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In this article we study the nonlinear Robin boundary-value problem−Δ 𝑝(𝑥)𝑢 = 𝑓(𝑥, 𝑢) in Ω, |∇𝑢|𝑝(𝑥)−2(𝜕𝑢/𝜕])+𝛽(𝑥)|𝑢|𝑝(𝑥)−2𝑢 = 0

on 𝜕Ω. Using the variational method, under appropriate assumptions on 𝑓, we obtain results on existence and multiplicity of
solutions.

1. Introduction

The aim of this article is to analyze the existence of solutions
of the following problem:

−Δ𝑝(𝑥)𝑢 = 𝑓 (𝑥, 𝑢) in Ω,

|∇𝑢|

𝑝(𝑥)−2 𝜕𝑢

𝜕]
+ 𝛽 (𝑥) |𝑢|

𝑝(𝑥)−2
𝑢 = 0 on 𝜕Ω,

(1)

where Ω ⊂ R𝑁
(𝑁 ≥ 2) is a bounded smooth domain,

𝜕𝑢/𝜕] is the outer unit normal derivative on 𝜕Ω, 𝑝 is a
continuous function on Ω with 𝑝

− fl inf
𝑥∈Ω

𝑝(𝑥) > 1, and
𝛽 ∈ 𝐿

∞
(𝜕Ω) with 𝛽− fl inf𝑥∈𝜕Ω𝛽(𝑥) > 0 and 𝑓 : Ω × R →

R is a continuous function. The main interest in studying
such problems arises from the presence of the 𝑝(𝑥)-Laplace
operator div(|∇𝑢|𝑝(𝑥)−2∇𝑢), which is a natural extension of
the classical 𝑝-Laplace operator div(|∇𝑢|𝑝−2∇𝑢) obtained
in the case when 𝑝 is a positive constant. However, such
generalizations are not trivial since the𝑝(𝑥)-Laplace operator
possesses a more complicated structure than 𝑝-Laplace oper-
ator; for example, it is inhomogeneous.

We make the following assumptions on the function 𝑓:

(𝐻0): 𝑓 : Ω × R → R is a continuous function and there
exist two constants 𝐶1, 𝐶2 ≥ 0 such that
󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑠)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶1 + 𝐶2 |𝑠|
𝑞(𝑥)−1

∀ (𝑥, 𝑠) ∈ Ω ×R, (2)

where 𝑞(𝑥) ∈ 𝐶(Ω) and 1 < 𝑞(𝑥) < 𝑝

∗
(𝑥) for all

𝑥 ∈ Ω.
(𝐻1): the following limit holds uniformly for a.e 𝑥 ∈ Ω:

lim
|𝑠|→∞

𝑓 (𝑥, 𝑠) 𝑠

|𝑠|

𝑝+
= +∞; (3)

(𝐻2): 𝑓(𝑥, 𝑠) = 𝑜(|𝑠|

𝑝(𝑥)−1
) as 𝑠 → 0 and uniformly for 𝑥 ∈

Ω.
(𝐻3): there exist two positive constants 𝑐1 and 𝑐2 such that

𝜁1 (𝑥, 𝑠) ≤ 𝑐1𝜁1 (𝑥, 𝑡) ≤ 𝑐2𝜁2 (𝑥, 𝑡) , ∀0 ≤ 𝑠 ≤ 𝑡, (4)

where 𝜁1(𝑥, 𝑠) = 𝑓(𝑥, 𝑠)𝑠 − 𝑝

−
𝐹(𝑥, 𝑠) and 𝜁2(𝑥, 𝑠) =

𝑓(𝑥, 𝑠)𝑠 − 𝑝

+
𝐹(𝑥, 𝑠).

By the famous Mountain Pass lemma we state the first result.

Theorem 1. Suppose that the conditions (𝐻0)–(𝐻3) with 𝑞− >
𝑝

+ hold. Then problem (1) has at least a nontrivial weak solu-
tion.

Assume the following hypotheses:
(𝐻4):

lim
|𝑠|→0

𝐹 (𝑥, 𝑠)

|𝑠|

𝑝−
= ∞; (5)
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(𝐻5): 𝑓(𝑥, 0) = 0, and there exists 𝛿 > 0 such that
𝑝

−
𝐹(𝑥, 𝑠) − 𝑓(𝑥, 𝑠)𝑠 > 0 for every 𝑥 ∈ Ω and |𝑠| ≤ 𝛿

where 𝐹(𝑥, 𝑠) = ∫

𝑠

0
𝑓(𝑥, 𝑡)𝑑𝑡.

(𝐻6): 𝑓(𝑥, −𝑠) = −𝑓(𝑥, 𝑠), for 𝑥 ∈ Ω, 𝑠 ∈ R.

We are now in the position to state our second theorem.

Theorem 2. Suppose that 𝑝 : Ω → R is Lipschitz continuous
function. Under the assumptions (𝐻0) and (𝐻4)–(𝐻6), problem
(1) has a sequence ofweak solutions {𝑢𝑛}𝑛 such that |𝑢𝑛|𝐿∞(Ω) →
0 as 𝑛 → ∞.

For the next theorem we assume that 𝑓 satisfies the
following conditions:

(𝐻7): 𝑓(𝑥, 𝑠) ≥ 0 for all 𝑥 ∈ Ω and 𝑠 ≥ 0 with 𝑓(𝑥, 0) ̸= 0.
(𝐻8): 𝑓(𝑥, 𝑠) is nondecreasingwith respect to 𝑠 ≥ 0,∀𝑥 ∈ Ω.

