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Two classes of generalized convex functions in the sense of Beckenbach are considered. For both classes, we show that the existence
of support curves implies their generalized convexity and obtain an extremum property of these functions. Furthermore, we
establish Hadamard’s inequality for them.

1. Introduction

The convexity of functions plays a central role in many
various fields, such as in economics, mechanics, biological
system, optimization, and other areas of applied mathemat-
ics. Throughout this paper, let 𝐼 be a nonempty, connected,
and bounded subset of R. A real valued function 𝑓(𝑥) of a
single real variable 𝑥 defined on 𝐼 is said to be convex if for
all 𝑢, V ∈ 𝐼 and 𝑡 ∈ [0, 1] one has the inequality

𝑓 (𝑡𝑢 + (1 − 𝑡) V) ≤ 𝑡𝑓 (𝑢) + (1 − 𝑡) 𝑓 (V) . (1)

At the beginning of the 20th century, many gener-
alizations of convexity were extensively introduced and
investigated in a number of ways by numerous authors in
the past and present. One way to generalize the defini-
tion of a convex function is to relax the convexity condi-
tion (1) (for a comprehensive review, see the monographs
[1]).

As it is well known, the notion of the ordinary convexity
can be expressed in terms of linear functions. An important
direction for generalization of the classical convexity was
to replace linear functions by another family of functions.
For instance, Beckenbach and Bing [2, 3] generalized this
situation by replacing the linear functions with a family
of continuous functions such that for each pair of points
𝑝
1
(𝑥
1
, 𝑦
1
) and 𝑝

2
(𝑥
2
, 𝑦
2
) of the plane there exists exactly one

member of the family with a graph joining these points.

More precisely, let {𝐹(𝑥)} be a family of continuous
functions 𝐹(𝑥) defined in a real interval 𝐼. A function 𝑓 : 𝐼 →

R is said to be sub 𝐹-function if, for any 𝑢, V ∈ 𝐼 with 𝑢 < V,
there is a unique member of {𝐹(𝑥)} satisfying

(i) 𝐹(𝑢) = 𝑓(𝑢) and 𝐹(V) = 𝑓(V),
(ii) 𝑓(𝑥) ≤ 𝐹(𝑥) for all 𝑥 ∈ [𝑢, V].

The sub𝐹-functions possess various properties analogous
to those of classical convex functions [2–7]. For example, if𝑓 :

𝐼 → R is sub 𝐹-function, then, for any 𝑢, V ∈ 𝐼, the inequality

𝑓 (𝑥) ≥ 𝐹 (𝑥) (2)

holds outside the interval (𝑢, V).

Theorem 1. A sub 𝐹-function 𝑓 : 𝐼 → R has finite left and
right derivatives𝑓



−
(𝑥), 𝑓



+
(𝑥) at every point 𝑥 ∈ 𝐼, and𝑓



−
(𝑥) ≤

𝑓


+
(𝑥) for all 𝑥 ∈ 𝐼.

Property 1. Under the assumptions ofTheorem 1, the function
𝑓 is continuously differentiable on 𝐼 with the exception of an
at-most countable set.

Of course mathematicians were able before 1937 to gen-
eralize the notion of convex functions [8–10]. Full details
could be found in two classic books [11, 12] or in the new
monographs like [13].

In this paper, we deal just with generalized convexity
in the sense of Beckenbach. For particular choices of the
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two-parameter family {𝐹(𝑥)}, one considers two classes of
generalized convex functions:

(i) 𝐹(𝑥) = 𝐻(𝑥) = 𝐴 cosh𝑝𝑥 + 𝐵 sinh𝑝𝑥, where 𝑝 is a
fixed constant.

(ii) 𝐹(𝑥) = 𝐸(𝑥) = 𝐴𝑒
𝐵𝑥.

The following double inequality

𝑓 (
𝑎 + 𝑏

2
) ≤

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
(3)

is well known in the literature as Hadamard’s inequality or, as
it is quoted for historical reasons [14], theHermite-Hadamard
inequality, where 𝑓 : 𝐼 → R is a convex function and
𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. This inequality has evoked the interest
ofmanymathematicians; for new generalizations, extensions,
and numerous applications, see, for example, [15–18].

A basic theorem [11] in the theory of convex functions
states that a necessary and sufficient condition in order that
the function 𝑓 : 𝐼 → R be convex is that there is at least one
line of support for 𝑓 at each point 𝑥 in 𝐼.

In this paper, we prove analogues of this result for the
classes of sub 𝐻-functions and 𝐸-functions. We also extend
the extremum property (as stated in [19]) and the Hermite-
Hadamard inequality.

