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We study a class of semilinear nonlocal elliptic systems posed on settings without compact Sobolev embedding. By employing
critical point theory and concentration estimates, we prove the existence of infinitely many solutions for values of the dimension
𝑁, where𝑁 > 6𝑠, provided 0 < 𝑠 < 1.

1. Introduction and Main Result

Nonlocal problems and operators have enjoyed much atten-
tion from mathematicians in recent years probably due to
their interesting analytical structure and their numerous
physical applications in many fields such as flame propaga-
tion, conservation laws, ultrarelativistic limits of quantum
mechanics, quasi-geostrophic flows, and the thin obstacle
problem (see [1–3]). In this paper, we are concerned with
the study of the infinitely many solutions for the following
system:

(−Δ)
𝑠

𝑢 =
2𝛼

𝛼 + 𝛽
|𝑢|

𝛼−2

𝑢 |V|𝛽 + 𝜆𝑢 in Ω,

(−Δ)
𝑠 V =

2𝛽

𝛼 + 𝛽
|𝑢|

𝛼

|V|𝛽−2 V + 𝜇V in Ω,

𝑢 = V = 0 on 𝜕Ω,

(1)

where Ω is an open bounded domain in R𝑁, 𝜆, 𝜇 > 0 and
𝛼 > 1, 𝛽 > 1 satisfy 𝛼 + 𝛽 = 2∗

𝑠
= 2𝑁/(𝑁 − 2𝑠), 𝑠 ∈ (0, 1)

and 𝑁 > 2𝑠. When 𝛼 = 𝛽, 𝜆 = 𝜇, and 𝑢 = V, problem (1)

reduces to the Brézis-Nirenberg type problem with fractional
Laplacian:

(−Δ)
𝑠

𝑢 = |𝑢|
2
∗

𝑠
−2

𝑢 + 𝜆𝑢 in Ω,

𝑢 = 0 on 𝜕Ω.
(2)

In [4], Brézis and Nirenberg considered the existence of
positive solutions for problem (2) with 𝑠 = 1. Such a problem
involves the critical Sobolev exponent 2∗ = 2𝑁/(𝑁 − 2) for
𝑁 ≥ 3, and it is well known that the Sobolev embedding
𝐻
1

0
(Ω) 󳨅→ 𝐿

2
∗

(Ω) is not compact even if Ω is bounded.
Hence, the associated functional of problem (2) does not
satisfy the Palais-Smale condition, and critical point theory
can not be applied directly to find solutions of the problem.
However, it is found in [4] that the functional satisfies the
(PS)

𝑐
condition for 𝑐 ∈ (0, (1/𝑁)𝑆𝑁/2), where 𝑆 is the best

Sobolev constant and (1/𝑁)𝑆𝑁/2 is the least energy level at
which the Palais-Smale condition fails. So a positive solution
can be found if the mountain pass value corresponding
to problem (2) is strictly less than (1/𝑁)𝑆𝑁/2. In [5], a
concentration-compactness principle was developed to treat
noncompact critical variational problems. In the study of the
existence of multiple solutions for critical problems, to retain
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the compactness, it is necessary to have a full description
of energy levels at which the associated functional does not
satisfy the Palais-Smale condition. A global compactness
result is found in [6], which describes precisely the obstacles
of the compactness for critical semilinear elliptic problems.
This compactness result shows that above a certain energy
level it is impossible to prove the Palais-Smale condition. For
this reason, to obtain infinitely many solutions for the critical
problem, it is essential to find a condition that can replace
the standard Palais-Smale condition. In [7], Devillanova and
Solimini considered (2) with 𝑠 = 1 and obtained infinitely
many solutions for every 𝜆 > 0 if 𝑁 ≥ 7. They proved this
latter result by employing the concentration estimates and
lower bound of augmented Morse index on min–max points
(see [8]), which seem unapplicable to the case of (1) directly.
This work was extended to an analogous problem involving
p-Laplacian for 1 < 𝑝 < ∞ by Cao et al. [9].They proved that
if𝑁 > 𝑝2 + 𝑝, the following problem,

−Δ
𝑝
𝑢 = |𝑢|

𝑝
∗

−2

𝑢 + 𝜆 |𝑢|
𝑝−2

𝑢 in Ω, 𝑢 = 0 on 𝜕Ω, (3)

where 𝜇 > 0 and 𝑝∗ = 𝑝𝑁/(𝑁 − 𝑝), has infinitely many
solutions. Recently, Yan et al. extended the result in [10] to
problem (2) and obtained infinitely many solutions for every
𝜆 > 0 if 𝑁 > 6𝑠, where 0 < 𝑠 < 1. Similar problems to
(1) for the Laplacian operator have been studied extensively
in recent years; see [6, 11–14] and the references therein. In
particular, Alves et al. [11] studied the p-Laplacian system
with critical growth and obtained the existence of infinitely
many solutions if 𝑁 > 𝑝

2

+ 𝑝. An important cornerstone
for these works has been laid out in a remarkable paper
[15], where Caffarelli and Silvestre gave a new formulation of
the fractional Laplacian through Dirichlet-Neumann maps.
This is extensively used in the recent literature since it allows
transforming nonlocal problems to local ones, which permits
the use of variational methods. This will come in handy for
this work. Amore general form of the fractional operator has
been studied and a multiplicity of solutions has been shown
in several cases. For further reading, we refer the reader to
these recently published papers on the fractional Laplacian
[16–22].

In this paper, we prove that (1) has infinitely many
solutions under the following conditions: 𝑁 > 6𝑠, where
0 < 𝑠 < 1, by studying system (1) in the critical case𝛼+𝛽 = 2∗

𝑠
.

We adapt the original idea used in [7] which was described
in the above paragraph (see also [9–11, 13]). After perturbing
problem (1) into a subcritical case with a (PS) functional in all
energy levels, estimates on the set of the solution sequences
to the subcritical case of (1), a global compactness argument,
and a (local) Pohozaev identity are used to establish the
strong convergence and finally use min–max theorems on
a genus homotopic class to produce infinitely many critical
values. The paper is organized as follows: in Section 2,
some notations and preliminary results are established. In
Section 3, we establish a local Pohozaev identity which allows
us to prove the 𝐸𝑠

0
(C

Ω
)-strong convergence of solutions for

the subcritical case of problem (18), and, finally, we show how
this technique allows the application of classical min–max

arguments to (1) and to prove, in this way, the existence of
infinitely many solutions. Our main result is the following.

Theorem 1. Let 0 < 𝑠 < 1 and 𝜆 ≥ 0, 𝜇 ≥ 0 with 𝜆 + 𝜇 > 0.
Then problem (1) has infinitely many solutions when𝑁 > 6𝑠.

2. Notation and Preliminaries

The powers (−Δ)𝑠 of the positive Laplacian operator −Δ, in
Ω, with zero Dirichlet boundary conditions are defined via
its spectral decomposition, namely,

(−Δ)
𝑠

𝑢 (𝑥) fl
𝑘

∑

𝑗=1

𝑎
𝑗
𝜌
𝑠

𝑗
𝜑
𝑗
(𝑥) , (4)

where (𝜌
𝑗
, 𝜑

𝑗
) is the sequence of eigenvalues and eigenfunc-

tions of the operator (−Δ) inΩunder zeroDirichlet boundary
data and 𝑎

𝑗
are the coefficients of 𝑢 for the base {𝜑

𝑗
}
∞

𝑗=1
in

𝐿
2

(Ω). In fact, the fractional Laplacian (−Δ)𝑠 is well defined
in the space of functions

𝐻
𝑠

0
(Ω) fl

{

{

{

𝑢 =

𝑘

∑

𝑗=1

𝑎
𝑗
𝜑
𝑗
∈ 𝐿

2

(Ω) : ‖𝑢‖
𝐻
𝑠

0

= (

𝑘

∑

𝑗=1

𝑎
2

𝑗
𝜌
𝑠

𝑗
)

1/2

< ∞
}

}

}

,

(5)

and ‖𝑢‖
𝐻
𝑠

0

= ‖(−Δ)
𝑠/2

𝑢‖
𝐿
2
(Ω)
.

