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This paper presents an existence and localization result of unbounded solutions for a second-order differential equation on the
half-line with functional boundary conditions. By applying unbounded upper and lower solutions, Green’s functions, and Schauder
fixed point theorem, the existence of at least one solution is shown for the above problem. One example and one application to an
Emden-Fowler equation are shown to illustrate our results.

1. Introduction

The authors consider the following boundary value problem
composed by the differential equation:

𝑢


(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡)) , 𝑡 ≥ 0, (1)

where𝑓 : [0, +∞[ × R2 → R is continuous and bounded by
some𝐿1 function, and the functional boundary conditions on
the half-line are as follows:

𝐿 (𝑢, 𝑢 (0) , 𝑢


(0)) = 0,

𝑢


(+∞) = 𝐵,

(2)

with 𝐵 ∈ R and 𝐿 : 𝐶[0, +∞[ × R2 → R a continuous
function verifying some monotone assumption:

𝑢


(+∞) fl lim
𝑡→+∞

𝑢


(𝑡) . (3)

Boundary value problems on the half-line arise naturally
in the study of radially symmetric solutions of nonlinear
elliptic equations, and many works have been done in this
area; see [1]. The functional dependence on the boundary
conditions allows that problem (1), (2) covers a huge variety
of boundary value problems such as separated, multipoint,
nonlocal, integrodifferential, with maximum or minimum

arguments, as it can be seen, for instance, in [2–11] and the
references therein. However, to the best of our knowledge,
it is the first time where this type of functional boundary
conditions are applied to the half-line.

Lower and upper solutions method is a very adequate
technique to deal with boundary value problems as it pro-
vides not only the existence of bounded or unbounded
solutions but also their localization and, from that, some
qualitative data about solutions, their variation and behavior
(see [12–14]). Some results are concerned with the existence
of bounded or positive solutions, as in [15, 16], and the
references therein. For problem (1), (2) we prove the existence
of two types of solution, depending on𝐵: if 𝐵 ̸= 0 the solution
is unbounded and if 𝐵 = 0 the solution is bounded. In this
way, we gather different strands of boundary value problems
and types of solutions in a single method.

The paper is organized as follows. In Section 2 some
auxiliary results are defined such as the adequate space
functions, some weighted norms, a criterion to overcome
the lack of compactness, and the definition of lower and
upper solutions. Section 3 contains the main result: an exis-
tence and localization theorem, which proof combines lower
and upper solution technique with the fixed-point theory.
Finally, last two sections contain, to illustrate our results, an
example and an application to some problem composed by
a discontinuous Emden-Fowler-type equation with a infinite
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multipoint conditions, which are not covered by the existent
literature.

2. Definitions and Auxiliary Results

Consider the space

𝑋 = {𝑥 ∈ 𝐶
1

[0, +∞[ : lim
𝑡→+∞

𝑥 (𝑡)

1 + 𝑡

∈ R, lim
𝑡→+∞

𝑥


(𝑡)

∈ R}

(4)

with the norm ‖𝑥‖
𝑋
= max{‖𝑥‖

0
, ‖𝑥

‖
1
}, where

‖𝜔‖
0
fl sup
0≤𝑡<+∞

|𝜔 (𝑡)|

1 + 𝑡

,






𝜔



1

fl sup
0≤𝑡<+∞






𝜔


(𝑡)






.

(5)

In this way (𝑋, ‖ ⋅ ‖
𝑋
) is a Banach space.

Solutions of the linear problem associated to (1) and
usual boundary conditions are defined with Green’s function,
which can be obtained by standard calculus.

Lemma 1. Let 𝑡ℎ, ℎ ∈ 𝐿1[0, +∞[. Then the linear boundary
value problem composed by

𝑢


(𝑡) = ℎ (𝑡) , 𝑡 ≥ 0,

𝑢 (0) = 𝐴,

𝑢


(+∞) = 𝐵,

(6)

for 𝐴, 𝐵 ∈ R, has a unique solution in𝑋, given by

𝑢 (𝑡) = 𝐴 + 𝐵𝑡 + ∫

+∞

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (7)

where

𝐺 (𝑡, 𝑠) =

{

{

{

−𝑠, 0 ≤ 𝑠 ≤ 𝑡

−𝑡, 𝑡 ≤ 𝑠 < +∞.

(8)

Proof. If 𝑢 is a solution of problem (6), then the general solu-
tion for the differential equation is

𝑢 (𝑡) = 𝑐
1
+ 𝑐
2
𝑡 + ∫

𝑡

0

(𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠, (9)

where 𝑐
1
, 𝑐
2
are constants. Since 𝑢(𝑡) should satisfy the

boundary conditions, we get

𝑐
1
= 𝐴,

𝑐
2
= 𝐵 − ∫

+∞

0

ℎ (𝑠) 𝑑𝑠.