2. Definitions and Preliminary Results

Inspired by these investigations, let us now introduce the
basic definitions and results for the preceding two classes,
respectively, of generalized convex functions in the sense of
Beckenbach as will be used later in this note.

Definition 2. A function 𝑓 : 𝐼 → R is said to be sub 𝐻-
function on 𝐼, if for any arbitrary closed subinterval [𝑢, V]

of 𝐼 the graph of 𝑓(𝑥) for 𝑥 ∈ [𝑢, V] lies nowhere above the
function

𝐻 (𝑥) = 𝐴 cosh𝑝𝑥 + 𝐵 sinh𝑝𝑥, (4)
where 𝐴 and 𝐵 are chosen such that 𝐻(𝑢) = 𝑓(𝑢) and 𝐻(V) =

𝑓(V).
Equivalently, for all 𝑥 ∈ [𝑢, V]

𝑓 (𝑥) ≤ 𝐻 (𝑥)

=
𝑓 (𝑢) sinh𝑝 (V − 𝑥) + 𝑓 (V) sinh𝑝 (𝑥 − 𝑢)

sinh𝑝 (V − 𝑢)
.

(5)

Note that the condition𝑓


(𝑥)−𝑝
2
𝑓(𝑥) ≥ 0 for all 𝑥 in 𝐼 is

necessary and sufficient in order that the twice differentiable
function 𝑓 : 𝐼 → R be sub 𝐻-function on 𝐼.

Definition 3. Let 𝑓 : 𝐼 → R be a sub 𝐻-function.
A function

𝑆
𝑢

(𝑥) = 𝐴 cosh𝑝𝑥 + 𝐵 sinh𝑝𝑥 (6)
is said to be a supporting function for 𝑓(𝑥) at the point 𝑢 ∈ 𝐼,
if

𝑆
𝑢

(𝑢) = 𝑓 (𝑢) ,

𝑆
𝑢

(𝑥) ≤ 𝑓 (𝑥) ∀𝑥 ∈ 𝐼.

(7)

That is, if 𝑓(𝑥) and 𝑆
𝑢
(𝑥) agree at 𝑥 = 𝑢, the graph of 𝑓(𝑥)

does not lie under the support curve.

Proposition4. If𝑓 : 𝐼 → R is a differentiable sub𝐻-function,
then the supporting function for 𝑓(𝑥) at the point 𝑢 ∈ 𝐼 has the
form

𝑆
𝑢

(𝑥) = 𝑓 (𝑢) cosh𝑝 (𝑥 − 𝑢) + 𝑓


(𝑢) sinh𝑝 (𝑥 − 𝑢) . (8)

Proof. Thesupporting function 𝑆
𝑢
(𝑥) for𝑓(𝑥) at the point𝑢 ∈

𝐼 can be described as follows:

𝑆
𝑢

(𝑥) = lim
V→𝑢

𝐻 (𝑥) , (9)

where V ∈ 𝐼 and

𝑓 (𝑥) ≥ 𝐻 (𝑥) , ∀𝑥 ∈ 𝐼 \ (𝑢, V) . (10)

Then, taking the limit of both sides as V → 𝑢 and from
(5), one obtains

𝑓 (𝑥) ≥ 𝑆
𝑢

(𝑥) = lim
V→𝑢

𝐻 (𝑥)

= lim
V→𝑢

𝑓 (𝑢) sinh𝑝 (V − 𝑥) + 𝑓 (V) sinh𝑝 (𝑥 − 𝑢)

sinh𝑝 (V − 𝑢)

= 𝑓 (𝑢) cosh𝑝 (𝑥 − 𝑢) + 𝑓


(𝑢) sinh𝑝 (𝑥 − 𝑢) .

(11)

Thus, the claim follows.

Definition 5. A positive function 𝑓 : 𝐼 → (0, ∞) is called sub
𝐸-function on 𝐼, if for any 𝑢, V ∈ 𝐼 with 𝑢 < V the graph of
𝑓(𝑥) for 𝑢 ≤ 𝑥 ≤ V lies on or under the function

𝐸 (𝑥) = 𝐴𝑒
𝐵𝑥

, (12)

where 𝐴 and 𝐵 are taken so that 𝐸(𝑢) = 𝑓(𝑢), and 𝐸(V) =

𝑓(V).

Equivalently, for all 𝑥 ∈ [𝑢, V]

𝑓 (𝑥) ≤ 𝐸 (𝑥)

= exp [
(V − 𝑥) ln𝑓 (𝑢) + (𝑥 − 𝑢) ln𝑓 (V)

V − 𝑢
] .

