
Research Article
Existence of Infinitely Many Periodic Solutions for Perturbed
Semilinear Fourth-Order Impulsive Differential Inclusions

Massimiliano Ferrara,1 Giuseppe Caristi,2 and Amjad Salari3

1Department of Law and Economics, Mediterranea University of Reggio Calabria, Via dei Bianchi 2, 89131 Reggio Calabria, Italy
2Department of Economics, University of Messina, Via dei Verdi 75, 98122 Messina, Italy
3Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah 67149, Iran

Correspondence should be addressed to Giuseppe Caristi; gcaristi@unime.it

Received 28 October 2015; Accepted 11 February 2016

Academic Editor: Agacik Zafer

Copyright © 2016 Massimiliano Ferrara et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper discusses the existence of infinitelymany periodic solutions for a semilinear fourth-order impulsive differential inclusion
with a perturbed nonlinearity and two parameters. The approach is based on a critical point theorem for nonsmooth functionals.

1. Introduction

The goal of this paper is to establish the existence of infinitely
many periodic solutions for the following perturbed semilin-
ear fourth-order impulsive differential inclusion:

𝑢
(iv)

(𝑥) − 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥)

∈ 𝜆𝜕𝐹 (𝑢 (𝑥)) + 𝜇𝜕𝐺𝑢 (𝑥, 𝑢 (𝑥)) , 𝑥 ∈ [0, 𝑇] \ 𝑄,

Δ (𝑢
󸀠󸀠
(𝑥𝑘)) = 𝐼1𝑘 (𝑢

󸀠
(𝑥𝑘)) ,

− Δ (𝑢
󸀠󸀠󸀠
(𝑥𝑘)) = 𝐼2𝑘 (𝑢 (𝑥𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (𝑇) = 𝑢

󸀠󸀠
(𝑇) = 0,

(1)

where 𝑝 is a positive constant, 𝑎 is continuous positive even
2𝑇-periodic function on R, 𝑇 > 0, 0 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ <

𝑥𝑚 < 𝑥𝑚+1 = 𝑇,𝑄 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, 𝜕𝐹(𝑢) and 𝜕𝐺𝑢(𝑥, 𝑢) are
generalized gradients of 𝐹 and 𝐺𝑢, respectively, the operator
Δ is defined as Δ(𝑢(𝑥𝑘)) fl 𝑢(𝑥

+
𝑘 ) − 𝑢(𝑥

−
𝑘 ), with 𝑢(𝑥

+
𝑘 ) and

𝑢(𝑥
−
𝑘 ) denoting the right and left limits, respectively, of 𝑢(𝑥)

at 𝑥 = 𝑥𝑘, 𝐼1𝑘, 𝐼2𝑘 ∈ 𝐶(R,R), 𝑘 = 1, 2, . . . , 𝑚, 𝜆 > 0, 𝜇 ≥ 0,
and 𝐹 : R → R is a locally Lipschitz function satisfying the
following:
(𝐹1) 𝐹(0) = 0 and 𝜕𝐹(𝑠) = −𝜕𝐹(−𝑠) for all 𝑠 ∈ R;

(𝐹2) there exist two constants 𝑐 > 0 and 𝑟 ∈ [1, 2), such
that

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 𝑐 (1 + |𝑠|

𝑟−1
) , 𝜉 ∈ 𝜕𝐹 (𝑠) , 𝑠 ∈ R. (2)

Also, 𝐺 is a function defined on [0, 𝑇] × R, satisfying the
following:

(𝐺1) 𝐺(⋅, 𝑠) : R → R ismeasurable for each 𝑠 ∈ R,𝐺(𝑥, ⋅) :
R → R is locally Lipschitz for 𝑥 ∈ [0, 𝑇]\𝑄,𝐺(𝑥, 0) =
0, and −𝜕𝐺𝑠(−𝑥, −𝑠) = 𝜕𝐺𝑠(𝑥, 𝑠) = 𝜕𝐺𝑠(𝑥 + 2𝑇, 𝑠) for
a.e. 𝑥 ∈ [0, 𝑇] \ 𝑄 and 𝑠 ∈ R;

(𝐺2) there exists a constant 𝑏 > 0, such that
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 𝑏 (1 + |𝑠|

𝑟−1
) 𝑠 ∈ R, 𝜉 ∈ 𝜕𝐺𝑠 (𝑥, 𝑠) , (3)

where 𝑟 is defined in (𝐹2).

We study the existence of solutions, that is, absolutely contin-
uous on every (𝑥𝑘, 𝑥𝑘+1) and left continuous at 𝑥𝑘 functions
which satisfy (1) for a.e. 𝑥with (possible) jumps (impulses) at
𝑥𝑘.

Fourth-order ordinary differential equations act as mod-
els for the bending or deforming of elastic beams, and,
therefore, they have important applications in engineering
and physical sciences. Boundary value problems for fourth-
order ordinary differential equations have been of great
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concern in recent years (e.g., see [1–4]). On the other hand,
impulsive differential equations occur in many applications
such as various mathematical models including population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotic, pharmacokinetics, and optimal control. For the
general aspects of impulsive differential equations, we refer
the reader to [5–9]. In association with this development,
a theory of impulsive differential equations has been given
extensive attention. Very recently, some researchers have
studied the existence and multiplicity of solutions for impul-
sive fourth-order two-point boundary value problems; we
refer the reader to [10–12] and references therein. Differential
inclusions arise in models for control systems, mechanical
systems, economical systems, game theory, and biological
systems to name a few.

Recently, multiplicity of solutions for differential inclu-
sions via nonsmooth variational methods and critical point
theory has been considered and here we cite the papers [13–
19]. For example, in [13] the existence of infinitely many
antiperiodic solutions for second-order impulsive differential
inclusions has been discussed. In [16], Kristály employing
a nonsmooth Ricceri-type variational principle [20], devel-
oped by Marano and Motreanu [21], has established the
existence of infinitely many radially symmetric solutions
for a differential inclusion problem in R𝑁. Also, in [17],
the authors extended a recent result of Ricceri concerning
the existence of three critical points of certain nonsmooth
functionals. Two applications have been given, both in the

theory of differential inclusions; the first one concerns a
nonhomogeneous Neumann boundary value problem and
the second one treats a quasilinear elliptic inclusion problem
in the whole R𝑁. Tian and Henderson in [18], based on a
nonsmooth version of critical point theory of Ricceri due
to Iannizzotto [14], have established the existence of at least
three solutions for the a second-order impulsive differential
inclusion with a perturbed nonlinearity and two parameters.
In [19], three periodic solutions with prescribed wavelength
for a class of semilinear fourth-order differential inclusions
are obtained by using a nonsmooth version critical point
theorem.

In the present paper, motivated by [13, 18, 19], employing
an abstract critical point result (see Theorem 7 below), we
are interested in ensuring the existence of infinitely many
periodic solutions for problem (1); see Theorem 12. We refer
to [22], in which related variational methods are used for
nonhomogeneous problems.

To the best of our knowledge, no investigation has
been devoted to establishing the existence of infinitely many
solutions to a problem such as (1). As one reference on
impulsive differential inclusions, we can refer to [23].

A special case of ourmain result is the following theorem.

Theorem 1. Assume that (𝐹1) and (𝐹2) hold, and 𝐼𝑖(0) = 0

and 𝐼𝑖(𝑠)𝑠 > 0, 𝑠 ∈ R, 𝑖 = 1, 2, . . . , 𝑚. Furthermore, suppose
that

lim inf
𝜉→+∞

sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

= 0,

lim sup
𝜉→+∞

∫

1

0
𝐹 (𝜉 (𝑥

2
− 𝑥)) d𝑥

(131/60) 𝜉
2
+ ∑

𝑚

𝑘=1 ∫
𝜉(2𝑥𝑘−1)

0
𝐼1𝑘 (𝑠) d𝑠 + ∑

𝑚

𝑘=1 ∫
𝜉(𝑥2
𝑘
−𝑥𝑘)

0
𝐼2𝑘 (𝑠) d𝑠

= +∞.

