡)𝐾 ) − 𝜇𝑦 (𝑡)− 𝛿𝑦 (𝑡)2 .

(1)

The subscripts 𝑆 and 𝐼 denote the susceptible and infective
pest population, respectively, while 𝑦 represents the natu-
ral enemy (predator) population. From the two classes of
pest, only the susceptible population is able to reproduce,
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according to a logistic law with intrinsic growth rate 𝑟 and
environmental carrying capacity 𝐾. The infective pest is
assumed to also contribute towards the carrying capacity of
the ecosystem; however, the significance of this environmen-
tal impact can differ from that of the susceptible population,
which is reflected by the parameter 𝜂. The disease spreads
within the susceptible pest through direct contact with the
infected population, whose effect can be seen in the second
term of the first equation of system (1), where the coefficient𝛼 represents the force of infection. A second control action
in this ecosystem is given by the presence of a natural
enemy (predator). The predator population feeds on the pest
according to aHolling type II trophic function [29–31], where𝛽 is the maximum predator’s capturing rate and 𝑎 stands for
the susceptible pest population density at which the capturing
rate is half the maximum value.

As already mentioned above, the infective population is
not able to reproduce; hence its survival relies heavily upon
the ability of the disease to turn the susceptible population
into infected pest, which depends on the force of infection𝛼. On the other hand, the infective pest is assumed to have
a natural death rate 𝜎. This produces an exponential decay of
the infective population in the absence of natural enemies and
susceptible pest. The infective population is attacked by the
natural enemy following a Holling type I functional response
with capturing rate 𝛾; see the second equation of the model
(1).

The third equation in (1) describes the evolution of
the natural enemy population. Here, 𝐶 and 𝑝 represent
the conversion factors from susceptible and infective pest,
respectively, into predators. A negative effect of the infection
on the predator population is accounted for by the parameter𝑞. In addition,𝜇denotes themortality rate and 𝛿measures the
intensity of competition among the natural enemies for space,
food, and so on. At low pest population densities, the natural
enemies are able to find alternative food sources, leading to
an additional growth rate 𝑑. As the pest population grows,
the predators make less use of the alternative food, and when
the pest approaches the environmental carrying capacity, the
natural enemy feeds almost on the pest only.

A systematic study of the dynamics of system (1) has
been carried out by Jana and Kar [27]. They analyze in
great detail the effect of the relevant parameters on the
proposed ecosystem, and the theoretical results are illustrated
by representative numerical simulations. As has been already
explained above, the pest population is controlled by two
methods: infection release and natural enemy predation,
which fall into the class of biological pest control. From
a practical point of view, the role of the alternative food
source for the natural enemy has been shown to be crucial.
If the predator growth rate due to the alternative food is
greater than its mortality rate (i.e., 𝑑 > 𝜇), a nontrivial
pest-free equilibrium is feasible, where the natural enemy is
the only species present in the ecosystem. Furthermore, if 𝑑
exceeds a certain threshold, the equilibrium is asymptotically
stable, which means that small (pest) perturbations in the
ecosystem will be controlled entirely by the natural enemies.
Jana and Kar conclude their investigation by considering a
third control measure in the system consisting in chemical

methods (pesticides), and they discuss how to combine these
three control techniques so as to minimize the deadly effects
on the natural enemies and environmental damage, while
effectively reducing the pest population.

Plant Disease Control via Cultural Methods. Another non-
chemical mechanism to deal with plant diseases can be
implemented via cultural practices, which fall into the cat-
egory of biological control. They are carried out by means
of human actions only, such as roguing (removing) infected
plants, replantation of disease-free plants, crop rotation,
intercropping, and strip farming [20]. The main purpose is
to reduce the negative consequences of a disease to levels
that are acceptable in economic terms, while causingminimal
damage to the environment. However, there are certain
limitations for the application of such control methods,
since they typically involve high labor costs and a complete
eradication of plant diseases through cultural practices is
generally not possible.

A low-dimensional model considering cultural practices
as the only disease control action is proposed by van den
Bosch et al. [32]:𝑧󸀠𝑆 (𝑡) = 𝑟𝜙 + 𝑟 (1 − 𝜙) 𝑞 (1 − 𝑝) 𝑧𝐼 (𝑡) + 𝑧𝑆 (𝑡)(1 − 𝑝) 𝑧𝐼 (𝑡) + 𝑧𝑆 (𝑡)− 𝜇𝑧𝑆 (𝑡) − 𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) ,𝑧󸀠𝐼 (𝑡) = 𝑟 (1 − 𝜙) (1 − 𝑞) (1 − 𝑝) 𝑧𝐼 (𝑡)(1 − 𝑝) 𝑧𝐼 (𝑡) + 𝑧𝑆 (𝑡) − (𝜇 + 𝜎) 𝑧𝐼 (𝑡)+ 𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) ,

(2)

with 0 < 𝜙, 𝑝, 𝑞 < 1. Here, 𝑧𝑆 and 𝑧𝐼 denote the population of
susceptible and infected plants, respectively, in an agricultural
crop field contaminated with a certain viral disease. New
plants are introduced in the ecosystem at a constant rate 𝑟,
from which 𝑟𝜙 corresponds to in vitro-germinated healthy
plants and 𝑟(1 − 𝜙) to cuttings taken from the crop (suscep-
tible and infected). By visual inspection or other diagnostic
methods, infected plants from the cuttings are discarded with
probability 𝑝. Furthermore, it is assumed that the infected
plants are able to recover due to reversion with probability𝑞. Consequently, the introduction of new plants contribute
to both the susceptible and infected populations (see, e.g.,
the first term in the second equation of (2), which gives the
proportion of infected plants that enter the crop as a result
of the introduction of 𝑟(1 − 𝜙) cuttings). In addition to the
usual death rate 𝜇, the infected plants are removed from the
system (roguing) at a rate 𝜎. As can be seen, only cultural
actions are considered as ameasure of disease control. On the
other hand, another parameter considered in the ecosystem
is the within-plant virus titre (denoted hereafter by 𝑤). As
pointed out in [32], this parameter deeply influences both the
viral transmission in the crops and the corresponding disease
symptoms,which in turn affect the roguing rates and recovery
and detection probabilities. Therefore, van den Bosch et al.
assume the parameters 𝛼, 𝜎, 𝑝, and 𝑞 to be 𝑤-dependent,
and they suggest certain functional relations to quantify these
interactions, motivated by some previous field studies.
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A remarkable feature of model (2) is the fact that
it illustrates two well-known disease transmission modes:
horizontal and vertical.The first one typically occurs through
herbivorous insects that ingest spores on host-plant leaves
and carry the disease from one plant to another.The intensity
of this transmission mode is quantified by the transmission
coefficient 𝛼. On the other hand, the vertical transmission is
caused by the use of cuttings to establish new crops. In this
respect, van den Bosch et al. focused special attention on the
effects of a trade-off between horizontal and vertical trans-
mission modes operating in plant pathogens. Specifically, the
authors analyze in detail the underlying cultural practices and
how they are reflected in the proposed ecosystem (2). Their
results then suggest that the considered control mechanisms
should be carefully adapted and combined in order to
minimize the risks of failure, which to a great extent depends
on how effectively the vertical and horizontal transmission
modes are adequately dealt with. Analogous models consid-
ering disease control based on cultural practices have been
proposed and investigated in the past and can be found in,
for example, [33–38].

