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We consider the ubiquitous problem of a seller competing in a market of a product with dispersed prices and having limited
information about both his competitors’ prices and the shopping behavior of his potential customers. Given the distribution of
market prices, the distribution of consumers’ shopping behavior, and the seller’s cost as inputs, we find the computational solution
for the pricing strategy that maximizes his expected profits. We analyze the seller’s solution with respect to different exogenous
perturbations of parametric and functional inputs. For that purpose, we produce synthetic price data using the family of Generalized
Error Distributions that includes normal and quasiuniform distributions as particular cases, and we also generate consumers’
shopping data from different behavioral assumptions. Our analysis shows that, beyond price mean and dispersion, the shape of
the price distribution plays a significant role in the seller’s pricing solution. We focus on the seller’s response to an increasing
diversity in consumers’ shopping behavior. We show that increasing heterogeneity in the shopping distribution typically lowers

seller’s prices and expected profits.

1. Introduction

More often than not, economic agents must operate in the
market under lack of relevant information. Pricing is the
primary key strategic variable for any profit maximizing seller
with some market power. Each seller sets his own price—
typically different across sellers—and each buyer searches for
the lowest price while having a limited capacity to visit shops
and learn different prices.

In this paper we adopt the point of view of a single
seller and analyze his optimal pricing policy under limited
knowledge both about its competitors’ prices and the shop-
ping behavior of the typical buyer. The seller has overall
information about rival prices represented by a continuous
probability distribution %, which is nondegenerate. This fact
is referred to in the literature as market price dispersion.
Additionally, the seller has an idiosyncratic lower bound c:

he is not willing to sell at any price below c. The parameter
¢ can be interpreted as the seller’s unitary production cost,
assuming linear production technology. More generally, ¢
represents the seller’s valuation of not selling. Also, we will
consider a single representative buyer, who eventually visits
a (random) number of shops # from a total sample of size
N that has been previously drawn from &%. Notice that
considering a representative consumer is not a restrictive
condition for our analysis, since the relevant decision variable
for the seller is the price he should offer to a buyer visiting
his shop. The rival prices observed by the buyer are private
information; the seller only knows that prices are drawn from
F.

The basic setting above can be framed within the literature
of price dispersion in economics, business, or marketing. A
first issue is why price dispersion should exist in a market for
a homogeneous good. Classical economic theory postulates
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the “law of one price” since the seminal competition model
by Bertrand [1]. If buyers look at all prices, technologies are
linear, and the good on sale is homogeneous, only the shop
offering the lowest price operates in the market. However,
evidence from decades of empirical studies denies the law
of one price, see, for example, the exhaustive survey by Baye
et al. [2] or, more recently, the systematic study by Kaplan
and Menzio [3]. Stigler [4] introduced search costs on the
buyer’s side: if each additional price observation is costly,
buyers will generally check only a subset of all existing prices.
Later research by Burdett and Judd [5] completed the picture
by showing that, under the existence of search costs, buyers
will only check a subcollection of all existing prices, which in
turn induces some price dispersion among sellers.

While theoretical economics may explain why price
dispersion occurs—justifying the underlying assumptions in
this paper—there is still the issue of how to behave under
price dispersion. The optimal behavior of buyers under search
cost has been analyzed in the literature with the focus
on characterizing a (nondegenerate) price distribution that
conforms an equilibrium. Here we opt for a more practical
view: a seller in the market must define a pricing policy even
off equilibrium. This angle turns out to be more relevant in
real markets with large and persistent disequilibria.

A key feature in our pricing model is the fact that
shopping behavior is diverse (or heterogeneous), that is, the
number of sellers visited to make their purchase varies across
consumers. Alternatively, a representative consumer selects
the number of sellers to visit according to some (nondegen-
erate) probability distribution ®. The seller’s problem thus
consists of selecting the price that maximizes his expected
profit in an environment of price dispersion and, also, of
diverse shopping behavior.

In the proposed model, a basic pricing policy maps an
input quadruple to the price p* that yields maximal expected
profits, namely, (¢, %, ®,N) — p” € [c,00), where ¢ is the
seller’s unit cost, # is the market price distribution, @ is the
shopping distribution, that is, the distribution of the number
of shops which are visited by a representative consumer, and
N is the size of the sample of prices.