(4)

Then, the problem

𝑢
(𝑖V)

(𝑥) − 𝑢
󸀠󸀠
(𝑥) + 𝑢 (𝑥) ∈ 𝜕𝐹 (𝑢 (𝑥)) , 𝑥 ∈ [0, 1] \ 𝑄,

Δ (𝑢
󸀠󸀠
(𝑥𝑘)) = 𝐼1𝑘 (𝑢

󸀠
(𝑥𝑘)) ,

−Δ (𝑢
󸀠󸀠󸀠
(𝑥𝑘)) = 𝐼2𝑘 (𝑢 (𝑥𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (1) = 𝑢

󸀠󸀠
(1) = 0

(5)

admits a sequence of classical solutions.

2. Basic Definitions and Preliminary Results

Let (𝑋, ‖⋅‖𝑋) be a real Banach space.Wedenote by𝑋∗ the dual
space of 𝑋, while ⟨⋅, ⋅⟩ stands for the duality pairing between
𝑋
∗ and 𝑋. A function 𝜑 : 𝑋 → R is called locally Lipschitz

if, for all 𝑢 ∈ 𝑋, there exist a neighborhood 𝑈 of 𝑢 and a real
number 𝐿 > 0 such that

󵄨
󵄨
󵄨
󵄨
𝜑 (V) − 𝜑 (𝑤)

󵄨
󵄨
󵄨
󵄨
≤ 𝐿 ‖V − 𝑤‖𝑋 ∀V, 𝑤 ∈ 𝑈. (6)

If 𝜑 is locally Lipschitz and 𝑢 ∈ 𝑋, the generalized directional
derivative of 𝜑 at 𝑢 along the direction V ∈ 𝑋 is

𝜑
∘
(𝑢; V) fl lim sup

𝑤→𝑢,𝜏→0+

𝜑 (𝑤 + 𝜏V) − 𝜑 (𝑤)

𝜏

. (7)

The generalized gradient of 𝜑 at 𝑢 is the set

𝜕𝜑 (𝑢) fl {𝑢
∗
∈ 𝑋

∗
: ⟨𝑢

∗
, V⟩ ≤ 𝜑

∘
(𝑢; V) ∀V ∈ 𝑋} . (8)

So 𝜕𝜑 : 𝑋 → 2
𝑋
∗

is a multifunction. We say that 𝜑 has
compact gradient if 𝜕𝜑 maps bounded subsets of 𝑋 into
relatively compact subsets of𝑋∗.
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Lemma 2 (see [24, Proposition 1.1]). Let 𝜑 ∈ 𝐶
1
(𝑋) be

a functional. Then 𝜑 is locally Lipschitz and

𝜑
∘
(𝑢; V) = ⟨𝜑

󸀠
(𝑢) , V⟩ ∀𝑢, V ∈ 𝑋;

𝜕𝜑 (𝑢) = {𝜑
󸀠
(𝑢)} ∀𝑢 ∈ 𝑋.

(9)

Lemma 3 (see [24, Proposition 1.3]). Let 𝜑 : 𝑋 → R be
a locally Lipschitz functional. Then 𝜑

∘
(𝑢; ⋅) is subadditive and

positively homogeneous for all 𝑢 ∈ 𝑋, and

𝜑
∘
(𝑢; V) ≤ 𝐿 ‖V‖ ∀𝑢, V ∈ 𝑋, (10)

with 𝐿 > 0 being a Lipschitz constant for 𝜑 around 𝑢.

Lemma 4 (see [25]). Let 𝜑 : 𝑋 → R be a locally Lipschitz
functional. Then 𝜑

∘
: 𝑋 × 𝑋 → R is upper semicontinuous

and, for all 𝜆 ≥ 0, 𝑢, V ∈ 𝑋,

(𝜆𝜑)
∘
(𝑢; V) = 𝜆𝜑

∘
(𝑢; V) . (11)

Moreover, if 𝜑, 𝜓 : 𝑋 → R are locally Lipschitz functionals,
then

(𝜑 + 𝜓)
∘
(𝑢; V) ≤ 𝜑

∘
(𝑢; V) + 𝜓

∘
(𝑢; V) ∀𝑢, V ∈ 𝑋. (12)

Lemma 5 (see [24, Proposition 1.6]). Let 𝜑, 𝜓 : 𝑋 → R be
locally Lipschitz functionals. Then

𝜕 (𝜆𝜑) (𝑢) = 𝜆𝜕𝜑 (𝑢) ∀𝑢 ∈ 𝑋, 𝜆 ∈ R,

𝜕 (𝜑 + 𝜓) (𝑢) ⊆ 𝜕𝜑 (𝑢) + 𝜕𝜓 (𝑢) ∀𝑢 ∈ 𝑋.

(13)

Lemma 6 (see [14, Proposition 1.6]). Let 𝜑 : 𝑋 → R be a
locally Lipschitz functional with a compact gradient. Then 𝜑 is
sequentially weakly continuous.

We say that 𝑢 ∈ 𝑋 is a (generalized) critical point of a
locally Lipschitz functional 𝜑 if 0 ∈ 𝜕𝜑(𝑢); that is,

𝜑
∘
(𝑢; V) ≥ 0 ∀V ∈ 𝑋. (14)

When a nonsmooth functional, 𝑔 : 𝑋 → (−∞, +∞), is
expressed as a sumof a locally Lipschitz function,𝜑 : 𝑋 → R,
and a convex, proper, and lower semicontinuous function,
𝑗 : 𝑋 → (−∞, +∞), that is, 𝑔 fl 𝜑+𝑗, a (generalized) critical
point of 𝑔 is every 𝑢 ∈ 𝑋 such that

𝜑
∘
(𝑢; V − 𝑢) + 𝑗 (V) − 𝑗 (𝑢) ≥ 0 (15)

for all V ∈ 𝑋 (see [24, Chapter 3]).
Henceforth, we assume that 𝑋 is a reflexive real Banach

space, N : 𝑋 → R is a sequentially weakly lower
semicontinuous functional, Υ : 𝑋 → R is a sequentially
weakly upper semicontinuous functional, 𝜆 is a positive
parameter, 𝑗 : 𝑋 → (−∞, +∞) is a convex, proper, and lower
semicontinuous functional, and 𝐷(𝑗) is the effective domain
of 𝑗. Write

M fl Υ − 𝑗,

𝐼𝜆 fl N − 𝜆M = (N − 𝜆Υ) + 𝜆𝑗.

(16)

We also assume thatN is coercive and

𝐷(𝑗) ∩N
−1

((−∞, 𝑟)) ̸= 0 (17)

for all 𝑟 > inf𝑋N. Moreover, owing to (17) and provided that
𝑟 > inf𝑋N, we can define

𝜑 (𝑟)

fl inf
𝑢∈N−1((−∞,𝑟))

(supV∈N−1((−∞,𝑟))M (V)) −M (𝑢)

𝑟 −N (𝑢)

,

𝛾 fl lim inf
𝑟→+∞

𝜑 (𝑟) ,

𝛿 fl lim inf
𝑟→(inf𝑋N)+

𝜑 (𝑟) .

(18)

IfN and Υ are locally Lipschitz functionals, in [22, Theorem
2.1] the following result is proved; it is a more precise version
of [21, Theorem 1.1] (see also [20]).

Theorem 7. Under the above assumption on 𝑋, N, and M,
one has the following:

(a) For every 𝑟 > inf𝑋N and every 𝜆 ∈ (0, 1/𝜑(𝑟)),
the restriction of the functional 𝐼𝜆 = N − 𝜆M to
N−1

((−∞, 𝑟)) admits a global minimum, which is a
critical point (local minimum) of 𝐼𝜆 in𝑋.

(b) If 𝛾 < +∞, then, for each 𝜆 ∈ (0, 1/𝛾), the following
alternative holds: either

(b1) 𝐼𝜆 possesses a global minimum or
(b2) there is a sequence {𝑢𝑛} of critical points (local

minima) of 𝐼𝜆 such that lim𝑛→+∞N(𝑢𝑛) = +∞.

(c) If 𝛿 < +∞, then, for each 𝜆 ∈ (0, 1/𝛿), the following
alternative holds: either

(c1) there is a global minimum of N which is a local
minimum of 𝐼𝜆 or

(c2) there is a sequence {𝑢𝑛} of pairwise distinct
critical points (local minima) of 𝐼𝜆, with
lim𝑛→+∞N(𝑢𝑛) = inf𝑋N, which converges
weakly to a global minimum ofN.