(10)

The solution becomes

𝑢 (𝑡) = 𝐴 + 𝐵𝑡 − 𝑡 ∫

+∞

0

ℎ (𝑠) 𝑑𝑠 + ∫

𝑡

0

(𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠. (11)

And by computation

𝑢 (𝑡) = 𝐴 + 𝐵𝑡 + ∫

+∞

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (12)

with 𝐺 given by (8).
Conversely, if 𝑢 is a solution of (7), it is easy to show that

it satisfies the differential equation in (6). Also 𝑢(0) = 𝐴 and
𝑢

(+∞) = 𝐵.

The lack of compactness of𝑋 is overcomeby the following
lemma which gives a general criterion for relative compact-
ness, referred to in [1].

Lemma 2. A set𝑀 ⊂ 𝑋 is relatively compact if the following
conditions hold:

(1) all functions from𝑀 are uniformly bounded;
(2) all functions from𝑀 are equicontinuous on any com-

pact interval of [0, +∞[;
(3) all functions from 𝑀 are equiconvergent at infinity;

that is, for any given 𝜖 > 0, there exists a 𝑡
𝜖
> 0 such

that









𝑥 (𝑡)

1 + 𝑡

− lim
𝑡→+∞

𝑥 (𝑡)

1 + 𝑡










< 𝜖,









𝑥


(𝑡) − lim
𝑡→+∞

𝑥


(𝑡)









< 𝜖

∀𝑡 > 𝑡
𝜖
, 𝑥 ∈ 𝑀.

(13)

The existence tool will be Schauder’s fixed point theorem.

Theorem 3 (see [17]). Let 𝑌 be a nonempty, closed, bounded,
and convex subset of a Banach space 𝑋, and suppose that 𝑃 :
𝑌 → 𝑌 is a compact operator.Then𝑃 is at least one fixed point
in 𝑌.

The functions considered as lower and upper solutions for
the initial problem are defined as follows.

Definition 4. Given 𝐵 ∈ R, a function 𝛼 ∈ 𝑋 is a lower
solution of problem (1), (2) if

𝛼


(𝑡) ≥ 𝑓 (𝑡, 𝛼 (𝑡) , 𝛼


(𝑡)) , 𝑡 ≥ 0,

𝐿 (𝛼, 𝛼 (0) , 𝛼


(0)) ≥ 0,

𝛼


(+∞) < 𝐵.

(14)

A function 𝛽 is an upper solution if it satisfies the reverse
inequalities.

3. Existence and Localization Results

In this section we prove the existence of at least one solution
for the problem (1), (2), and, moreover, some localization
data.
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Theorem 5. Let 𝑓 : [0, +∞[ × R2 → R be a continuous
function, verifying that, for each 𝜌 > 0, there exists a positive
function 𝜑

𝜌
with 𝜑

𝜌
, 𝑡𝜑
𝜌
∈ 𝐿
1
[0, +∞[ such that for (𝑥(𝑡),

𝑦(𝑡)) ∈ R2 with sup
0≤𝑡<+∞

{|𝑥(𝑡)|/(1 + 𝑡), |𝑦(𝑡)|} < 𝜌,





𝑓 (𝑡, 𝑥, 𝑦)





≤ 𝜑
𝜌
(𝑡) , 𝑡 ≥ 0. (15)

Moreover, if 𝐿(𝑥
1
, 𝑥
2
, 𝑥
3
) is nondecreasing on 𝑥

1
and 𝑥

3
and

there are 𝛼 ,𝛽, lower and upper solutions of (1), (2), respectively,
such that

𝛼 (𝑡) ≤ 𝛽 (𝑡) , ∀𝑡 ≥ 0, (16)

then problem (1), (2) has at least one solution 𝑢 ∈ 𝑋, with
𝛼(𝑡) ≤ 𝑢(𝑡) ≤ 𝛽(𝑡), for 𝑡 ≥ 0.

Proof. Let 𝛼, 𝛽 be, respectively, lower and upper solutions of
(1), (2) verifying (16). Consider the modified problem

𝑢


(𝑡) = 𝑓 (𝑡, 𝛿 (𝑡, 𝑢 (𝑡)) , 𝑢


(𝑡))

+

1

1 + 𝑡
3

𝑢 (𝑡) − 𝛿 (𝑡, 𝑢 (𝑡))

1 + |𝑢 (𝑡) − 𝛿 (𝑡, 𝑢 (𝑡))|

,

𝑡 ≥ 0,

𝑢 (0) = 𝛿 (0, 𝑢 (0) + 𝐿 (𝑢, 𝑢 (0) , 𝑢


(0))) ,

𝑢


(+∞) = 𝐵,

(17)

where 𝛿 : [0, +∞[ × R → R is given by

𝛿 (𝑡, 𝑥) =

{
{
{
{

{
{
{
{

{

𝛽 (𝑡) , 𝑥 > 𝛽 (𝑡)

𝑥, 𝛼 (𝑡) ≤ 𝑥 ≤ 𝛽 (𝑡)

𝛼 (𝑡) , 𝑥 < 𝛼 (𝑡) .