A pair of functions (𝑢, V) ∈ 𝐻𝑠

0
(Ω) ×𝐻

𝑠

0
(Ω) is said to be a

weak solution of problem (1) if

∫
Ω

((−Δ)
𝑠/2

𝑢 (−Δ)
𝑠/2

𝜑
1
+ (−Δ)

𝑠/2 V (−Δ)𝑠/2 𝜑
2
) 𝑑𝑥

− ∫
Ω

(𝜆𝑢𝜑
1
+ 𝜇V𝜑

2
) 𝑑𝑥

−
2𝛼

𝛼 + 𝛽
∫
Ω

|𝑢|
𝛼−2

𝑢 |V|𝛽 𝜑
1
𝑑𝑥

−
2𝛽

𝛼 + 𝛽
∫
Ω

|𝑢|
𝛼

|V|𝛽−2 V𝜑
2
𝑑𝑥 = 0,

(6)

for all (𝜑
1
, 𝜑

2
) ∈ 𝐻

𝑠

0
(Ω) × 𝐻

𝑠

0
(Ω). Solutions to problem (1)

will be obtained as critical points of the corresponding energy
functional

𝐽
𝜆,𝜇
(𝑢, V) fl

1

2
∫
Ω

(
󵄨󵄨󵄨󵄨󵄨
(−Δ)

𝑠/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
(−Δ)

𝑠/2 V
󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

−
1

2
∫
Ω

(𝜆 |𝑢|
2

+ 𝜇 |V|2) 𝑑𝑥

−
2

𝛼 + 𝛽
∫
Ω

|𝑢|
𝛼

|V|𝛽 𝑑𝑥.

(7)

The functional is well defined in 𝐻𝑠

0
(Ω) × 𝐻

𝑠

0
(Ω), and,

moreover, the critical points of the functional 𝐽
𝜆,𝜇

correspond
to solutions of (1). We now conclude the main ingredients
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of a recently developed technique use in order to deal with
fractional powers of the Laplacian operator. Motivated by
the work of Caffarelli and Silvestre [15], several authors have
considered an equivalent definition of the operator (−Δ)𝑠/2 in
a bounded domain with zero Dirichlet boundary data means
of auxiliary variable, see [2, 23]. Associated with the bounded
domain Ω, let us consider the cylinderC

Ω
fl Ω × (0, +∞) ⊂

R𝑁+1

+
. Now, for a function 𝑢 ∈ 𝐻𝑠

0
, we define the s-harmonic

extension𝑤 = 𝐸
𝑠
(𝑢) to the cylinderC

Ω
as the solution of the

problem:

div (𝑦1−2𝑠∇𝑤) = 0 in C
Ω

𝑤 = 0 on 𝜕
𝐿
Ω

𝑤 = 𝑢 on Ω × {0} ,

(−Δ)
𝑠

𝑢 (𝑥) = −𝑘
𝑠
lim
𝑦→0
+

𝑦
1−2𝑠
𝜕𝑤

𝜕𝑦
(𝑥, 𝑦) ,

(8)

where 𝑘
𝑠
= 2

1−2𝑠

Γ(1−𝑠)/Γ(𝑠) is a normalization constant.The
extension function 𝑤(𝑥, 𝑦) belongs to the space

𝐻
1

0,𝐿
(C

Ω
) fl {𝑤 ∈ 𝐿2 (C

Ω
) : 𝑤

= 0 on 𝜕
𝐿
Ω, ∫

C
Ω

𝑦
1−2𝑠

|∇𝑤|
2

𝑑𝑥 𝑑𝑦 < ∞}

(9)

endowed with the norm

‖𝑧‖
𝐻
1

0,𝐿
(C
Ω
)
fl (∫

C
Ω

𝑦
1−2𝑠

|∇𝑧|
2

𝑑𝑥 𝑑𝑦)

1/2

. (10)

The extension operator is an isometry between 𝐻𝑠

0
(Ω) and

𝐻
1

0,𝐿
(C

Ω
); namely,

‖𝑢‖
𝐻
𝑠

0
(Ω)
=
󵄩󵄩󵄩󵄩𝐸𝑠 (𝑢)

󵄩󵄩󵄩󵄩𝐻1
0,𝐿
(C
Ω
)
, ∀𝑢 ∈ 𝐻

𝑠

0
(Ω) . (11)

With this extension, we can reformulate (1) as the following
local problem:

− div (𝑦1−2𝑠∇𝑤
1
) = 0,

− div (𝑦1−2𝑠∇𝑤
2
) = 0

in C
Ω
,

𝑤
1
= 𝑤

2
= 0, on 𝜕

𝐿
Ω,

𝑦
1−2𝑠
𝜕𝑤

1

𝜕]

=
2𝛼

𝛼 + 𝛽

󵄨󵄨󵄨󵄨𝑤1 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛼−2

𝑤
1
(𝑥, 0)

󵄨󵄨󵄨󵄨𝑤2 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛽

+ 𝜆𝑤
1
(𝑥, 0) on Ω × {0} ,

𝑦
1−2𝑠
𝜕𝑤

2

𝜕]

=
2𝛽

𝛼 + 𝛽

󵄨󵄨󵄨󵄨𝑤1 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨𝑤2 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛽−2

𝑤
2
(𝑥, 0)

+ 𝜇𝑤
2
(𝑥, 0) on Ω × {0} ,

(12)

where

𝜕𝑤
𝑖

𝜕]
fl −𝑘

𝑠
lim
𝑦→0
+

𝑦
1−2𝑠
𝜕𝑤

𝑖

𝜕𝑦
, 𝑖 = 1, 2 (13)

and𝑤
1
, 𝑤

2
∈ 𝐻

1

0,𝐿
(C

Ω
) are the s-harmonic extension of 𝑢, V ∈

𝐻
𝑠

0
(Ω), respectively. Let

𝐸
𝑠

0
(C

Ω
) fl 𝐻1

0,𝐿
(C

Ω
) × 𝐻

1

0,𝐿
(C

Ω
) (14)

be equipped with the norm

󵄩󵄩󵄩󵄩(𝑤1, 𝑤2)
󵄩󵄩󵄩󵄩𝐸𝑠
0
(C
Ω
)
=
󵄩󵄩󵄩󵄩𝑤1
󵄩󵄩󵄩󵄩𝐻1
0,𝐿
(C
Ω
)
+
󵄩󵄩󵄩󵄩𝑤2
󵄩󵄩󵄩󵄩𝐻1
0,𝐿
(C
Ω
)
. (15)

An energy solution to this problem is a function (𝑤
1
, 𝑤

2
) ∈

𝐸
𝑠

0
(C

Ω
) satisfying

∫
C
Ω

𝑦
1−2𝑠

∇𝑤
1
∇𝜑

1
𝑑𝑥 𝑑𝑦 + ∫

C
Ω

𝑦
1−2𝑠

∇𝑤
2
∇𝜑

2
𝑑𝑥 𝑑𝑦

= 𝜆∫
Ω

𝑤
1
𝜑
1
𝑑𝑥 +

2𝛼

𝛼 + 𝛽
∫
Ω

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

𝛼−2

𝑤
1

󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨

𝛽

𝜑
1
𝑑𝑥

+ 𝜇∫
Ω

𝑤
2
𝜑
2
𝑑𝑥

+
2𝛽

𝛼 + 𝛽
∫
Ω

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨

𝛽−2

𝑤
2
𝜑
2
𝑑𝑥

(16)

for all (𝜑
1
, 𝜑

2
) ∈ 𝐸

𝑠

0
(C

Ω
). If (𝑤

1
, 𝑤

2
) ∈ 𝐸

𝑠

0
(C

Ω
) satisfies (12),

then (𝑢, V) = (𝑤
1
(⋅, 0), 𝑤

2
(⋅, 0)), defined in the sense of traces,

belongs to the space 𝐻𝑠

0
(Ω) × 𝐻

𝑠

0
(Ω) and it is a solution of

the original problem (1). The associated energy functional to
problem (12) is denoted by