(13)

Note the following:

(1) There is more than one formula for the function 𝐸(𝑥)

other than that stated in (13); for example,

𝐸 (𝑥) = 𝑓 (𝑢) 𝑒
𝐵(𝑥−𝑢)

; 𝐵 =
ln𝑓 (V) − ln𝑓 (𝑢)

V − 𝑢
, (14)

or in a multiplicative form

𝐸 (𝑥) = [𝑓 (𝑢)]
((V−𝑥)/(V−𝑢))

⋅ [𝑓 (V)]
((𝑥−𝑢)/(V−𝑢))

. (15)

(2) Let 𝑓 : 𝐼 → (0, ∞) be a two-time continuously
differentiable function. Then, 𝑓 is sub 𝐸-function on
𝐼 if and only if 𝑓(𝑥)𝑓


(𝑥) − (𝑓


(𝑥))
2

≥ 0 for all 𝑥 ∈ 𝐼.
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Definition 6. Let 𝑓 : 𝐼 → (0, ∞) be a sub 𝐸-function.
A function

𝑇
𝑢

(𝑥) = 𝐴𝑒
𝐵𝑥 (16)

is said to be a supporting function for 𝑓(𝑥) at the point 𝑢 ∈ 𝐼,
if

𝑇
𝑢

(𝑢) = 𝑓 (𝑢) ,

𝑇
𝑢

(𝑥) ≤ 𝑓 (𝑥) ∀𝑥 ∈ 𝐼.

(17)

That is, if 𝑓(𝑥) and 𝑇
𝑢
(𝑥) agree at 𝑥 = 𝑢, the graph of 𝑓(𝑥)

lies on or above the support curve.

Proposition 7. If 𝑓 : 𝐼 → (0, ∞) is a differentiable sub 𝐸-
function, then the supporting function for 𝑓(𝑥) at the point 𝑢 ∈

𝐼 has the form

𝑇
𝑢

(𝑥) = 𝑓 (𝑢) exp[(𝑥 − 𝑢)
𝑓


(𝑢)

𝑓 (𝑢)
] . (18)

Proof. The supporting function 𝑇
𝑢
(𝑥) for 𝑓(𝑥) at the point

𝑢 ∈ 𝐼 can be described as follows:

𝑇
𝑢

(𝑥) = lim
V→𝑢

𝐸 (𝑥) , (19)

where V ∈ 𝐼 and

𝑓 (𝑥) ≥ 𝐸 (𝑥) , ∀𝑥 ∈ 𝐼 \ (𝑢, V) . (20)

Then, taking the limit of both sides as V → 𝑢 and from
(14), one obtains

𝑓 (𝑥) ≥ 𝑇
𝑢

(𝑥) = lim
V→𝑢

𝐸 (𝑥) = lim
V→𝑢

[𝑓 (𝑢) 𝑒
𝐵(𝑥−𝑢)

]

= 𝑓 (𝑢) exp[(𝑥 − 𝑢)
𝑓


(𝑢)

𝑓 (𝑢)
] .

(21)

Thus, the claim follows.

In the literature, the logarithmic mean of the positive real
numbers 𝑝, 𝑞 is defined as

𝐿 (𝑝, 𝑞) =

{

{

{

𝑞 − 𝑝

ln 𝑞 − ln𝑝
if 𝑝 ̸= 𝑞

𝑝 if 𝑝 = 𝑞.

(22)

The logarithmic mean proves useful in engineering problems
involving heat and mass transfer.

3. Results

Theorem 8. A function 𝑓 : 𝐼 → R is sub 𝐻-function on 𝐼 if
and only if there exists a supporting function for 𝑓(𝑥) at each
point 𝑥 in 𝐼.

Proof. The necessity is an immediate consequence of Bonsall
[20].

To prove the sufficiency, let 𝑥 be an arbitrary point
in 𝐼 and 𝑓 has a supporting function at this point. For

convenience, we will write the supporting function in the
following form:

𝑆
𝑥

(𝑧) = 𝑓 (𝑥) cosh𝑝 (𝑧 − 𝑥) + 𝐾
𝑥,𝑓

sinh𝑝 (𝑧 − 𝑥) , (23)

where 𝐾
𝑥,𝑓

is a fixed real number depending on 𝑥 and 𝑓.

From Definition 3, one has

𝑆
𝑥

(𝑥) = 𝑓 (𝑥) ,

𝑆
𝑥

(𝑧) ≤ 𝑓 (𝑧) ∀𝑧 ∈ 𝐼.