We solve numerically the seller’s problem for different
costs, price distributions, and shopping distributions. We
consider & to be a Generalized Error Distribution (GED
hereafter), which allows us to consider a wide variety of price
distributions by changing the first, second, and higher order
moments. The GED family includes normal and quasuni-
form distributions as particular cases. We are particularly
interested in the role of the shape of & in the seller’s
solution. Apparently, the question whether the shape of the
price distribution does or does not condition the optimal
pricing behavior has not been considered in the literature.
Furthermore, it was shown in Alvarez et al. [6] that changes
in the first two moments of &, but not in its shape, affect the
consumer’s shopping behavior (determined via efficient time
allocation). We will show below that this is not the case for
the seller’s pricing problem.

We assume that @ is a discrete distribution defined on
the set {2,..., N}, so that a representative consumer selects
a priori a sample of N shops and then visits a number n of
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them with probability ®(n) (to keep notation simple we will
use @ interchangeably for the shopping distribution and its
probability mass function). This amounts to consider that the
consumer’s behavior is perceived as probabilistic by the seller.
In turn, this probabilistic perception might be exclusively due
to the seller’s lack of knowledge or, alternatively, it might
be that the buyer’s behavior is intrinsically probabilistic.
Our main finding here is that, once a buyer goes shopping,
more diversity in his shopping behavior, or, alternatively,
more uncertainty in the knowledge of the seller about the
consumer’s behavior, entails lowering prices and expected
profits.

The pricing model above can be implemented in real mar-
kets once accurate estimates of market prices and consumer
behavior are available. Estimates of the two basic inputs,
F and O, of the pricing model above can in principle be
obtained for specific markets. Price histograms for a large
number of goods and markets can be obtained from available
consumer data sets and they can be typically fitted by some
F within the GED family, as shown by Kaplan and Menzio
[3]. Shopping data required to estimate @ are not commonly
available in the literature or public databases. Yet, some stud-
ies on choice overload can provide partial information about
O (see, e.g., the references in the survey by Scheibehenne et al.
[7]).

The manuscript is organized as follows. In Section 2 we
describe the problem of a seller maximizing his expected
profits in an environment of dispersed prices, which we solve
numerically as explained in Section 3. In Section 4 we discuss
the results of the numerical analysis. We conclude in Section 5
with final remarks.

2. The Seller’s Problem

We adopt the point of view of a seller (or a firm) with
linear production technology that must decide the price of
his product in a market with an indeterminate number of
competitors. The main elements of the scenario in which the
seller makes his pricing decision are the existence of market
price dispersion and imperfect knowledge about rivals’ prices
and about the shopping behavior of his potential customers.

Specifically, the seller sets his price in a market in which
a representative consumer with a fixed demand of, say,
one unit, goes shopping. The seller has information about
rivals’ prices represented by a probability distribution #. The
consumer selects a priori N sellers or shops to visit, obtained
as a random draw from &%. The products offered by the
different sellers are indistinguishable for the consumer; that
is, the market product is homogeneous. Consequently, he
just searches for the lowest price. The consumer eventually
observes n price quotes, obtained as a subcollection of the
preliminary sample of size N.

In general, shopping behavior is diverse, so that a pop-
ulation of consumers is expected to be nonhomogeneous
in terms of the number of shops to be visited. In turn,
the shopping behavior of a representative consumer can be
understood as probabilistic and heterogeneous. This hetero-
geneity is represented by a distribution ® supported on the
set {2,..., N}, so that a consumer will visit n shops with
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probability ®(n). We assume that n > 1 in the shopping
behavior: if n = 1, the seller acts as a monopolist regardless
of its rivals prices (regardless of &) since the consumer
only checks one price. From the seller’s perspective, this
probability distribution also reflects his uncertainty about the
type of consumer who will visit his shop: he just knows that
a consumer that visits # shops will show up with probability
O(n).