𝐼
𝜆,𝜇
(𝑤) fl 𝐼

𝜆,𝜇
(𝑤

1
, 𝑤

2
)

=
1

2
∫
C
Ω

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑤1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝑤2

󵄨󵄨󵄨󵄨

2

) 𝑑𝑥 𝑑𝑦

−
1

2
∫
Ω

(𝜆
󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

2

+ 𝜇
󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

−
2

𝛼 + 𝛽
∫
Ω

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨

𝛽

𝑑𝑥.

(17)

Critical points of 𝐼
𝜆,𝜇

in 𝐸𝑠
0
(C

Ω
) correspond to the critical

points of 𝐽
𝜆,𝜇
: 𝐻

𝑠

0
(Ω) × 𝐻

𝑠

0
(Ω) → R. Since the problem is

critical, the functional 𝐼
𝜆,𝜇

does not satisfy the Palais-Smale
condition. Thus the min–max theorems can not be applied
directly to obtain infinitely many solutions for (1). Following
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the original idea in [7], employed in a closer setting in [10],
we deal first with the following perturbed problem:

− div (𝑦1−2𝑠∇𝑤
1
) = 0,

− div (𝑦1−2𝑠∇𝑤
2
) = 0

in C
Ω

𝑤
1
= 𝑤

2
= 0, on 𝜕

𝐿
Ω

𝑦
1−2𝑠
𝜕𝜔

1

𝜕]

=
2 (𝛼 − 𝜀)

𝛼 + 𝛽 − 2𝜀

󵄨󵄨󵄨󵄨𝑤1 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛼−2−𝜀

𝑤
1
(𝑥, 0)

󵄨󵄨󵄨󵄨𝑤2 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛽−𝜀

+ 𝜆𝑤
1
(𝑥, 0) on Ω × {0}

𝑦
1−2𝑠
𝜕𝜔

2

𝜕]

=
2 (𝛽 − 𝜀)

𝛼 + 𝛽 − 2𝜀

󵄨󵄨󵄨󵄨𝑤1 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛼−𝜀 󵄨󵄨󵄨󵄨𝑤2 (𝑥, 0)
󵄨󵄨󵄨󵄨

𝛽−2−𝜀

𝑤
2
(𝑥, 0)

+ 𝜇𝑤
2
(𝑥, 0) on Ω × {0} ,

(18)

where (𝑤
1
, 𝑤

2
) ∈ 𝐸

𝑠

0
(C

Ω
) and 0 < 𝜀 < min{𝛼−1, 𝛽−1, 2∗

𝑠
−1}.

The functional corresponding to (18) becomes

𝐼
𝜀

𝜆,𝜇
(𝑤, 𝜑) =

1

2
∫
C
Ω

𝑦
1−2𝑠

(|∇𝑤|
2

+
󵄨󵄨󵄨󵄨∇𝜑
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥 𝑑𝑦

−
1

2
∫
Ω

(𝜆 |𝑤|
2

+ 𝜇
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

−
2

𝛼 + 𝛽 − 2𝜀
∫
Ω

|𝑤|
𝛼−𝜀 󵄨󵄨󵄨󵄨𝜑

󵄨󵄨󵄨󵄨

𝛽−𝜀

𝑑𝑥,

(19)

where (𝑤, 𝜑) ∈ 𝐸
𝑠

0
(C

Ω
). Now 𝐼

𝜀

𝜆,𝜇
is even and satisfies

the Palais-Smale condition at all energy levels. It follows
from the symmetric mountain pass lemma [24] that (18) has
infinitely many solutions. More precisely, it follows from [25,
Theorem 6.1] that there are positive numbers 𝑐

𝜀,𝑙
, 𝑙 = 1, 2, . . .,

with 𝑐
𝜀,𝑙
→ +∞, as 𝑙 → +∞ and a solution (𝑤

𝜀,𝑙
, 𝜑

𝜀,𝑙
) for

(18), satisfying 𝐼𝜀(𝑤
𝜀,𝑙
, 𝜑

𝜀,𝑙
) = 𝑐

𝜀,𝑙
. To obtain the existence of

infinitely many solutions for (1), the first step is to investigate
whether (𝑤

𝜀,𝑙
, 𝜑

𝜀,𝑙
) converges strongly in 𝐸𝑠

0
(C

Ω
) as 𝜀 →

0. That is, we need to study the compactness of the set of
solutions for (18), with 𝜀 > 0 small enough.

3. 𝐸𝑠
0
(C

Ω
)-Strong Convergence of Solutions

for the Subcritical Case of Problem (18)

In this section, we establish the strong convergence of
solutions for the perturbed problem (18). Throughout this
paper, we denote the norms of 𝐸𝑠

0
(C

Ω
), 𝐿

𝑙

(Ω) (1 ≤ 𝑙 < ∞)

by ‖(𝑤
1
, 𝑤

2
)‖
𝐸
𝑠

0
(C
Ω
)
= ‖𝑤

1
‖
𝐻
1

0,𝐿
(C
Ω
)
+ ‖𝑤

2
‖
𝐻
1

0,𝐿
(C
Ω
)
, ‖𝑢‖

𝐿
𝑙
(Ω)
=

(∫
Ω

|𝑢|
𝑙

𝑑𝑥)
1/𝑙

, respectively, and positive constants (possibly
different) by 𝐶.

Proposition 2. Suppose that 𝑁 > 6𝑠 with 0 < 𝑠 < 1 and
𝜆, 𝜇 ≥ 0 satisfy 𝜆 + 𝜇 > 0.Then for any sequence (𝑢

𝑛
, V
𝑛
) (𝑛 =

1, 2, . . .) which is a solution of (18) with 𝜀 = 𝜀
𝑛
→ 0, and for

(𝑢
𝑛
, V
𝑛
) satisfies ‖(𝑢

𝑛
, V
𝑛
)‖
𝐸
𝑠

0
(C
Ω
)
≤ 𝐶 for some constant 𝐶 >

0 independent of 𝑛, then (𝑢
𝑛
, V
𝑛
)
𝑛≥1

has a subsequence which
converges strongly in 𝐸𝑠

0
(C

Ω
) as 𝑛 → +∞.

Before giving the proof of Proposition 2, we give some
estimates for (𝑢

𝑛
, V
𝑛
). Let 𝐷 be a bounded domain such that

Ω ⋐ 𝐷 and (𝑢
𝑛
(𝑥, 0), V

𝑛
(𝑥, 0)) = (0, 0) in 𝐷 \ Ω.We choose

𝐴 > 0 large enough so that, for all 𝑥, 𝑦 ∈ R, the following is
verified:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝛼
𝑛

𝛼
𝑛
+ 𝛽

𝑛

|𝑥|
𝛼
𝑛
−2

𝑥
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝛽
𝑛

+ 𝜆𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2 (|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
2
∗

𝑠
−1

+ 𝐴,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝛽
𝑛

𝛼
𝑛
+ 𝛽

𝑛

|𝑥|
𝛼
𝑛
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝛽
𝑛
−2

𝑦 + 𝜇𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2 (|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
2
∗

𝑠
−1

+ 𝐴,

(20)

for all 𝑥, 𝑦 ∈ R. Let (𝜔
𝑛
) (𝑛 = 1, 2, . . .) with 𝜔

𝑛
≥ 0 be a

solution of

−div (𝑦1−2𝑠∇𝜔) = 0, in C
𝐷
,

𝜔 = 0, on 𝜕
𝐿
𝐷,

𝑦
1−2𝑠
𝜕𝜔

𝜕]
= 2 (

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥, 0)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V𝑛 (𝑥, 0)

󵄨󵄨󵄨󵄨)
2
∗

𝑠
−1

+ 𝐴

on 𝐷 × {0} .

