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By making use of the concept of 𝑞-calculus, various types of generalized starlike functions of order 𝛼 were introduced and studied
from different viewpoints. In this paper, we investigate the relation between various former types of 𝑞-starlike functions of order 𝛼.
We also introduce and study a new subclass of 𝑞-starlike functions of order 𝛼. Moreover, we give some properties of those 𝑞-starlike
functions with negative coefficient including the radius of univalency and starlikeness. Some illustrative examples are provided to
verify the theoretical results in case of negative coefficient functions class.

1. Introduction and Preliminaries

The quantum calculus, so called 𝑞-calculus and ℎ-calculus,
is the usual calculus without using the notion of limits. The
letter ℎ apparently stands for Planck’s constant and the letter
𝑞 obviously stands for quantum. Here, quantum calculus is
not the same as quantum physics. Due to the applications
in various fields of mathematics and physics, the study of
𝑞-calculus has been very attractive for many researchers.
Jackson [1, 2] was the first person in developing a 𝑞-
derivative, also a 𝑞-integral, in a systematic mean. Afterward
on quantum groups, the geometrical interpretation of 𝑞-
analysis has been studied. The relation between 𝑞-analysis
and integrable systems has been recognized. Based on 𝑞-
analogue of beta function, Aral and Gupta [3–5] defined
and studied the 𝑞-analogue of BaskakovDurrmeyer operator.
Also, there are some discussions on 𝑞-Picard and 𝑞-Gauss-
Weierstrass singular integral operators which are the other
important 𝑞-generalization of complex operators (see [6–8]).

In geometric function theory, there aremany applications
of 𝑞-calculus on subclasses of analytic functions, especially
subclasses of univalent functions. In [9], Ismail et al. first
introduced the class of generalized functions via 𝑞-calculus.
In [10], Raghavendar and Swaminathan have studied some

basic properties of 𝑞-close-to-convex functions. In [11],
Mohammed and Darus studied geometric properties and
approximations of these 𝑞-operators in some subclasses of
analytic functions in the disk. By using the convolution of
normalized analytic functions and 𝑞-hypergeometric func-
tions, these 𝑞-operators have been defined. The inclusive
study on applications of 𝑞-calculus in operator theory could
be seen in [12]. Recently, Esra Özkan Uçar [13] studied
the coefficient inequality for 𝑞-closed-to-convex functions
with respect to Janowski starlike functions. Here, many
newsworthy results related to 𝑞-calculus and subclasses of
analytic functions theory are studied by various authors (see
[14–21]).

Let D
𝑟
= {𝑧 ∈ C : |𝑧| < 𝑟} be the open disk radius 𝑟

centered at origin and the open unit disk is then defined by
D ≡ D

1
. We denoteA by the class of functions 𝑓 in the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑎
𝑘
𝑧
𝑘

(𝑧 ∈ D) , (1)

which is analytic in D and satisfying the usual normalization
condition 𝑓(0) = 𝑓󸀠(0) − 1 = 0. We denote by S the subclass
of A consisting of functions, which are univalent on D. A
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function 𝑓 ∈ A is said to be starlike of order 𝛼 (0 ≤ 𝛼 < 1)
in D if 𝑓 satisfies

Re{
𝑧𝑓
󸀠

(𝑧)

𝑓 (𝑧)
} > 𝛼 (𝑧 ∈ D) . (2)

We denote this class by S∗(𝛼). In particular, we set S∗(0) ≡
S∗ for a class of starlike functions on D. Class S∗

𝛼
is closely

related to class S∗(𝛼). A function 𝑓 ∈ A is said to belong to
class S∗

𝛼
if 𝑓 satisfies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑓
󸀠

(𝑧)

𝑓 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1 − 𝛼 (𝑧 ∈ D) . (3)

For the convenience, we provide some basic definitions
and concept details of 𝑞-calculus which are used in this paper.
For any fixed complex number 𝜇, a set 𝐴 ⊂ C is called a 𝜇-
geometric set if for 𝑧 ∈ 𝐴, 𝜇𝑧 ∈ 𝐴. Let𝑓 be a function defined
on a 𝑞-geometric set. Jackson’s 𝑞-derivative and 𝑞-integral of
a function on a subset of C are, respectively, given by (see
Gasper and Rahman [22], pp. 19–22)

𝐷
𝑞
𝑓 (𝑧) =

𝑓 (𝑧) − 𝑓 (𝑧𝑞)

𝑧 (1 − 𝑞)
, (𝑧 ̸= 0, 𝑞 ̸= 0) ,

∫

𝑧

0

𝑓 (𝑡) 𝑑
𝑞
𝑡 = 𝑧 (1 − 𝑞)

∞

∑

𝑘=0

𝑞
𝑘

𝑓 (𝑧𝑞
𝑘

) .