The seller’s problem thus consists of finding the mapping
(c, F,®,N) — p*, where p” is the optimal price; that is, p*
maximizes the seller’s expected profits. Expected profits are
defined by

n(p)=(p-c)S(p) )

where S(p) is the probability of success in selling at price p.
Specifically, S(p) is the probability of making the sale at price
p» given that a consumer will buy at the lowest price after
having visited a number of n shops, n = 2,3,..., N, (with
probability ®(n)), from a sample of size N obtained from F.
Notice that S(p) can be written as

um=2;um%%¥u—F@»H

2
N : . 2
= Yo £ (1-F(p)
n=2

where F is the cumulative distribution function of the distri-
bution #. Now, given a price p, the first term in equation (1) is
simply the mark-up, the difference between price and unitary
cost. The chances S(p) that the seller earns his mark-up—
making the sale—competing in price with other N — 1 sellers
require that (i) the consumer visits the seller’s shop given that
he will visit n shops out of N, and (ii) the seller’s price is the
lowest among those # prices checked by the consumer. The
second factor in each term of the sum in (2) corresponds to
(i), whereas the third factor corresponds to (ii). Given that the
consumer will visit n shops with probability ®(n), (2) gives
the probability of making the sale at price p. In the case that
any of the events (i) or (ii) does not occur, S(p) = 0, and
consequently the seller makes zero profits, so that (1) can be
interpreted as expected profit.

Notice that the seller faces a trade-off when choosing his
price: increasing the price (the mark-up) implies increasing
effective profits in the case he sells the unit, but also lowering
the probability of selling the unit.

Shopping behavior is understood here as the choice of
the number 7 of shops to visit (alternatively, prices to check).
Even in the case that the consumer has selected a total
number N of shops to visit a priori, he may actually end up
visiting a smaller number #. The classical literature of search
cost (e.g., Stigler [4]) gives a rational explanation for this
shopping behavior: assuming that the consumer minimizes
her total expected cost—search cost plus expected price to
be paid—the optimal » may be typically lower than N.
Alternatively, the consideration of time as a fundamental
constraint affecting consumer’s behavior can also explain the
rational choice of a number of visits n below N. This applies

in particular when the total number of shops N is large
and the consumer optimally allocates his time among several
alternative uses. Indeed, it was shown in Sanchis et al. [8] and
Alvarez et al. [6] that assuming that # is determined from the
time allocation that maximizes well-being, a consumer might
choose not to visit the total number N of available shops.

No particular optimal behavior on the consumer’s part
will be assumed here. In fact, behavioral scientists claim that
consumers’ behavior may be far from rational in this kind of
shopping environment. The so-called choice overload phe-
nomenon is a focal example in which consumers are worse oft
when they visit all available shops (see, e.g., Schwartz [9] and
Iyengar and Lepper [10]). A consumer who visits all available
shops is called a maximizer by social psychologists; otherwise
he may be generically called a satisficer [11]. A consumers’
population is not expected to be composed by maximizers
only, but rather by a mixture of maximizers and different
types of satisficers. This mixture is represented in this paper
by the shopping distribution ®: given a sample of N shops
in the market, ®(N) is the probability that the representative
consumer is a maximizer, whereas ®(n), for 2 < n < N, are
the probabilities that he is some type of satisficer.

3. Numerical Analysis: Input Data and
Problems under Study

We follow a numerical approach for the analysis of the
seller’s problem described above. Given the unitary cost c, a
distribution of market prices &, the number N of sampled
sellers, and a shopping distribution @, a core computational
routine must produce a numerical solution to problem (1).
Since an explicit solution can only be obtained in very special
cases, the numerical analysis becomes essential. We have used
R as a programming environment (R Core Team [12]).

We consider the market price distribution & to be a
Generalized Error Distribution GED (y, s, ), whose param-
eters are location (u), scale (s), and shape (v) [13]. GED is a
family of symmetrical unimodal distributions with domain
in (00, +00) whose probability density function is given by

v lp—ul\
2sr(1/v)eXp<_( s )) )

where T' denotes the Gamma function. The parameter y
locates the mean, the median, and the mode of the distribu-
tion. The variance of the distribution depends on both scale s
and shape v, as follows:

f(p)=

s’T (3/7)
T(1/y)

Our choice is due to the fact that GED is a flexible family
of distributions that includes Laplace (double exponential)
distributions if ¥ = 1, normal distributions if v = 2, or
quasiuniform distributions when v is large enough. In fact,
the GED converges pointwise to a uniform distribution on
(u—s,u+s)asv — +00. Several GED probability densities
for different shapes are displayed in Figure 2(a).

The skewness of a GED is zero, while the excess of kurtosis
depends exclusively on the shape v. In fact, GEDs with

o’ = Var [p] = (4)



shape v < 2 are leptokurtic. This is a significant case,
since distribution of prices for individual goods appears to
be leptokurtic in many cases (see Kaplan and Menzio [3]).
In the model analysis with respect to shape below both
leptokurtic (e.g., Laplace) and platykurtic distributions (e.g.,
quasiuniform) are considered. We set the mesokurtic case
vy = 2 (normal distributions) as the benchmark case below
for other analyses where shape is constant.