(24)

It follows that

𝑓 (𝑥) cosh𝑝 (𝑧 − 𝑥) + 𝐾
𝑥,𝑓

sinh𝑝 (𝑧 − 𝑥) ≤ 𝑓 (𝑧)

∀𝑧 ∈ 𝐼.

(25)

For all 𝑢, V ∈ 𝐼 with 𝑢 < V and 𝜆, 𝜇 ≥ 0 with 𝜆 + 𝜇 = 1 let

𝑥 = 𝜆𝑢 + 𝜇V. (26)

Applying (25) twice at 𝑧 = 𝑢 and at 𝑧 = V yields

𝑓 (𝑥) cosh𝑝 (𝑢 − 𝑥) + 𝐾
𝑥,𝑓

sinh𝑝 (𝑢 − 𝑥) ≤ 𝑓 (𝑢) ,

𝑓 (𝑥) cosh𝑝 (V − 𝑥) + 𝐾
𝑥,𝑓

sinh𝑝 (V − 𝑥) ≤ 𝑓 (V) .

(27)

Multiplying the first inequality by sinh𝑝𝜆(V − 𝑢) and the
second by sinh𝑝𝜇(V − 𝑢) and adding them, we obtain

𝑓 (𝑥) [sinh𝑝𝜆 (V − 𝑢) cosh𝑝 (𝑢 − 𝑥)

− cosh𝑝 (V − 𝑥) sinh𝑝𝜇 (𝑢 − V)]

+ 𝐾
𝑥,𝑓

[sinh𝑝𝜆 (V − 𝑢) sinh𝑝 (𝑢 − 𝑥)

− sinh𝑝 (V − 𝑥) sinh𝑝𝜇 (𝑢 − V)] ≤ 𝑓 (𝑢)

⋅ sinh𝑝𝜆 (V − 𝑢) + 𝑓 (V) sinh𝑝𝜇 (V − 𝑢) .

(28)

Consequently,

𝑓 (𝑥) ≤
𝑓 (𝑢) sinh𝑝 (V − 𝑥) + 𝑓 (V) sinh𝑝 (𝑥 − 𝑢)

sin 𝜌 (V − 𝑢)

∀𝑥 ∈ [𝑢, V] ,

(29)

which proves that the function 𝑓(𝑥) is sub 𝐻-function on 𝐼.
Hence, the theorem follows.

Remark 9. For a sub𝐻-function𝑓 : 𝐼 → R, the constant𝐾
𝑥,𝑓

in the foregoing theorem is equal to𝑓

(𝑥) if𝑓 is differentiable

at the point 𝑥 ∈ 𝐼; otherwise, 𝐾
𝑥,𝑓

∈ [𝑓


−
(𝑥), 𝑓



+
(𝑥)].

Theorem 10. Let 𝑓 : 𝐼 → R be a sub 𝐻-function and 𝑎, 𝑏 ∈ 𝐼

with 𝑎 < 𝑏, and let 𝑆
𝑢
(𝑥) be a supporting function for 𝑓(𝑥) at

the point 𝑢 ∈ [𝑎, 𝑏]. Then, the function

𝐺 (𝑢) = ∫

𝑏

𝑎

[𝑓 (𝑥) − 𝑆
𝑢

(𝑥)] 𝑑𝑥 (30)

has a minimum value at 𝑢 = (𝑎 + 𝑏)/2.
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Proof. From Definition 3, we have

𝑆
𝑢

(𝑢) = 𝑓 (𝑢) , (31)

𝑆
𝑢

(𝑥) ≤ 𝑓 (𝑥) ∀𝑥 ∈ [𝑎, 𝑏] , (32)

and 𝑆
𝑢
(𝑥) can be written in the form

𝑆
𝑢

(𝑥) = 𝑓 (𝑢) cosh𝑝 (𝑥 − 𝑢) + 𝐾
𝑢,𝑓

sinh𝑝 (𝑥 − 𝑢) . (33)

Using (33), one obtains

∫

𝑏

𝑎

𝑆
𝑢

(𝑥) 𝑑𝑥 = 𝑓 (𝑢) ∫

𝑏

𝑎

cosh𝑝 (𝑥 − 𝑢) 𝑑𝑥

+ 𝐾
𝑢,𝑓

∫

𝑏

𝑎

sinh𝑝 (𝑥 − 𝑢) 𝑑𝑥 =
2

𝑝

⋅ sinh𝑝 (
𝑏 − 𝑎

2
) {𝑓 (𝑢) cosh𝑝 [(

𝑎 + 𝑏

2
) − 𝑢]

+ 𝐾
𝑢,𝑓

sinh𝑝 [(
𝑎 + 𝑏

2
) − 𝑢]} =

2

𝑝

⋅ sinh𝑝 (
𝑏 − 𝑎

2
) 𝑆
𝑢

(
𝑎 + 𝑏

2
) .