(18)

For clearness, the proof will follow several steps.

Step 1 (if 𝑢 is a solution of (17), then 𝛼(𝑡) ≤ 𝑢(𝑡) ≤ 𝛽(𝑡),
∀𝑡 ≥ 0). Let 𝑢 be a solution of the modified problem (17) and
suppose, by contradiction, that there exists 𝑡 ≥ 0 such that
𝛼(𝑡) > 𝑢(𝑡). Therefore

inf
0≤𝑡<+∞

(𝑢 (𝑡) − 𝛼 (𝑡)) < 0. (19)

If there is 𝑡
∗
∈]0, +∞[ such that

min
0≤𝑡<+∞

(𝑢 (𝑡) − 𝛼 (𝑡)) fl 𝑢 (𝑡
∗
) − 𝛼 (𝑡

∗
) < 0, (20)

we have 𝑢(𝑡
∗
) = 𝛼


(𝑡
∗
) and 𝑢(𝑡

∗
) − 𝛼


(𝑡
∗
) ≥ 0. By

Definition 4 we get the contradiction

0 ≤ 𝑢

(𝑡
∗
) − 𝛼

(𝑡
∗
)

= 𝑓 (𝑡
∗
, 𝛿 (𝑡
∗
, 𝑢 (𝑡
∗
)) , 𝑢

(𝑡
∗
))

+

1

1 + 𝑡
3

∗

𝑢 (𝑡
∗
) − 𝛿 (𝑡

∗
, 𝑢 (𝑡
∗
))

1 +




𝑢 (𝑡
∗
) − 𝛿 (𝑡

∗
, 𝑢 (𝑡
∗
))





− 𝛼

(𝑡
∗
)

= 𝑓 (𝑡
∗
, 𝛼 (𝑡
∗
) , 𝛼

(𝑡
∗
))

+

1

1 + 𝑡
3

∗

𝑢 (𝑡
∗
) − 𝛼 (𝑡

∗
)

1 +




𝑢 (𝑡
∗
) − 𝛼 (𝑡

∗
)





− 𝛼

(𝑡
∗
)

≤

𝑢 (𝑡
∗
) − 𝛼 (𝑡

∗
)

1 +




𝑢 (𝑡
∗
) − 𝛼 (𝑡

∗
)





< 0.

(21)

So 𝑢(𝑡) ≥ 𝛼(𝑡), ∀𝑡 > 0.
If the infimum is attained at 𝑡 = 0 then

min
0≤𝑡<+∞

(𝑢 (𝑡) − 𝛼 (𝑡)) fl 𝑢 (0) − 𝛼 (0) < 0. (22)

As 𝑢 is solution of (17), by the definition of 𝛿, the following
contradiction is achieved

0 > 𝑢 (0) − 𝛼 (0)

= 𝛿 (0, 𝑢 (0) + 𝐿 (𝑢, 𝑢 (0) , 𝑢


(0))) − 𝛼 (0)

≥ 𝛼 (0) − 𝛼 (0) = 0.

(23)

If

inf
0≤𝑡<+∞

(𝑢 (𝑡) − 𝛼 (𝑡)) fl 𝑢 (+∞) − 𝛼 (+∞) < 0, (24)

then 𝑢(+∞) − 𝛼(+∞) ≤ 0. As 𝑢 is solution of (17), by
Definition 4, this contradiction holds

0 ≥ 𝑢


(+∞) − 𝛼


(+∞) = 𝐵 − 𝛼


(+∞) > 0. (25)

Therefore 𝑢(𝑡) ≤ 𝛼(𝑡), ∀𝑡 ≥ 0.
In a similar way we can prove that 𝑢(𝑡) ≥ 𝛽(𝑡), ∀𝑡 ≥ 0.

Step 2 (problem (17) has at least one solution). Let 𝑢 ∈ 𝑋 and
define the operator 𝑇 : 𝑋 → 𝑋

𝑇𝑢 (𝑡) = Δ + 𝐵𝑡 + ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝐹
𝑢
(𝑠) 𝑑𝑠, (26)

with

𝐹
𝑢
(𝑠) fl 𝑓 (𝑠, 𝛿 (𝑠, 𝑢 (𝑠)) , 𝑢 (𝑠))

+

1

1 + 𝑠
3

𝑢 (𝑠) − 𝛿 (𝑠, 𝑢 (𝑠))

1 + |𝑢 (𝑠) − 𝛿 (𝑠, 𝑢 (𝑠))|

,

(27)

Δ := 𝛿(0, 𝑢(0)+𝐿(𝑢, 𝑢(0), 𝑢

(0))), and𝐺 is the Green function

given by (8).
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Therefore, problem (17) becomes

𝑢


(𝑡) = 𝐹
𝑢
(𝑡) , 𝑡 ≥ 0,

𝑢 (0) = Δ,

𝑢


(+∞) = 𝐵,

(28)

and if 𝑡𝐹
𝑢
(𝑡), 𝐹
𝑢
(𝑡) ∈ 𝐿

1
[0, +∞[, by Lemma 1 it is enough to

prove that 𝑇 has a fixed point.