(4)

In case 𝑓(𝑧) = 𝑧𝑛, the 𝑞-derivative and 𝑞-integral of 𝑓(𝑧),
where 𝑛 is a positive integer, are given by

𝐷
𝑞
𝑧
𝑛

=
𝑧
𝑛

− (𝑧𝑞)
𝑛

(1 − 𝑞) 𝑧
= [𝑛]
𝑞
𝑧
𝑛−1

,

∫

𝑧

0

𝑡
𝑛

𝑑
𝑞
𝑡 = 𝑧 (1 − 𝑞)

∞

∑

𝑘=0

𝑞
𝑘

(𝑧𝑞
𝑘

)
𝑛

=
𝑧
𝑛+1

[𝑛 + 1]
𝑞

.

(5)

As 𝑞 → 1− and 𝑛 ∈ N, we have [𝑛]
𝑞
= (1 − 𝑞

𝑛

)/(1 − 𝑞) =

1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞
𝑛−1

→ 𝑛.
To generalize the class of starlike functions, it seems that

replacing the derivative function 𝑓󸀠, which appears in (2), by
the 𝑞-difference operator𝐷

𝑞
is an easily way to generalize the

class of starlike functions.The definition turned out to be the
following.

Definition 1. A function 𝑓 ∈ A is said to belong to class
S∗
𝑞,1
(𝛼), 0 ≤ 𝛼 < 1, if

Re{
𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
} > 𝛼 (𝑧 ∈ D) . (6)

To put it in words, we call S∗
𝑞,1
(𝛼) the class of 𝑞-starlike

functions of order 𝛼 type 1.

Now we recall another way to generalize the class of
starlike functions proposed by Ismail et al. [9]. In their works,
the usual derivative was replaced by the 𝑞-difference operator
𝐷
𝑞
. Moreover, the right-half plane {𝑤 : Re𝑤 > 𝛼} was

substituted by an appropriate domain. Later, Agrawal and
Sahoo in [14] extended the ideas in [9] to 𝑞-starlike function
of order 𝛼.Then the definition turned out to be the following.

Definition 2. A function 𝑓 ∈ A is said to belong to class
S∗
𝑞,2
(𝛼), 0 ≤ 𝛼 < 1, if

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧 (𝐷
𝑞
𝑓 (𝑧)) /𝑓 (𝑧) − 𝛼

1 − 𝛼
−
1

1 − 𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
1

1 − 𝑞
(𝑧 ∈ D) . (7)

To put it in words, we call S∗
𝑞,2
(𝛼) the class of 𝑞-starlike

functions of order 𝛼 type 2.

In addition, we now introduce new type of 𝑞-starlike
functions.

Definition 3. A function 𝑓 ∈ A is said to belong to class
S∗
𝑞,3
(𝛼), 0 ≤ 𝛼 < 1, if

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧 (𝐷
𝑞
𝑓 (𝑧))

𝑓 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1 − 𝛼 (𝑧 ∈ D) . (8)

To put it in words, we call S∗
𝑞,3
(𝛼) the class of 𝑞-starlike

functions of order 𝛼 type 3.

The main objective of this paper is to characterize in 4
sections. In Section 2, we give some relations between such
classes and a sufficient condition via coefficient inequality.
In Section 3, we study some properties of those 𝑞-starlike
functions of order 𝛼 with negative coefficient. Here, some
results on the radius of univalent and starlikeness order 𝛼 on
the class of 𝑞-starlike functions with negative coefficient are
obtained. Some illustrative examples of radius of univalent
and starlikeness on some functions with negative coefficient
are demonstrated in Section 4.