Now we recall some basic definitions and notations. We
consider the reflexive Banach space𝑋 fl 𝐻

2
(0, 𝑇) ∩𝐻

1
0 (0, 𝑇)

endowed with the norm

‖𝑢‖ = (∫

𝑇

0

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2
+ |𝑢 (𝑥)|

2
) d𝑥)

1/2

. (19)

Obviously, 𝑋 is a reflexive Banach space and completely
embedded in 𝐶([0, 𝑇]). So there exists a constant 𝐶0, such
that 𝐶0 = sup𝑢∈𝑋,‖𝑢‖ ̸=0(‖𝑢‖∞/‖𝑢‖). From the positivity of 𝑝
and 𝑎, it is easy to see that

‖𝑢‖𝑋 = (∫

𝑇

0

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2
+ 𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝑎 (𝑥) |𝑢 (𝑥)|
2
) d𝑥)

1/2
(20)
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is also a norm of 𝑋, which is equivalent to the usual norm.
Therefore, there exist two constants 𝐶1 and 𝐶2 such that

𝐶1 ‖𝑢‖ ≤ ‖𝑢‖𝑋 ≤ 𝐶2 ‖𝑢‖ . (21)

Thus,

‖𝑢‖∞ ≤

𝐶0

𝐶1

‖𝑢‖𝑋 . (22)

Definition 8. A function 𝑢 ∈ 𝑋 is said to be a weak solution
of problem (1) such that, corresponding to it, there exists a
mapping [0, 𝑇] ∋ 𝑥 󳨃→ 𝑢

∗
(𝑥) with 𝑢

∗
(𝑥) ∈ 𝜆𝜕𝐹(𝑢(𝑥)) +

𝜇𝜕𝐺𝑢(𝑥, 𝑢(𝑥)), for a.e. 𝑥 ∈ [0, 𝑇], and having the property
that, for every V ∈ 𝑋, 𝑢∗V ∈ 𝐿

1
[0, 𝑇] and

∫

𝑇

0

(𝑢
󸀠󸀠
(𝑥) V󸀠󸀠 (𝑥) + 𝑝𝑢

󸀠
(𝑥) V󸀠 (𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) V (𝑥)

− 𝑢
∗
(𝑥) V (𝑥)) d𝑥 +

𝑚

∑

𝑘=1

𝐼2𝑘 (𝑢 (𝑥𝑘)) V (𝑥𝑘)

+

𝑚

∑

𝑘=1

𝐼1𝑘 (𝑢
󸀠
(𝑥𝑘)) V

󸀠
(𝑥𝑘) = 0.

(23)

Definition 9. A solution 𝑢 is called a classical solution of the
impulsive differential inclusion (1) if 𝑢 ∈ 𝐴𝐶

3
(𝑥𝑘, 𝑥𝑘+1) and

𝑢(𝑥
−
𝑘 ) = 𝑢(𝑥𝑘), for 𝑘 = 1, . . . , 𝑛, and

𝑢
(iv)

(𝑥) + 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) = 𝑢

∗
(𝑥) ,

𝑥 ∈ [0, 𝑇] \ 𝑄,

Δ𝑢
󸀠󸀠
(𝑥𝑘) = 𝐼1𝑘 (𝑢

󸀠
(𝑥𝑘)) ,

− Δ (𝑢
󸀠󸀠󸀠
(𝑥𝑘)) = 𝐼2𝑘 (𝑢 (𝑥𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (𝑇) = 𝑢

󸀠󸀠
(𝑇) = 0,

(24)

where 𝑢∗(𝑥) ∈ 𝜆𝐹(𝑢(𝑥)) + 𝜇𝐺𝑢(𝑥, 𝑢(𝑥)) for a.e. 𝑥 ∈ [0, 𝑇].

Lemma 10. If 𝑢 ∈ 𝑋 is a weak solution of (1), then 𝑢 is a
classical solution of (1).

Proof. Let 𝑢 ∈ 𝑋 be a weak solution of (1). Then there exists
𝑢
∗ with 𝑢

∗
(𝑥) ∈ 𝜆𝜕𝐹(𝑢(𝑥))+𝜇𝜕𝐺𝑢(𝑥, 𝑢(𝑥)) for a.e. 𝑥 ∈ [0, 𝑇],

satisfying (23). Using integration by parts (23) becomes

∫

𝑇

0

𝑢
󸀠󸀠
(𝑥) V󸀠󸀠 (𝑥) d𝑥

= ∫

𝑇

0

(𝑝𝑢
󸀠󸀠
(𝑥) − 𝑎 (𝑥) 𝑢 (𝑥) + 𝑢

∗
(𝑥)) V (𝑥) d𝑥

−

𝑚

∑

𝑘=1

𝐼2𝑘 (𝑢 (𝑥𝑘)) V (𝑥𝑘)

−

𝑚

∑

𝑘=1

𝐼1𝑘 (𝑢
󸀠
(𝑥𝑘)) V

󸀠
(𝑥𝑘) ,

(25)

so 𝑢 ∈ 𝐻
4
((0, 𝑇) \ 𝑄), and (25) holds for each V ∈ 𝑋 with

V(𝑥𝑘) = V󸀠(𝑥𝑘) = 0, 𝑘 = 1, . . . , 𝑚. Through integration by
parts, we obtain

𝑢
(iv)

(𝑥) − 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) − 𝑢

∗
(𝑥) = 0,

a.e. 𝑥 ∈ [0, 𝑇] \ 𝑄.

(26)

Due to 𝑢 ∈ 𝑋, similar to [26, Section 2], we can get 𝑢 ∈

𝐴𝐶
3
(𝑥𝑘, 𝑥𝑘+1) and 𝑢(𝑥

−
𝑘 ) = 𝑢(𝑥𝑘) for 𝑘 = 1, . . . , 𝑛. Now we

show that the boundary conditions are satisfied. Choose any
𝑗 ∈ {0, 1, 2, . . . , 𝑚 − 1} and V ∈ 𝑋 such that V(𝑥) = 0 if
𝑥 ∈ [𝑥𝑘, 𝑥𝑘+1] for 𝑘 ̸= 𝑗. Then, from (25) and by means of
integration by parts, we can get

𝑢
󸀠󸀠
(𝑥𝑗+1) V

󸀠
(𝑥𝑗+1) − 𝑢

󸀠󸀠
(𝑥𝑗) V

󸀠
(𝑥𝑗)

+ ∫

𝑥𝑗+1

𝑥𝑗

(𝑢
(iv)

− 𝑝𝑢
󸀠󸀠
+ 𝑎 (𝑥) 𝑢 − 𝑢

∗
) V d𝑥 = 0.

(27)

Thus,

𝑚−1

∑

𝑗=0

(𝑢
󸀠󸀠
(𝑥𝑗+1) V

󸀠
(𝑥𝑗+1) − 𝑢

󸀠󸀠
(𝑥𝑗) V

󸀠
(𝑥𝑗))

+

𝑚−1

∑

𝑗=0

∫

𝑥𝑗+1

𝑥𝑗

(𝑢
(iv)

− 𝑝𝑢
󸀠󸀠
+ 𝑎 (𝑥) 𝑢 − 𝑢

∗
) V d𝑥

= 0,

(28)

which implies that

𝑢
󸀠󸀠
(𝑇) V󸀠 (𝑇) − 𝑢

󸀠󸀠
(0) V󸀠 (0)

+ ∫

𝑇

0

(𝑢
(iv)

(𝑥) − 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) − 𝑢

∗
(𝑥))

⋅ V (𝑥) d𝑥 = 0.