(34)

Consequently,

𝐺 (𝑢) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

−
2

𝑝
sinh𝑝 (

𝑏 − 𝑎

2
) 𝑆
𝑢

(
𝑎 + 𝑏

2
) .

(35)

Using (31) at 𝑢 = (𝑎 + 𝑏)/2, the function 𝐺(𝑢) becomes

𝐺 (
𝑎 + 𝑏

2
) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

−
2

𝑝
sinh𝑝 (

𝑏 − 𝑎

2
) 𝑓 (

𝑎 + 𝑏

2
) .

(36)

But from (32), we observe

𝑆
𝑢

(
𝑎 + 𝑏

2
) ≤ 𝑓 (

𝑎 + 𝑏

2
) ∀𝑢 ∈ (𝑎, 𝑏) . (37)

Now using (35) and (36), it follows that

𝐺 (𝑢) ≥ 𝐺 (
𝑎 + 𝑏

2
) ∀𝑢 ∈ (𝑎, 𝑏) . (38)

Hence, theminimumvalue of the function𝐺(𝑢) occurs at 𝑢 =

(𝑎 + 𝑏)/2.

Theorem 11. Suppose 𝑓 : 𝐼 → R is sub 𝐻-function, and 𝑎, 𝑏 ∈

𝐼 with 𝑎 < 𝑏.
Then, one has the inequality

2

𝑝
𝑓 (

𝑎 + 𝑏

2
) sinh𝑝 (

𝑏 − 𝑎

2
) ≤ ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

≤
1

𝑝
[𝑓 (𝑎) + 𝑓 (𝑏)] tanh𝑝 (

𝑏 − 𝑎

2
) .

(39)

Proof. Let 𝑢 be an arbitrary point in (𝑎, 𝑏). As 𝑓(𝑥) is a sub
𝐻-function, then from Definitions 2 and 3 we observe that
the graph of 𝑓(𝑥) lies nowhere above the function

𝐻 (𝑥) =
𝑓 (𝑎) sinh𝑝 (𝑏 − 𝑥) + 𝑓 (𝑏) sinh𝑝 (𝑥 − 𝑎)

sinh𝑝 (𝑏 − 𝑎)
(40)

and nowhere below any supporting function:

𝑆
𝑢

(𝑥) = 𝑓 (𝑢) cosh𝑝 (𝑥 − 𝑢) + 𝐾
𝑢,𝑓

sinh𝑝 (𝑥 − 𝑢) , (41)

at the point 𝑢 ∈ (𝑎, 𝑏).
Hence,

𝑆
𝑢

(𝑥) ≤ 𝑓 (𝑥) ≤ 𝐻 (𝑥) 𝑥 ∈ [𝑎, 𝑏] , (42)

and thus

∫

𝑏

𝑎

𝑆
𝑢

(𝑥) 𝑑𝑥 ≤ ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤ ∫

𝑏

𝑎

𝐻 (𝑥) 𝑑𝑥. (43)

Using (40), one has

∫

𝑏

𝑎

𝐻 (𝑥) 𝑑𝑥

=
1

sinh𝑝 (𝑏 − 𝑎)
[𝑓 (𝑎) ∫

𝑏

𝑎

sinh𝑝 (𝑏 − 𝑥) 𝑑𝑥

+ 𝑓 (𝑏) ∫

𝑏

𝑎

sinh𝑝 (𝑥 − 𝑎) 𝑑𝑥] =
1

𝑝
[𝑓 (𝑎) + 𝑓 (𝑏)]

⋅ [
cosh𝑝 (𝑏 − 𝑎) − 1

sinh𝑝 (𝑏 − 𝑎)
] =

1

𝑝
[𝑓 (𝑎) + 𝑓 (𝑏)]

⋅ tanh𝑝 (
𝑏 − 𝑎

2
) .