3.2. Pest Control Strategies via Impulsive Perturbations. As
already explained before, pest control strategies based on
an Integrated Pest Management approach involve a suitable
combination of biological, cultural, and chemical control
techniques, including pesticide spraying, pest harvesting
or trapping, plant roguing, and acceleration of the pest
mortality through the introduction of natural enemies or pest
diseases. Some of these controlmethodsweremathematically
described in the models presented in Section 3.1, in terms
of smooth ordinary differential equations. In doing so, the
pest control strategies were conceived as a time-continuous
process of autonomous type, where the system parameters
have to be chosen in such a way that the underlying control
mechanisms effectively reduce the negative pest effects on
agricultural crop fields, without any external perturbation.
However, this approach neglects the fact that pest control
methods are in reality implemented in a discontinuous man-
ner, which is a consequence of the discrete nature of human
activities. Furthermore, there can be exogenous factors in the
ecosystems (e.g., temperature, air composition, and further
human actions) that may lead to pest population densities
changing very rapidly in a short period of time, which can
be modeled via impulsive perturbations.

In our case, the above-outlined sudden changes in the
ecosystems will be described in the framework of impulsive
differential equations. This class of models is particularly
suited for the representation of dynamical phenomena sub-
ject to short-term perturbations whose duration is negligible
in comparison to the duration of the system evolution.
Therefore, these perturbations can be assumed to act instan-
taneously in the form of impulses, which generally leads to
jumps in the state space (discontinuous evolution). Processes
of this nature can be found in numerous applications, for
instance, in mechanics, population dynamics, ecology, biol-
ogy, and economy, and the theoretical foundations have been
developed to a great extent [39–42].

Susceptible-Infective Control Scheme with Impulsive Roguing
and Replanting. A straightforward mathematical description
of a pest control strategy based on impulsive perturbations is
given by Tang et al. [43]:𝑧󸀠𝑆 (𝑡) = −𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) − 𝜇𝑧𝑆 (𝑡) ,𝑧󸀠𝐼 (𝑡) = 𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) − 𝜇𝑧𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,𝑧𝑆 (𝑡+) = 𝑧𝑆 (𝑡−) + 𝑟𝜙,𝑧𝐼 (𝑡+) = (1 − 𝜎) 𝑧𝐼 (𝑡−) + 𝑟 (1 − 𝜙) ,𝑡 = 𝑛𝑇, 𝑛 ∈ N (replanting and roguing) .

(3)

Here, cultural practices (roguing and replanting) are
considered for pest control, and the state variables and
parameters are of the same nature as those of system (2), with0 ≤ 𝜎 < 1. The actions of planting and roguing are assumed
to be carried out in a periodic and impulsive manner, with
period 𝑇 > 0, which differs from the approach employed in
themodel (2), where those actions are continuously executed.
As can be seen, the key parameters in this control scheme are
the roguing coefficient 𝜎 and the impulse period𝑇, that is, the
parameters that are directly influenced by human decisions.
Consequently, the main question here is how to choose those
parameters so as to keep the number of infected plants below
a certain predefined critical level. In this respect, Tang et al.
identify a lower bound for the impulse period that guarantees
the extinction of the infected plants, for the special case 𝜙 = 1
(i.e., replanted plants contribute only to the healthy class).
Specifically, they prove the existence of a periodic solution of
system (3) of the form (𝑧̃S(𝑡), 0), 𝑡 > 0, which is asymptotically
stable provided 𝑇 is large enough.

Periodic Impulsive Control at Different Fixed Times. When
different controlmeasures are combined, for example, natural
enemy release and pesticide spraying, it can be beneficial
to carry out those actions at different moments within a
period of control. This is particularly convenient when the
chemicals used to control the pest population also have the
collateral effect of killing the natural enemies. Therefore,
a suitable amount of natural enemies has to be regularly
introduced into the ecosystemat an appropriate time, in order
to compensate for the undesired pesticide-induced predator
mortality. Another reason forwhich controlmeasures applied
at different times can be advantageous is that some natural
enemies are effective only at certain life stages of the pest
population. For instance, some predators are able to attack the
adult population only, hence leaving larval or other previous
stages of the pests unaffected. In such cases, the natural
enemy releases and pesticide spraying have to be carried out
according to the life cycle of the pest population at different
times, so as to effectively cover all possible life stages of the
pest.
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Zhang and coworkers have proposed several pest control
models based on the scheme described above, for example
[44],𝑥󸀠 (𝑡) = 𝑥 (𝑡) (1 − 𝑥 (𝑡)𝐾 ) − 𝛽𝑥 (𝑡) 𝑦 (𝑡)𝑎 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) ,𝑦󸀠 (𝑡) = 𝐶𝛽𝑥 (𝑡) 𝑦 (𝑡)𝑎 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) − 𝜇𝑦 (𝑡) ,𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,𝑥 (𝑡+) = (1 − 𝜎𝑥) 𝑥 (𝑡−) ,𝑦 (𝑡+) = (1 − 𝜎𝑦) 𝑦 (𝑡−) ,𝑡 = (𝑛 + 𝑙 − 1) 𝑇 (pesticide spraying) ,𝑥 (𝑡+) = 𝑥 (𝑡−) ,𝑦 (𝑡+) = 𝑦 (𝑡−) + 𝑑,𝑡 = 𝑛𝑇, 𝑛 ∈ N (natural enemy release) ,

(4)

where 𝑥 and 𝑦 stand for the densities of the pest and natural
enemy population, respectively, and the parameters have the
usual meaning as in the previous models, with 0 ≤ 𝜎𝑥,𝑦 ≤1 and 0 < 𝑙 < 1. As can be seen, two control actions
applied at different times are considered in model (4). The
first one consists in spraying pesticides into the ecosystem,
which has not only the effect of killing pest individuals but
also of reducing the predator population, by proportions 𝜎𝑥
and 𝜎𝑦, respectively. In order to compensate for the undesired
effect of the applied pesticide, a fixed amount of 𝑑 natural
enemies is periodically introduced into the ecosystem, which
corresponds to the second control action in system (4).