(29)

Since𝑢 satisfies (26), we have that𝑢󸀠󸀠(𝑇)V󸀠(𝑇)−𝑢󸀠󸀠(0)V󸀠(0) = 0

holds for all V ∈ 𝑋, which implies that 𝑢󸀠󸀠(0) = 𝑢
󸀠󸀠
(𝑇) = 0

and in view of 𝑢 ∈ 𝑋 we get 𝑢(0) = 𝑢(𝑇) = 0. Now using a
technique similar to the technique of [18, Lemma 3.5] shows
that the impulsive conditions are satisfied. From the equality

𝑢
(iv)

(𝑥) V (𝑥) = ({∫

𝑥

0

𝑢
(iv)

(𝑠) d𝑠} V (𝑥))
󸀠

− (∫

𝑥

0

𝑢
(iv)

(𝑠) d𝑠) V󸀠 (𝑥) ,

(30)
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we have

∫

𝑇

0

𝑢
(iv)

(𝑥) V (𝑥) d𝑥 = ∫

𝑇

0

[({∫

𝑥

0

𝑢
(iv)

(𝑠) d𝑠} V (𝑥))
󸀠

− (∫

𝑥

0

𝑢
(iv)

(𝑠) d𝑠) V󸀠 (𝑥)] d𝑥 = V (𝑇)

⋅ ∫

𝑇

0

𝑢
(iv)

(𝑥) d𝑥 − ∫

𝑇

0

[𝑢
󸀠󸀠󸀠
(𝑥) − 𝑢

󸀠󸀠󸀠
(0)

− ∑

0≤𝑥𝑘<𝑥

Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘)] V󸀠 (𝑥) d𝑥 = [𝑢

󸀠󸀠󸀠
(𝑇)

− 𝑢
󸀠󸀠󸀠
(0) −

𝑚

∑

𝑘=1

Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘)] V (𝑇) − ∫

𝑇

0

𝑢
󸀠󸀠󸀠
(𝑥)

⋅ V󸀠 (𝑥) d𝑥 + 𝑢
󸀠󸀠󸀠
(0) [V (𝑇) − V (0)]

+

𝑚

∑

𝑘=1

∫

𝑥𝑘+1

𝑥𝑘

∑

0≤𝑥𝑘<𝑥

Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘) V

󸀠
(𝑥) d𝑥 = 𝑢

󸀠󸀠󸀠
(𝑇) V (𝑇)

− 𝑢
󸀠󸀠󸀠
(0) V (0) −

𝑚

∑

𝑘=1

Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘) V (𝑇) − ∫

𝑇

0

𝑢
󸀠󸀠
(𝑥)

⋅ V󸀠󸀠 (𝑥) d𝑥 −

𝑚

∑

𝑘=1

Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘) V (𝑥𝑘)

+

𝑚

∑

𝑘=1

Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘) V (𝑇) = 𝑢

󸀠󸀠󸀠
(𝑇) V (𝑇) − 𝑢

󸀠󸀠󸀠
(0) V (0)

−

𝑚

∑

𝑘=1

Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘) V (𝑥𝑘) − ∫

𝑇

0

𝑢
󸀠󸀠
(𝑥) V󸀠󸀠 (𝑥) d𝑥.

(31)

Substituting (31) into (25), we have

∫

𝑇

0

(𝑢
(iv)

(𝑥) − 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) − 𝑢

∗
(𝑥))

⋅ V (𝑥) d𝑥 + 𝑢
󸀠󸀠󸀠
(𝑇) V (𝑇) − 𝑢

󸀠󸀠󸀠
(0) V (0)

+

𝑚

∑

𝑘=1

[−Δ𝑢
󸀠󸀠󸀠
(𝑥𝑘) − 𝐼2𝑘 (𝑢 (𝑥𝑘))] V (𝑥𝑘) = 0.

(32)

Since 𝑢 satisfies (26), we have

𝑢
󸀠󸀠󸀠
(𝑇) V (𝑇) − 𝑢

󸀠󸀠󸀠
(0) V (0) −

𝑚

∑

𝑘=1

Δ (𝑢
󸀠󸀠󸀠
(𝑥𝑘)) V (𝑥𝑘)

−

𝑚

∑

𝑘=1

𝐼2𝑘 (𝑢 (𝑥𝑘)) V (𝑥𝑘) = 0

(33)

for all V ∈ 𝑋. Thus, −Δ𝑢󸀠󸀠󸀠(𝑥𝑘) = 𝐼2𝑘(𝑢(𝑥𝑘)), 𝑘 = 1, . . . , 𝑚.
Similarly from the equality

𝑢
󸀠󸀠
(𝑥) V (𝑥) = ({∫

𝑥

0

𝑢
󸀠󸀠
(𝑠) d𝑠} V (𝑥))

󸀠

− (∫

𝑥

0

𝑢
󸀠󸀠
(𝑠) d𝑠) V󸀠 (𝑥) ,

(34)

we have Δ𝑢󸀠󸀠(𝑥𝑘) = 𝐼1𝑘(𝑢
󸀠
(𝑥𝑘)). So 𝑢 is a classical solution of

(1).

Now we introduce the functionalsN,F,G, and 𝐼𝜆 by

N (𝑢) =

1

2

‖𝑢‖𝑋 +

𝑚

∑

𝑘=1

∫

𝑢
󸀠
(𝑡k)

0

𝐼1𝑘 (𝑠) d𝑠

+

𝑚

∑

𝑘=1

∫

𝑢(𝑡𝑘)

0

𝐼2𝑘 (𝑠) d𝑠, 𝑢 ∈ 𝑋,

F (𝑢) = ∫

𝑇

0

𝐹 (𝑢 (𝑥)) d𝑥,

G (𝑢) = ∫

𝑇

0

𝐺 (𝑥, 𝑢 (𝑥)) d𝑥,

𝑢 ∈ 𝑋,

𝐼𝜆,𝜇 (𝑢) = N (𝑢) − 𝜆F (𝑢) − 𝜇G (𝑢) 𝑢 ∈ 𝑋.

(35)

Thus,N ∈ 𝐶
1
(𝑋,R) and

⟨N
󸀠
(𝑢) , V⟩ = ∫

𝑇

0

(𝑢
󸀠󸀠
(𝑥) V󸀠󸀠 (𝑥) + 𝑝𝑢

󸀠
(𝑥) V󸀠 (𝑥)

+ 𝑎 (𝑥) 𝑢 (𝑥) V (𝑥)) d𝑥 +

𝑚

∑

𝑘=1

𝐼2𝑘 (𝑢 (𝑡𝑘)) V (𝑡𝑘)

+

𝑚

∑

𝑘=1

𝐼1𝑘 (𝑢
󸀠
(𝑡𝑘)) V

󸀠
(𝑡𝑘)

(36)

for all 𝑢, V ∈ 𝑋.

Lemma 11. Assume that (𝐹1), (𝐹2), (𝐺1), and (𝐺2) hold.Then
the functional 𝐼𝜆,𝜇 : 𝑋 → R is locally Lipschitz. Moreover, each
critical point 𝑢 ∈ 𝑋 of 𝐼𝜆,𝜇 is a weak solution of (1).

Proof. Let 𝐼𝜆,𝜇 = N(𝑢) + 𝐼1(𝑢), where 𝐼1(𝑢) = −𝜆F(𝑢) −

𝜇G(𝑢). Since N ∈ 𝐶
1
(𝑋,R) by Lemma 2, N is locally

Lipschitz on𝑋. From (𝐹2) and (𝐺2), we know that 𝐼1 is locally
Lipschitz on 𝐿

𝑟
([0, 𝑇]). Moreover,𝑋 is compactly embedded

into 𝐿𝑟([0, 𝑇]).Thus, 𝐼1 is locally Lipschitz on𝑋 [27,Theorem
2.2]. According to Lemma 5, we get

𝜕𝐼1 (𝑢) ⊂ −𝜆∫

𝑇

0

𝜕𝐹 (𝑢 (𝑥)) d𝑥

− 𝜇∫

𝑇

0

𝜕𝐺𝑢 (𝑥, 𝑢 (𝑥)) d𝑥.

(37)
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The explanation of (37) is as follows: for every 𝑢
∗
∈ 𝜕𝐼1(𝑢),

there is a corresponding mapping 𝑢
∗
(𝑥) ∈ −𝜆𝜕𝐹(𝑢(𝑥)) −

𝜇𝜕𝐺𝑢(𝑥, 𝑢(𝑥)) for a.e. 𝑥 ∈ [0, 𝑇] having the property that,
for every V ∈ 𝑋, the function 𝑢

∗V ∈ 𝐿
1
[0, 𝑇] and ⟨𝑢

∗
, V⟩ =

∫

𝑇

0
𝑢
∗
(𝑥)V(𝑥)d𝑥. Therefore, 𝐼𝜆,𝜇 is locally Lipschitz on𝑋.