Theorem 3. Suppose that the conditions (𝐻0), (𝐻7), and (𝐻8)
with 𝑝 ∈ 𝐶

1
(Ω) hold. Then problem (1) has a positive solution.

Nonlinear boundary-value problems with variable expo-
nent have received considerable attention in recent years.This
is partly due to their frequent appearance in applications
such as the modeling of electrorheological fluids [1–4] and
image processing [5], but these problems are very interesting
from a purely mathematical point of view as well. Many
results have been obtained on this kind of problems; see for
example [6–13]. In [9], the authors have studied the case
𝑓(𝑥, 𝑢) = |𝑢|

𝑝(𝑥)−2
𝑢; they proved the existence of infinitely

many eigenvalue sequences. Unlike the 𝑝-Laplacian case, for
a variable exponent 𝑝(𝑥) ( ̸= constant), there does not exist
a principal eigenvalue and the set of all eigenvalues is not
closed under some assumptions. Finally, they presented some
sufficient conditions that the infimum of all eigenvalues is
zero and positive, respectively.

In [14], the authors obtained results on existence and
multiplicity of solutions for problem (1) in the case 𝑞− > 𝑝

+,
under (𝐻0) and the following Ambrosetti-Rabinowitz type
condition:

|𝑡| ≥ 𝑀 󳨐⇒ 0 ≤ 𝜇𝐹 (𝑥, 𝑡) ≤ 𝑓 (𝑥, 𝑡) 𝑡,

∃𝜇 > 𝑝

+
, 𝑀 > 0 such that 𝑥 ∈ Ω.

(AR)

Here, we notice that (𝐻3) is much weaker than the (AR)
condition in the constant exponent case.

Very recently, the authors in [15] studied the following
problem:

−Δ𝑝(𝑥)𝑢 ∈ 𝜆𝜕𝐹 (𝑥, 𝑢) in Ω,

|∇𝑢|

𝑝(𝑥)−2 𝜕𝑢

𝜕]
+ 𝛽 (𝑥) |𝑢|

𝑝(𝑥)−2
𝑢 = 0 on 𝜕Ω,

(6)

where 𝜆 is a positive parameter, 𝐹(𝑥, 𝑡) is locally Lipschitz
function in the 𝑡-variable integrand, and 𝜕𝐹(𝑥, 𝑡) is the subd-
ifferential with respect to the 𝑡-variable in the sense of Clarke.
They claim that problem (6) admits at least two nontrivial
solutions.

In the first result, we consider problem (1) when the
nonlinear term is superlinear at infinity but does not satisfy
the (AR) type condition, used in [14, 16], which is necessary
to ensure the boundedness of the Palais-Smale (PS) type
sequences of the associated functional. To overcome these
difficulties, we will use the Mountain Pass Theorem [17] with
Cerami condition (𝐶) which is weaker than Palais-Smale (PS)
condition.

In the second result, a distinguishing feature is that we
have assumed some conditions only at zero; however, there
are no conditions imposed on𝑓 at infinity, which is necessary
in many works. Finally, in Theorem 3, applying the subsuper
solution method we get a positive solution of problem (1).

This article is organized as follows. First, wewill introduce
some basic preliminary results and lemmas in Section 2. In
Section 3, we will give the proofs of our main results.

2. Preliminaries

For completeness, we first recall some facts on the variable
exponent spaces 𝐿𝑝(𝑥)(Ω) and 𝑊

1,𝑝(𝑥)
(Ω). For more details,

see [18, 19]. Suppose thatΩ is a bounded open domain ofR𝑁

with smooth boundary 𝜕Ω and 𝑝 ∈ 𝐶+(Ω), where

𝐶+ (Ω) = {𝑝 ∈ 𝐶 (Ω) , inf
𝑥∈Ω

𝑝 (𝑥) > 1} . (7)

Denote by 𝑝− fl inf
𝑥∈Ω

𝑝(𝑥) and 𝑝+ fl sup
𝑥∈Ω

𝑝(𝑥). Define
the variable exponent Lebesgue space 𝐿𝑝(𝑥)(Ω) by

𝐿

𝑝(𝑥)
(Ω) = {𝑢 : Ω

󳨀→ R is measurable and ∫

Ω

|𝑢|

𝑝(𝑥)
𝑑𝑥 < +∞} ,

(8)

with the norm

|𝑢|𝑝(𝑥) = inf {𝜏 > 0; ∫

Ω

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)

𝑑𝑥 ≤ 1} .
(9)

Define the variable exponent Sobolev space𝑊1,𝑝(𝑥)
(Ω) by

𝑊

1,𝑝(𝑥)
(Ω) = {𝑢 ∈ 𝐿

𝑝(𝑥)
(Ω) : |∇𝑢| ∈ 𝐿

𝑝(𝑥)
(Ω)} , (10)

with the norm

‖𝑢‖ = inf {𝜏 > 0; ∫

Ω

(

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∇𝑢

𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)

)𝑑𝑥 ≤ 1} ,

‖𝑢‖ = |∇𝑢|𝑝(𝑥) + |𝑢|𝑝(𝑥) .

(11)

We refer the reader to [11, 18] for the basic properties of the
variable exponent Lebesgue and Sobolev spaces.