The solution to our seller’s problem can be written in
parametric form as a mapping

(6 (157), (@ 1)yes,..v>N) — (p777),  (5)

where p* is the maximum of (1) and 7 = 7(p*) is the
seller’s optimal (expected) profit. We are mainly interested
in analyzing the response of the output variables (p*,7")
as the diversity of satisficers in the market increases. This
amounts to study the seller’s solution with respect to suitable
variations in @ while keeping everything else constant. Notice
that a homogeneous population of maximizers can be defined
by ®(N) = 1. When the probability mass is spread over
the set {2,...,n}, the heterogeneity of the distribution ®
increases with respect to the maximizer case ®(N) = 1.
It will be useful to characterize the degree of heterogeneity
using some sensible parameter. We analyze the effects on
price and profits of an increase in shopping heterogeneity
which is due to two different sources, in turn controlled by
two different parameters. First we consider in Section 4.2.1
uniform spreads over an increasing range of n’s, n €
{2,...,K}, with 1 < K < N, which can be parameterized
using the Shannon’s entropy of the distribution. Second, in
Section 4.2.2, we analyze distributional spreads generated by
shopping fatigue that can be parameterized by the probability
p of not visiting a new shop after having visited a number of
them.

As a preliminary study, in Section 4.1, we consider a
homogeneous population of maximizers, that is, ®(N) = 1,
and analyze the effect of a variation in some basic parameters
of the problem on the seller’s solution. We are particularly
interested in learning whether the seller’s solution depends
only on the mean and dispersion—typical deviation—of
prices or whether the shape of the price distribution also
matters.

4. Results and Discussion

Initially, we assume a homogeneous population of maximiz-
ers, so that ®(N) = 1, and we analyze the seller’s response
with respect to changes in the cost or in a distributional
parameter of prices, while keeping everything else constant
except for the market size N—the number of available sellers
a priori. The price distribution & is assumed to be GED with
shape v = 2, which corresponds with a normal distribution.
The results do not differ if a different GED is considered. We
are particularly interested in the effect of the shape of the
price distribution on price and profits. Typically, for a set of
values of N, we compute and compare the seller’s solution
within a range of equispaced values of each parameter, while
keeping the rest of parameters at their benchmark values. The
benchmark case and the range of variation considered for
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TABLE 1: Benchmark and range of analysis for price distribution
parameters, cost, and market size.

GED (y4,s,7) Cost Market size
U o’ v c N
Benchmark 600 125 2 470.44 30

Range of analysis 575-625 100-150 2 425-475 2-30

TABLE 2: Benchmark case for Section 4.1.

GED (u4,s,v) Competitiveness Market size

u o o, N
Shape analysis 5, 155 119 0.15 2-30
(range)

each parameter are shown in Table 1. The benchmark value
of ¢ in Table 1 corresponds to the price level which is higher
than 15% of all prices.

Assuming a maximizer profile for the representative
consumer, it can be checked consistently that an increase in
the market size N leads to more competitive prices—that
is closer to the unitary cost c—whereas an increase in the
unitary cost or in the mean price y leads to higher prices.
In turn, the associated profits shrink as N increases or as ¢
increases, but they grow as y increases. These facts account
for responses of the seller’s solution that could be somehow
expected. The corresponding graphs are displayed in Figure 1.

4.1. Shape Variation in Price Distribution. As mentioned
above, we are particularly interested in the seller’s response
with respect to variations in the shape of the price dis-
tribution. This is a relevant question from the economic
perspective. The use of GED (u, s, v) as price distributions is
particularly useful here, since the shape v of the distribution
can be changed while keeping mean y and variance o con-
stant. Notice that a GED with a given o* can be obtained for
any shape v by adjusting the scale parameter s suitably in (4).
Again, the representative consumer is a maximizer here.

In order to isolate the shape effect on the seller’s solution,
the unitary cost ¢ needs to be adjusted so that F(c) remains
constant at a certain level «.. Such «, represents the fraction
of rivals whose costs are lower than the cost of the seller under
analysis. It can be interpreted as a competitiveness level, since
de facto the seller could not compete in price with 100 x e,
percent of other rivals in the market. The competitiveness
level will remain invariant for different shapes in the analysis
below. Also, the mean and dispersion of the price distribution
remain constant. As mentioned above, this can be controlled
within the GED family by adjusting the scale parameter s to
keep variance fixed as v varies. Table 2 shows the benchmark
and the range of variations in shape v and market size N.