(21)

By choosing𝐷 and 𝐴, we find

−div (𝑦1−2𝑠∇ (𝜔
𝑛
± 𝑢

𝑛
)) = 0, in C

Ω
,

𝜔
𝑛
± 𝑢

𝑛
= 0, on 𝜕

𝐿
Ω,

𝑦
1−2𝑠
𝜕 (𝜔

𝑛
± 𝑢

𝑛
)

𝜕]
≥ 0 on Ω × {0} .

(22)

Multiplying (22) by (𝜔
𝑛
±𝑢

𝑛
)
− and integrating by part, we see

that
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨 ≤ 𝜔𝑛. (23)

Similarly, for V
𝑛
, we have

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨 ≤ 𝜔𝑛. (24)

Then by (23) and (24) we have

1

2
(
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨) ≤ 𝜔𝑛.

(25)

So in the following sections we can consider just the estimates
of 𝑤

𝑛
inC

Ω
.

Let

S
𝑠,𝛼,𝛽

fl inf
(𝑤
1
,𝑤
2
)∈𝐸
𝑠

0
(C
Ω
)

∫
C
Ω

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑤1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝑤2

󵄨󵄨󵄨󵄨

2

) 𝑑𝑥 𝑑𝑦

(∫
Ω

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨

𝛽

𝑑𝑥)
2/2
∗

𝑠

.

(26)
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Then we have (see Lemma 2.5 [23])

S
𝑠,𝛼,𝛽

= [(

𝛼

𝛽
)

𝛽/2
∗

𝑠

+ (
𝛽

𝛼
)

𝛼/2
∗

𝑠

]S (𝑠,𝑁) , (27)

where S(𝑠,𝑁) is the best Sobolev constant defined by

S (𝑠,𝑁) = inf
𝑧∈𝐻
1

0,𝐿
(C
Ω
)\{0}

∫
C
Ω

𝑦
1−2𝑠 󵄨󵄨󵄨󵄨∇𝑧 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦

(∫
Ω

|𝑧 (𝑥, 0)|
2
∗

𝑠 𝑑𝑥)
2/2
∗

𝑠

, (28)

which is achieved if and only if Ω = R𝑁 by functions 𝑤
𝜀
are

the s-harmonic extensions of

𝑢
𝜀
(𝑥) fl

𝜀
(𝑁−2𝑠)/2

(𝜀
2

+ |𝑥|
2

)
(𝑁−2𝑠)/2

, 𝜀 > 0, 𝑥 ∈ R
𝑁

. (29)

Now we introduce the “problem at infinity”:

−div (𝑦1−2𝑠∇𝑢) = 0,

−div (𝑦1−2𝑠∇V) = 0

in R
𝑁+1

+
,

𝑦
1−2𝑠
𝜕𝑢

𝜕]
=
2𝛼

𝛼 + 𝛽
𝑢
𝛼−1

(𝑥, 0) V𝛽 (𝑥, 0)

on R
𝑁

× {0} ,

𝑦
1−2𝑠
𝜕V
𝜕]
=
2𝛽

𝛼 + 𝛽
𝑢
𝛼

(𝑥, 0) V𝛽−1 (𝑥, 0)

on R
𝑁

× {0} ,

𝑈 > 0,

𝑉 > 0

in R
𝑁

× {0} .

(30)

Here 𝛼 > 1, 𝛽 > 1, and 𝛼 + 𝛽 = 2∗
𝑠
. Set

𝑈 = (
2𝛼

𝛼 + 𝛽
)

1/(𝛼+𝛽−2)

(
𝛽

𝛼
)

𝛽/2(𝛼+𝛽−2)

𝑢,

𝑉 = (
2𝛽

𝛼 + 𝛽
)

1/(𝛼+𝛽−2)

(

𝛼

𝛽
)

𝛼/2(𝛼+𝛽−2)

V.

(31)

Then problem (30) can be rewritten as

−div (𝑦1−2𝑠∇𝑈) = 0,

−div (𝑦1−2𝑠∇𝑉) = 0

in R
𝑁+1

+
,

𝑦
1−2𝑠
𝜕𝑈

𝜕]
= 𝑈

𝛼−1

(𝑥, 0) 𝑉
𝛽

(𝑥, 0)

on R
𝑁

× {0} ,

𝑦
1−2𝑠
𝜕𝑉

𝜕]
= 𝑈

𝛼

(𝑥, 0) 𝑉
𝛽−1

(𝑥, 0)

on R
𝑁

× {0} ,

𝑈 > 0,

𝑉 > 0

in R
𝑁

× {0} .

(32)

Lemma 3. Let (𝑈, 𝑉) be a solution of (32). Then 𝑈(𝑥, 0) =
𝑉(𝑥, 0) for all 𝑥 ∈ R𝑁

.

Proof. Let (𝑈, 𝑉) be a solution of (32). Then

− div (𝑦1−2𝑠∇ (𝑈 − 𝑉)) = 0, in R
𝑁+1

+
,

𝑦
1−2𝑠
𝜕 (𝑈 − 𝑉)

𝜕]
= 𝑈

𝛼−1

(𝑥, 0) 𝑉
𝛽−1

(𝑥, 0) (𝑉 − 𝑈)

on R
𝑁

× {0} ,

𝑈 > 0,

𝑉 > 0

in R
𝑁

× {0} .

(33)

Multiplying (33) by (𝑈−𝑉) and integrating by part, we obtain

∫
R𝑁+1
+

𝑦
1−2𝑠

|∇ (𝑈 − 𝑉)|
2

𝑑𝑥 𝑑𝑦

= −∫
R𝑁
𝑈
𝛼−1

(𝑥, 0) 𝑉
𝛽−1

(𝑥, 0) (𝑈 − 𝑉)
2

𝑑𝑥 ≤ 0,

(34)

which implies that
𝑈(𝑥, 𝑦) − 𝑉 (𝑥, 𝑦) = const. (35)

Note that 𝑈 > 0, 𝑉 > 0, in R𝑁. It follows from (30) that
𝑈
𝛼−1

(𝑥, 0)𝑉
𝛽

(𝑥, 0) = 𝑦
1−2𝑠

(𝜕𝑈/𝜕]) = 𝑈𝛼(𝑥, 0)𝑉𝛽−1(𝑥, 0) in
R𝑁

× {0}.Hence 𝑈(𝑥, 0) = 𝑉(𝑥, 0).

From Proposition 6 in the Appendix, we have the global
compactness result on (1). Let (𝑢

𝑛
, V
𝑛
) (𝑛 = 1, 2, . . .) be a

solution of problem (18) with 𝜀 = 𝜀
𝑛
→ 0 as 𝑛 → +∞, satisfy-

ing ‖(𝑢
𝑛
, V
𝑛
)‖
𝐸
𝑠

0
(C
Ω
)
≤ 𝐶 for some constant independent of 𝑛.