Lemma 4 (see [19]). Both (𝐿𝑝(𝑥)(Ω), | ⋅ |𝑝(𝑥)) and (𝑊1,𝑝(𝑥)
(Ω),

‖ ⋅ ‖) are separable and uniformly convex Banach spaces.
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Lemma 5 (see [19]). Hölder inequality holds, namely,

∫

Ω

|𝑢V| 𝑑𝑥 ≤ 2 |𝑢|𝑝(𝑥) |V|𝑝󸀠(𝑥)

∀𝑢 ∈ 𝐿

𝑝(𝑥)
(Ω) , V ∈ 𝐿𝑝

󸀠
(𝑥)

(Ω) ,

(12)

where 1/𝑝(𝑥) + 1/𝑝󸀠(𝑥) = 1.

Lemma 6 (see [18]). Assume that the boundary ofΩ possesses
the cone property and 𝑝 ∈ 𝐶(Ω) and 1 ≤ 𝑞(𝑥) < 𝑝

∗
(𝑥) for 𝑥 ∈

Ω, then there is a compact embedding𝑊1,𝑝(𝑥)
(Ω) 󳨅→ 𝐿

𝑞(𝑥)
(Ω),

where

𝑝

∗
(𝑥) =

{

{

{

𝑁𝑝 (𝑥)

𝑁 − 𝑝 (𝑥)

, 𝑖𝑓 𝑝 (𝑥) < 𝑁;

+∞, 𝑖𝑓 𝑝 (𝑥) ≥ 𝑁.

(13)

Now, we introduce a norm, which will be used later.
Let 𝛽 ∈ 𝐿

∞
(𝜕Ω) with 𝛽

− fl inf𝑥∈𝜕Ω𝛽(𝑥) > 0 and, for
𝑢 ∈ 𝑊

1,𝑝(𝑥)
(Ω), define

‖𝑢‖𝛽 = inf {𝜏

> 0; ∫

Ω

(

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∇𝑢

𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)

𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)

)𝑑𝜎

≤ 1} .

(14)

Then, by Theorem 2.1 in [16], ‖ ⋅ ‖𝛽 is also a norm on
𝑊

1,𝑝(𝑥)
(Ω) which is equivalent to ‖ ⋅ ‖.

An important role in manipulating the generalized
Lebesgue-Sobolev spaces is played by the mapping defined
by the following.

Lemma 7 (see [16]). Let 𝐼(𝑢) = ∫

Ω
|∇𝑢|

𝑝(𝑥)
𝑑𝑥 +

∫

𝜕Ω
𝛽(𝑥)|𝑢|

𝑝(𝑥)
𝑑𝜎 with 𝛽

−
> 0. For 𝑢 ∈ 𝑊

1,𝑝(𝑥)
(Ω) one

has
‖𝑢‖𝛽 < 1 (=1, >1) ⇔ 𝐼(𝑢) < 1 (=1, >1);

‖𝑢‖𝛽 ≤ 1 ⇒ ‖𝑢‖

𝑝
+

𝛽
≤ 𝐼(𝑢) ≤ ‖𝑢‖

𝑝
−

𝛽
;

‖𝑢‖𝛽 ≥ 1 ⇒ ‖𝑢‖

𝑝
−

𝛽
≤ 𝐼(𝑢) ≤ ‖𝑢‖

𝑝
+

𝛽
;

‖𝑢𝑛 − 𝑢‖𝛽 → 0 ⇔ 𝐼(𝑢𝑛 − 𝑢) → 0.

We recall the definition of the following condition (𝐶), see
[20].

Definition 8 (see [20]). Let 𝑋 be a Banach space and 𝐽 ∈

𝐶

1
(𝑋,R). Given 𝑐 ∈ R, one says that 𝐽 satisfies the Cerami

𝑐 condition (one denotes condition (𝐶𝑐)) if
(i) any bounded sequence {𝑢𝑛} ⊂ 𝑋 such that 𝐽(𝑢𝑛) → 𝑐

and 𝐽󸀠(𝑢𝑛) → 0 has a convergent subsequence;
(ii) there exist constants 𝛿, 𝑅, 𝛽 > 0 such that
󵄩

󵄩

󵄩

󵄩

󵄩

𝐽

󸀠
(𝑢)

󵄩

󵄩

󵄩

󵄩

󵄩

‖𝑢‖ ≥ 𝛽

∀𝑢 ∈ 𝐽

−1
([𝑐 − 𝛿, 𝑐 + 𝛿]) with ‖𝑢‖ ≥ 𝑅.

(15)

If 𝐽 ∈ 𝐶

1
(𝑋,R) satisfies condition (𝐶𝑐) for every 𝑐 ∈ R, one

says that 𝐽 satisfies condition (𝐶).

Note that condition (𝐶) is weaker than the (PS) condition.
However, it was shown in [17] that from condition (𝐶) it is
possible to obtain a deformation lemma, which is fundamen-
tal in order to get some min-max theorems.

Theorem 9 (see [17]). Let 𝑋 a Banach space, 𝐽 ∈ 𝐶

1
(𝑋,R),

𝑒 ∈ 𝑋, and 𝑟 > 0, such that ‖𝑒‖ > 𝑟 and

𝑏 fl inf
‖𝑢‖=𝑟

𝐽 (𝑢) > 𝐽 (0) ≥ 𝐽 (𝑒) . (16)

If 𝐽 satisfies the condition (𝐶𝑐) with

𝑐 fl inf
𝛾∈Γ

max
𝑡∈[0,1]

𝐽 (𝛾 (𝑡)) ,

Γ fl {𝛾 ∈ 𝐶 ([0, 1] , 𝑋) | 𝛾 (0) = 0, 𝛾 (1) = 𝑒} .