The trophic interaction between the pest and its natural
enemy is characterized by a Beddington–DeAngelis func-
tional [31, 45, 46] (see the second term in the first equation
of model (4)), and it has some similarities with the Holling
type II trophic function described before. The coefficient 𝑘𝑥
is a weighting factor that determines how fast the predator’s
capturing rate approaches its saturation value as the pest pop-
ulation increases. In addition, the Beddington–DeAngelis
functional considers mutual interference between the natural
enemies, and the intensity of this effect is regulated by the
parameter 𝑘𝑦. Furthermore, the constant 𝑎 gives a measure
of the abundance of pests and natural enemies relative to the
ecosystem in which they interact, and it can be interpreted as
a protection provided to the pest by the environment.

In the study presented in [44], the authors established a
critical value of the impulse period that separates the system
behavior into two cases. In the first one, model (4) admits a
stable periodic solution of the form (0, 𝑦(𝑡)), 𝑡 > 0; that is,
the pest population can be completely eradicated by means
of the control measures. To prove this, the authors give an
explicit construction of the fundamental solution matrix of
the linear variational equation around the pest-free periodic
orbit, along with the corresponding transition (also referred
to as saltation [47]) matrix. Based on the resulting explicit

forms, an integral condition is derived so as to guarantee that
the Floquet multipliers of the periodic orbit lie within the
unit circle, thus ensuring the local stability of the pest-free
solution. If the so obtained integral stability condition is not
satisfied, then a second type of system response takes place in
which the pest-free trajectory is not stable anymore. Instead,
the system possesses a periodic solution corresponding to the
case when the pest and its natural enemies coexist, and the
stability of this system response is shown to strongly depend
on the value of the impulse period 𝑇 and the proportion of
pest population killed by the pesticide 𝜎𝑥.

Apart from the preliminary results mentioned above,
there is little information on how the remaining system
parameters actually affect the behavior ofmodel (4), although
various studies related to this class of pest control are available
[48–54]. For instance, a crucial feature of this model is that
the control actions of natural enemy release and pesticide
spraying are carried out at different times, and this effect
is controlled by the parameter 𝑙, whose influence on the
underlying pest control strategy has not been systematically
discussed in the past. Therefore, in Section 4 we will use
system (4) as a toy model to show how specialized numerical
methods (based on path-following algorithms for nonsmooth
dynamical systems) can be used to study in detail the behavior
of such models under parameter variations.

4. Numerical Analysis of a Pest Control
Scheme with Impulsive Effects

In the previous section, various existingmathematicalmodels
were presented and discussed in detail, with special attention
given to those describing agricultural pest control methods
in the framework of Integrated Pest Management.Themodel
types ranged from smooth ordinary differential equations to
differential equations with impulsive perturbations. As was
pointed out, several authors have contributed to the theoreti-
cal analysis of those systems, with particular emphasis on the
existence and stability of pest-free solutions, as well as finding
explicit thresholds for control parameters at which stability is
lost (bifurcations). While this is generally a straightforward
task for models belonging to the class of smooth ordinary
differential equations, the situation can be more involved for
other types of systems, for example, impulsive differential
equations; see [43, 44, 48, 55, 56]. Although impulsive systems
describing pest control methods have received a good deal of
attention in the past, numerical investigations of suchmodels
are rather scarce in the literature and are mostly carried out
at the simulation level. This is the main motivation of the
present section, in which we will present a comprehensive
numerical analysis of one of the impulsivemodels introduced
before, namely, system (4), with particular emphasis on how
specialized numerical techniques can be employed to study
the model behavior and gain insight into the underlying pest
control methods.

In order to investigate the dynamics of the impulsive
system (4), we will employ two different kinds of numerical
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approaches, namely, direct numerical integration and path-
following methods. As is well known [57–59], impulsive
models of the type of (4) can be formulated in the framework
of hybrid dynamical systems, which are characterized by
a continuous-time behavior interrupted by discrete-time
events [17]. In our case, these interruptions are defined by the
impulse times at which the pest control actions are carried
out. In order to get reliable numerical simulations of the
model behavior, the impulse times need to be accurately
detected, which can be achieved by means of the standard
MATLAB ODE solvers together with their built-in event
location routines [60, 61], as suggested in [62]. In this way,
direct numerical integration will be implemented in the
present work.

As will be seen later, our investigation will primarily
focus on the periodic behavior of system (4), with special
attention given to the pest population and its response to
the control actions. Since the impulsive model is parameter-
dependent, a family of periodic solutions can generically
be tracked by varying one (control) parameter, which can
be numerically realized via path-following (continuation)
methods. These are well-established techniques in applied
mathematics [18] that enable a systematic study of system
solutions subject to parameter variations, without having
to make recourse to direct numerical integration, which
sometimes can be time-demanding and inefficient. For the
analysis of periodic solutions of hybrid dynamical systems,
various specialized computational tools are available, such as
COCO [63], SlideCont [64], and TC-HAT [17], and the latter
will be employed in the current work for the numerical study
of the impulsive model. In the next section we will formulate
system (4) as a hybrid dynamical system, which will allow the
implementation of the model in TC-HAT.

4.1. Impulsive Pest Control Model as a Hybrid Dynamical
System. Before starting the numerical investigation of model
(4), it is convenient to introduce a rescaling of the system as
follows: 𝑥 = 𝑥𝐾,𝑦 = 𝑦𝐾,𝛽 = 𝛽𝐾𝑎 ,𝑘̃𝑥 = 𝑘x𝐾𝑎 ,𝑘̃𝑦 = 𝑘𝑦𝐾𝑎 ,𝑑 = 𝑑𝐾.