2. Main Results

We first show the inclusion theorem via geometric properties
of each type of 𝑞-starlike functions.

Theorem 4. For 0 < 𝛼 < 1, then

S
∗

𝑞,3
(𝛼) ⊂ S

∗

𝑞,2
(𝛼) ⊂ S

∗

𝑞,1
(𝛼) . (9)

Proof. Assuming that 𝑓 ∈ S∗
𝑞,3
(𝛼), by using triangle inequal-

ity and (8), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧 (𝐷
𝑞
𝑓 (𝑧)) /𝑓 (𝑧) − 𝛼

1 − 𝛼
−
1

1 − 𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1

1 − 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
− 𝛼 −

1 − 𝛼

1 − 𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

1 − 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
𝑞

1 − 𝑞
≤ 1 +

𝑞

1 − 𝑞

fl
1

1 − 𝑞
.

(10)
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Figure 1: Boundary of each domain.

Then 𝑓 ∈ S∗
𝑞,2
(𝛼); that is, S∗

𝑞,3
(𝛼) ⊂ S∗

𝑞,2
(𝛼). Next, we let

𝑓 ∈ S∗
𝑞,2
(𝛼). Since

𝑓 ∈ S
∗

𝑞,2
(𝛼) ⇐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
−
1 − 𝛼𝑞

1 − 𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
1 − 𝛼

1 − 𝑞
, (11)

that is, 𝑧𝐷
𝑞
𝑓(𝑧)/𝑓(𝑧) lies in the circle of radius (1−𝛼)/(1−𝑞)

with a center at (1 − 𝛼𝑞)/(1 − 𝑞), and we observe that

1 − 𝛼𝑞

1 − 𝑞
−
1 − 𝛼

1 − 𝑞
= 𝛼, (12)

which means that Re{𝑧𝐷
𝑞
𝑓(𝑧)/𝑓(𝑧)} > 𝛼, then 𝑓 ∈ S∗

𝑞,1
(𝛼);

that is, S∗
𝑞,2
(𝛼) ⊂ S∗

𝑞,1
(𝛼). This completes the proof.

Geometrically, for 𝑓 ∈ S∗
𝑞,𝑘
(𝛼), 𝑘 = 1, 2, 3, 𝑧𝐷

𝑞
𝑓(𝑧)/𝑓(𝑧)

lied in the difference domains:

Ω
1
= {𝑤 ∈ C : Re𝑤 > 𝛼} ,

Ω
2
= {𝑤 ∈ C :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤 −
1 − 𝛼𝑞

1 − 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<
1 − 𝛼

1 − 𝑞
} ,

Ω
1
= {𝑤 ∈ C : |𝑤 − 1| < 1 − 𝛼} ,

(13)

respectively; see Figure 1.
The next result is directly obtained by using Theorem 4

and the result in [14].

Corollary 5. Classes S∗
𝑞,1
(𝛼), S∗

𝑞,2
(𝛼), and S∗

𝑞,3
(𝛼) satisfy the

following properties:

⋂

0<𝑞<1

S
∗

𝑞,1
(𝛼) = ⋂

0<𝑞<1

S
∗

𝑞,2
(𝛼) = S

∗

(𝛼) ,

⋂

0<𝑞<1

S
∗

𝑞,1
(𝛼) = ⋂

0<𝑞<1

S
∗

𝑞,3
(𝛼) ⊂ S

∗

(𝛼) .

(14)

Next, we give a sufficient condition of S∗
𝑞,3

via coefficient
inequality which guarantees a sufficient condition for S∗

𝑞,1

and S∗
𝑞,2
.

Theorem 6. If 𝑓 ∈ A satisfies the inequality
∞

∑

𝑘=2

([𝑘]
𝑞
− 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼, (15)

then 𝑓(𝑧) is a 𝑞-starlike function of order 𝛼 type 3; that is, 𝑓 ∈
S∗
𝑞,3
(𝛼).

Proof. Suppose that inequality (15) holds. We obtain
󵄨󵄨󵄨󵄨󵄨
𝑧𝐷
𝑞
𝑓 (𝑧) − 𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨
− (1 − 𝛼)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=2

([𝑘]
𝑞
− 1) 𝑎

𝑘
𝑧
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− (1 − 𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧 +

∞

∑

𝑘=2

𝑎
𝑘
𝑧
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=2

([𝑘]
𝑞
− 1)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 − (1 − 𝛼)(1 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨)

=

∞

∑

𝑘=2

([𝑘]
𝑞
− 1)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 − (1 − 𝛼) .