(44)

Using (41) and (34), one obtains

∫

𝑏

𝑎

𝑆
𝑢

(𝑥) 𝑑𝑥 =
2

𝑝
𝑆
𝑢

(
𝑎 + 𝑏

2
) sinh𝑝 (

𝑏 − 𝑎

2
) . (45)

But from (32), we observe that

𝑆
𝑢

(
𝑎 + 𝑏

2
) ≤ 𝑓 (

𝑎 + 𝑏

2
) ∀𝑢 ∈ (𝑎, 𝑏) . (46)

Taking the maximum of the term ∫
𝑏

𝑎
𝑆
𝑢
(𝑥)𝑑𝑥 ≤

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 in (43) and (45) for 𝑢 ∈ (𝑎, 𝑏) and from (46), it

follows that

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≥ max
𝑎<𝑢<𝑏

{∫

𝑏

𝑎

𝑆
𝑢

(𝑥) 𝑑𝑥}

=
2

𝑝
max
𝑎<𝑢<𝑏

{𝑆
𝑢

(
𝑎 + 𝑏

2
)} sinh𝑝 (

𝑏 − 𝑎

2
)

=
2

𝑝
𝑓 (

𝑎 + 𝑏

2
) sinh𝑝 (

𝑏 − 𝑎

2
) .

(47)

Hence, from (43), (44), and (47), we get the desired inequality
(39).
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Theorem 12. A function 𝑓 : 𝐼 → (0, ∞) is a sub 𝐸-function
on 𝐼 if and only if there exists a supporting function for 𝑓(𝑥) at
each point 𝑥 in 𝐼.

Proof. The necessity is an immediate consequence of Bonsall
[20].

To prove the sufficiency, let 𝑥 be an arbitrary point
in 𝐼 and 𝑓 has a supporting function at this point. For
convenience, we will write the supporting function in the
following form:

𝑇
𝑥

(𝑧) = 𝑓 (𝑥) exp [(𝑧 − 𝑥)

𝑀
𝑥,𝑓

𝑓 (𝑥)
] , (48)

where 𝑀
𝑥,𝑓

is a fixed real number depending on 𝑥 and 𝑓.
From Definition 6, one has

𝑇
𝑥

(𝑥) = 𝑓 (𝑥) ,

𝑇
𝑥

(𝑧) ≤ 𝑓 (𝑧) ∀𝑧 ∈ 𝐼.

(49)

It follows that

𝑓 (𝑥) exp [(𝑧 − 𝑥)

𝑀
𝑥,𝑓

𝑓 (𝑥)
] ≤ 𝑓 (𝑧) ∀𝑧 ∈ 𝐼. (50)

As 𝑓(𝑥) is a positive function, we infer that

(𝑧 − 𝑥)

𝑀
𝑥,𝑓

𝑓 (𝑥)
≤ ln𝑓 (𝑧) − ln𝑓 (𝑥) ∀𝑧 ∈ 𝐼. (51)

For all 𝑢, V ∈ 𝐼 with 𝑢 < V and 𝜆, 𝜇 ≥ 0 with 𝜆 + 𝜇 = 1 let

𝑥 = 𝜆𝑢 + 𝜇V. (52)

Applying (51) twice at 𝑧 = 𝑢 and at 𝑧 = V yields

(𝑢 − 𝑥)

𝑀
𝑥,𝑓

𝑓 (𝑥)
≤ ln𝑓 (𝑢) − ln𝑓 (𝑥) ,

(V − 𝑥)

𝑀
𝑥,𝑓

𝑓 (𝑥)
≤ ln𝑓 (V) − ln𝑓 (𝑥) .

(53)

Multiplying the first inequality by 𝜆(V−𝑢) and the second
by 𝜇(V − 𝑢) and adding them, we obtain

𝑀
𝑥,𝑓

𝑓 (𝑥)
[𝜆 (V − 𝑢) (𝑢 − 𝑥) + 𝜇 (V − 𝑢) (V − 𝑥)]

≤ 𝜆 (V − 𝑢) [ln𝑓 (𝑢) − ln𝑓 (𝑥)]

+ 𝜇 (V − 𝑢) [ln𝑓 (V) − ln𝑓 (𝑥)] .

(54)

Consequently,

𝑓 (𝑥) ≤ exp [
(V − 𝑥) ln𝑓 (𝑢) + (𝑥 − 𝑢) ln𝑓 (V)

V − 𝑢
]

∀𝑥 ∈ [𝑢, V] ,

(55)

which proves that the function 𝑓(𝑥) is a sub 𝐸-function on 𝐼.
Hence, the theorem follows.

Remark 13. For a sub 𝐸-function 𝑓 : 𝐼 → (0, ∞), the
constant 𝑀

𝑥,𝑓
in the preceding theorem is equal to 𝑓


(𝑥) if 𝑓

is differentiable at the point 𝑥 ∈ 𝐼; otherwise, 𝑓


−
(𝑥) ≤ 𝑀

𝑥,𝑓
≤

𝑓


+
(𝑥).