(17)

Then 𝑐 is a critical value of 𝐽.

Here, problem (1) is stated in the framework of the
generalized Sobolev space 𝑋 fl 𝑊

1,𝑝(𝑥)
(Ω).

The Euler-Lagrange functional associated with (1) is
defined as 𝐽 : 𝑋 → R in

𝐽 (𝑢) = ∫

Ω

1

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎

− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥.

(18)

One says that 𝑢 ∈ 𝑋 is a weak solution of (1) if

∫

Ω

|∇𝑢|

𝑝(𝑥)−2
∇𝑢∇V 𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)−2
𝑢V 𝑑𝜎

− ∫

Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥 = 0,

(19)

for all V ∈ 𝑋.
Standard arguments imply that 𝐽 ∈ 𝐶1

(𝑋,R) and

⟨𝐽

󸀠
(𝑢) , V⟩ = ∫

Ω

|∇𝑢|

𝑝(𝑥)−2
∇𝑢∇V 𝑑𝑥

+ ∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)−2
𝑢V 𝑑𝜎

− ∫

Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥,

(20)

for all 𝑢, V ∈ 𝑋. Thus, the weak solutions of (1) coincide with
the critical points of 𝐽.

3. Proof of Main Results

For simplicity, we use 𝐶𝑖, 𝑖 = 1, 2, . . ., to denote the general
positive constants whose exact values may change from line
to line.

Noting that 𝐽 is the sum of (𝑆+) type map and a weakly-
strongly continuous map, so 𝐽

󸀠 is of (𝑆+) type. To see that
Cerami condition (𝐶) holds, it is enough to verify that any
Cerami sequence is bounded.
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Proof ofTheorem 1. We check the assumption of compactness
of the Mountain Pass Theorem as in the following lemma.

Lemma 10. Suppose that (𝐻0)–(𝐻3) hold. If 𝑐 ∈ R, then any
(𝐶)𝑐 sequence of 𝐽 is bounded.

Proof. Let {𝑢𝑛} be a (𝐶)𝑐 sequence of 𝐽. If {𝑢𝑛} is unbounded,
up to a subsequence we may assume that

𝐽 (𝑢𝑛) 󳨀→ 𝑐,

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩𝛽
󳨀→ ∞,

󵄩

󵄩

󵄩

󵄩

󵄩

𝐽

󸀠
(𝑢𝑛)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩𝛽
󳨀→ 0.

(21)

Let 𝑤𝑛 = ‖𝑢𝑛‖
−1

𝛽
𝑢𝑛, then {𝑤𝑛} is bounded in 𝑋; up to a

subsequence we have

𝑤𝑛 ⇀ 𝑤 in 𝑋,

𝑤𝑛 󳨀→ 𝑤 in 𝐿

𝑞(𝑥)
(Ω) ,

𝑤𝑛 (𝑥) 󳨀→ 𝑤 (𝑥) a.e 𝑥 ∈ Ω.

(22)

If 𝑤 ̸= 0, we have 𝐽󸀠(𝑢𝑛)𝑢𝑛 = 0; that is,

∫

Ω

󵄨

󵄨

󵄨

󵄨

∇𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
𝑑𝜎

− ∫

Ω

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛𝑑𝑥 = 0.

(23)

Dividing (23) by ‖𝑢𝑛‖
𝑝
+

𝛽
, we get

∫

Ω

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝+

𝛽

𝑑𝑥 < ∞. (24)

On the other side, using (𝐻1) and lemma of Fatou we obtain

∫

Ω

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝+

𝛽

𝑑𝑥 = ∫

Ω

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑤𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
+

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝+
𝑑𝑥

󳨀→ ∞;

(25)

we obtain a contradiction.
If 𝑤 ≡ 0, since 𝑤𝑛 → 0 in 𝐿𝑞(𝑥)(Ω) and |𝐹(𝑥, 𝑡)| ≤ 𝐶(1 +

|𝑡|

𝑞(𝑥)
), by the continuity of theNemitskii operator, we see that

𝐹(⋅, 𝑤𝑛) → 0 in 𝐿1(Ω) as 𝑛 → +∞; therefore,

lim
𝑛→∞

∫

Ω

𝐹 (𝑥, 𝑤𝑛) 𝑑𝑥 = 0. (26)

We choose a sequence {𝑡𝑛} ⊂ [0, 1] such that

𝐽 (𝑡𝑛𝑢𝑛) = max
𝑡∈[0,1]

𝐽 (𝑡𝑢𝑛) . (27)

Given 𝑚 > 0, since for 𝑛 large enough we have
‖𝑢𝑛‖

−1

𝛽
(2𝑚𝑝

+
)

1/𝑝
−

∈ (0, 1), using (26) with 𝑅 = (2𝑚𝑝

+
)

1/𝑝
−

,
we obtain

𝐽 (𝑡𝑛𝑢𝑛) ≥ 𝐽(

𝑅

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩𝛽

𝑢𝑛) = 𝐽 (𝑅𝑤𝑛)

= ∫

Ω

𝑅

𝑝(𝑥)

𝑝 (𝑥)

(

󵄨

󵄨

󵄨

󵄨

∇𝑤𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
) 𝑑𝑥

+ ∫

𝜕Ω

𝑅

𝑝(𝑥)

𝑝 (𝑥)

𝛽 (𝑥) (

󵄨

󵄨

󵄨

󵄨

𝑤𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
) 𝑑𝜎

− ∫

Ω

𝐹 (𝑥, 𝑅𝑤𝑛) 𝑑𝑥

≥

𝑅

𝑝
−

𝑝

+
− ∫

Ω

𝐹 (𝑥, 𝑅𝑤𝑛) 𝑑𝑥 ≥ 𝑚.