Step 2.1 (𝑇 is well defined). As 𝑓 is a continuous function,
𝑇𝑢 ∈ 𝐶

1
[0, +∞[ and, by (15), for any 𝑢 ∈ 𝑋 with 𝜌 >

max{‖𝑢‖
𝑋
, ‖𝛼‖
𝑋
, ‖𝛽‖
𝑋
}

∫

+∞

0





𝐹
𝑢
(𝑠)




𝑑𝑠 ≤ ∫

+∞

0

𝜙
𝜌
(𝑠) +

1

1 + 𝑠
3
𝑑𝑠 < +∞. (29)

That is𝐹
𝑢
(𝑡) and 𝑡𝐹

𝑢
(𝑡) ∈ 𝐿

1
[0, +∞[.By LebesgueDominated

ConvergenceTheorem,

lim
𝑡→+∞

(𝑇𝑢) (𝑡)

1 + 𝑡

= lim
𝑡→+∞

Δ + 𝐵𝑡

1 + 𝑡

+ ∫

+∞

0

lim
𝑡→+∞

𝐺 (𝑡, 𝑠)

1 + 𝑡

𝐹
𝑢
(𝑠) 𝑑𝑠

≤ 𝐵 + ∫

+∞

0

𝜙
𝜌
(𝑠) +

1

1 + 𝑠
3
𝑑𝑠 < +∞,

(30)

and analogously for

lim
𝑡→+∞

(𝑇𝑢)


(𝑡) = 𝐵 − lim
𝑡→+∞

∫

+∞

𝑡

𝐹
𝑢
(𝑠) 𝑑𝑠 = 𝐵

< +∞.

(31)

Therefore 𝑇𝑢 ∈ 𝑋.

Step 2.2 (𝑇 is continuous). Consider a convergent sequence
𝑢
𝑛
→ 𝑢 in 𝑋; there exists 𝜌

1
> 0 such that max{sup

𝑛
‖𝑢
𝑛
‖
𝑋
,

‖𝛼‖
𝑋
, ‖𝛽‖
𝑋
} < 𝜌
1
.

With𝑀 := sup
0≤𝑡<+∞

|𝐺(𝑡, 𝑠)|/(1 + 𝑡), we have





𝑇𝑢
𝑛
− 𝑇𝑢




𝑋

= max {

𝑇𝑢
𝑛
− 𝑇𝑢




0
,






(𝑇𝑢
𝑛
)


− (𝑇𝑢)



1
}

≤ ∫

+∞

0

𝑀






𝐹
𝑢
𝑛

(𝑠) − 𝐹
𝑢
(𝑠)






𝑑𝑠

+ ∫

+∞

𝑡






𝐹
𝑢
𝑛

(𝑠) − 𝐹
𝑢
(𝑠)






𝑑𝑠 → 0,

(32)

as 𝑛 → +∞.

Step 2.3 (𝑇 is compact). Let 𝐵 ⊂ 𝑋 be any bounded subset.
Therefore there is 𝑟 > 0 such that ‖𝑢‖

𝑋
< 𝑟, ∀𝑢 ∈ 𝐵.

For each 𝑢 ∈ 𝐵, and for max{𝑟, ‖𝛼‖
𝑋
, ‖𝛽‖
𝑋
} < 𝑟
1
,

‖𝑇𝑢‖
0
= sup
0≤𝑡<+∞

|𝑇𝑢 (𝑡)|

1 + 𝑡

≤ sup
0≤𝑡<+∞

|Δ + 𝐵𝑡|

1 + 𝑡

+ ∫

+∞

0

sup
0≤𝑡<+∞

|𝐺 (𝑡, 𝑠)|

1 + 𝑡





𝐹
𝑢
(𝑠)




𝑑𝑠

≤ sup
0≤𝑡<+∞

|Δ + 𝐵𝑡|

1 + 𝑡

+ ∫

+∞

0

𝑀(𝜙
𝑟
1

(𝑠) +

1

1 + 𝑠
3
)𝑑𝑠 < +∞,






(𝑇𝑢)



1
= sup
0≤𝑡<+∞






(𝑇𝑢)


(𝑡)






≤ |𝐵| + ∫

+∞

𝑡





𝐹
𝑢
(𝑠)




𝑑𝑠

≤ |𝐵| + ∫

+∞

𝑡

𝜙
𝑟
1

(𝑠) +

1

1 + 𝑠
3
𝑑𝑠 < +∞.