Theorem 14. Let 𝑓 : 𝐼 → (0, ∞) be a sub 𝐸-function, and
𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏 and let 𝑇

𝑢
(𝑥) be a supporting function for

𝑓(𝑥) at the point 𝑢 ∈ [𝑎, 𝑏]. Then, the function

𝐺 (𝑢) = ∫

𝑏

𝑎

[𝑓 (𝑥) − 𝑇
𝑢

(𝑥)] 𝑑𝑥 (56)

has a minimum value at 𝑢 = (𝑎 + 𝑏)/2.

Proof. From Definition 6, we have

𝑇
𝑢

(𝑢) = 𝑓 (𝑢) , (57)

𝑇
𝑢

(𝑥) ≤ 𝑓 (𝑥) ∀𝑥 ∈ [𝑎, 𝑏] , (58)

and 𝑇
𝑢
(𝑥) can be written in the form

𝑇
𝑢

(𝑥) = 𝑓 (𝑢) exp [(𝑥 − 𝑢)

𝑀
𝑢,𝑓

𝑓 (𝑢)
] . (59)

Using (59), one obtains

∫

𝑏

𝑎

𝑇
𝑢

(𝑥) 𝑑𝑥 = 𝑓 (𝑢) ∫

𝑏

𝑎

exp [(𝑥 − 𝑢)

𝑀
𝑢,𝑓

𝑓 (𝑢)
] 𝑑𝑥

=
𝑓 (𝑢)

𝑀
𝑢,𝑓

[𝑓 (𝑢) exp [(
𝑎 + 𝑏

2
− 𝑢)

𝑀
𝑢,𝑓

𝑓 (𝑢)
]]

⋅ [exp [(
𝑏 − 𝑎

2
)

𝑀
𝑢,𝑓

𝑓 (𝑢)
]

− exp [(
𝑎 − 𝑏

2
)

𝑀
𝑢,𝑓

𝑓 (𝑢)
]] =

2𝑓 (𝑢)

𝑀
𝑢,𝑓

⋅ sinh [(
𝑏 − 𝑎

2
)

𝑀
𝑢,𝑓

𝑓 (𝑢)
] 𝑇
𝑢

(
𝑎 + 𝑏

2
) .

(60)

Consequently,

𝐺 (𝑢) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 − 𝑀𝑇
𝑢

(
𝑎 + 𝑏

2
) ;

𝑀 =
2𝑓 (𝑢)

𝑀
𝑢,𝑓

sinh [(
𝑏 − 𝑎

2
)

𝑀
𝑢,𝑓

𝑓 (𝑢)
] .

(61)

One can easily check that 𝑀 does not depend on 𝑢. That
is, 𝑀 depends only on 𝑎 and 𝑏.

Using (57) at 𝑢 = (𝑎 + 𝑏)/2, the function 𝐺(𝑢) becomes

𝐺 (
𝑎 + 𝑏

2
) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 − 𝑀𝑓 (
𝑎 + 𝑏

2
) . (62)

But from (58), we observe

𝑇
𝑢

(
𝑎 + 𝑏

2
) ≤ 𝑓 (

𝑎 + 𝑏

2
) ∀𝑢 ∈ (𝑎, 𝑏) . (63)
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Now using (61) and (62), it follows that

𝐺 (𝑢) ≥ 𝐺 (
𝑎 + 𝑏

2
) ∀𝑢 ∈ (𝑎, 𝑏) . (64)

Hence, theminimum value of the function𝐺(𝑢) occurs at
𝑢 = (𝑎 + 𝑏)/2.

Theorem 15. Assume 𝑓 : 𝐼 → (0, ∞) is a sub 𝐸-function, and
𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏.

Then, one has the inequality

𝑓 (
𝑎 + 𝑏

2
) ≤

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤ 𝐿 (𝑓 (𝑎) , 𝑓 (𝑏)) . (65)

Proof. Let 𝑢 be an arbitrary point in (𝑎, 𝑏). As 𝑓(𝑥) is a sub 𝐸-
function, then from Definitions 5 and 6 we observe that the
graph of 𝑓(𝑥) lies nowhere above the function

𝐸 (𝑥) = 𝑓 (𝑎) 𝑒
𝐵(𝑥−𝑎)

; 𝐵 =
ln𝑓 (𝑏) − ln𝑓 (𝑎)

𝑏 − 𝑎
(66)

and nowhere below any supporting function:

𝑇
𝑢

(𝑥) = 𝑓 (𝑢) exp [(𝑥 − 𝑢)

𝑀
𝑢,𝑓

𝑓 (𝑢)
] , (67)

at the point 𝑢 ∈ (𝑎, 𝑏).
Thus,

𝑇
𝑢

(𝑥) ≤ 𝑓 (𝑥) ≤ 𝐸 (𝑥) 𝑥 ∈ [𝑎, 𝑏] ,

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑇
𝑢

(𝑥) 𝑑𝑥 ≤
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

≤
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝐸 (𝑥) 𝑑𝑥.