(5)

According to these transformations, we obtain the following
scaled version of the impulsive system (4):𝑥󸀠 (𝑡) = 𝑥 (𝑡) (1 − 𝑥 (𝑡)) − 𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) ,𝑦󸀠 (𝑡) = 𝐶𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) − 𝜇𝑦 (𝑡) ,𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡+) = (1 − 𝜎𝑥) 𝑥 (𝑡−) ,𝑦 (𝑡+) = (1 − 𝜎𝑦) 𝑦 (𝑡−) ,𝑡 = (𝑛 + 𝑙 − 1) 𝑇 (pesticide spraying) ,𝑥 (𝑡+) = 𝑥 (𝑡−) ,𝑦 (𝑡+) = 𝑦 (𝑡−) + 𝑑,𝑡 = 𝑛𝑇, 𝑛 ∈ N (natural enemy release) ,
(6)

where the tildes have been dropped for the sake of simplicity.
As mentioned earlier, this impulsive model can be for-

mulated as a hybrid dynamical system. For this purpose, the
trajectories are divided into smooth segments consisting of
the following components: a smooth vector field that governs
the systembehavior during the segment; a smooth event func-
tion whose zeroes define the terminal point of the segment;
and a smooth jump function, which maps the terminal point
of the current segment to the initial point of the next one.
Each segment is labeled with an index 𝐼𝑖, 𝑖 ∈ N, so that any
solution of the hybrid dynamical system is fully characterized
by its solution signature {𝐼𝑖}𝑀𝑖=1, where 𝑀 ∈ N defines the
length of the signature.Thismathematical framework enables
the application of path-following algorithms by means of the
software package TC-HAT [17], a driver of AUTO 97 [65] for
numerical continuation and bifurcation detection of periodic
solutions of hybrid dynamical systems. Recent applications of
TC-HAT can be found in [66–70], where the continuation
package is employed to study the bifurcation scenario of
various engineering applications.

Denote by 𝛼 fl (𝛽, 𝑘𝑥, 𝑘𝑦, 𝐶, 𝜇, 𝑑, 𝑇, 𝜎𝑥, 𝜎𝑦, 𝑙) ∈ (R+)7 ×[0, 1]×[0, 1]×(0, 1) and 𝑢 fl (𝑥, 𝑦, 𝑠)𝑇 ∈ (R+0 )3 the parameters
and state variables of the system, respectively, with R+0 being
the set of nonnegative numbers. The auxiliary variable 𝑠 will
be used to embed the time into the state space, in such a way
that each impulsive period [(𝑛 − 1)𝑇, 𝑛𝑇], 𝑛 ∈ N, will be
mapped to the interval [0, 𝑇]. In this setting, a solution of the
impulsive model (6) will be divided into smooth segments, as
defined as follows.

Pesticide Spraying (𝐼1, P-Spr). This segment occurs for 0 ≤𝑠 ≤ 𝑙𝑇, and the dynamics of the system during this regime
is governed by (cf. (6))𝑢󸀠 (𝑡) = 𝑓 (𝑢 (𝑡) , 𝛼)

fl (𝑥(𝑡) (1 − 𝑥 (𝑡)) − 𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡)𝐶𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) − 𝜇𝑦 (𝑡)1 ) . (7)
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This segment terminates when a crossing with the disconti-
nuity boundaryΣP-Spr

fl {(𝑥, 𝑦, 𝑠) ∈ (R+0 )3 : ℎP-Spr (𝑢, 𝛼) fl 𝑠 − 𝑙𝑇 = 0} (8)

is detected. According to the pest control scheme, pesticide is
sprayed at this terminal point, and this is implemented in the
hybrid dynamical system via the jump function

𝑔P-Spr (𝑢, 𝛼) fl ((1 − 𝜎𝑥) 𝑥(1 − 𝜎𝑦) 𝑦𝑠 ) , (9)

which gives the initial point for the next segment.

Predator Release (𝐼2, Pr-Re). In this segment we have that 𝑙𝑇 <𝑠 ≤ 𝑇, and the system behavior is determined by the ODE (7).
The segment ends when the solution hits the discontinuity
boundaryΣPr-Re

fl {(𝑥, 𝑦, 𝑠) ∈ (R+0 )3 : ℎPr-Re (𝑢, 𝛼) fl 𝑠 − 𝑇 = 0} , (10)

with the initial point for the next segment given by the jump
function

𝑔Pr-Re (𝑢, 𝛼) fl ( 𝑥𝑦 + 𝑑𝑠 − 𝑇) . (11)

The second component of this function represents the control
action of introducing natural enemies into the ecosystem (cf.
(6)), while the third one has the purpose of resetting the
variable 𝑠, so that it is always kept within the interval [0, 𝑇].

Moreover, throughout our numerical investigations the
following solution measures will be used:𝑀𝑃 fl max

0≤𝑡≤𝑇
𝑥 (𝑡) ,𝑀𝐸 fl max

0≤𝑡≤𝑇
𝑦 (𝑡) , (12)

where (𝑥(𝑡), 𝑦(𝑡)) is assumed to be a 𝑇-periodic solution of
the impulsive model (6). The quantities𝑀𝑃 and𝑀𝐸 give the
maximum amount of pest and natural enemy populations
attained in a period, respectively, and can be used to investi-
gate the impact of the system parameters on the pest control
scheme from a practical point of view. For instance, if we
consider the auxiliary boundary conditionℎ (𝑢, 𝛼) fl 𝑥 − 𝑥ET = 0, (13)

it is possible to trace a curve in a two-parameter space (see
Section 4.2.2) for which the pest population achieves a max-
imum, fixed critical value𝑀𝑃 = 𝑥ET > 0 corresponding to,
for example, a predefined economic threshold (see Section 2).

According to the mathematical framework presented
above, the pest control model (6) can be written in compact
form as follows:𝑢󸀠 (𝑡) = 𝑓 (𝑢 (𝑡) , 𝛼) , 𝑠 ̸= 𝑙𝑇, 𝑠 ̸= 𝑇,𝑢 (𝑡+) = 𝑔P-Spr (𝑢 (𝑡−) , 𝛼) ,𝑠 = 𝑙𝑇 (pesticide spraying) ,𝑢 (𝑡+) = 𝑔Pr-Re (𝑢 (𝑡−) , 𝛼) ,𝑠 = 𝑇 (natural enemy release) .

(14)

In Figure 1 we present a periodic orbit of this system illus-
trating the solution segmentation introduced above. With
this mathematical framework we are now ready to carry out
specialized numerical investigations of this type of periodic
response, via the numerical package TC-HAT.