(28)

That is, 𝐽(𝑡𝑛𝑢𝑛) → +∞, but 𝐽(0) = 0, 𝐽(𝑢𝑛) → 𝑐; we see that
𝑡𝑛 ∈ (0, 1) and ⟨𝐽󸀠(𝑡𝑛𝑢𝑛), 𝑡𝑛𝑢𝑛⟩ = 𝑡𝑛(𝑑/𝑑𝑡)|𝑡=𝑡

𝑛

𝐽(𝑡𝑢𝑛) = 0. It
yields

𝐽 (𝑡𝑛𝑢𝑛) −
1

𝑝

−
𝐽

󸀠
(𝑡𝑛𝑢𝑛) ⋅ 𝑡𝑛𝑢𝑛 󳨀→ +∞. (29)

Therefore,

∫

Ω

(

1

𝑝 (𝑥)

−

1

𝑝

−
)

󵄨

󵄨

󵄨

󵄨

𝑡𝑛∇𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
𝑑𝑥

+ ∫

𝜕Ω

(

1

𝑝 (𝑥)

−

1

𝑝

−
)𝛽 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑡𝑛𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
𝑑𝜎

+ ∫

Ω

(

1

𝑝

−
𝑓 (𝑥, 𝑡𝑛𝑢𝑛) (𝑡𝑛𝑢𝑛) − 𝐹 (𝑥, 𝑡𝑛𝑢𝑛)) 𝑑𝑥

󳨀→ +∞,

(30)

so we get

∫

Ω

(

1

𝑝

−
𝑓 (𝑥, 𝑡𝑛𝑢𝑛) (𝑡𝑛𝑢𝑛) − 𝐹 (𝑥, 𝑡𝑛𝑢𝑛)) 𝑑𝑥 󳨀→ +∞. (31)

Appropriately, we have

𝐽 (𝑢𝑛) = 𝐽 (𝑢𝑛) −
1

𝑝

+
𝐽

󸀠
(𝑢𝑛) ⋅ 𝑢𝑛

= ∫

Ω

(

1

𝑝 (𝑥)

−

1

𝑝

+
)

󵄨

󵄨

󵄨

󵄨

∇𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
𝑑𝑥

+ ∫

𝜕Ω

(

1

𝑝 (𝑥)

−

1

𝑝

+
)𝛽 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)
𝑑𝜎

+ ∫

Ω

(

1

𝑝

+
𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛)) 𝑑𝑥

≥ ∫

Ω

(

1

𝑝

+
𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛)) 𝑑𝑥.

(32)
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From (𝐻3), there exist two constants 𝑐1 and 𝑐2 such that

𝐽 (𝑢𝑛) ≥ ∫

Ω

(

1

𝑝

+
𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛)) 𝑑𝑥

≥ 𝑐1 ∫

Ω

(

1

𝑝

−
𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛)) 𝑑𝑥

≥ 𝑐1𝑐2 ∫

Ω

(

1

𝑝

−
𝑓 (𝑥, 𝑡𝑛𝑢𝑛) 𝑡𝑛𝑢𝑛 − 𝐹 (𝑥, 𝑡𝑛𝑢𝑛)) 𝑑𝑥.

(33)

Hence, 𝐽(𝑢𝑛) → +∞, which is impossible and thus (𝑢𝑛)𝑛 is
bounded in𝑋.

We will show that 𝐽 possesses the Mountain Pass geome-
try.

Lemma 11.Under the conditions (𝐻0)–(𝐻2), there exist 𝑟 > 0

and 𝜏 such that 𝐽(𝑢) > 𝜏 when ‖𝑢‖𝛽 = 𝑟.

Proof. In view of (𝐻0) and (𝐻2), there exists 𝐶1 > 0 such that

|𝐹 (𝑥, 𝑡)| ≤

1

2𝑝

+
|𝑡|

𝑝(𝑥)
+ 𝐶1 |𝑡|

𝑞(𝑥)
,

for (𝑥, 𝑡) ∈ Ω × R.
(34)

Therefore, for ‖𝑢‖𝛽 ≤ 1 we have

𝐽 (𝑢) ≥

1

𝑝

+
∫

Ω

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 +

1

𝑝

+
∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)
𝑑𝜎

−

1

2𝑝

+
∫

Ω

|𝑢|

𝑝(𝑥)
𝑑𝑥 − 𝐶1 ∫

Ω

|𝑢|

𝑞(𝑥)
𝑑𝑥

≥

𝐶2

2𝑝

+
∫

Ω

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 +

𝐶2

2𝑝

+
∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)
𝑑𝜎

− 𝐶1 ∫

Ω

|𝑢|

𝑞(𝑥)
𝑑𝑥 ≥

𝐶2

2𝑝

+
‖𝑢‖

𝑝
+

𝛽
− 𝐶3 ‖𝑢‖

𝑞
−

𝛽

≥ ‖𝑢‖

𝑝
+

𝛽
(

𝐶2

2𝑝

+
− 𝐶3 ‖𝑢‖

𝑞
−
−𝑝
+

𝛽
) .