(33)

So ‖𝑇𝑢‖
𝑋
= max{‖𝑇𝑢‖

0
, ‖(𝑇𝑢)


‖
1
} < +∞; that is, 𝑇𝐵 is

uniformly bounded in𝑋.
𝑇𝐵 is equicontinuous, because, for 𝐿 > 0 and 𝑡

1
, 𝑡
2
∈

[0, 𝐿], we have, as 𝑡
1
→ 𝑡
2
,











𝑇𝑢 (𝑡
1
)

1 + 𝑡
1

−

𝑇𝑢 (𝑡
2
)

1 + 𝑡
2











≤










Δ + 𝐵𝑡
1

1 + 𝑡
1

−

Δ + 𝐵𝑡
2

1 + 𝑡
2










+ ∫

+∞

0











𝐺 (𝑡
1
, 𝑠)

1 + 𝑡
1

−

𝐺 (𝑡
2
, 𝑠)

1 + 𝑡
2











|𝐹 (𝑢 (𝑠))| 𝑑𝑠

≤










Δ + 𝐵𝑡
1

1 + 𝑡
1

−

Δ + 𝐵𝑡
2

1 + 𝑡
2










+ ∫

+∞

0











𝐺 (𝑡
1
, 𝑠)

1 + 𝑡
1

−

𝐺 (𝑡
2
, 𝑠)

1 + 𝑡
2











(𝜙
𝑟
1

(𝑠) +

1

1 + 𝑠
3
)𝑑𝑠

→ 0,






(𝑇𝑢)

(𝑡
1
) − (𝑇𝑢)


(𝑡
2
)







=











∫

+∞

𝑡
1

𝐹
𝑢
(𝑠) 𝑑𝑠 − ∫

+∞

𝑡
2

𝐹
𝑢
(𝑠) 𝑑𝑠











≤ ∫

𝑡
2

𝑡
1





𝐹
𝑢
(𝑠)




𝑑𝑠

≤ ∫

𝑡
2

𝑡
1

𝜙
𝑟
1

(𝑠) +

1

1 + 𝑠
3
𝑑𝑠 → 0.

(34)

So 𝑇𝐵 is equicontinuous.
Moreover 𝑇𝐵 is equiconvergent at infinity, because, as

𝑡 → +∞,










𝑇𝑢 (𝑡)

1 + 𝑡

− lim
𝑡→+∞

𝑇𝑢 (𝑡)

1 + 𝑡










≤









Δ + 𝐵𝑡

1 + 𝑡

− 𝐵









+ ∫

+∞

0










𝐺 (𝑡, 𝑠)

1 + 𝑡

+ 1














𝐹
𝑢
(𝑠)




𝑑𝑠
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≤









Δ + 𝐵𝑡

1 + 𝑡

− 𝐵









+ ∫

+∞

0










𝐺 (𝑡, 𝑠)

1 + 𝑡

+ 1










(𝜙
𝜌
1

+

1

1 + 𝑠
3
)𝑑𝑠 → 0,









(𝑇𝑢)


(𝑡) − lim
𝑡→+∞

(𝑇𝑢)


(𝑡)









= ∫

+∞

𝑡





𝐹
𝑢
(𝑠)




𝑑𝑠

≤ ∫

+∞

𝑡

(𝜙
𝜌
1

+

1

1 + 𝑠
3
)𝑑𝑠 → 0, as 𝑡 → +∞.

(35)

So, by Lemma 2, 𝑇𝐵 is relatively compact.

Step 2.4. Let 𝐷 ⊂ 𝑋 be a nonempty, closed, bounded, and
convex subset. Then 𝑇𝐷 ⊂ 𝐷.

Let𝐷 ⊂ 𝑋 defined by
𝐷 fl {𝑢 ∈ 𝑋 : ‖𝑢‖

𝑋
≤ 𝜌
2
} (36)

with
𝜌
2

fl max
{
{
{

{
{
{

{

𝜌
1
,




𝛽 (0)





+ |𝐵| + ∫

+∞

0

𝑀(𝜙
𝜌
1

(𝑠) +

1

1 + 𝑠
3
)𝑑𝑠,

|𝐵| + ∫

+∞

𝑡

(𝜙
𝜌
1

(𝑠) +

1

1 + 𝑠
3
)𝑑𝑠

}
}
}

}
}
}

}

,

(37)

with 𝜌
1
given by Step 2.1.