4.2. Numerical Results. This section will be devoted to a
detailed numerical study of the impulsive pest control scheme
introduced in Section 3.2 and modeled by system (14). The
focus will be on the effect of the system parameters on 𝑀𝑃
(see (12)), which can be used to monitor the amount of pest
population in the ecosystem. One of the main questions here
will be how the control parameters should be chosen so as to
keep the pest population below certain admissible levels. In
addition, various dynamical phenomena will be investigated,
such as fold and period-doubling bifurcations, as well as
chaotic responses. Unless otherwise indicated, the parameter
values used in the numerical results reported here are given
in Table 1.

4.2.1. Behavior of the Pest Control Method under One-
Parameter Perturbations. As was already mentioned in Sec-
tion 3.2, Zhang et al. [44] studied the stability of pest-free
(also referred to as pest-eradication) periodic solutions of
system (14), as the impulse period 𝑇 is varied. They deter-
mined a threshold 𝑇0, depending on some of the remaining
system parameters, so that for 𝑇 < 𝑇0 the pest-free solution
is asymptotically stable, while for 𝑇 > 𝑇0 the system response
is dominated by periodic solutions for which the pest and
its natural enemies coexist. Specifically, Zhang et al. showed
that the pest-free solution undergoes a change of stability
(bifurcation) at 𝑇 = 𝑇0; however, they did not determine
the actual type of bifurcation that produces this qualitative
change, and this is precisely the first question that will be
addressed numerically in this section.

Let us then begin our study with the numerical contin-
uation of a pest-free solution with respect to 𝑇, as shown
in Figure 2(a). In this picture, the solid black line denotes
stable pest-free solutions as displayed in Figure 2(d). If the
impulse period is increased, a critical value 𝑇0 ≈ 2.2736
is found, at which the pest-free response loses stability. As
was confirmed numerically, this bifurcation corresponds to
a branching point [71], wherefrom two branches of periodic
solutions emanate (black dashed and solid green lines). The
dashed curve represents unstable pest-free trajectories, while
the green one corresponds to stable periodic solutions with
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Figure 1: Periodic solution of the impulsive system (14) computed for the parameter values given in Table 1. (a) and (b) show the time histories
of the pest and predator populations, respectively, while (c) presents the corresponding phase plot with the solution segments 𝐼1 (pesticide
spraying, blue) and 𝐼2 (predator release, red). Hence, the displayed periodic trajectory has a cyclic solution signature {𝐼1, 𝐼2}. In what follows,
this color code will be used to distinguish the solution segments.

Table 1: Parameter values used for the numerical investigation of the impulsive model (14).

Parameter Symbol Value
Maximum predator’s capturing rate 𝛽 5.25
Weighting factor for saturation of predator’s capturing rate 𝑘𝑥 1.5
Weighting factor for interference among predators 𝑘𝑦 1.125
Pest-to-predator conversion coefficient 𝐶 0.5
Predator’s mortality rate 𝜇 0.8
Impulse period 𝑇 41
Tuning coefficient for pesticide spraying time 𝑙 0.7
Amount of predators introduced per impulse period 𝑑 0.2
Proportion of pest population killed by pesticides 𝜎𝑥 0.7
Proportion of predator population killed by pesticides 𝜎𝑦 0.2
pests and predators coexisting in the ecosystem. The green
branch has a critical point 𝑇𝑐 ≈ 10.4465 where the curve
loses smoothness. This singularity is produced by a change
in the position of the peak value of the pest population. For𝑇 < 𝑇𝑐, the maximum amount of pest is attained exactly
at the end of the segment 𝐼1 (Figure 2(b)), while for 𝑇 >𝑇𝑐 the maximum value occurs at the end of the segment 𝐼2
(Figure 2(c)). Another feature of this curve is that the amount
of pest population, measured by 𝑀𝑃, increases as 𝑇 grows.
From a practical point of view, this means that, in order
to keep low levels of pest population in the ecosystem, the
impulse period should be chosen as small as possible, ideally
below 𝑇0. Nevertheless, having small impulse periods may
amount to high operation costs, since the control actions are
carried out more frequently if 𝑇 is reduced, and therefore a
compromise should be made.

The next step in our numerical investigation is to study
the model response when further system parameters are
varied, one at a time. The result can be seen in Figure 3. Fig-
ures 3(a) and 3(b) correspond to the numerical continuation
of the periodic response of the impulsive model (14) with
respect to 𝛽 and 𝑘𝑦, respectively. In both diagrams, it can
be observed that the predator population is not significantly
affected by those parameters. On the other hand, the pest
population shows a decreasing tendency when 𝛽 is increased,
whereas the effect of 𝑘𝑦 on the pest population is exactly the
opposite. This is consistent with the biological meaning of
those parameters: an increment in 𝛽 means that the natural
enemy enhances its ability to catch pest individuals, while a
larger 𝑘𝑦 impliesmore competition between predators, which
has a detrimental effect on their capturing rate. Although
the numerical results indicate that both 𝛽 and 𝑘𝑦 can be
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Figure 2: (a) One-parameter continuation of the periodic response of system (14), with respect to the impulse period 𝑇.The solid and dashed
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effectively used to reduce the pest population, this may be in
practice difficult or too expensive to implement, as it would
require a certainmechanism tomodify biological attributes of
the natural enemy (via, e.g., genetic engineering or selective
breeding).

From a practical perspective, variations in the control
parameters 𝜎𝑥, 𝜎𝑦, 𝑑, and 𝑙 may be more accessible for the
users. As can be seen in Figure 3(d), the influence of 𝜎𝑦
(proportion of natural enemies killed by pesticides) on the
system response is rather marginal. Even if one compares the
extreme cases 𝜎𝑦 ≈ 0 and 𝜎𝑦 ≈ 1, no significant difference
can be observed. This is due to the fact that the pest control
scheme introduces periodically a certain amount of natural
enemies into the ecosystem, which compensates for the
mortality of the predators due to the pesticide. On the other
hand, the proportion of pest individuals killed by pesticides

𝜎𝑥 affects significantly the presence of pests in the ecosystem;
see Figure 3(c). As this parameter approaches the upper
boundary 𝜎𝑥 = 1, the pest population suffers a significant
reduction, which suggests that the pesticide mortality should
bemaximized in order to eradicate the pest.However, this can
havewell-knownnegative consequences for the environment;
hence the effectiveness of the pest control method cannot be
based upon such a strategy. Alternatively, one can try to find
an environmentally acceptable, yet optimal, pest mortality𝜎𝑥. For instance, the local minimum 𝜎𝑥 ≈ 0.4345 shown in
Figure 3(c).