(35)

Since𝑝+ < 𝑞

−, the function 𝑡 󳨃→ (𝐶2/2𝑝
+
−𝐶3𝑡

𝑞
−
−𝑝
+

) is strictly
positive in a neighborhood of zero. It follows that there exist
𝑟 > 0 and 𝜏 > 0 such that

𝐽 (𝑢) ≥ 𝜏 ∀𝑢 ∈ 𝑋 : ‖𝑢‖ = 𝑟. (36)

To apply the Mountain Pass Theorem, it suffices to show
that

𝐽 (𝑡𝑢) 󳨀→ −∞ as 𝑡 󳨀→ +∞ (37)

for a certain 𝑢 ∈ 𝑋.
Let 𝑢 ∈ 𝑋 \ {0}; by (𝐻1), we can choose a constant

𝐴 > (∫

Ω
(1/𝑝(𝑥))|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω
(𝛽(𝑥)/𝑝(𝑥))|𝑢|

𝑝(𝑥)
𝑑𝜎)/

∫

Ω
|𝑢|

𝑝
+

𝑑𝑥, such that

𝐹 (𝑥, 𝑡) ≥ 𝐴 |𝑡|

𝑝
+

uniformly in 𝑥 ∈ Ω.

(38)

Let 𝑡 > 1 be large enough; we have

𝐽 (𝑡𝑢)

= ∫

Ω

𝑡

𝑝(𝑥)

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝑡

𝑝(𝑥)
𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎

− ∫

Ω

𝐹 (𝑥, 𝑡𝑢) 𝑑𝑥

≤ 𝑡

𝑝
+

(∫

Ω

1

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎)

− ∫

|𝑡𝑢|>𝐶
𝐴

𝐹 (𝑥, 𝑡𝑢) 𝑑𝑥 − ∫

|𝑡𝑢|≤𝐶
𝐴

𝐹 (𝑥, 𝑡𝑢) 𝑑𝑥

≤ 𝑡

𝑝
+

(∫

Ω

1

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎)

− 𝐴𝑡

𝑝
+

∫

Ω

|𝑢|

𝑝
+

𝑑𝑥 − ∫

|𝑡𝑢|≤𝐶
𝐴

𝐹 (𝑥, 𝑡𝑢) 𝑑𝑥

+ 𝐴𝑡

𝑝
+

∫

|𝑡𝑢|≤𝐶
𝐴

|𝑢|

𝑝
+

𝑑𝑥

≤ 𝑡

𝑝
+

(∫

Ω

1

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎)

− 𝐴𝑡

𝑝
+

∫

Ω

|𝑢|

𝑝
+

𝑑𝑥 + 𝐶1,

(39)

where 𝐶1 > 0 is a constant, which implies that

𝐽 (𝑡𝑢) 󳨀→ −∞ as 𝑡 󳨀→ +∞. (40)

It follows that there exists 𝑒 ∈ 𝑋 such that ‖𝑒‖𝛽 > 𝑟 and
𝐽(𝑒) < 0. According to the Mountain Pass Theorem, 𝐽 admits
a critical value 𝑐 which is characterized by

𝑐 = inf
𝛾∈Γ

sup
𝑡∈[0,1]

𝐽 (𝛾 (𝑡)) , (41)

where

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝑋) : 𝛾 (0) = 0, 𝛾 (1) = 𝑒} . (42)

This completes the proof.

Proof of Theorem 2. Themain idea (developed by Wang [21])
is to extend 𝑓 ∈ 𝐶(Ω × (−𝜖, 𝜖),R) to an appropriate function
̃

𝑓 ∈ 𝐶(Ω×R,R) in order to prove for the associatedmodified
functional 𝐽 the existence of a sequence of weak solutions
tending to zero in 𝐿

∞ norm. Therefore, it is worth recalling
the following proposition.

Proposition 12 (see [22]). Let 𝐽 ∈ 𝐶

1
(𝑋,R), where 𝑋 is a

Banach space. Assume that 𝐽 satisfies the (𝑃𝑆) condition and is
even and bounded from below, and 𝐽(0) = 0. If for any 𝑛 ∈ N,
there exists a 𝑘-dimensional subspace𝑋𝑛 and 𝜌𝑛 > 0 such that

sup
𝑋
𝑛
∩𝑆
𝜌
𝑘

𝐽 < 0, (43)
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where 𝑆𝜌 := {𝑢 ∈ 𝑋 : ‖𝑢‖ = 𝜌}, then 𝐽 has a sequence of critical
values 𝑐𝑛 < 0 satisfying 𝑐𝑛 → 0 as 𝑛 → ∞.

We need to state the following results.

Claim 1. When 𝐽(𝑢) = 𝐽

󸀠
(𝑢) ⋅ 𝑢 = 0, then 𝑢 = 0.

Indeed, suppose that 𝑢 ̸= 0. Thus

∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

= ∫

Ω

1

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎,

∫

Ω

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)
𝑑𝜎

= ∫

Ω

𝑓 (𝑥, 𝑢) 𝑢 𝑑𝑥.

(44)

Then we obtain

𝑝

−
∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

= 𝑝

−
(∫

Ω

1

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎)

≤ ∫

Ω

𝑓 (𝑥, 𝑢) 𝑢 𝑑𝑥,

(45)

which contradicts the assumption (𝐻5).