For 𝑢 ∈ 𝐷 and 𝑡 ∈ [0, +∞[, we get

‖𝑇𝑢‖
0
≤ sup
0≤𝑡<+∞





𝛽 (0)





+ |𝐵𝑡|

1 + 𝑡

+ ∫

+∞

0

𝑀(𝜙
𝜌
1

(𝑠) +

1

1 + 𝑠
3
)𝑑𝑠

≤




𝛽 (0)





+ |𝐵|

+ 𝑀∫

+∞

0

(𝜙
𝜌
1

(𝑠) +

1

1 + 𝑠
3
)𝑑𝑠 ≤ 𝜌

2
,

(38)






(𝑇𝑢)



1
≤ |𝐵| + ∫

+∞

𝑡

(𝜙
𝜌
1

(𝑠) +

1

1 + 𝑠
3
)𝑑𝑠 ≤ 𝜌

2
. (39)

Then ‖𝑇𝑢‖
𝑋
≤ 𝜌
2
; that is, 𝑇𝐷 ⊂ 𝐷.

Then, by Schauder’s Fixed Point Theorem, 𝑇 has at least
one fixed point 𝑢

1
∈ 𝑋.

Step 3 (𝑢
1
is a solution of (1), (2)). By Step 1, as 𝑢

1
is a solution

of (17) then 𝛼(𝑡) ≤ 𝑢
1
(𝑡) ≤ 𝛽(𝑡), ∀𝑡 ∈ [0, +∞[. So, the

differential equation (1) is obtained. It remains to prove that
𝛼(0) ≤ 𝑢

1
(0) + 𝐿(𝑢

1
, 𝑢
1
(0), 𝑢


1
(0)) ≤ 𝛽(0).

Suppose, by contradiction, that 𝛼(0) > 𝑢
1
(0) +

𝐿(𝑢
1
, 𝑢
1
(0), 𝑢


1
(0)). Then

𝑢
1
(0) = 𝛿 (0, 𝑢

1
(0) + 𝐿 (𝑢

1
, 𝑢
1
(0) , 𝑢



1
(0))) = 𝛼 (0) (40)

and by the monotony of 𝐿 and Definition 4, the following
contradiction holds
0 > 𝑢
1
(0) + 𝐿 (𝑢

1
, 𝑢
1
(0) , 𝑢



1
(0)) − 𝛼 (0)

= 𝐿 (𝑢
1
, 𝛼 (0) , 𝑢



1
(0)) ≥ 𝐿 (𝛼, 𝛼 (0) , 𝛼



(0)) ≥ 0.

(41)

So 𝛼(0) ≤ 𝑢
1
(0) + 𝐿(𝑢

1
, 𝑢
1
(0), 𝑢


1
(0)) and in a similar way

we can prove that 𝑢
1
(0) + 𝐿(𝑢

1
, 𝑢
1
(0), 𝑢


1
(0)) ≤ 𝛽(0).

Therefore, 𝑢
1
is a solution of (1), (2).

A similar result can be obtained if𝑓 is a 𝐿1-Carathéodory
function and

𝑢


(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡)) , a.e. 𝑡 ≥ 0. (42)

Definition 6. A function 𝑓 : [0, +∞[ × R2 → R is said to be
𝐿
1-Carathéodory if it verifies the following:

(1) for each (𝑥, 𝑦) ∈ R2, 𝑡 → 𝑓(𝑡, 𝑥, 𝑦) is measurable on
[0, +∞[;

(2) for almost every 𝑡 ∈ [0, +∞[, (𝑥, 𝑦) → 𝑓(𝑡, 𝑥, 𝑦) is
continuous in R2;

(3) for each 𝜌 > 0, there exists a positive function 𝜑
𝜌
with

𝜑
𝜌
, 𝑡𝜑
𝜌
∈ 𝐿
1
[0, +∞[ such that, for (𝑥(𝑡), 𝑦(𝑡)) ∈ R2

with sup
0≤𝑡<+∞

{|𝑥(𝑡)|/(1 + 𝑡), |𝑦(𝑡)|} < 𝜌,





𝑓 (𝑡, 𝑥, 𝑦)





≤ 𝜑
𝜌
(𝑡) , a.e. 𝑡 ∈ [0, +∞[ . (43)

However in this case an extra assumption on 𝑓 must be
assumed.

Theorem 7. Let 𝑓 : [0, +∞[ × R2 → R be a 𝐿1-Carathéo-
dory function such that 𝑓(𝑡, 𝑥, 𝑦) is monotone on 𝑦.

If there are 𝛼, 𝛽, lower and upper solutions of (42), (2),
respectively, such that

𝛼 (𝑡) ≤ 𝛽 (𝑡) , ∀𝑡 ≥ 0, (44)

and 𝐿(𝑥
1
, 𝑥
2
, 𝑥
3
) is nondecreasing on 𝑥

1
and 𝑥

3
, then problem

(42), (2) has at least one solution 𝑢 ∈ 𝑋 with 𝛼(𝑡) ≤ 𝑢(𝑡) ≤
𝛽(𝑡), ∀𝑡 ≥ 0.