Then replacing the solution if necessary with a subsequence,
there exist 𝑘 sequences mutually diverging scaling 𝜎𝑖

𝑛
with

respective concentration points 𝑥𝑖
𝑛
such that, as 𝑛 → +∞,

𝑢
𝑛
= 𝑢

0
+ 𝑎

−1

0

𝑘

∑

𝑖=1

(𝜎
𝑖

𝑛
)
(𝑁−2𝑠)/2

𝑈(𝜎
𝑖

𝑛
(𝑥 − 𝑥

𝑖

𝑛
) , 0)

+ 𝜔
1

𝑛
,

V
𝑛
= V

0
+ 𝑏

−1

0

𝑘

∑

𝑖=1

(𝜎
𝑖

𝑛
)
(𝑁−2𝑠)/2

𝑈(𝜎
𝑖

𝑛
(𝑥 − 𝑥

𝑖

𝑛
) , 0) + 𝜔

2

𝑛
,

(36)
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where (𝑢
0
, V
0
) ∈ 𝐸

𝑠

0
(C

Ω
) is a weak solution of problem (12),

‖(𝜔
1

𝑛
, 𝜔

2

𝑛
)‖
𝐸
𝑠

0
(C
Ω
)
→ 0 as 𝑛 → +∞, 𝑈 achieves the constant

S(𝑠,𝑁), which is given in (28), and

𝑎
0
= ((

2𝛽

𝛼 + 𝛽
)

2

(
𝛽

𝛼
)

𝛽−2

)

1/2(𝛼+𝛽−2)

,

𝑏
0
= ((

2𝛼

𝛼 + 𝛽
)

2

(

𝛼

𝛽
)

𝛼−2

)

1/2(𝛼+𝛽−2)

.

(37)

As in [7, 9, 10] we shall introduce the following facts
which are essentials to prove the strong convergence of
{(𝑢

𝑛
, V
𝑛
)} in 𝐸𝑠

0
(C

Ω
). Among all the bubbles in (28), we can

choose the slowest concentration rate, denoted by 𝜎
𝑛
, which

concentrates in 𝑥
𝑛
the slowest rate.That is, the corresponding

𝜎 is the lowest order infinity among the ones appearing in the
bubbles. Note that the number of the bubbles in (𝑢

𝑛
, V
𝑛
) is

finite; we can always choose a constant 𝐶 > 0, independent
of 𝑛, such that the region,

A
1

𝑛
fl {𝑍 = (𝑥, 𝑦) : 𝑍

∈ (𝐵
(𝐶+5)𝜎

−1/2

𝑛

(𝑥
𝑛
, 0) \ 𝐵

𝐶𝜎
−1/2

𝑛

(𝑥
𝑛
, 0)) ∩C

Ω
} ,

(38)

does not contain any concentration point of (𝑢
𝑛
, V
𝑛
) for every

𝑛.We set two thinner subsets as follows:

A
2

𝑛
fl {𝑍 = (𝑥, 𝑦) : 𝑍

∈ (𝐵
(𝐶+4)𝜎

−1/2

𝑛

(𝑥
𝑛
, 0) \ 𝐵

(𝐶+1)𝜎
−1/2

𝑛

(𝑥
𝑛
, 0)) ∩C

Ω
} ,

A
3

𝑛
fl {𝑍 = (𝑥, 𝑦) : 𝑍

∈ (𝐵
(𝐶+3)𝜎

−1/2

𝑛

(𝑥
𝑛
, 0) \ 𝐵

(𝐶+2)𝜎
−1/2

𝑛

(𝑥
𝑛
, 0)) ∩C

Ω
} .

(39)

Then the following integral estimates hold (see
Propositions 4.1 and 4.2 in [10]).

Lemma 4. Let (𝑢
𝑛
, V
𝑛
)
𝑛≥1

be solution of (18) with 𝜀 = 𝜀
𝑛
→ 0.

Then, there exists a constant𝐶 > 0 independent of 𝑛, such that,
for all 𝑝 ≥ 1, one has

∫
A2
𝑛

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝑝

) 𝑑𝑥 𝑑𝑦 ≤ 𝐶𝜎
−(𝑁+2

∗

𝑠
)/2
∗

𝑠

𝑛
,

∫
A2
𝑛
∩{𝑦=0}

(
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝑝

) 𝑑𝑥 ≤ 𝐶𝜎
−𝑁/2

𝑛
.

(40)

Moreover, one has

∫
A3
𝑛

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) 𝑑𝑥 𝑑𝑦 ≤ 𝐶𝜎
−𝑁/2

∗

𝑠

𝑛
. (41)

Proof. For the proof of this lemma, we use inequality (25) and
we refer to [10, Propositions 4.1, 4.2].

Note that 𝑋 = (𝑥, 𝑦) ∈ R𝑁+1

+
, and we have the following

local Pohozaev identity.

Lemma 5. Let 𝛼
𝑛
= 𝛼 − 𝜀

𝑛
, 𝛽

𝑛
= 𝛽 − 𝜀

𝑛
, and 𝜀 = 𝜀

𝑛
→ 0 as

𝑛 → +∞ and 𝐵
𝑛
be any bounded set in C

Ω
.Then one has the

local Pohozaev identity on 𝐵
𝑛
⊂ C

Ω
associated for equations

of (18):

𝜀
𝑛
(𝑁 − 2𝑠)

2

𝑁 − 𝜀
𝑛
(𝑁 − 2𝑠)

∫
𝐵
𝑛
∩{𝑦=0}

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

𝑑𝑥

+ 𝑠∫
𝐵
𝑛
∩{𝑦=0}

(𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) 𝑑𝑥

= ∫
𝜕(𝐵
𝑛
∩{𝑦=0})

2

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

((𝑥 − 𝑥
0
)

⋅ ]) 𝑑𝜎 +
1

2
∫
𝜕(𝐵
𝑛
∩{𝑦=0})

(𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) ((𝑥 − 𝑥

0
)

⋅ ]) 𝑑𝜎 +
𝑁 − 2𝑠

2
∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(𝑢
𝑛

𝜕𝑢
𝑛

𝜕]

+ V
𝑛

𝜕V
𝑛

𝜕]
)𝑑𝜎 −

1

2

⋅ ∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑋 − 𝑧
0
)

⋅ ]) 𝑑𝜎

+ ∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ (𝑋 − 𝑧

0
))
𝜕𝑢

𝑛

𝜕]

+ (∇V
𝑛
⋅ (𝑋 − 𝑧

0
))
𝜕V

𝑛

𝜕]
)𝑑𝜎,

(42)

where ] is the outward unit normal to 𝜕𝐵
𝑛
and 𝑧

0
= (𝑥

0
, 0),

with 𝑥
0
being a point in R𝑁

.

Proof. Using the divergence theorem, we get

𝑁 − 2𝑠

2
∫
𝜕𝐵
𝑛

𝑦
1−2𝑠

(𝑢
𝑛

𝜕𝑢
𝑛

𝜕]
+ V

𝑛

𝜕V
𝑛

𝜕]
)𝑑𝜎 =

1

2
∫
𝜕𝐵
𝑛

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑋 − 𝑧
0
) ⋅ ]) 𝑑𝜎

− ∫
𝜕𝐵
𝑛

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ (𝑋 − 𝑧

0
))
𝜕𝑢

𝑛

𝜕]
+ (∇V

𝑛
⋅ (𝑋 − 𝑧

0
))
𝜕V

𝑛

𝜕]
)𝑑𝜎,

(43)
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where ] is the outward unit normal to 𝜕𝐵
𝑛
and 𝑧

0
= (𝑥

0
, 0),

with 𝑥
0
being a point in R𝑁.