(16)

Then 𝑓 ∈ S∗
𝑞,3
(𝛼) as desired.

Remark 7. In Theorem 6, if 𝑞 → 1−, we obtain Theorem 1 in
[23].

3. Functions with Negative Coefficients

Now, we introduce new subclasses of 𝑞-starlike functions
with negative coefficients. LetT be a subset ofA containing
negative coefficient functions; that is,

𝑓 (𝑧) = 𝑧 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘

. (17)

Next, we let

TS
∗

𝑞,𝑘
(𝛼) ≡ S

∗

𝑞,𝑘
(𝛼) ∩T, 𝑘 = 1, 2, 3. (18)

Theorem 8. For 0 < 𝛼 < 1, then

TS
∗

𝑞,1
(𝛼) ≡ TS

∗

𝑞,2
(𝛼) ≡ TS

∗

𝑞,3
(𝛼) . (19)

Proof. By using Theorem 4, it is sufficient to show that
TS∗
𝑞,1
(𝛼) ⊂ TS∗

𝑞,3
(𝛼). Assuming that𝑓 ∈ TS∗

𝑞,1
(𝛼), we have

Re{
𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
} = Re{

1 − ∑
∞

𝑘=2
[𝑘]
𝑞

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1

1 − ∑
∞

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1

}

> 𝛼.

(20)

Take 𝑧 on the real axis so that the value of 𝑧𝐷
𝑞
𝑓(𝑧)/𝑓(𝑧) is

real. Letting 𝑧 approach 1− on the real line, we have

1 −

∞

∑

𝑘=2

[𝑘]
𝑞

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 > 𝛼(1 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨) , (21)
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which satisfies (15). Theorem 6 implies the proof of this
theorem.

By using the result of Theorem 8, all types of 𝑞-starlike
functions are exactly the same. For convenience, we intro-
duce a new notation for each class of 𝑞-starlike functions
TS∗
𝑞,𝑘
(𝛼) ≡ TS∗

𝑞
(𝛼), for 𝑘 = 1, 2, and 3.

By usingTheorem 6, it is easy to see that function

𝑓
0
(𝑧) = 𝑧 −

1 − 𝛼 − 𝜖

[𝑛]
𝑞
− 𝛼
𝑧
𝑛

∈ TS
∗

𝑞
(𝛼) , (22)

where 0 < 𝜖 < (𝑛(1−𝛼)−[𝑛]
𝑞
+𝛼)/𝑛 and [𝑛]

𝑞
−𝛼 < 𝑛(1−𝛼−𝜖),

but 𝑓󸀠
0
(𝑧) = 0 at 𝑧

0
= [([𝑛]

𝑞
−𝛼)/𝑛(1−𝛼−𝜖)]

1/𝑛

(cos(2𝑘𝜋/𝑛)+
𝑖 sin(2𝑘𝜋/𝑛)) ∈ D. That is, 𝑓

0
(𝑧) ∉ S and also 𝑓

0
(𝑧) ∉ S∗(𝛼).

So, it is interesting to study the radius of univalency and
starlikeness of classTS∗

𝑞
(𝛼).

Lemma 9 is required to prove the radius of univalency
and starlikeness. By using the same techniques of Theorem 1
in [24] andTheorem 1 in [25], we can easily prove Lemma 9.
So, the proof is omitted.

Lemma 9. If 𝑓 ∈ T, then 𝑓 is univalent on D
𝑟
if and only if

𝑓 is starlike on D
𝑟
.

Theorem 10. If 𝑓 ∈ TS∗
𝑞
(𝛼) then 𝑓 is univalent and starlike

in |𝑧| < 𝑟
0
, where

𝑟
0
= min
2≤𝑘≤𝑀0

[
[𝑘]
𝑞
− 𝛼

𝑘 (1 − 𝛼)
]

1/(𝑘−1)

, (23)

and𝑀
0
satisfies𝑀

0
> 𝑒
1+| ln((1−𝑞)(1−𝛼)/(𝑞+(1−𝑞)(1−𝛼)))|.