Now we show that each critical point of 𝐼𝜆,𝜇 is a weak
solution of (1). Assume that 𝑢 ∈ 𝑋 is a critical point of 𝐼𝜆,𝜇. So

0 ∈ 𝜕𝐼𝜆,𝜇 (𝑢)

= {𝑢
∗
∈ 𝑋

∗
: ⟨𝑢

∗
, V⟩ ≤ 𝐼

∘

𝜆,𝜇 (𝑢; V) for V ∈ 𝑋} .

(38)

So, by Lemma 2 and (38), we have

N
󸀠
(𝑢) + 𝑢

∗
= 0 with 𝑢

∗
∈ 𝜕𝐼1 (𝑢) (39)

and hence 𝑢∗(𝑥) ∈ −𝜆𝜕𝐹(𝑢(𝑥))−𝜇𝜕𝐺𝑢(𝑥, 𝑢(𝑥)) a.e. on [0, 𝑇].
It follows from (37) and (39) that for every V ∈ 𝑋 we have

∫

𝑇

0

(𝑢
󸀠󸀠
(𝑥) V󸀠󸀠 (𝑥) + 𝑝𝑢

󸀠
(𝑥) V󸀠 (𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) V (𝑥)

+ 𝑢
∗
(𝑥) V (𝑥)) d𝑥 +

𝑚

∑

𝑘=1

𝐼2𝑘 (𝑢 (𝑡𝑘)) V (𝑡𝑘)

+

𝑚

∑

𝑘=1

𝐼1𝑘 (𝑢
󸀠
(𝑡𝑘)) V

󸀠
(𝑡𝑘) = 0

(40)

for all V ∈ 𝑋. Thus, by Definition 8, 𝑢 is a weak solution of
(1).

3. Main Results

First for every 𝜉 ∈ R+ we set

𝐷 (𝜉) =

𝐶
2
2

2

𝜉
2
(4𝑇 +

𝑇
3

3

+

𝑇
5

30

)

+

𝑚

∑

𝑘=1

∫

𝜉(2𝑥𝑘−𝑇)

0

𝐼1𝑘 (𝑠) d𝑠

+

𝑚

∑

𝑘=1

∫

𝜉(𝑥
2

𝑘
−𝑇𝑥𝑘)

0

𝐼2𝑘 (𝑠) d𝑠.

(41)

Now we formulate our main result using the following
assumptions:

(𝐹3) lim inf𝜉→+∞(sup|𝑡|≤𝜉𝐹(𝑡)/𝜉
2
) < (1/2𝑇)(𝐶1/𝐶0)

2

lim sup𝜉→+∞(∫

𝑇

0
𝐹(𝜉(𝑥

2
− 𝑇𝑥))d𝑥/𝐷(𝜉));

(𝐼1) 𝐼𝑗𝑘(0) = 0, 𝐼𝑗𝑘(𝑠)𝑠 > 0, 𝑠 ∈ R, 𝑗 = 1, 2 and 𝑘 =

1, 2, . . . , 𝑚.

Theorem 12. Assume that (𝐹1)–(𝐹3) and (𝐼1) hold. Let

𝜆1 fl
1

lim sup𝜉→+∞ (∫

𝑇

0
𝐹 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥/𝐷 (𝜉))

,

𝜆2 fl
𝐶
2
1

2𝑇𝐶
2
0 lim inf𝜉→+∞ (sup|𝑡|≤𝜉𝐹 (𝑡) /𝜉

2
)

.

(42)

Then, for every 𝜆 ∈ (𝜆1, 𝜆2) and every nonnegative function 𝐺

satisfying (𝐺1), (𝐺2), and the assumption

(𝐺3) 𝐺∞ fl lim𝜉→+∞(∫

𝑇

0
sup|𝑡|≤𝜉𝐺(𝑥, 𝑡)d𝑥/𝜉

2
) < +∞,

putting

𝜇𝐺,𝜆 fl
1

2𝐺∞

(

𝐶1

𝐶0

)

2

⋅ (1 − 2𝑇𝜆(

𝐶0

𝐶1

)

2

lim inf
𝜉→+∞

sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

) ,

(43)

where 𝜇𝐺,𝜆 = +∞ when 𝐺∞ = 0, for every 𝜇 ∈ [0, 𝜇𝐺,𝜆)

problem (1) admits an unbounded sequence of classical solu-
tions in𝑋.

Proof. Our goal is to apply Theorem 7(b) to (1). For this
purpose, we fix 𝜆 ∈ (𝜆1, 𝜆2) and let 𝐺 be a nonnegative
function satisfying (G1)–(G3). Since 𝜆 < 𝜆2, we have

𝜇
𝐺,𝜆

=

1

2𝐺∞

(

𝐶1

𝐶0

)

2

⋅ (1 − 2𝑇𝜆(

𝐶0

𝐶1

)

2

lim inf
𝜉→+∞

sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

) > 0.

(44)

Now fix 𝜇 ∈ (0, 𝜇
𝑔,𝜆

), put ]1 fl 𝜆1, and

]2 fl
𝜆2

1 + 2 (𝐶0/𝐶1)
2
(𝜇/𝜆) 𝜆2𝐺∞

. (45)

If 𝐺∞ = 0, then ]1 = 𝜆1, ]2 = 𝜆2, and 𝜆 ∈ (]1, ]2). If 𝐺∞ ̸= 0,
since 𝜇 < 𝜇

𝐺,𝜆
, we have

𝜆

𝜆2

+ 2(

𝐶0

𝐶1

)

2

𝜇𝐺∞ < 1, (46)

and so

𝜆2

1 + 2 (𝐶0/𝐶1)
2
(𝜇/𝜆) 𝜆2𝐺∞

> 𝜆; (47)

to wit, 𝜆 < ]2. Hence, taking into account that 𝜆 > 𝜆1 = ]1,
one has 𝜆 ∈ (]1, ]2). Now, set

𝐽 (𝑥, 𝑠) fl 𝐹 (𝑠) +

𝜇

𝜆

𝐺 (𝑥, 𝑠) (48)

for all (𝑥, 𝑠) ∈ [0, 𝑇] × R. Assume that 𝑗 is exactly zero in 𝑋

and for each 𝑢 ∈ 𝑋 and put

Υ (𝑢) fl ∫

𝑇

0

𝐽 (𝑥, 𝑢 (𝑥)) d𝑥,

M (𝑢) fl Υ (𝑢) − 𝑗 (𝑢) = Υ (𝑢) ,

𝐼
𝜆
(𝑢) fl N (𝑢) − 𝜆M (𝑢) = N (𝑢) − 𝜆Υ (𝑢) .

(49)
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It is easy to prove that N is sequentially weakly lower
semicontinuous on 𝑋. Obviously, N ∈ 𝐶

1
(𝑋). By Lemma 2,

N is locally Lipschitz on𝑋. By Lemma 11,F andG are locally
Lipschitz on 𝐿

2
([0, 𝑇]). So,Υ is locally Lipschitz on 𝐿

2
([0, 𝑇]),

and since 𝑋 is compactly embedded into 𝐿
2
([0, 𝑇]), Υ is

locally Lipschitz on 𝑋. In addition, Υ is sequentially weakly
upper semicontinuous. For all 𝑢 ∈ 𝑋, by (𝐼1),

∫

𝑢
󸀠
(𝑥𝑘)

0

𝐼1𝑘 (𝑠) d𝑠 > 0, 𝑘 = 1, 2, . . . , 𝑚,

∫

𝑢(𝑥𝑘)

0

𝐼2𝑘 (𝑠) d𝑠 > 0, 𝑘 = 1, 2, . . . , 𝑚.

(50)

So, we have

N (𝑢) =

1

2

‖𝑢‖
2

𝑋 +

𝑚

∑

𝑘=1

∫

𝑢
󸀠
(𝑥𝑘)

0

𝐼1𝑘 (𝑠) d𝑠

+

𝑚

∑

𝑘=1

∫

𝑢(𝑥𝑘)

0

𝐼2𝑘 (𝑠) d𝑠 >
1

2

‖𝑢‖
2

𝑋

(51)

for all 𝑢 ∈ 𝑋. Hence,N is coercive and inf𝑋N = N(0) = 0.