(68)

Using (66), one has

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝐸 (𝑥) 𝑑𝑥 =
𝑓 (𝑎)

𝑏 − 𝑎
∫

𝑏

𝑎

𝑒
𝐵(𝑥−𝑎)

𝑑𝑥

=
𝑓 (𝑎)

ln𝑓 (𝑏) − ln𝑓 (𝑎)
[

𝑓 (𝑏)

𝑓 (𝑎)
− 1]

= 𝐿 (𝑓 (𝑎) , 𝑓 (𝑏)) .

(69)

Using (67) and (60), one obtains

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑇
𝑢

(𝑥) 𝑑𝑥 = (
2

𝑏 − 𝑎
)

𝑓 (𝑢)

𝑀
𝑢,𝑓

⋅ sinh [(
𝑏 − 𝑎

2
)

𝑀
𝑢,𝑓

𝑓 (𝑢)
] 𝑇
𝑢

(
𝑎 + 𝑏

2
) .

(70)

It is easy to notice that

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑇
𝑢

(𝑥) 𝑑𝑥 ≥ 𝑇
𝑢

(
𝑎 + 𝑏

2
) . (71)

But from (58), we observe that

𝑇
𝑢

(
𝑎 + 𝑏

2
) ≤ 𝑓 (

𝑎 + 𝑏

2
) ∀𝑢 ∈ (𝑎, 𝑏) . (72)

Taking themaximumof the term (1/(𝑏−𝑎)) ∫
𝑏

𝑎
𝑇
𝑢
(𝑥)𝑑𝑥 ≤

(1/(𝑏 − 𝑎)) ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 in (68) and (71) for 𝑢 ∈ (𝑎, 𝑏) and from

(72), it follows that

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≥ max
𝑎<𝑢<𝑏

{
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑇
𝑢

(𝑥) 𝑑𝑥}

≥ max
𝑎<𝑢<𝑏

{𝑇
𝑢

(
𝑎 + 𝑏

2
)}

= 𝑓 (
𝑎 + 𝑏

2
) .

(73)

Hence, from (68), (69), and (73), we get the required
inequality (65).

Remark 16. Recall that a positive function 𝑓 : 𝐼 → (0, ∞) is
said to be log-convex or multiplicatively convex if log𝑓(𝑥) is
convex, equivalently, if for all 𝑢, V ∈ 𝐼 and 𝑡 ∈ [0, 1] one has
the inequality

𝑓 (𝑡𝑢 + (1 − 𝑡) V) ≤ [𝑓 (𝑢)]
𝑡

⋅ [𝑓 (V)]
1−𝑡 (74)

using the following substitution:

𝑡 =
V − 𝑥

V − 𝑢
. (75)

Then, from (15), the function 𝐸(𝑥) becomes

𝐸 (𝑥) = 𝐸 (𝑡𝑢 + (1 − 𝑡) V) = [𝑓 (𝑢)]
𝑡

⋅ [𝑓 (V)]
1−𝑡

. (76)

Thus, fromDefinition 5, it follows that a function 𝑓 : 𝐼 →

(0, ∞) is a sub 𝐸-function on 𝐼, if for all 𝑢, V ∈ 𝐼 and 𝑡 ∈ [0, 1]

one has the inequality

𝑓 (𝑡𝑢 + (1 − 𝑡) V) = 𝑓 (𝑥) ≤ 𝐸 (𝑥)

= [𝑓 (𝑢)]
𝑡

⋅ [𝑓 (V)]
1−𝑡

.

(77)

Therefore, from (74) and (77), we conclude that the sub
𝐸-functions are exactly the “standard” log-convex functions.
On the other hand, this class of sub 𝐸-functions can be
considered as another point of view for log-convex functions.

4. Conclusion

Various generalizations of convex functions have appeared in
the literature. In this paper, two classes of generalized convex
functions in the sense of Beckenbach are considered. Some
properties and inequalities for these classes are established.
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