The next parameter to be discussed is the number of
predators introduced periodically into the ecosystem 𝑑,
whose impact on the model response is presented in Fig-
ure 3(e). The result is biologically consistent in that the larger𝑑, the larger the amount of predators in the ecosystem and
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Figure 3: Numerical continuation of periodic solutions of system (14) with pests and natural enemies coexisting in the ecosystem, computed
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for which𝑀𝑃 = 0.65.
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the smaller the size of the pest population. This provides us
with another effective way to control the pest; however, an
increment in 𝑑may imply higher operation costs or negative
consequences for other species present in the ecosystem, and
therefore this parameter must also be chosen with certain
precaution.

From the system parameters considered in Figure 3, 𝑙 is
probably the one that can be varied without causing major
ecological damage. This parameter determines the instant
at which pesticide is sprayed in each impulsive period, and
its effect on the pest and predator populations is shown in
Figure 3(f). The picture reveals an optimal point 𝑙 ≈ 0.5464
where the peak size of pest population in the ecosystem
achieves a minimum value 𝑀𝑃 ≈ 0.5021. Practically
speaking, this indicates that the performance of the pest
control method can be improved by just changing the time at
which pesticide is sprayed, keeping all remaining parameters
fixed. This represents another avenue that can be explored
in order to apply the impulsive control scheme in the most
effective way, with acceptable levels of environmental impact.

4.2.2. Optimal Implementation of the Impulsive Control
Method. In the previous section, we presented a systematic
parametric study of the pest control scheme modeled by
system (14). Special emphasis was put on trying to find
optimal operation points when one parameter is changed at a
time.This process can be further refined by defining objective
functions and constraints and letting two ormore parameters
vary simultaneously. Let us assume that, for a certain appli-
cation, we have to minimize the utilization of pesticides and
introduction of natural enemies in the framework of the pest
control scheme studied in the preceding section. This can be
motivated by the associated operation costs or environmental
damage, as discussed earlier. Nevertheless, a reduction in the
usage of pesticides and natural enemies evidently increases
the risk of high levels of pest population in the ecosystem.
Hence, we need to introduce a restriction for the optimization
problem, which can be defined in terms of the size of the pest
population not exceeding a predefined economic threshold𝑥ET > 0. Mathematically speaking, we will consider the
following optimization problem:

Minimize 𝐹 (𝑑, 𝜎𝑥) fl √𝑑2 + 𝜎2𝑥,
under the constraint𝑀𝑃 = 𝑥ET. (15)

Here, the objective function 𝐹 is nothing but the Euclidean
norm of the vector (𝑑, 𝜎𝑥), which gives a measure of the
amount of pesticides and natural enemies used in the control
scheme (control effort). Depending on the specific applica-
tion, this functional can be further refined by, for example,
introducing weighting coefficients, but for the sake of clarity
we will carry out the numerical implementation with the
simple objective function defined above.

The optimization problem (15) will be solved numerically
via path-following techniques, as shown in Figure 4. Fig-
ure 4(a) presents a curve in the 𝑑-𝜎𝑥 plane corresponding
to the combination of pesticide and introduced predators
yielding a constant peak pest population 𝑀𝑃 = 𝑥ET = 0.6.

A trajectory along this curve is presented in Figure 4(c),
where it can be verified that the pest population indeed
does not exceed the predefined economic threshold 𝑥ET.
Figures 4(e) and 4(f) display solutions corresponding to
parameter values above and below the point considered in
Figure 4(c), respectively.These three panels demonstrate how𝑀𝑃moves away from the imposed economic threshold when
the operation point is perturbed around the computed curve.

As was confirmed numerically, the curve shown in
Figure 4(a) divides the 𝑑-𝜎𝑥 plane locally into two parts. The
one to the left corresponds to parameter values for which
the peak pest population𝑀𝑃 exceeds the economic threshold𝑥ET, while in the region to the right we have that𝑀𝑃 < 𝑥ET.
Therefore, the optimal operation point must lie on the right
part of the 𝑑-𝜎𝑥 plane, including the computed boundary
curve. This point can be located numerically by monitoring
the values of the objective function on the boundary and
is found to be (𝑑, 𝜎𝑥) ≈ (0.1807, 0.1411); see Figure 4(b).
The system response corresponding to this operation point
is displayed in Figure 4(d). In comparison to the solution
shown in Figure 4(c), it can be observed that the reduction of
the pest population due to pesticide spraying is significantly
smaller, meaning that less pesticide is being used in the
optimal case. This is nonetheless compensated with a slight
increment of the amount of predators introduced periodically
into the ecosystem (from 𝑑 = 0.15 to 𝑑 = 0.1807). In
both cases the condition 𝑀𝑃 = 𝑥ET = 0.6 is satisfied;
however, the environmental damage, measured in terms of
the objective function defined above, is minimized for the
optimal parameter values found.

4.2.3. Further Dynamical Analysis of the Pest Control Scheme.
So far the main tool in our numerical study has been path-
following algorithms, which enabled a detailed parametric
study of the periodic response of the pest control scheme
described by the impulsive model (14). In this way, we were
able to tackle practical questions such as how to find the
most suitable operation conditions in terms of pest reduction
and minimization of harmful environmental effects. Nev-
ertheless, the dynamic behavior of impulsive systems is a
subject of scientific interest in its own right, and the present
section will be devoted to this matter. Specifically, we will
employ both path-following methods and direct numerical
integration in order to gain a deeper understanding of the
dynamics of the impulsive pest control scheme considered in
our investigation.

The theoretical foundations for a numerical study of
the impulsive system (14) have been established by Zhang
et al. [44]. They addressed the question of existence and
uniqueness of nontrivial periodic solutions in terms of a fixed
point problem of a suitably defined operator. Following this
approach, they also determined a threshold for the impulse
period afterwhich pest-free solutions lose stability.Moreover,
in the conclusion part of [44] the authors raised the question
whether chaotic behavior may be present in the system, and
this will be precisely one of the main motivations for the
numerical study presented in this section. Unless otherwise
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Figure 4: Numerical continuation of the periodic response of system (14) with respect to 𝑑 and 𝜎𝑥, computed for impulse period 𝑇 = 6.
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the same result, but in this case the control effort, computed as the modulus of the vector (𝑑, 𝜎𝑥), is monitored. In this picture, the optimal
operation point is defined as the parameter values for which the control effort is minimum. (c)–(f) present solutions of the system for different
combinations of 𝑑 and 𝜎𝑥.
indicated, the parameter values used in the discussion below
are those given in Table 1.