Proof. The proof is similar toTheorem 5 except the first step.
Let 𝑢(𝑡) be a solution of the modified problem composed

by

𝑢


(𝑡) = 𝑓 (𝑡, 𝛿 (𝑡, 𝑢 (𝑡)) , 𝑢


(𝑡))

+

1

1 + 𝑡
3

𝑢 (𝑡) − 𝛿 (𝑡, 𝑢 (𝑡))

1 + |𝑢 (𝑡) − 𝛿 (𝑡, 𝑢 (𝑡))|

, a.e. 𝑡 > 0,
(45)

and the boundary conditions

𝑢 (0) = 𝛿 (0, 𝑢 (0) + 𝐿 (𝑢, 𝑢 (0) , 𝑢


(0))) ,

𝑢


(+∞) = 𝐵.

(46)

If, by contradiction, there is 𝑡
∗
∈ ]0, +∞[ such that

min
0≤𝑡<+∞

(𝑢 (𝑡) − 𝛼 (𝑡)) fl 𝑢 (𝑡
∗
) − 𝛼 (𝑡

∗
) < 0, (47)

then 𝑢(𝑡
∗
) = 𝛼

(𝑡
∗
), 𝑢(𝑡

∗
) − 𝛼

(𝑡
∗
) ≥ 0, and there exists an

interval 𝐼
−
:= ]𝑡
−
, 𝑡
∗
[where 𝑢(𝑡) < 𝛼(𝑡), 𝑢(𝑡) ≤ 𝛼(𝑡),∀𝑡 ∈ 𝐼

−
.
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By Definition 4 and if 𝑓(𝑡, 𝑥, 𝑦) is nondecreasing on 𝑦,
this contradiction holds for 𝑡 ∈ 𝐼

−
:

0 ≤ 𝑢


(𝑡) − 𝛼


(𝑡)

= 𝑓 (𝑡, 𝛿 (𝑡, 𝑢 (𝑡)) , 𝑢


(𝑡))

+

1

1 + 𝑡
3

𝑢 (𝑡) − 𝛿 (𝑡, 𝑢 (𝑡))

1 + |𝑢 (𝑡) − 𝛿 (𝑡, 𝑢 (𝑡))|

− 𝛼


(𝑡)

≤ 𝑓 (𝑡, 𝛼 (𝑡) , 𝛼


(𝑡)) +

1

1 + 𝑡
3

𝑢 (𝑡) − 𝛼 (𝑡)

1 + |𝑢 (𝑡) − 𝛼 (𝑡)|

− 𝛼


(𝑡) ≤

𝑢 (𝑡) − 𝛼 (𝑡)

1 + |𝑢 (𝑡) − 𝛼 (𝑡)|

< 0.

(48)

The same remains valid if𝑓 is nonincreasing, considering
an interval 𝐼

+
:= ]𝑡
∗
, 𝑡
+
[ where 𝑢(𝑡) < 𝛼(𝑡), 𝑢(𝑡) ≥ 𝛼(𝑡),

∀𝑡 ∈ 𝐼
+
.

So in both cases 𝑢(𝑡) ≥ 𝛼(𝑡), ∀𝑡 ∈ [0, +∞[.
The remaining steps are identical to the proof of

Theorem 5, and we omit them.

4. Example

Consider the second-order problem in the half-line with one
functional boundary condition:

𝑢


(𝑡) =

sin (𝑢 (𝑡) + 1) + (𝑢 (𝑡))
3

+ 𝑢 (𝑡) 𝑒
−𝑡

1 + 𝑡
3

, 𝑡 > 0,

4𝑢
2

(0) + min
0≤𝑡<+∞

𝑢 (𝑡) + 𝑢


(0) − 2 = 0,

𝑢


(+∞) = 0, 5.

(49)

Remark that the above problem is a particular case of (1),
(2) with

𝑓 (𝑡, 𝑥, 𝑦) =

sin (𝑥 + 1) + 𝑦3 + 𝑥𝑒−𝑡

1 + 𝑡
3

,

𝐵 = 0, 5,

𝐿 (𝑎, 𝑏, 𝑐) = 4𝑏
2
+ min
0≤𝑡<+∞

𝑎 (𝑡) + 𝑐 − 2.

(50)

𝑓 is continuous in [0, +∞[, and, for 𝑢 ∈ 𝑋, assumption
(15) holds with 𝜑

𝜌
= 𝑘/(1 + 𝑡

3
), for some 𝑘 > 0 and 𝜌 > 1.