Claim 2. There exist 𝛿 > 0 and ̃

𝑓 ∈ 𝐶(Ω × R) such that ̃𝑓 is
odd and

𝑓 (𝑥, 𝑡) =

̃

𝑓 (𝑥, 𝑡) for |𝑡| < 𝛿,
(46)

𝑝

−
̃

𝐹 (𝑥, 𝑡) −

̃

𝑓 (𝑥, 𝑡) 𝑡 ≥ 0, ∀ (𝑥, 𝑡) ∈ Ω ×R, (47)

𝑝

−
̃

𝐹 (𝑥, 𝑡) −

̃

𝑓 (𝑥, 𝑡) 𝑡 = 0, for |𝑡| > 𝛿 (or 𝑡 = 0) ,
(48)

where ̃𝐹(𝑥, 𝑡) = ∫

𝑡

0

̃

𝑓(𝑥, 𝑠)𝑑𝑠.
In fact, let us define ̃𝐹(𝑥, 𝑡) = ℎ(𝑡)𝐹(𝑥, 𝑡)+𝐶1(1−ℎ(𝑡))|𝑡|

𝑝
−

where 𝐶1 is a positive constant and ℎ is a cut-off function
presented as follows:

ℎ (𝑡) =

{

{

{

1, if |𝑡| ≤ 𝛿

2

;

0, if |𝑡| ≥ 𝛿,

ℎ

󸀠
(𝑡) 𝑡 ≤ 0,

󵄨

󵄨

󵄨

󵄨

󵄨

ℎ

󸀠
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

≤

4

𝛿

.

(49)

For |𝑡| ≤ 𝛿/2, (46) easily holds.
On the other hand, we have

̃

𝑓 (𝑥, 𝑡) =

𝜕

𝜕𝑡

̃

𝐹 (𝑥, 𝑡)

= ℎ

󸀠
(𝑡) 𝐹 (𝑥, 𝑡) + ℎ (𝑡) 𝑓 (𝑥, 𝑡)

+ 𝐶1 (1 − ℎ (𝑡)) (|𝑡|
𝑝
−

)

󸀠

− 𝐶1ℎ
󸀠
(𝑡) |𝑡|

𝑝
−

.

(50)

It is easy to check that for |𝑡| ≥ 𝛿 we have

𝑝

−
̃

𝐹 (𝑥, 𝑡) = 𝐶1𝑝
−
|𝑡|

𝑝
−

.

(51)

Hence, (48) is satisfied. In the rest, from (𝐻4), we can choose
𝛿 > 0 small enough to get 𝐹(𝑥, 𝑡) ≥ 𝐶1|𝑡|

𝑝
−

when 𝑡 ∈ [𝛿/2, 𝛿]
and the formula (47) holds since ℎ󸀠(𝑡)𝑡 ≤ 0.

Claim 3. The associated modified functional 𝐽 satisfies the
Palais-Smale condition.

In fact, by Claim 2, it is easy to see that 𝐽 is even and 𝐽 ∈
𝐶

1
(𝑋,R). For ‖𝑢‖𝛽 > 1, we have

𝐽 = ∫

Ω

1

𝑝 (𝑥)

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

𝑝 (𝑥)

|𝑢|

𝑝(𝑥)
𝑑𝜎

− ∫

Ω

̃

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥

1

𝑝

+
(∫

Ω

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)
𝑑𝜎)

− 𝐴∫

Ω

|𝑢|

𝑝
−

𝑑𝑥.

(52)

Because 𝑋 󳨅→ 𝐿

𝑝
−

(Ω) with 𝐴 is a positive constant, 𝐽 is
coercive, that is, 𝐽 → +∞ as ‖𝑢‖𝛽 → +∞. Hence, to verify
that 𝐽 satisfies (PS) condition on𝑋, it is enough to verify that
any (PS) sequence is bounded. Hence, by the coercivity of 𝐽,
any (PS) sequence is bounded in𝑋.

Next, we modify and extend 𝑓(𝑥, 𝑢) to get ̃𝑓(𝑥, 𝑢) ∈

𝐶(Ω ×R) satisfying the assertions of Proposition 12.
For any 𝑘 ∈ N we have 𝑘 independent smooth functions

𝑒𝑖 for 𝑖 = 1, 2, . . . , 𝑘, and define the subspace 𝑋𝑘 :=

span{𝑒1, . . . , 𝑒𝑘}.
From Claim 2, for ‖𝑢‖𝛽 < 1 we can obtain

𝐽 ≤

1

𝑝

−
(∫

Ω

|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)
𝑑𝜎)

− 𝐶∫

Ω

|𝑢|

𝑝
−

𝑑𝑥 ≤

1

𝑝

−
‖𝑢‖

𝑝
−

𝛽
− 𝐶∫

Ω

|𝑢|

𝑝
−

𝑑𝑥.

(53)

By (53) and as it is well known that all norms in𝑋𝑘 are equiv-
alent, for sufficiently small 𝜌𝑘 and suitable positive constant
𝐶 we obtain

sup
𝑋
𝑘
∩𝑆
𝜌𝑛

𝐽 < 0. (54)

As a consequence of this fact, we observe that the conditions
of Proposition 12 hold and thus there exists a sequence of
negative critical values 𝑐𝑘 for the functional 𝐽 such that 𝑐𝑘 → 0

as 𝑘 → ∞.
Afterwards, for any 𝑢𝑘 ∈ 𝑋 satisfying 𝐽(𝑢𝑘) = 𝑐𝑘 and

𝐽

󸀠
(𝑢𝑘) = 0, {𝑢𝑘}𝑘 is (PS)0 sequence of 𝐽. Passing, if necessary,

to a subsequence still denoted by {𝑢𝑘}𝑘, we may suppose that
{𝑢𝑘}𝑘 has a limit.
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From Claims 1 and 2 it is clear that 0 is the only critical
point when the energy is zero and thus {𝑢𝑘}𝑘 converges to 0.
It follows from [23, 24] that

{𝑢𝑘}𝑘
∈ 𝐶 (Ω) ,

󵄨

󵄨

󵄨

󵄨

𝑢𝑘

󵄨

󵄨

󵄨

󵄨𝐿∞(Ω)
󳨀→ 0

as 𝑘 󳨀→ ∞.