Since (𝑢
𝑛
, V
𝑛
) is solution of (18), we have the following

equations:

𝑦
1−2𝑠

𝑢
𝑛

𝜕𝑢
𝑛

𝜕]
=

2𝛼
𝑛

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+ 𝜆𝑢
2

𝑛

on 𝑦 = 0,

𝑦
1−2𝑠V

𝑛

𝜕V
𝑛

𝜕]
=

2𝛽
𝑛

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+ 𝜇V2
𝑛

on 𝑦 = 0.
(44)

We obtain, from (43) and (44),

𝑁 − 2𝑠

2
∫
𝐵
𝑛
∩{𝑦=0}

(2
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+ 𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) 𝑑𝑥

+
𝑁 − 2𝑠

2
∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(𝑢
𝑛

𝜕𝑢
𝑛

𝜕]
+ V

𝑛

𝜕V
𝑛

𝜕]
)𝑑𝜎 =

1

2
∫
𝐵
𝑛
∩{𝑦=0}

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑥 − 𝑥
0
) ⋅ ]) 𝑑𝑥

+
1

2
∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) (𝑋 ⋅ ]) 𝑑𝜎 − ∫
𝐵
𝑛
∩{𝑦=0}

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ (𝑥 − 𝑥

0
))
𝜕𝑢

𝑛

𝜕]
+ (∇V

𝑛
⋅ (𝑥 − 𝑥

0
))
𝜕V

𝑛

𝜕]
)𝑑𝑥

− ∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ (𝑋 − 𝑧

0
))
𝜕𝑢

𝑛

𝜕]
+ (∇V

𝑛
⋅ (𝑋 − 𝑧

0
))
𝜕V

𝑛

𝜕]
)𝑑𝜎.

(45)

Noting that the dot product ((𝑥−𝑥
0
) ⋅]) = 0, on 𝐵

𝑛
∩{𝑦 = 0},

we obtain

1

2
∫
𝐵
𝑛
∩{𝑦=0}

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑥 − 𝑥
0
) ⋅ ]) 𝑑𝑥

= 0.

(46)

Moreover, we have

∫
𝐵
𝑛
∩{𝑦=0}

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ (𝑥 − 𝑥

0
))
𝜕𝑢

𝑛

𝜕]
+ (∇V

𝑛
⋅ (𝑥 − 𝑥

0
))
𝜕V

𝑛

𝜕]
)𝑑𝑥 = ∫

𝐵
𝑛
∩{𝑦=0}

(∇𝑢
𝑛
⋅ (𝑥 − 𝑥

0
))

⋅ (
2𝛼

𝑛

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+ 𝜆𝑢
2

𝑛
)𝑑𝑥 + ∫

𝐵
𝑛
∩{𝑦=0}

(∇V
𝑛
⋅ (𝑥 − 𝑥

0
)) (

2𝛽
𝑛

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+ 𝜇V2
𝑛
)𝑑𝑥

= ∫
𝐵
𝑛
∩{𝑦=0}

∇(
2

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+
1

2
(𝜆𝑢

2

𝑛
+ 𝜇V2

𝑛
)) ⋅ (𝑥 − 𝑥

0
) 𝑑𝑥

= −𝑁∫
𝐵
𝑛
∩{𝑦=0}

(
2

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+
1

2
(𝜆𝑢

2

𝑛
+ 𝜇V2

𝑛
)) 𝑑𝑥

+ ∫
𝜕(𝐵
𝑛
∩{𝑦=0})

(
2

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

+
1

2
(𝜆𝑢

2

𝑛
+ 𝜇V2

𝑛
)) ((𝑥 − 𝑥

0
) ⋅ ]) 𝑑𝜎.

(47)

Therefore, from (45), (46), and (47), we infer that (44) holds.

Proof of Proposition 2. Let (𝑢
𝑛
, V
𝑛
)
𝑛≥1

be a bounded sequence
in 𝐸𝑠

0
(C

Ω
) composed of solutions for (18). Thus, in order to

prove the 𝐸𝑠
0
(C

Ω
)-strong convergence in (36), we just need

to show that the bubbles (𝜎𝑖
𝑛
)
(𝑁−2𝑠)/2

𝑈(𝜎
𝑖

𝑛
(𝑥 − 𝑥

𝑖

𝑛
), 0) (1 ≤ 𝑖 ≤

𝑘) in (36) will not appear in the decomposition of 𝑢
𝑛
and V

𝑛
.

Since the proof is similar to that of Lemma 6.1 in [9], here
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we only give a sketch of it. From Lemma 5, for the solution
concentrating sequence (𝑢

𝑛
, V
𝑛
) of (18) with 𝜀 = 𝜀

𝑛
→ 0, we

have the local Pohozaev identity on

𝐵
𝑛
fl 𝐵

𝑡
𝑛
𝜎
−1/2

𝑛

((𝑥
𝑛
, 0)) ∩C

Ω
⊂ R

𝑁+1 (48)

4𝜀
𝑛
𝑁

2∗
𝑠
(2∗
𝑠
− 2𝜀

𝑛
)
∫
𝐵
𝑛
∩{𝑦=0}

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

𝑑𝑥

+ 𝑠∫
𝐵
𝑛
∩{𝑦=0}

(𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) 𝑑𝑥 =

2

𝛼
𝑛
+ 𝛽

𝑛

⋅ ∫
𝜕(𝐵
𝑛
∩{𝑦=0})

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

((𝑋 − 𝑧
0
) ⋅ ]) 𝑑𝜎 +

1

2

⋅ ∫
𝜕(𝐵
𝑛
∩{𝑦=0})

(𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) ((𝑋 − 𝑧

0
) ⋅ ]) 𝑑𝜎

+
𝑁 − 2𝑠

2
∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(𝑢
𝑛

𝜕𝑢
𝑛

𝜕]
+ V

𝑛

𝜕V
𝑛

𝜕]
)𝑑𝜎

−
1

2
∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑋 − 𝑧
0
)

⋅ ]) 𝑑𝜎

+ ∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕𝑢

𝑛

𝜕]

+ (∇V
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕V

𝑛

𝜕]
)𝑑𝜎,

(49)

where ] is the outward unit normal to 𝜕𝐵
𝑛
and 𝑧

0
= (𝑥

0
, 0),

𝑥
0
∈ R𝑁

.We decompose

𝜕𝐵
𝑛
∩ {𝑦 > 0} = 𝜕

𝑖
𝐵
𝑛
∪ 𝜕

𝑒
𝐵
𝑛
, (50)

where 𝜕
𝑖
𝐵
𝑛
fl 𝜕𝐵

𝑛
∩C

Ω
and 𝜕

𝑒
𝐵
𝑛
fl 𝐵

𝑛
∩ 𝜕

𝐿
C
Ω
.

We consider two different cases:

(i) 𝐵
𝑡
𝑛
𝜎
−1/2

𝑛

((𝑥
𝑛
, 0)) ∩ {0} ∩ (R𝑁+1

\C
Ω
) ̸= 0.

(ii) 𝐵
𝑡
𝑛
𝜎
−1/2

𝑛

((𝑥
𝑛
, 0)) ∩ {0} ⊂ C

Ω
.

In case (i), we take 𝑥
0
∈ R𝑁

\ Ω with |𝑥
0
− 𝑥

𝑛
| ≤ 2𝑡

𝑛
𝜎
−1/2

𝑛

and ] ⋅ (𝑋 − (𝑥
0
, 0)) ≤ 0 in 𝜕

𝑒
𝐵
𝑛
, where ] is the outward unit

normal to 𝜕
𝐿
C
Ω
.

Since (𝑢
𝑛
, V
𝑛
) = (0, 0) on 𝜕

𝐿
C
Ω
, we find

−
1

2
∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑋 − 𝑧
0
) ⋅ ]) 𝑑𝜎

+ ∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕𝑢

𝑛

𝜕]

+ (∇V
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕V

𝑛

𝜕]
)𝑑𝜎 =

1

2

⋅ ∫
𝜕𝐵
𝑛
∩{𝑦>0}

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑋 − 𝑧
0
)

⋅ ]) 𝑑𝜎 ≤ 0.