Proof. To prove this, we need to find 0 < 𝑟
0
≤ 1 such that

Re{𝑓󸀠(𝑧)} > 0 on D
𝑟0
, where D

𝑟0
= {𝑧 ∈ C : |𝑧| < 𝑟

0
} due to

the following formula:

Re{
𝑓 (𝑧
1
) − 𝑓 (𝑧

2
)

𝑧
1
− 𝑧
2

}

= ∫

1

0

Re {𝑓󸀠 (𝑧
1
+ 𝑡 (𝑧
2
− 𝑧
1
))} 𝑑𝑡,

(24)

which implies the univalency. Consider

Re {𝑓󸀠 (𝑧)} = Re{1 −
∞

∑

𝑘=2

𝑘
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1

}

> 1 −

∞

∑

𝑘=2

𝑘
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑟
𝑘−1

0
,

(25)

for all |𝑧| < 𝑟
0
. By the application of Theorem 6 and (25), the

inequality Re{𝑓󸀠(𝑧)} > 0 holds on D
𝑟0
, where

𝑟
0
= inf
𝑘≥2

[
[𝑘]
𝑞
− 𝛼

𝑘 (1 − 𝛼)
]

1/(𝑘−1)

. (26)

Next, we need to find 𝑀
0
∈ N satisfying (23). Let 𝑓 :

[2,∞) → R+ be the function defined by

𝑓 (𝑥) = [
[𝑥]
𝑞
− 𝛼

𝑥 (1 − 𝛼)
]

1/(𝑥−1)

. (27)

Differentiating on both sides of (27) logarithmically, we have

𝑓
󸀠

(𝑥) =
𝑓 (𝑥)

(𝑥 − 1)
2
[ln𝑥 −

(𝑥 − 1) 𝑞
𝑥 ln 𝑞

𝑞 + 𝐴 − 𝑞𝑥

+ ln 𝐴

𝑞 + 𝐴 − 𝑞𝑥
−
𝑥 − 1

𝑥
] ,

(28)

where𝐴 = (1−𝑞)(1−𝛼). It is easy to see that the second term
of (28) is positive. Since

sup
𝑥≥2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln 𝐴

𝑞 + 𝐴 − 𝑞𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln 𝐴

𝑞 + 𝐴

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

sup
𝑥≥2

𝑥 − 1

𝑥
= 1,

(29)

then the third and the last term in (28) can be dominated
by ln𝑥 when 𝑥 is sufficiently large. That implies that 𝑓 is an
increasing function on [𝑀

0
,∞], where𝑀

0
> 𝑒
1+| ln(𝐴/(𝑞+𝐴))|.

Therefore, the radius of univalency can be defined by

𝑟
0
= inf
𝑘≥2

[
[𝑘]
𝑞
− 𝛼

𝑘 (1 − 𝛼)
]

1/(𝑘−1)

= min
2≤𝑘≤𝑀0

[
[𝑘]
𝑞
− 𝛼

𝑘 (1 − 𝛼)
]

1/(𝑘−1)

.

(30)

Finally, we complete the proof of this theorem by applying
Lemma 9 to obtain the radius of starlikeness.

Theorem 11 guarantees the radius of starlike function of
order 𝛼.

Theorem 11. If 𝑓 ∈ TS∗
𝑞
(𝛼) then 𝑓 is starlike order 𝛼 in |𝑧| <

𝑟
1
, where

𝑟
1
= min
2≤𝑘≤𝑀1

[
[𝑘]
𝑞
− 𝛼

𝑘 − 𝛼
]

1/(𝑘−1)

, (31)

and𝑀
1
satisfies𝑀

1
> 𝑒
1+| ln((1−𝑞)/(1−𝛼(1−𝑞)))|.

Proof. We have to show that |𝑧𝑓󸀠(𝑧)/𝑧 − 1| < 1 − 𝛼. That is,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑓
󸀠

(𝑧)

𝑓 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
∞

𝑘=2
(𝑘 − 1)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1

1 − ∑
∞

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
∑
∞

𝑘=2
(𝑘 − 1)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−1

1 − ∑
∞

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−1

≤ 1 − 𝛼.