As 𝐿(𝑎, 𝑏, 𝑐) is not decreasing in 𝑎 and 𝑐, and the functions
𝛼(𝑡) ≡ −1 and 𝛽(𝑡) = 𝑡 are lower and upper solutions for
(49), respectively, then, by Theorem 5, there is at least an
unbounded solution 𝑢 of (49) such that

−1 ≤ 𝑢 (𝑡) ≤ 𝑡, ∀𝑡 ∈ [0, +∞[ . (51)

5. Application

Emden-Fowler-types equations (see [18]) can model, for
example, the heat diffusion perpendicular to parallel planes
by

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

+

𝛼

𝑥

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

+ 𝑎𝑓 (𝑥, 𝑡) 𝑔 (𝑢) + ℎ (𝑥, 𝑡)

=

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

, 0 < 𝑥 < 𝑡,

(52)

where 𝑓(𝑥, 𝑡)𝑔(𝑢) + ℎ(𝑥, 𝑡) means the nonlinear heat source
and 𝑢(𝑥, 𝑡) is the temperature.

In the steady-state case, andwith ℎ(𝑥, 𝑡) ≡ 0, last equation
becomes

𝑢


(𝑥) +

𝛼

𝑥

𝑢


(𝑥) + 𝑎𝑓 (𝑥) 𝑔 (𝑢) = 0, 𝑥 ≥ 0. (53)

If 𝑓(𝑥) ≡ 1 and 𝑔(𝑢) = 𝑢𝑛, (53) is called the Lane-Emden
equation of the first kind, whereas in the second kind one
has 𝑔(𝑢) = 𝑒𝑢. Both cases are used in the study of thermal
explosions. For more details see [19].

In the literature, Emden-Fowler-types equations are asso-
ciated to Dirichlet or Neumann boundary conditions (see
[20, 21]).

To the best of our knowledge, it is the first time where
some Emden-Fowler is considered together with functional
boundary conditions on the half-line.

Consider that we are looking for nonnegative solutions
for the problem composed by the discontinuous differential
equation

𝑢


(𝑥) =

𝑢

(𝑥)

1 + 𝑥
3
+

𝑢
4
(𝑥)

𝑒
𝑥
, a.e. 𝑥 > 0, (54)

coupled with the infinite multipoint conditions

+∞

∑

𝑛=1

𝑎
𝑛
𝑢 (𝜂
𝑛
) − 𝑢 (0) + 𝑢



(0) = 0,

𝑢


(+∞) = 𝛿, (0 < 𝛿 < 1) ,

(55)

where 𝑎
𝑛
and 𝜂
𝑛
are nonnegative sequences such that 𝑎

1
𝜂
1
≥

𝑎
2
𝜂
2
≥ ⋅ ⋅ ⋅ ≥ 𝑎

𝑛
𝜂
𝑛
≥ ⋅ ⋅ ⋅ , ∑+∞

𝑛=1
𝑎
𝑛
𝑢(𝜂
𝑛
), and ∑+∞

𝑛=1
𝑎
𝑛
𝜂
𝑛
are

convergent with ∑+∞
𝑛=1
𝑎
𝑛
(𝜂
𝑛
+ 𝑘) ≤ 1 − 𝑘, (0 < 𝑘 < 1).

This is a particular case of (42), (2), where

𝑓 (𝑥, 𝑦, 𝑧) =

𝑧

1 + 𝑥
3
+

𝑦
4

𝑒
𝑥
,

𝐵 = 𝛿,

𝐿 (V, 𝑦, 𝑧) =
+∞

∑

𝑛=1

𝑎
𝑛
V (𝜂
𝑛
) − 𝑦 + 𝑧.





𝑓 (𝑥, 𝑦, 𝑧)





≤

𝑘
1

1 + 𝑥
3
+

𝑘
2

𝑒
𝑥
fl 𝜑
𝑟
(𝑥) ,

𝑘
1
, 𝑘
2
> 0, 𝑟 > 1.

(56)
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As 𝜑
𝑟
(𝑥), 𝑥𝜑

𝑟
(𝑥) ∈ 𝐿

1
[0, +∞[ thus 𝑓 is 𝐿1-Carathéodory.

Also 𝑓 is monotone on 𝑧; more precisely 𝑓 is nondecreasing
on 𝑧. As 𝐿(V, 𝑦, 𝑧) is not decreasing in V and 𝑧, and functions
𝛼(𝑥) ≡ 0 and 𝛽(𝑥) = 𝑥 + 𝑘 are lower and upper solutions
for problem (54), (55), respectively, then, byTheorem 7, there
is at least an unbounded and nonnegative solution 𝑢 of (54),
(55) such that

0 ≤ 𝑢 (𝑥) ≤ 𝑥 + 𝑘, ∀𝑥 ∈ [0, +∞[ . (57)
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