(51)

In case (ii), 𝜕
𝑒
𝐵
𝑛
= 0; we take a point 𝑥

0
= 𝑥

𝑛
.

Since (𝑢
𝑛
, V
𝑛
) = (0, 0) on 𝜕

𝐿
C
Ω
, and, for 𝑛 large enough

4𝜀
𝑛
𝑁/2

∗

𝑠
(2
∗

𝑠
− 2𝜀

𝑛
) > 0, we obtain

𝑠 ∫
𝐵
𝑛
∩{𝑦=0}

(𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) 𝑑𝑥 ≤ ∫

𝜕
𝑖
(𝐵
𝑛
∩{0})

2

𝛼
𝑛
+ 𝛽

𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛

⋅
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

((𝑋 − 𝑧
0
) ⋅ ]) 𝑑𝜎 +

1

2

⋅ ∫
(𝜕
𝑖
𝐵
𝑛
)∩{𝑦=0}

(𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) ((𝑋 − 𝑧

0
) ⋅ ]) 𝑑𝜎

+
𝑁 − 2𝑠

2
∫
𝜕
𝑖
𝐵
𝑛

𝑦
1−2𝑠

(𝑢
𝑛

𝜕𝑢
𝑛

𝜕]
+ V

𝑛

𝜕V
𝑛

𝜕]
)𝑑𝜎 −

1

2

⋅ ∫
𝜕
𝑖
𝐵
𝑛

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑋 − 𝑧
0
) ⋅ ]) 𝑑𝜎

+ ∫
𝜕
𝑖
𝐵
𝑛

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕𝑢

𝑛

𝜕]

+ (∇V
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕V

𝑛

𝜕]
)𝑑𝜎.

(52)

By assumption, 𝜆, 𝜇 ≥ 0 and 𝜆 + 𝜇 > 0; we may assume that
𝜆 > 0. Set 𝐵󸀠

𝑛
= 𝐵

𝜎
−1

𝑛

(𝑥
𝑛
, 0) ∩ C

Ω
. Recalling that, by (36), we

have the decomposition 𝑢
𝑛
= 𝑢

0

𝑛
+ 𝑢

1

𝑛
+ 𝑢

2

𝑛
, where 𝑢1

𝑛
= 𝑢

0
,

𝑢
2

𝑛
= 𝑎

−1

0
∑
𝑘

𝑗=1
(𝜎

𝑖

𝑛
)
(𝑁−2𝑠)/2

𝑈(𝜎
𝑖

𝑛
(𝑥−𝑥

𝑖

𝑛
), 0), and𝑢0

𝑛
= 𝑢

𝑛
−𝑢

1

𝑛
−𝑢

2

𝑛
.

‖𝑢
0

𝑛
‖
𝐸
𝑠

0
(C
Ω
)
→ 0 as 𝑛 → ∞. Then we deduce that, for 𝑛 large

enough, 𝐵󸀠
𝑛
⊂ 𝐵

𝑛

∫
𝐵
𝑛
∩{𝑦=0}

𝑢
2

𝑛
𝑑𝑥 ≥ ∫

𝐵
󸀠

𝑛
∩{𝑦=0}

𝑢
2

𝑛
𝑑𝑥

≥
1

2
∫
𝐵
󸀠

𝑛
∩{𝑦=0}

󵄨󵄨󵄨󵄨󵄨
𝑢
2

𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− 2∫
𝐵
󸀠

𝑛
∩{𝑦=0}

(
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑢
0

𝑛

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑥.

(53)

After a direct calculation, we have

∫
𝐵
󸀠

𝑛
∩{𝑦=0}

󵄨󵄨󵄨󵄨󵄨
𝑢
2

𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≥ 𝐶𝜎
−2𝑠

𝑛
,

∫
𝐵
󸀠

𝑛
∩{𝑦=0}

󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶𝜎
−𝑁

𝑛
,

(54)

∫
𝐵
󸀠

𝑛
∩{𝑦=0}

󵄨󵄨󵄨󵄨󵄨
𝑢
0

𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑢
0

𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
∗

𝑠 (Ω)

𝜎
−2𝑠

𝑛
. (55)

Note that ‖𝑢0
𝑛
‖
𝐸
𝑠

0
(C
Ω
)
→ 0, as 𝑛 → ∞. Inserting (54) into (53),

we get for 𝑛 large enough

∫
𝐵
𝑛
∩{𝑦=0}

𝜆𝑢
2

𝑛
𝑑𝑥 ≥ 𝐶𝜎

−2𝑠

𝑛
. (56)
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By the choice of 𝑧
0
= (𝑥

0
, 0), as in [10], we only need to

consider the right-hand side of (52) on 𝜕
𝑖
𝐵
𝑛
. By applying

Hölder inequality and using Lemma 4, we get
2

𝛼
𝑛
+ 𝛽

𝑛

∫
𝜕
𝑖
(𝐵
𝑛
∩{𝑦=0})

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽
𝑛

((𝑋 − 𝑧
0
) ⋅ ]) 𝑑𝜎 +

1

2

⋅ ∫
(𝜕
𝑖
𝐵
𝑛
)∩{𝑦=0}

(𝜆𝑢
2

𝑛
+ 𝜇V2

𝑛
) ((𝑋 − 𝑧

0
) ⋅ ]) 𝑑𝜎

+
𝑁 − 2𝑠

2
∫
𝜕
𝑖
𝐵
𝑛

𝑦
1−2𝑠

(𝑢
𝑛

𝜕𝑢
𝑛

𝜕]
+ V

𝑛

𝜕V
𝑛

𝜕]
)𝑑𝜎 −

1

2

⋅ ∫
𝜕
𝑖
𝐵
𝑛

𝑦
1−2𝑠

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) ((𝑋 − 𝑧
0
) ⋅ ]) 𝑑𝜎

+ ∫
𝜕
𝑖
𝐵
𝑛

𝑦
1−2𝑠

((∇𝑢
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕𝑢

𝑛

𝜕]

+ (∇V
𝑛
⋅ 𝑋 − 𝑧

0
)
𝜕V

𝑛

𝜕]
)𝑑𝜎

≤ 𝐶𝜎
−1/2

𝑛
(∫

𝜕
𝑖
(𝐵
𝑛
∩{𝑦=0})

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
+𝛽
𝑛

𝑑𝜎)

𝛼
𝑛
/(𝛼
𝑛
+𝛽
𝑛
)

⋅ (∫
𝜕
𝑖
(𝐵
𝑛
∩{𝑦=0})

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛼
𝑛
+𝛽
𝑛

𝑑𝜎)

𝛽
𝑛
/(𝛼
𝑛
+𝛽
𝑛
)

+ ∫
𝜕
𝑖
(𝐵
𝑛
∩{𝑦=0})

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨𝑥 − 𝑥0

󵄨󵄨󵄨󵄨 𝑑𝜎

+ (∫
𝜕
𝑖
(𝐵
𝑛
∩{𝑦=0})

(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

) 𝑑𝜎)

1/2

⋅ (∫
𝜕
𝑖
(𝐵
𝑛
∩{𝑦=0})

(
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

2

) 𝑑𝜎)

1/2

≤ 𝐶𝜎
−(𝑁−2𝑠)/2

𝑛
.

(57)

Inserting (56) and (57) into (52), we obtain

𝜎
−2𝑠

𝑛
≤ 𝐶𝜎

−(𝑁−2𝑠)/2

𝑛
, (58)

which is a contradiction for 𝑛 large enough due to 𝑁 > 6𝑠.