(32)

Hence, (32) is true if
∞

∑

𝑘=2

(𝑘 − 𝛼)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−1

≤ 1 − 𝛼. (33)
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Figure 2: The image of 𝜕D
𝑟
with maximum circumferences 𝑟 = 0.875 (a) and 𝑟 = 1 (b) on the polynomial 𝑓

0
(𝑧) defined in (36).

By an application of Theorem 6, the above inequality holds
on D
𝑟1
, where

𝑟
1
= inf
𝑘≥2

[
[𝑘]
𝑞
− 𝛼

𝑘 − 𝛼
]

1/(𝑘−1)

. (34)

Finally, by using the same technique of Theorem 10, we
obtain that function 𝑓(𝑥) = [([𝑘]

𝑞
− 𝛼)/(𝑘 − 𝛼)]

1/(𝑘−1) is an
increasing function on [𝑀

1
,∞), where 𝑀

1
satisfies 𝑀

1
>

𝑒
1+| ln((1−𝑞)/(1−𝛼(1−𝑞)))|. This completes the proof.

4. Examples and Applications

In this section, we give some examples to verify the radius of
univalency and starlikeness obtained byTheorems 10 and 11.

Example 1. Consider classTS∗
𝑞
with 𝑞 = 0.75.

ByTheorem 10, we obtain the radius of univalency of class
TS∗
𝑞
given by

𝑟
0
= min
2≤𝑘≤𝑒

⌈1+| ln 0.25|⌉
[
[𝑘]
0.75

𝑘
]

1/(𝑘−1)
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Figure 3: The image of 𝜕D
𝑟
with maximum circumferences 𝑟 = 0.884 under the polynomial 𝑓

0
(𝑧) defined in (37).

= min
2≤𝑘≤11

[
[𝑘]
0.75

𝑘
]

1/(𝑘−1)

= 0.875.

(35)

Now, we consider the sharpness example function 𝑓
0
(𝑧)

defined in (22) with 𝑛 = 2 and 𝜖 = 0.001; that is,

𝑓
0
(𝑧) = 𝑧 −

0.999

1.75
𝑧
2

. (36)

Obviously, 𝑓
𝑧
(𝑧) is locally univalent on D

0.875
because

𝑓
󸀠

(𝑧
0
) = 0 at 𝑧

0
≈ 0.87587 . . . outside the open diskD

0.875
. By

applying Theorem 10, function 𝑓
0
(𝑧) is univalent on D

0.875
.

Moreover, Figure 2 shows the image of 𝜕D
𝑟
with maximum

circumferences 𝑟 = 0.875 and 𝑟 = 1. Figure 2(a) demonstrates
that function 𝑓

0
(𝑧) is a univalent and starlike function on

D
0.875

. On the other hand, 𝑓
0
(𝑧) is not a univalent on D (see

Figure 2(b)).
Another example is in case 𝑛 = 5 with 𝜖 = 0.001; that is,

𝑓
0
(𝑧) = 𝑧 −

0.999

[5]
0.75

𝑧
5

. (37)

We see that 𝑓 is not locally univalent at 𝑧
0

=

[5]
0.75
/4.995

1/4

(cos(𝑘𝜋/2) + 𝑖 sin(𝑘𝜋/2)), for 𝑘 = 0, 1, 2, 3
with |𝑧

0
| = 0.88403 . . .. Figure 3 shows that function 𝑓

0

defined in (37) is univalent and starlike on 𝐷
0.88403

which
contains the open disk D

0.875
from Theorem 10. That is,

the example shows that radius 𝑟
0
in Theorem 10 is only the

sufficient condition for univalency and starlikeness but it
is not necessary condition due to function 𝑓

0
(𝑧) defined in

(37).
The next example is the class of 𝑞-starlike functions of

order 𝛼.

Example 2. Consider classTS∗
𝑞
(𝛼) with 𝑞 = 0.75.

In this example, we also set 𝑞 = 0.75. For 𝛼 = 0.5,
by Theorem 10, we obtain the radius of univalency of class
TS∗
𝑞
(0.5) given by

𝑟
0
= min
2≤𝑘≤𝑒

⌈1+| ln((1−𝑞)(1−𝛼)/(𝑞+(1−𝑞)(1−𝛼)))|⌉
[
[𝑘]
0.75

𝑘
]

1/(𝑘−1)

= min
2≤𝑘≤19

[
[𝑘]
0.75

𝑘
]

1/(𝑘−1)

≈ 0.94554.