Under our hypotheses, we want to show that there exists a
sequence {𝑢𝑛} ⊂ 𝑋 of critical points for the functional 𝐼

𝜆
; that

is, every element 𝑢𝑛 satisfies

𝐼
∘

𝜆
(𝑢𝑛, V − 𝑢𝑛) ≥ 0, for every V ∈ 𝑋. (52)

Now, we prove that 𝛾 < +∞. For this, let {𝜉𝑛} be a sequence
of positive numbers such that lim𝑛→+∞𝜉𝑛 = +∞ and

lim
𝑛→+∞

∫

𝑇

0
sup|𝑡|≤𝜉𝑛𝐽 (𝑥, 𝑡) d𝑥

𝜉
2
𝑛

= lim inf
𝜉→+∞

∫

𝑇

0
sup|𝑡|≤𝜉𝐽 (𝑥, 𝑡) d𝑥

𝜉
2

.

(53)

Put

𝑟𝑛 fl
1

2

(

𝐶1𝜉𝑛

𝐶0

)

2

, ∀𝑛 ∈ N. (54)

Then, for all V ∈ 𝑋 with N(V) < 𝑟𝑛, taking into account that
‖V‖2𝑋 < 2𝑟𝑛 and ‖V‖∞ ≤ (𝐶0/𝐶1)‖V‖𝑋, one has |V(𝑥)| ≤ 𝜉𝑛 for
every 𝑥 ∈ [0, 𝑇]. Therefore, for all 𝑛 ∈ N,

𝜑 (𝑟𝑛)

= inf
𝑢∈N−1((−∞,𝑟))

(supV∈N−1((−∞,𝑟))M (V)) −M (𝑢)

𝑟 −N (𝑢)

≤

sup‖V‖2
𝑋
<2𝑟𝑛

(F (V) + (𝜇/𝜆)G (V))

𝑟𝑛

≤

sup|𝑡|≤𝜉𝑛 (𝑇𝐹 (𝑡) + (𝜇/𝜆) ∫

𝑇

0
𝐺 (𝑥, 𝑡) d𝑥)

𝑟𝑛

≤ 2(

𝐶0

𝐶1

)

2

⋅
[

[

𝑇sup|𝑡|≤𝜉𝑛𝐹 (𝑡)

𝜉
2
𝑛

+

𝜇

𝜆

∫

𝑇

0
sup|𝑡|≤𝜉𝑛𝐺 (𝑥, 𝑡) d𝑥

𝜉
2
𝑛

]

]

.

(55)

Moreover, from assumptions (𝐹3) and (𝐺3), we have

lim
𝑛→+∞

𝑇sup|𝑡|≤𝜉𝑛𝐹 (𝑡)

𝜉
2
𝑛

+

𝜇

𝜆

lim
𝑛→+∞

∫

𝑇

0
sup|𝑡|≤𝜉𝑛𝐺 (𝑥, 𝑡) d𝑥

𝜉
2
𝑛

< +∞,

(56)

which follows

lim
𝑛→+∞

∫

𝑇

0
sup|𝑡|≤𝜉𝑛𝐽 (𝑥, 𝑡) d𝑥

𝜉
2
𝑛

< +∞.
(57)

Therefore,

𝛾 ≤ lim inf
𝑛→+∞

𝜑 (𝑟𝑛)

≤ 2 (

𝐶0

𝐶1

)

2

lim inf
𝜉→+∞

∫

𝑇

0
sup|𝑡|≤𝜉𝐽 (𝑥, 𝑡) d𝑥

𝜉
2

< +∞.

(58)

Since

∫

𝑇

0
sup|𝑡|≤𝜉𝐽 (𝑥, 𝑠) d𝑥

𝜉
2

≤

𝑇sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

+

𝜇

𝜆

∫

𝑇

0
sup|𝑡|≤𝜉𝐺 (𝑥, 𝑡) d𝑥

𝜉
2

,

(59)

and taking (𝐺3) into account, we get

lim inf
𝜉→+∞

∫

𝑇

0
sup|𝑡|≤𝜉𝐽 (𝑥, 𝑡) d𝑥

𝜉
2

≤ lim inf
𝜉→+∞

𝑇sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

+

𝜇

𝜆

𝐺∞.

(60)
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Moreover, by assumption (𝐺3) we have

lim sup
𝜉→+∞

∫

𝑇

0
𝐽 (𝑥, 𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

≥ lim sup
𝜉→+∞

∫

𝑇

0
𝐹 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

.

(61)

Therefore, from (60) and (61), we observe that

𝜆 ∈ (]1, ]2)

⊆ (

1

lim sup𝜉→+∞ (∫

𝑇

0
𝐽 (𝑥, 𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥/𝐷 (𝜉))

,

1

2 (𝐶0/𝐶1)
2 lim inf𝜉→+∞ (∫

𝑇

0
sup|𝑡|≤𝜉𝐽 (𝑥, 𝑡) d𝑥/𝜉2)

)

⊆ (0,

1

𝛾

) .

(62)

For the fixed 𝜆, inequality (58) ensures that condition (b) of
Theorem 7 can be applied and either 𝐼

𝜆
has a globalminimum

or there exists a sequence {𝑢𝑛} of weak solutions of problem
(1) such that lim𝑛→∞‖𝑢𝑛‖ = +∞. Now we prove that for the
fixed𝜆 the functional 𝐼

𝜆
has no globalminimum. Let us verify

that the functional 𝐼
𝜆
is unbounded from below. Since

1

𝜆

< lim sup
𝜉→+∞

∫

𝑇

0
𝐹 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

, (63)

there exist a sequence {𝜂𝑛} of positive numbers and a constant
𝜏 such that lim𝑛→+∞𝜂𝑛 = +∞ and

1

𝜆

< 𝜏 <

∫

𝑇

0
𝐹 (𝜂𝑛 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜂𝑛)

(64)

for each 𝑛 ∈ N large enough. For all 𝑛 ∈ N, put

𝑤𝑛 (𝑥) fl 𝜂𝑛 (𝑥
2
− 𝑇𝑥) for every 𝑥 ∈ [0, 𝑇] . (65)

For any fixed 𝑛 ∈ N, clearly 𝑤𝑛 ∈ 𝑋 and one has

󵄩
󵄩
󵄩
󵄩
𝑤𝑛

󵄩
󵄩
󵄩
󵄩

2

𝑋
≤ 𝐶

2

2

󵄩
󵄩
󵄩
󵄩
𝑤𝑛

󵄩
󵄩
󵄩
󵄩

2
= 𝜂

2

𝑛𝐶
2

2 (4𝑇 +

𝑇
3

3

+

𝑇
5

30

) , (66)

and so

N (𝑤𝑛) ≤
𝐶
2
2

2

𝜂
2

𝑛 (4𝑇 +

𝑇
3

3

+

𝑇
5

30

)

+

𝑚

∑

𝑘=1

∫

𝜂𝑛(2𝑥𝑘−𝑇)

0

𝐼1𝑘 (𝑠) d𝑠

+

𝑚

∑

𝑘=1

∫

𝜂𝑛(𝑥
2

𝑘
−𝑇𝑥𝑘)

0

𝐼2𝑘 (𝑠) d𝑠 = 𝐷 (𝜂𝑛) .

(67)

By (64) and (67) and since 𝐺 is nonnegative we observe that

𝐼
𝜆
(𝑤𝑛) = N (𝑤𝑛) − 𝜆M (𝑤𝑛)

≤ 𝐷 (𝜂𝑛) − 𝜆∫

𝑇

0

𝐹 (𝜂𝑛 (𝑥
2
− 𝑇𝑥)) d𝑥

< 𝐷 (𝜂𝑛) (1 − 𝜆𝜏)

(68)

for every 𝑛 ∈ N large enough; since 𝜆𝜏 > 1 and lim𝑛→+∞𝜂𝑛 =

+∞, it follows that

lim
𝑛→+∞

𝐼
𝜆
(𝑤𝑛) = −∞. (69)

So, the functional 𝐼
𝜆
is unbounded from below, and it shows

that 𝐼
𝜆
has no global minimum. Therefore, from part (b) of

Theorem 7, the functional 𝐼
𝜆
admits a sequence of critical

points {𝑢𝑛} ⊂ 𝑋 such that lim𝑛→+∞N(𝑢𝑛) = +∞. Since
N is bounded on bounded sets and taking into account that
lim𝑛→+∞N(𝑢𝑛) = +∞, then {𝑢𝑛} has to be unbounded; that
is,

lim
𝑛→+∞

󵄩
󵄩
󵄩
󵄩
𝑢𝑛

󵄩
󵄩
󵄩
󵄩𝑋

= +∞. (70)

Also, if 𝑢𝑛 ∈ 𝑋 is a critical point of 𝐼
𝜆
, clearly, by definition,

one has

𝐼
∘

𝜆
(𝑢𝑛, V − 𝑢𝑛) ≥ 0, for every V ∈ 𝑋. (71)

Finally, by Lemma 11, the critical points of 𝐼
𝜆
are weak

solutions for problem (1), and, by Lemma 10, every weak
solution of (1) is a classical solution of (1). Hence, we have
the result.