The typical output of the analysis in this section is
displayed in Figure 2(b) for N = 30. The main message of the
analysis is that shape matters; that is, when it comes to choose
the optimal price, information about mean and dispersion of
the market prices is not enough. A seller should also have an
estimate of the shape of the price distribution. Thus, while
the total mass of effective competitors (i.e., 100 x (1 — «,.)
percent of the sellers) is important, also the shape according
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FIGURE 1: Responses in optimal price and (expected) profits to changes in cost ¢, price mean y, and market size N. From blue to red as cost and
price mean increase within the range of analysis and with parameter values as in the benchmark case (¢ = 600, 0? =125, v =2, N = 30);

see Table 1.

to which this probability is distributed is relevant for the
seller’s problem.

The study above suggests that knowledge of mean and
dispersion of prices does not suffice to set prices rationally.
This is in contrast with the analysis of shopping behavior
of consumer—that is their choice of the subsample size—
searching for the lowest price under optimal allocation of
their time. The analysis in Alvarez et al. [6] suggests that their
optimal choices depend only on the first and second order
moments of the (symmetric) price distribution. Therefore,
while knowledge of the mean and the dispersion of prices
seems sufficient for the consumer to solve his shopping

problem—as a by-product of optimal time allocation—it is
not enough for the seller to define his pricing policy effi-
ciently.

4.2. Heterogeneity in Shopping Behavior. The seller’s response
is analyzed next with respect to variations of parameters of
the shopping distribution @, keeping everything else fixed.
We will analyze the effect of increasing the heterogeneity of
the shopping distribution, that is, augmenting the variety of
consumer’s profiles in terms of the number of visited shops.
We consider below two ways of increasing heterogeneity
in @: in Section 4.2.1 we consider uniform spreads over
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FIGURE 2: Probability density functions of prices and output from the analysis in Section 4.1 for GED (4, s, v) distribution with varying shape
(from blue (v = 0.5) to red (v = 10, quasiuniform)) and the rest of parameters as in the benchmark case (¢ = 600, o? =125, N = 10); see

Table 2.
TABLE 3: Heterogeneous consumer’s shopping distributions in Sections 4.2.1 and 4.2.2 and their respective benchmarks.
Shopping distributions Heterogeneity analysis (range) Benchmark
Spread-of-search (Section 4.2.1) Dy K=2,3,...,30 K=2
Search fatigue (Section 4.2.2) o, p =005, i=12,...,20 p=1

an increasing range of #’s, and in Section 4.2.2 we analyze
distributions generated by a fatigue effect on consumer’s
shopping behavior.

4.2.1. Increasing Spread of Shopping Distribution. We assume
here that ® = @y is the uniform distribution on the set
{2,3,...,K}, for every integer 2 < K < N, that is Qg (n) =
(K-1)" forn € {2,3,...,K}. The benchmark case is K =
2; that is, the representative consumer visits 2 shops. The
benchmark values for other relevant parameters are as in
Table 1. We analyze the seller’s response with respect to a
uniform spread in the number of possible visits; that is, we
compute his pricing policy and associated profits when a
representative consumer chooses randomly a number #n of
shops to visit between 2 and K, with equal probability.
The seller is totally uncertain about the precise number of
shops (between 2 and K) the consumer will eventually visit:
any number is equally likely. As K increases, the Shannon’s
entropy of @, given by Hy = log (K — 1), also increases. The
entropy Hy serves as a measure of the heterogeneity of the
distribution and, alternatively, of the uncertainty of the seller
with regard to the consumer side of the market (see, e.g., Gray
[14]).

Figure 3(b) summarizes the seller’s optimal response—
prices and associated (expected) profits—as the entropy of
the distribution increases. It can be observed that prices
and profits decrease as the heterogeneity of the distribution

increases. As the demand side of the market becomes more
competitive (i.e., an extra shop is equally likely to be visited),
the seller’s profits shrink.