4. Proof of Theorem 1
For any positive integer 𝑘, define the 𝑍

2
-homotopy class F

𝑘

as follows:
F

𝑘
fl {𝐴 : 𝐴

⊂ 𝐸
𝑠

0
(C

Ω
) is compact, 𝑍

2
-invariant, 𝛾 (𝐴) ≥ 𝑘} ,

(59)

where the genus 𝛾(𝐴) is the smallest integer 𝑚, such that
there exists an odd map 𝜙 ∈ C(𝐴,R𝑚

\ {0}). For 𝑘 = 1, 2, . . .,
we define the min–max value as (e.g., see p. 134 in [26])

𝑐
𝑘,𝜀
= min
𝐴∈F
𝑘

max
(𝑢,V)∈𝐴

𝐼
𝜀

𝜆,𝜇
(𝑢, V) . (60)

It follows from Corollary 7.12 in [26] that, for each small
𝜀 > 0, 𝑐

𝑘,𝜀
is critical value of 𝐼𝜀

𝜆,𝜇
, since 𝐼𝜀

𝜆,𝜇
satisfies the Palais-

Smale condition. Thus problem (18) has a solution (𝑢
𝑘,𝜀
, V
𝑘,𝜀
)

such that 𝐼𝜀
𝜆,𝜇
(𝑢

𝑘,𝜀
, V
𝑘,𝜀
) = 𝑐

𝑘,𝜀
. Note that 𝐼𝜀

𝜆,𝜇
(𝑡𝑢

𝑘,𝜀
, 𝑡V

𝑘,𝜀
) →

−∞ uniformly with respect to 𝜀 > 0 as 𝑡 → +∞; hence, 𝑐
𝑘,𝜀

is uniformly bounded with respect to 𝜀 for each fixed 𝑘. By
a direct calculation, we find ‖(𝑢

𝑘,𝜀
, V
𝑘,𝜀
)‖
𝐸
𝑠

0
(C
Ω
)
≤ 𝐶 uniformly

with respect to 𝜀 for each fixed 𝑘. So now, we can apply Propo-
sition 2 and obtain a subsequence of (𝑢

𝑘,𝜀
𝑛

, V
𝑘,𝜀
𝑛

)
𝑛≥1

, such that,
as 𝑛 → +∞, (𝑢

𝑘,𝜀
𝑛

, V
𝑘,𝜀
𝑛

) → (𝑢
𝑘
, V
𝑘
) strongly in 𝐸𝑠

0
(C

Ω
) for

some (𝑢
𝑘
, V
𝑘
) and 𝑐

𝑘,𝜀
𝑛

→ 𝑐
𝑘
.Then (𝑢

𝑘
, V
𝑘
) is solution of (1)

and 𝐼
𝜆,𝜇
(𝑢

𝑘
, V
𝑘
) = 𝑐

𝑘
. We are now ready to show that 𝐼

𝜆,𝜇

has infinitely many critical point solutions. Note that 𝑐
𝑘
is

nondecreasing in 𝑘. By an argument similar to the one used
in the proof of Theorem 1.1 in [9] we distinguish two cases.

Case 1. Suppose that there are 1 < 𝑘
1
< ⋅ ⋅ ⋅ 𝑘

𝑖
< ⋅ ⋅ ⋅, satisfying

𝑐
𝑘
1

< ⋅ ⋅ ⋅ < 𝑐
𝑘
𝑖

< ⋅ ⋅ ⋅ . (61)

In this case, we have infinitely many distinct critical points
and, therefore, infinitely many solutions.

Case 2. We assume, in this case, that for some positive integer
𝑚, 𝑐

𝑘
= 𝑐 for all 𝑘 ≥ 𝑚. Suppose that, for any 𝛿 > 0, 𝐼

𝜆,𝜇

has a critical point (𝑢, V) with 𝐼
𝜆,𝜇
(𝑢, V) ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) and

𝐼
𝜆,𝜇
(𝑢, V) ̸= 𝑐. In this case, we are done. So from now on we

assume that there exists 𝛿 > 0 such that 𝐼
𝜆,𝜇

has no critical
point (𝑢, V) with 𝐼

𝜆,𝜇
(𝑢, V) ∈ (𝑐 − 𝛿, 𝑐) ∪ (𝑐, 𝑐 + 𝛿). In this case,

using the deformation argument, we can prove that
𝛾 (𝐾

𝑐
) ≥ 2, (62)

where 𝐾
𝑐
= {(𝑢, V) ∈ 𝑋 : 𝐼

𝜆,𝜇
(𝑢, V) = 𝑐, 𝐼󸀠

𝜆,𝜇
(𝑢, V) = 0}. As a

consequence, 𝐼
𝜆,𝜇

has infinitely many critical points. Thus we
can obtain infinitely many solutions for problem (1).

Appendix

In this section, we give a global compactness result in the
following proposition.

Proposition 6. Suppose that (𝑢
𝑛
, V
𝑛
)
𝑛≥1

is a solution of (18)
with 𝜀 = 𝜀

𝑛
→ 0, satisfying ‖(𝑢

𝑛
, V
𝑛
)‖
𝐸
𝑠

0
(C
Ω
)
≤ 𝐶 for that 𝐶 is

the constant independent of 𝑛. Then
(i) (𝑢

𝑛
, V
𝑛
) can be decomposed as

𝑢
𝑛
= 𝑢

0
+ 𝑎

−1

0

𝑘

∑

𝑖=1

(𝜎
𝑖

𝑛
)
(𝑁−2𝑠)/2

𝑈(𝜎
𝑖

𝑛
(𝑥 − 𝑥

𝑖

𝑛
) , 0)

+ 𝜔
1

𝑛
,

V
𝑛
= V

0
+ 𝑏

−1

0

𝑘

∑

𝑖=1

(𝜎
𝑖

𝑛
)
(𝑁−2𝑠)/2

𝑈(𝜎
𝑖

𝑛
(𝑥 − 𝑥

𝑖

𝑛
) , 0)

+ 𝜔
2

𝑛
,

(A.1)

where (𝑢
0
, V
0
) ∈ 𝐸

𝑠

0
(C

Ω
) is a weak solution of problem

(12),
‖(𝜔

1

𝑛
, 𝜔

2

𝑛
)‖
𝐸
𝑠

0
(C
Ω
)
→ 0, as 𝑛 → +∞,𝑈 achieves the

constant S(𝑠,𝑁), which is given in (28); and

𝑎
0
= ((

2𝛽

𝛼 + 𝛽
)

2

(
𝛽

𝛼
)

𝛽−2

)

1/2(𝛼+𝛽−2)

,

𝑏
0
= ((

2𝛼

𝛼 + 𝛽
)

2

(

𝛼

𝛽
)

𝛼−2

)

1/2(𝛼+𝛽−2)

,

(A.2)
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for 𝑖 = 1, . . . , 𝑘, 𝑥
𝑛,𝑖
∈ Ω with 𝜎𝑖

𝑛
𝑑(𝑥

𝑛,𝑖
, 𝜕Ω) → +∞,

𝜎
𝑖

𝑛
|𝑥
𝑛,𝑖
| → +∞;

(ii) for 𝑖, 𝑗 = 1, . . . , 𝑘, if 𝑖 ̸= 𝑗, then, as 𝑛 → +∞,

𝜎
𝑗

𝑛

𝜎𝑖
𝑛

+
𝜎
𝑖

𝑛

𝜎
𝑗

𝑛

+ 𝜎
𝑖

𝑛
𝜎
𝑗

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑛,𝑖
− 𝑥

𝑛,𝑗

󵄨󵄨󵄨󵄨󵄨

2

󳨀→ +∞. (A.3)

Proof. The proof follows without difficulty by modifying the
proof of the concentration compactness result for (2) (see [10,
15]) and using Lemma 3. We omit the details for the sake of
simplicity.
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