Remark 13. Under the conditions

lim inf
𝜉→+∞

sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

= 0,

lim sup
𝜉→+∞

∫

𝑇

0
𝐹 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

= +∞,

(72)

fromTheorem 12, we see that, for every𝜆 > 0 and for each𝜇 ∈

[0, 𝐶
2
1/2𝐶

2
0𝐺∞), problem (1) admits a sequence of solutions

which is unbounded in 𝑋. Moreover, if 𝐺∞ = 0, the result
holds for every 𝜆 > 0 and 𝜇 ≥ 0.

The following result is a special case of Theorem 12 with
𝜇 = 0.

Theorem 14. Assume that (𝐹1)–(𝐹3) and (𝐼1) hold. Then, for
each

𝜆 ∈ (

1

lim sup𝜉→+∞ (∫

𝑇

0
𝐹 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥/𝐷 (𝜉))

,

1

2𝑇 (𝐶0/𝐶1)
2 lim inf𝜉→+∞ (sup|𝑡|≤𝜉𝐹 (𝑡) /𝜉

2
)

) ,

(73)
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the problem

𝑢
(𝑖V)

(𝑥) − 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) ∈ 𝜆𝜕𝐹 (𝑢 (𝑥)) ,

𝑥 ∈ [0, 𝑇] \ 𝑄,

Δ (𝑢
󸀠󸀠
(𝑥𝑘)) = 𝐼1𝑘 (𝑢

󸀠
(𝑥𝑘)) ,

− Δ (𝑢
󸀠󸀠󸀠
(𝑥𝑘)) = 𝐼2𝑘 (𝑢 (𝑥𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (𝑇) = 𝑢

󸀠󸀠
(𝑇) = 0

(74)

has an unbounded sequence of classical solutions in 𝑋.

Now, we present the following example to illustrate
Theorem 14.

Example 15. Let 𝑇 = 1, 𝑝 = 1, and 𝑎(𝑥) = 1 + cos𝑥 for every
𝑥 ∈ R. Thus, 𝑎 is a continuous positive even 2𝜋-periodic
function on R. Define the function

𝐹 (𝑠) =

{
{
{
{

{
{
{
{

{

0, if 𝑠 ∈ [−1, 1] ,

𝑠
2
− 1, if 𝑠 ∈ [−2, −1) ∪ (1, 2] ,

3, if 𝑠 ∈ [−∞, −2) ∪ (2, +∞) .

(75)

Clearly, 𝐹 is a continuous convex function with 𝐹(0) = 0. An
easy calculation shows that

𝜕𝐹 (𝑠) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

{0} , if 𝑠 ∈ (−∞, −2) ,

[−4, 0] , if 𝑠 = −2,

(−4, −2) , if 𝑠 ∈ (−2, −1) ,

[−2, 0] , if 𝑠 = −1,

{0} , if 𝑠 ∈ (−1, 1) ,

[0, 2] , if 𝑠 = 1,

(2, 4) , if 𝑠 ∈ (1, 2) ,

[0, 4] , if 𝑠 = 2,

{0} , if 𝑠 ∈ (2, +∞) .

(76)

Hence, assumptions (𝐹1) and (𝐹2) hold. Moreover, let 𝑄 =

{1/3, 2/3}, 𝐼11(𝑥) = 𝐼12(𝑥) = (1/8)𝑥, and 𝐼21(𝑥) = 𝐼22(𝑥) =

(2/5)𝑥 for every 𝑥 ∈ R. Thus, (𝐼1) is satisfied and

𝐷 (𝜉) =

131𝐶
2
2

30

𝜉
2
+ 2

2

∑

𝑘=1

∫

𝜉(2𝑥𝑘−1)

0

𝐼1𝑘 (𝑠) d𝑠

+ 2

2

∑

𝑘=1

∫

𝜉(𝑥
2

𝑘
−𝑥𝑘)

0

𝐼2𝑘 (𝑠) d𝑠 =
131𝐶

2
2

30

𝜉
2
+

17

324

.

(77)

So, we have

lim inf
𝜉→+∞

sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

= 0,

lim sup
𝜉→+∞

∫

1

0
𝐹 (𝜉𝑥

2
− 𝜉𝑥) d𝑥

𝐷 (𝜉)

≥ lim
𝜉→∞

𝜉
2
− 1

(131𝐶
2
2/30) 𝜉

2
+ 17/324

=

30

131𝐶
2
2

.

(78)

Therefore, by applyingTheorem 14, the problem

𝑢
(𝑖V)

(𝑥) − 𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) ∈ 𝜆𝜕𝐹 (𝑢 (𝑥)) ,

𝑥 ∈ [0, 1] \ {

1

3

,

2

3

} ,

Δ (𝑢
󸀠󸀠
(

1

3

)) =

1

8

(𝑢
󸀠
(

1

3

)) ,

− Δ(𝑢
󸀠󸀠󸀠
(

1

3

)) =

2

5

(𝑢 (

1

3

)) ,

Δ (𝑢
󸀠󸀠
(

2

3

)) =

1

8

(𝑢
󸀠
(

2

3

)) ,

− Δ(𝑢
󸀠󸀠󸀠
(

2

3

)) =

2

5

(𝑢 (

2

3

)) ,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (1) = 𝑢

󸀠󸀠
(1) = 0

(79)

for 𝜆 ∈ (0, 30/131𝐶
2
2) has an unbounded sequence of classical

solutions in𝐻
2
(0, 1) ∩ 𝐻

1
0 (0, 1).

Now we state the following consequence of Theorem 14,
using the following assumptions:

(𝐹4) lim inf𝜉→+∞(sup|𝑡|≤𝜉𝐹(𝑡)/𝜉
2
) < 𝐶

2
1/2𝑇𝐶

2
0;

(𝐹5) lim sup𝜉→+∞(∫

𝑇

0
𝐹(𝜉(𝑥

2
− 𝑇𝑥))d𝑥/𝐷(𝜉)) > 1.

Corollary 16. Assume that (𝐹1), (𝐹2), (𝐹4), (𝐹5), and (𝐼1)

hold. Then, the problem

𝑢
(𝑖V)

(𝑥) − 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) ∈ 𝜕𝐹 (𝑢 (𝑥)) ,

𝑥 ∈ [0, 𝑇] \ 𝑄,

Δ (𝑢
󸀠󸀠
(𝑥𝑘)) = 𝐼1𝑘 (𝑢

󸀠
(𝑥𝑘)) ,

− Δ (𝑢
󸀠󸀠󸀠
(𝑥𝑘)) = 𝐼2𝑘 (𝑢 (𝑥𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (𝑇) = 𝑢

󸀠󸀠
(𝑇) = 0

(80)

has an unbounded sequence of classical solutions in 𝑋.

Remark 17. Theorem 1 in Introduction is an immediate con-
sequence of Corollary 16.

Here, we give a consequence of the main result.
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Corollary 18. Let 𝐹1 : R → R be a locally Lipschitz function
such that 𝐹1(0) = 0, −𝜕𝐹1(−𝑠) = 𝜕𝐹1(𝑠), |𝜉| ≤ 𝑎(1 + |𝑠|

𝑟1−1
)

for all 𝑠 ∈ R, 𝜉 ∈ 𝐹1(𝑠), 𝑟1 ∈ [1, 2) (𝑎 > 0). Furthermore,
suppose that

(𝐶1) lim inf𝜉→+∞(sup|𝑡|≤𝜉𝐹1(𝑡)/𝜉
2
) < +∞,

(𝐶2) lim sup𝜉→+∞(∫

𝑇

0
𝐹1(𝜉(𝑥

2
− 𝑇𝑥))d𝑥/𝐷(𝜉)) = +∞.