4.2.2. Search Fatigue in Shopping Behavior. We consider here
a behavioral effect as a possible source of the heterogeneity
in the shopping distribution. Assume that a representative
consumer has selected a sample of N potential sellers, or
shops, to visit (i.e., prices to check) from & and that he will
visit at least 2 shops. We further assume that, after having
visited any number of shops, there is a probability 0 < p < 1 of
not visiting one more shop. In principle, the fatigue parameter
could have memory of the number of shops already visited,
that is, p = p(n). We consider here the simple case in which
p is constant.

The simple behavioral assumption above produces a
shopping probability distribution @, with support {2,3,...,
N}if0 < p < 1. Indeed, the probability that a representative
consumer will visit n shops, given that he knows that a total
of N shops is available is given by

1— n—1
@, (n) = p( p)N_l, ©)

1-(1-p)

which is a version of the geometric distribution [13]. Notice
that if p = 1 the consumer will visit just 2 shops almost
surely, which is the benchmark case considered in Table 3.
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FIGURE 4: The seller’s problem under shopping fatigue. Main parameters in Table 3 and those used earlier as benchmark (u = 600, 0* =

125, v=2, a, = 0.15, N = 30).

The probability mass functions for an increasing sequence of
values of p, from blue (p = 0.05) to red (p = 1), can be seen
in Figure 4(a). As p decreases, the entropy of the distribution
increases; in turn the shopping distribution becomes more
heterogeneous.

Figure 4(b) displays the seller’s response with respect
to an increasing fatigue, that is, a higher propensity of the
representative consumer to stop shopping in the market.

The red point corresponds to the benchmark case (p = 1)
in which the consumer visits 2 shops almost surely. As the
fatigue is reduced (p decreases) the probability of visiting
more shops increases and the shopping distribution becomes
more uniform. The seller reacts to the fatigue reduction by
lowering prices which entails lower profits. In particular, as
the shopping distribution becomes more heterogeneous, the
seller’s profits diminish.



Notice that the benchmark case p = 1 of Section 4.2.2
(red point in Figure 4(b)) is equivalent to the benchmark case
K = 2 of Section 4.2.1 (blue point in Figure 3(b)), and the
pattern of the seller’s solution is similar in both cases: as the
shopping distribution becomes more heterogeneous, profits
are reduced.

5. Conclusions

In this paper we have introduced a general framework to
select the optimal pricing strategy of a seller competing in
a market of a homogeneous product in which prices are
dispersed and he has limited information about both his
competitors’ prices and the shopping behavior of his potential
customers. In order to solve his problem in a real setting,
the seller needs to estimate the distribution of prices in
the market and the distribution of shopping behavior of
consumers. By computing the solution to the problem, he
determines the price that maximizes his expected profits. This
theoretical setting describes many prevailing situations in real
scenarios.

In general, the solution to the seller’s problem depends in
a delicate manner on many parametric and functional inputs.
We have tested the model response under different scenarios
in which some of the parameters or functions are modified.
In order to analyze the seller’s response under different
exogenous perturbations, we have produced synthetic price
data using a wide family of distributions and have gener-
ated consumer’s shopping data from some naive behavioral
assumptions.

Regarding the supply side of the market, a significant issue
for the seller is how much (limited) information is required
about his rivals’ prices in order to determine his own price.
In real markets it is not unusual that sellers set their prices
looking only at the mean price in the market (and maybe
also at some measure of price dispersion). Our computational
study has showed that optimal pricing is sensitive not only to
the mean and dispersion of prices but also to the shape of
the distribution. Thus, in order to price efficiently, the seller
must estimate the whole distribution of prices. This fact is in
contrast with the behavior of the demand side of the market
when shopping behavior is determined from rational time
allocation. Indeed, the analysis in Alvarez et al. [6] suggested
that consumers’ shopping behavior can be determined from
price mean and variance only, so the shape of the distribution
does not seem to play a role here.

Regarding the demand side of the market, an important
question for the seller is understanding how diversity in
shopping behavior affects his pricing policy. In real markets,
consumers shopping behavior is typically expected to be
far from rational and in turn nonhomogeneous. We have
analyzed two different types of heterogeneity in the shopping
distribution. Our computational analysis has showed that
more diversity in the shopping behavior—parameterized, for
example, by the Shannon’s entropy—entails lowering optimal
prices and profits.

Price distributions and shopping distributions are the
main inputs to run the pricing model. The real utility of the
model proposed in this paper should come from its use in
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real markets. It is apparent from our analysis how the model
could be implemented in real markets once accurate estimates
of market prices and consumer behavior are available.
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