We begin our numerical study with the continuation
of the periodic solution shown in Figure 1 with respect
to the predator’s mortality rate 𝜇, see Figure 5(a). As the
parameter is varied from larger to lower values, a first
qualitative change is observed at 𝜇 ≈ 0.1323 (PD1). Here,
one real Floquet multiplier of the periodic orbit crosses the
complex unit circle from the inside, passing through −1.
This phenomenon is referred to as a period-doubling (flip)
bifurcation of limit cycles [71] and is characterized, in the
supercritical case, by the birth of a stable periodic solution
with twice the period of the original limit cycle, which in
turn loses stability (schematically represented by the dashed
line in Figure 5(a)).This unstable solution regains stability via
another flip bifurcation at 𝜇 ≈ 0.1001 (PD2), where the crit-
ical Floquet multiplier comes back inside the unit circle and

the stable periodic solution with double period disappears.
If 𝜇 is further decreased, a turning point (also known as fold
bifurcation) is found at𝜇 ≈ 0.0722 (F1), inwhich case a pair of
stable and unstable periodic orbits collide and then disappear
for lower parameter values. From this point a branch (dashed
segment) of unstable solutions is born, which finishes at F2
(𝜇 ≈ 0.0951), where the system undergoes another fold
bifurcation of limit cycles, and hence stability is regained.
The last stability change is found at 𝜇 ≈ 0.0792 (PD3),
corresponding to a supercritical flip bifurcation, from which
a branch of unstable periodic solutions emanates. Another
feature of the bifurcation diagram shown in Figure 5(a) is
the presence of a parameter window 0.0792 < 𝜇 < 0.0951
for which the impulsive system possesses two stable periodic
solutions that coexist (coexisting attractors [72]). This is
produced by the interplay between the fold bifurcations F1
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Figure 5: Dynamical behavior of the pest control method modeled by system (14), computed for the parameter values shown in Table 1.
(a) Numerical continuation of the periodic response of the model with respect to the predator’s mortality rate 𝜇. The points labeled PD𝑖
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integration of system (14). The red and blue colors mark the parameter sweeps in the increasing and decreasing directions, respectively. (c)
Blow-up of a part of the bifurcation diagram shown in (b). (d) Poincaré map associated with a chaotic attractor computed for 𝜇 = 0.07206.
(e) Enlargement of a portion of the attractor displayed in (d).

and F2, typically giving rise to hysteretic effects, as will be
discussed below.

In order to gain further insight into the long-time
dynamics of the pest control model, we will carry out a
parametric study of the impulsive system (14) via direct
numerical integration, when the predator’s mortality rate 𝜇
is varied. For this purpose, we fix a starting value for 𝜇 and

then integrate the system over 300 impulse periods to allow
for the decay of transients. After this, we extend the numerical
integration for another interval of 100 periods and store
samples of the extended solution at the times 𝑡 = (𝑖 + 𝜖 − 1)𝑇,𝑖 = 1, 2, . . . , 100, with 0 < 𝜖 < 𝑙 being a fixed shift coefficient.
This parameter is introduced so as to avoid sampling the
solution at the impulse times 𝑡 = (𝑛+𝑙−1)𝑇 and 𝑡 = 𝑛𝑇, 𝑛 ∈ N.
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Next, 𝜇 is increased (or decreased, depending on the sweep
direction) by a small amount and then the same procedure
is repeated, now using the last sample of the previous step as
initial value. This process terminates when a predefined final
value for 𝜇 is reached.

The result of the numerical procedure described above is
shown in Figure 5(b). The picture confirms the qualitative
changes (bifurcations) predicted in Figure 5(a), labeled PD𝑖
and F𝑖. In particular, the bifurcation diagram shown in Fig-
ure 5(b) allows us to visualize the creation and disappearance
of orbits with double period, observed at the flip bifurcations𝜇 ≈ 0.1001 and 𝜇 ≈ 0.1323 detected before. The increasing
(red) and decreasing (blue) parameter sweeps reveal the
presence of parameter hysteresis in the system, produced by
the coexistence of periodic attractors, as predicted above.The
blow-up of the red part of the bifurcation diagram, shown in
Figure 5(c), contains the bifurcation points PD3 and F2 found
in Figure 5(a). These two points define a parameter window
inwhich a stable orbit of period𝑇 survives.When𝜇 decreases
through PD3, the period-𝑇 solution becomes unstable and
a stable periodic orbit of twice the period appears. If 𝜇 is
further reduced, the period-2𝑇 trajectory loses stability via
another flip bifurcation (𝜇 ≈ 0.0755), giving rise to a stable
periodic solution of period 4𝑇. This phenomenon repeats
again and again as the parameter continues to decrease, until
a critical value is reached where the flip bifurcations accu-
mulate, leading to chaotic behavior. This infinite sequence
of period-doubling bifurcations caused by the variation of
a parameter over a finite interval is referred to as a period-
doubling cascade and is one of the classical routes to chaos in
dynamical systems [72]. Figure 5(d) shows the intersection
of a chaotic attractor of the impulsive system (14) with a
Poincaré section, for 𝜇 = 0.07206. This numerical study gives
a positive answer to one of the open questions outlined by
Zhang et al. [44] related to chaotic behavior, since we have
identified a parameter set and a mechanism through which
chaos can appear in the pest control model.

5. Concluding Remarks

The intrinsic premise in the present work is that pest control
is a dynamical process. As such, mathematical models are
essential for understanding and providing useful abstractions
of the underlying biological phenomena and ecological inter-
actions taking place in pest control applications. Since the
introduction of the notion of Integrated Pest Management
(IPM) in the late 1950s [20, 21], a rich set of mathematical
models has emerged focusing on various aspects of IPM-
based applications, and Section 3 was devoted to providing
the reader with an overview of the development in this
area. The discussion presented here was guided by two
criteria: model class (in mathematical sense) and type of pest
control method. As a result, the models considered in this
section ranged from classical smooth differential equations
to differential equations with impulses. Moreover, the types
of pest control methods considered in our discussion can
be briefly grouped in the following categories: chemical

(pesticides), biological (natural enemy predation, biopesti-
cides), and cultural (roguing, replanting), which are suitably
combined in the framework of IPM in ways that complement
one another.