(38)

However, function 𝑓
0
(𝑧) defined in (22) with 𝑛 = 2 and 𝜖 =

0.001, that is,

𝑓
0
(𝑧) = 𝑧 −

0.499

1.25
𝑧
2

, (39)

is locally univalent on D
1.2525

which contains the open disk
D
0.925

. Then it seems that function 𝑓
0
(𝑧) is univalent and

starlike on D as demonstrated by Figure 4(a). Also function
𝑓
0
(𝑧) defined in (22) with 𝑛 = 5 and 𝜖 = 0.001, that is,

𝑓
0
(𝑧) = 𝑧 −

0.499

[5]
0.75
− 0.5

𝑧
5

, (40)

is locally univalent onD
1.0055

and it seems that function𝑓
0
(𝑧)

is univalent and starlike onD as demonstrated by Figure 4(b).

Competing Interests

The authors declare that they have no conflict of interests.

Acknowledgments

This research was supported by Department of Mathematics,
Faculty of Science, Chiang Mai University.



Abstract and Applied Analysis 7

−2

Im

0.6 0.65 0.7
−0.05

0

0.05

−1.5 −1 −0.5 0 0.5 1
Re

−1.5

−1

−0.5

0

0.5

1.5

1

(a)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im

−1 −0.5 0 0.5 1
Re

0.8 0.85 0.9
−0.1

−0.05

0

0.05

0.1

(b)

Figure 4: The image of 𝜕D
𝑟
with maximum circumferences 𝑟 = 1.2525 (a) and 𝑟 = 1.005 (b) on the polynomial 𝑓

0
(𝑧) defined in (39) and

(40), respectively.

References

[1] F. H. Jackson, “On q-functions and a certain difference opera-
tor,” Transactions of the Royal Society of Edinburgh, vol. 46, no.
2, pp. 253–281, 1908.

[2] F. H. Jackson, “On 𝑞-definite integrals,” Quarterly Journal of
Pure and Applied Mathematics, vol. 41, pp. 193–203, 1910.

[3] A. Aral and V. Gupta, “On q-Baskakov type operators,”Demon-
stratio Mathematica, vol. 42, no. 1, pp. 109–122, 2009.

[4] A. Aral and V. Gupta, “On the Durrmeyer type modification
of the q-Baskakov type operators,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 72, no. 3-4, pp. 1171–1180, 2010.

[5] A. Aral and V. Gupta, “Generalized q-Baskakov operators,”
Mathematica Slovaca, vol. 61, no. 4, pp. 619–634, 2011.

[6] G. A. Anastassiou and S. G. Gal, “Geometric and approximation
properties of some singular integrals in the unit disk,” Journal
of Inequalities and Applications, vol. 2006, Article ID 17231, 19
pages, 2006.



8 Abstract and Applied Analysis

[7] G. A. Anastassiou and S. G. Gal, “Geometric and approximation
properties of generalized singular integrals in the unit disk,”
Journal of the Korean Mathematical Society, vol. 43, no. 2, pp.
425–443, 2006.

[8] A. Aral, “On the generalized Picard and Gauss Weierstrass
singular integrals,” Journal of Computational Analysis andAppli-
cations, vol. 8, no. 3, pp. 249–261, 2006.

[9] M. E. H. Ismail, E. Merkes, and D. Styer, “A generalization of
starlike functions,” Complex Variables, vol. 14, no. 1–4, pp. 77–
84, 1990.

[10] K. Raghavendar and A. Swaminathan, “Close-to-convexity of
basic hypergeometric functions using their Taylor coefficients,”
Journal of Mathematics and Applications, vol. 35, pp. 111–125,
2012.

[11] A. Mohammed and M. Darus, “A generalized operator involv-
ing the q-hypergeometric function,” Matematichki Vesnik, vol.
65, no. 4, pp. 454–465, 2013.

[12] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus
in Operator Theory, Springer, New York, NY, USA, 2013.
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