Then, for every function 𝐹2 : R → R which is locally Lipschitz
function such that 𝐹2(0) = 0, −𝜕𝐹2(−𝑠) = 𝜕𝐹2(𝑠), and |𝜉| ≤

𝑎(1 + |𝑠|
𝑟1−1

) for all 𝑠 ∈ R, 𝜉 ∈ 𝐹2(𝑠), 𝑟1 ∈ [1, 2) (𝑎 > 0) and
satisfies the conditions

sup
𝑡∈R

𝐹2 (𝑡) ≤ 0,

lim inf
𝜉→+∞

∫

𝑇

0
𝐹2 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

> −∞,

(81)

for each

𝜆 ∈ (0,

1

2𝑇 (𝐶0/𝐶1)
2 lim inf𝜉→+∞ (sup|𝑡|≤𝜉𝐹1 (𝑡) /𝜉2)

) ,

(82)

the problem

𝑢
(𝑖V)

(𝑥) − 𝑝𝑢
󸀠󸀠
(𝑥) + 𝑎 (𝑥) 𝑢 (𝑥)

∈ 𝜆 (𝜕𝐹1 (𝑢 (𝑥)) + 𝜕𝐹2 (𝑢 (𝑥))) , 𝑥 ∈ [0, 𝑇] \ 𝑄,

Δ (𝑢
󸀠󸀠
(𝑥𝑘)) = 𝐼1𝑘 (𝑢

󸀠
(𝑥𝑘)) ,

− Δ (𝑢
󸀠󸀠󸀠
(𝑥𝑘)) = 𝐼2𝑘 (𝑢 (𝑥𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (𝑇) = 𝑢

󸀠󸀠
(𝑇) = 0

(83)

has an unbounded sequence of classical solutions in 𝑋.

Proof. Set 𝐹(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡) for all 𝑡 ∈ R. Assumption (𝐶2)

along with the condition

lim inf
𝜉→+∞

∫

𝑇

0
𝐹2 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

> −∞
(84)

yields

lim sup
𝜉→+∞

∫

𝑇

0
𝐹 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

= lim sup
𝜉→+∞

∫

𝑇

0
𝐹1 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥 + ∫

𝑇

0
𝐹2 (𝜉 (𝑥

2
− 𝑇𝑥)) d𝑥

𝐷 (𝜉)

= +∞.

(85)

Moreover, assumption (𝐶1) together with the condition

sup
𝑡∈R

𝐹2 (𝑡) ≤ 0 (86)

ensures

lim inf
𝜉→+∞

sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

≤ lim inf
𝜉→+∞

sup|𝑡|≤𝜉𝐹1 (𝑡)
𝜉
2

< +∞. (87)

Since
1

lim inf𝜉→+∞ (sup|𝑡|≤𝜉𝐹 (𝑡) /𝜉
2
)

≥

1

lim inf𝜉→+∞ (sup|𝑡|≤𝜉𝐹1 (𝑡) /𝜉2)
,

(88)

by applyingTheorem 14, we have the desired conclusion.

Remark 19. We observe that in Theorem 12 we can replace
𝜉 → +∞ with 𝜉 → 0

+, and then by the same argument
as in the proof of Theorem 12, but using conclusion (c) of
Theorem 7 instead of (b), problem (1) has a sequence of
pairwise distinct classical solutions, which strongly converges
to 0 in𝑋.

We end this paper by presenting the following example.

Example 20. Let 𝑇 = 𝜋, 𝑝 = 1, and 𝑎(𝑥) = | sin𝑥| + 1

for every 𝑥 ∈ R. Thus, 𝑎 is a continuous positive even 2𝜋-
periodic function on R. Now let 𝐹(𝑠) = −|𝑠| for all 𝑠 ∈ R and
𝐺(𝑥, 𝑠) = 𝑥(1 − cos 𝑠) for all (𝑥, 𝑠) ∈ [0, 𝜋] × R. Hence, 𝐹 is
locally Lipschitz function and

𝜕𝐹 (𝑠) =

{
{
{

{
{
{

{

{1} , if 𝑠 < 0,

[−1, 1] , if 𝑠 = 0,

{−1} , if 𝑠 > 0.

(89)

Therefore, (𝐹1) and (𝐹2) hold, and also we can simply see that
(𝐺1) and (𝐺2) hold. Moreover, let 𝑄 = {𝜋/3, 2𝜋/3}, 𝐼11(𝑥) =
𝐼12(𝑥) = 𝑥(1 + 𝑥), and 𝐼21(𝑥) = 𝐼22(𝑥) = 𝑥

5 for every 𝑥 ∈ R.
Thus, (𝐼1) is satisfied. An easy computation shows that

∫

𝜋

0
𝐹 (𝜉 (𝑥

2
− 𝑥)) d𝑥

𝐷 (𝜉)

=

𝜉 (∫

1

0
(𝑥 − 𝑥

2
) d𝑥 + ∫

𝜋

1
(𝑥

2
− 𝑥) d𝑥)

(𝐶
2
2/2) 𝜉

2
(4𝜋 + 𝜋

3
/3 + 𝜋

5
/30) + 2∑

2

𝑘=1 (∫
𝜉(2𝑥𝑘−𝜋)

0
𝐼1𝑘 (𝑠) + ∫

𝜉(𝑥2
𝑘
−𝜋𝑥𝑘)

0
𝐼2𝑘 (𝑠) d𝑠)

=

𝜉 (𝜋
3
/3 − 𝜋

2
/2 + 1/3)

(𝐶
2
2/2) 𝜉

2
(4𝜋 + 𝜋

3
/3 + 𝜋

5
/30) + (2

7
/9

6
) 𝜋

12
𝜉
6

(90)



Abstract and Applied Analysis 11

for some 𝜉 ∈ R. So,

lim inf
𝜉→0+

sup|𝑡|≤𝜉𝐹 (𝑡)

𝜉
2

= 0,

lim sup
𝜉→0+

∫

𝜋

0
𝐹 (𝜉𝑥

2
− 𝜉𝑥) d𝑥

𝐷 (𝜉)

= +∞.

(91)

Also

∫

𝜋

0

𝑥 (1 − cos 𝑡) d𝑥 =

𝜋
2

2

(1 − cos 𝑡) ≥ 0 ∀𝑡 ∈ R,

lim
𝜉→+0+

sup|𝑡|≤𝜉 ∫
𝜋

0
𝑥 (1 − cos 𝑡) d𝑥
𝜉
2

=

𝜋
2

2

lim
𝜉→+0+

sup|𝑡|≤𝜉 (1 − cos 𝑡)
𝜉
2

=

𝜋
2

4

.

(92)

Hence, taking Remark 19 into account, the problem

𝑢
(𝑖V)

(𝑥) − 𝑢
󸀠󸀠
(𝑥) + (2 + sin𝑥) 𝑢 (𝑥)

∈ 𝜆𝜕𝐹 (𝑢 (𝑥)) + 𝜇𝜕𝐺𝑢 (𝑥, 𝑢) ,

𝑥 ∈ [0, 𝜋] \ {

𝜋

3

,

2𝜋

3

} ,

Δ (𝑢
󸀠󸀠
(

𝜋

3

)) = 𝑢
󸀠
(

𝜋

3

) (1 + 𝑢
󸀠
(

𝜋

3

)) ,

− Δ(𝑢
󸀠󸀠󸀠
(

𝜋

3

)) = 𝑢
5
(

𝜋

3

) ,

Δ (𝑢
󸀠󸀠
(

2𝜋

3

)) = 𝑢
󸀠
(

2𝜋

3

) (1 + 𝑢
󸀠
(

2𝜋

3

)) ,

− Δ(𝑢
󸀠󸀠󸀠
(

2𝜋

3

)) = 𝑢
5
(

2𝜋

3

) ,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢 (𝜋) = 𝑢

󸀠󸀠
(𝜋) = 0

(93)

for 𝜆 ∈ (0,∞) and 𝜇 ∈ [0, 2𝐶
2
1/𝐶

2
0𝜋

3
) has an unbounded

sequence of pairwise distinct classical solutions in𝐻
2
(0, 𝜋) ∩

𝐻
1
0 (0, 𝜋).
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