Although the literature on modeling pest control strate-
gies in agricultural ecosystems is vast, comprehensive para-
metric studies of the underlying mathematical models have
received rather little attention in the past, with numerical
investigations carried out primarily at the simulation level.
This factmotivated themain contribution of the present work
(Section 4), which concerned the application of specialized
numerical techniques in order to address practical questions
relevant to IPM. For this purpose, an impulsive pest control
model was chosen (namely system (4)) and reformulated in
the framework of hybrid dynamical systems, thus enabling
the employment of path-following (continuation) methods
for the numerical study of the impulsive system under
parameter variations via the software package TC-HAT [17].
With the introduction of appropriate numerical indicators,
a comprehensive parametric study was carried out in Sec-
tions 4.2.1 and 4.2.2, where the main question was how
to determine the parameter values of the system so as to
control the pest population in an optimal way, in terms
of minimizing operation costs and environmental damage.
Further numerical investigations of the model (4) were
conducted in Section 4.2.3, with special attention focused on
the dynamical features of the system. This study revealed the
presence of fold and flip bifurcations of limit cycles, period-
doubling cascades leading to chaotic behavior, and hysteretic
effects.

As has been pointed out in the past [2, 12, 16], a decisive
factor of success in the application of IPM programmes is
the fundamental understanding of the interactions between
the different components of the underlying agricultural
ecosystem, such as crops, pests, natural enemies, and biopes-
ticides. Much of the challenge lies in the sheer complexity
of the involved biological processes, which often hinders
the search for appropriate mathematical representations of
the laws governing the ecosystem. The resulting models are
usually the product of a trade-off between model simplicity,
predictive capability and accuracy, biological consistency, and
amenability for experimental validation and calibration. It
is then reasonable to assume that the validity of a model
correlates with how well it satisfies the aforementioned
criteria, which makes model development by no means a
trivial task. Once a validmodel has been obtained, it is crucial
to tackle formal questions regarding the well-posedness of
the model in a mathematical sense, for instance, those
related to existence and uniqueness of solutions, degree of
smoothness, and dependence on initial values, which enable
a confident application of numerical methods in order to
explore the model behavior. Future progress in this area
will therefore require a multidisciplinary collaborative work
between agronomists, ecological modelers, mathematical
analysts, and numerical specialists, aimed at constructing
mathematical models that provide reliable predictions and
understanding of field observations in real ecosystems, in
such a way that these models can be used as support tools
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for the development of new pest control strategies and
paradigms.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The first author wishes to express his gratitude to the Alexan-
der von Humboldt Foundation (Georg Forster Research
Fellowship Programme) for the financial support to carry out
the present research.

References

[1] United Nations, Concise Report on the World Population Situa-
tion, New York, NY, USA, 2014.

[2] R. Peshin and A. K. Dhawan, Integrated Pest Management:
Innovation-Development Process, Springer Netherlands, Dor-
drecht, 2009.

[3] S. E. Naranjo and P. C. Ellsworth, “Fifty years of the integrated
control concept: Moving the model and implementation for-
ward in Arizona,” Pest Management Science, vol. 65, no. 12, pp.
1267–1286, 2009.

[4] D. L. Jaquette, “Mathematical models for controlling growing
biological populations: a survey,” Operations Research, vol. 20,
no. 6, pp. 1142–1151, 1972.

[5] C. Shoemaker, “Optimization of agricultural pest management
II: formulation of a control model,” Mathematical Biosciences,
vol. 17, no. 3-4, pp. 357–365, 1973.

[6] Y. M. Svirezhev, “Nonlinearities in mathematical ecology:
Phenomena and models. Would we live in Volterra’s world?”
Ecological Modelling, vol. 216, no. 2, pp. 89–101, 2008.

[7] J. M. Baker, “Use and Abuse of Crop Simulation Models,”
Agronomy Journal, vol. 88, no. 5, p. 689, 1996.

[8] D. R. McCullough and R. H. Barrett,Wildlife 2001: Populations,
Springer Netherlands, Dordrecht, 1992.

[9] F. Affholder, P. Tittonell, M. Corbeels et al., “Ad hoc modeling
in agronomy: What have we learned in the last 15 years?”
Agronomy Journal, vol. 104, no. 3, pp. 735–748, 2012.

[10] L. Prost, M. Cerf, andM.-H. Jeuffroy, “Lack of consideration for
end-users during the design of agronomic models. A review,”
Agronomy for Sustainable Development, vol. 32, no. 2, pp. 581–
594, 2012.

[11] N. J. Cunniffe, B. Koskella, C. J. E. Metcalf, S. Parnell, T. R.
Gottwald, and C. A. Gilligan, “Thirteen challenges inmodelling
plant diseases,” Epidemics, vol. 10, pp. 6–10, 2015.

[12] M. Kogan, “Integrated pest management: Historical perspec-
tives and contemporary developments,”Annual Review of Ento-
mology, vol. 43, pp. 243–270, 1998.

[13] W. I. Bajwa and M. Kogan, “Compendium of IPM Definitions
(CID). What is IPM and how is it defined in the Worldwide
Literature?” IPPC Publication No. 998, 2002.

[14] K.Wickwire, “Mathematical models for the control of pests and
infectious diseases: a survey,”Theoretical Population Biology. An
International Journal, vol. 11, no. 2, pp. 182–238, 1977.

[15] J. R. Beddington, C. A. Free, and J. H. Lawton, “Characteristics
of successful natural enemies in models of biological control of
insect pests,” Nature, vol. 273, no. 5663, pp. 513–519, 1978.

[16] H. J. Barclay, “Models for pest control using predator release,
habitat management and pesticide release in combination,”
Journal of Applied Ecology, vol. 19, no. 2, pp. 337–348, 1982.

[17] P. Thota and H. Dankowicz, “TC-HAT: A Novel Toolbox for
the Continuation of Periodic Trajectories in Hybrid Dynamical
Systems,” SIAM Journal on Applied Dynamical Systems, vol. 7,
no. 4, pp. 1283–1322, 2008.

[18] B. Krauskopf, H.M.Osinga, and J. Galán-Vioque, “A continuing
influence in dynamics,” Numerical Continuation Methods for
Dynamical Systems: Path following and boundary value prob-
lems, pp. V–VII, 2007.
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[68] M. Liao, J. Ing, J. PáezChávez, andM.Wiercigroch, “Bifurcation
techniques for stiffness identification of an impact oscillator,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 41, pp. 19–31, 2016.
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