(55)

So in view of Claim 2, we have |𝑢𝑘|𝐶(Ω) ≤ 𝛿/2. Thereby, the
sequences {𝑢𝑘}𝑘 are solutions of problem (1).

Proof of Theorem 3. Firstly, we recall the definition of sub-
supersolution of problem (1) as follows. We call 𝑢 ∈ 𝑋 a
subsolution (resp. supersolution) of (1) if, for every V ∈ 𝑋

with V ≥ 0,

∫

Ω

|∇𝑢|

𝑝(𝑥)−2
∇𝑢∇V 𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥) |𝑢|

𝑝(𝑥)−2
𝑢V 𝑑𝜎

≤ (resp. ≥) ∫
Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥.
(56)

Lemma 13. Let 𝑝 ∈ 𝐶

1
(Ω). Suppose that 𝑓 satisfies the

subcritical growth condition (𝐻0) and the function 𝑓(𝑥, 𝑡) is
nondecreasing in 𝑡 ∈ R. If there exist a subsolution 𝑢0 ∈

𝑊

1,𝑝(𝑥)
(Ω) ∩ 𝐿

∞
(Ω) and a supersolution V0 ∈ 𝑊

1,𝑝(𝑥)
(Ω) ∩

𝐿

∞
(Ω) of (1) such that 𝑢0 ≤ V0, then (1) has a minimal solution

𝑢 and a maximal solution V in the order interval [𝑢0, V0] (i.e.,
𝑢0 ≤ 𝑢 ≤ V ≤ V0).

The proof of Lemma 13 is built on the fixed point theory
for the increasing operator on the order interval (see e.g.,
[25]) and is similar to that given in [26] for the𝑝(𝑥)-Laplacian
case.

According to Proposition 2.2 in [15], the mapping 𝐼

󸀠
:

𝑋 → 𝑋

∗ such that for all 𝑢, V in 𝑋; ⟨𝐼󸀠(𝑢), V⟩ =

∫

Ω
|∇𝑢|

𝑝(𝑥)−2
∇𝑢∇V 𝑑𝑥 + ∫

𝜕Ω
𝛽(𝑥)|𝑢|

𝑝(𝑥)−2
𝑢V 𝑑𝜎 is a strictly

monotone, bounded homeomorphism, and consequently we
have the following.

Proposition 14. Let 𝑞 ∈ 𝐶(Ω) with 1 < 𝑞(𝑥) < 𝑝

∗
(𝑥) for

𝑥 ∈ Ω, then for 𝑔 ∈ 𝐿

(𝑞(𝑥))/(𝑞(𝑥)−1)
(Ω) (or 𝑔 ∈ 𝐶

0,𝛼
(Ω)), the

problem

−Δ𝑝(𝑥)𝑢 = 𝑔 (𝑥) , 𝑖𝑛 Ω;

|∇𝑢|

𝑝(𝑥)−2 𝜕𝑢

𝜕]
+ 𝛽 (𝑥) |𝑢|

𝑝(𝑥)−2
𝑢 = 0, 𝑜𝑛 𝜕Ω,

(P1)

has a unique solution 𝑢 in𝑋.
Let us consider the following problem:

−Δ𝑝(𝑥)𝑢 = 𝑀, in Ω;

|∇𝑢|

𝑝(𝑥)−2 𝜕𝑢

𝜕]
+ 𝛽 (𝑥) |𝑢|

𝑝(𝑥)−2
𝑢 = 0, on 𝜕Ω,

(P2)

with 𝑀 > 0. By Proposition 14, the strong maximum prin-
ciple [27] and the result of regularity in [28], problem (P2)

has a unique positive solution 𝑢1 such that 𝑢1(𝑥) > 0 for each
𝑥 ∈ Ω.

Taking𝑀 = sup
𝑥∈Ω

𝑓(𝑥, 𝑡), for any V ∈ 𝑋 with V ≥ 0 we
have

∫

Ω

󵄨

󵄨

󵄨

󵄨

∇𝑢1

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)−2
∇𝑢1∇V 𝑑𝑥 + ∫

𝜕Ω

𝛽 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢1

󵄨

󵄨

󵄨

󵄨

𝑝(𝑥)−2
𝑢1V 𝑑𝜎

= ∫

Ω

𝑀V 𝑑𝑥 ≥ ∫

Ω

𝑓 (𝑥, 𝑢1) V 𝑑𝑥.
(57)

Hence, 𝑢1 is a positive supersolution of problem (1).
Obviously 0 is a subsolution of (1). By Lemma 13, (1) has

a solution 𝑢 ∈ [0, 𝑢1].

Competing Interests

The author declares that he has no competing interests.

References

[1] T. G. Myers, “Thin films with high surface tension,” SIAM
Review, vol. 40, no. 3, pp. 441–462, 1998.
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