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We derive closed formulas for the energy of circulant graphs generated by 1 and 𝛾, where 𝛾 ⩾ 2 is an integer. We also find a formula
for the energy of the complete graph without a Hamilton cycle.

Let 1 ⩽ 𝛾
1
⩽ ⋅ ⋅ ⋅ ⩽ 𝛾

𝑑
be integers. The circulant graph 𝐶

𝛾
1
,...,𝛾
𝑑

𝑛

generated by 𝛾
1
, . . . , 𝛾

𝑑
on 𝑛 vertices labelled 0, 1, . . . , 𝑛 − 1

is the 2D-regular graph such that, for all V ∈ Z/𝑛Z, V is
connected to V + 𝛾

𝑖
mod 𝑛 and to V − 𝛾

𝑖
mod 𝑛, for all 𝑖 =

1, . . . , 𝑑. The adjacency matrix 𝐴 = (𝐴
𝑖𝑗
) of a graph on 𝑛

vertices is the 𝑛×𝑛matrix with rows and columns indexed by
the vertices such that 𝐴

𝑖𝑗
is the number of edges connecting

vertices 𝑖 and 𝑗. Let 𝜆
𝑘
, 𝑘 = 1, . . . , 𝑛, denote the eigenvalues

of the adjacencymatrix.The energy of a graph𝐺 on 𝑛 vertices
is defined by the sum of the absolute values of the eigenvalues
of 𝐴; that is,

𝐸 (𝐺) =

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨 . (1)

The energy of circulant graphs and integral circulant graphs
is widely studied; see, for example, [1–4]. It has interesting
applications in theoretical chemistry; namely, it is related to
the 𝜋-electron energy of a conjugated carbon molecule; see
[5]. In the following theorem,we give a formula for the energy
of circulant graphs with two generators, 1 and 𝛾, 𝛾 ⩾ 2. The
formula is interesting as 𝑛 is larger than 𝛾.

Theorem 1. Let𝐷
𝑛
(𝑥) denote the Dirichlet kernel. The energy

of the circulant graph 𝐶
1,2

𝑛
is given by

𝐸 (𝐶
1,2

𝑛
) = 4 (𝐷

⌊𝑛/6⌋
(
2𝜋

𝑛
) + 𝐷

⌊𝑛/6⌋
(
4𝜋

𝑛
)) . (2)

For 𝛾 ⩾ 3, the energy of the circulant graph 𝐶
1,𝛾

𝑛
is given by

𝐸 (𝐶
1,𝛾

𝑛
) = 4 ∑

𝑚∈{1,𝛾}

(

⌈𝛾/2⌉−1

∑

𝑙=0

𝐷
⌊(2𝑙+1)𝑛/(2(𝛾+1))⌋

(
2𝜋𝑚

𝑛
)

−

⌈𝛾/2⌉−2

∑

𝑙=0

𝐷
⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋

(
2𝜋𝑚

𝑛
)) ,

(3)

where ⌊𝑥⌋ denotes the greatest integer smaller than or equal to
𝑥 and ⌈𝑥⌉ denotes the smallest integer greater than or equal to
𝑥.

Proof. The adjacency matrix of a circulant graph is circulant;
it follows that the eigenvalues of 𝐶

1,𝛾

𝑛
are given by 𝜆

𝑘
=

2 cos(2𝜋𝑘/𝑛) + 2 cos(2𝜋𝛾𝑘/𝑛), 𝑘 = 0, . . . , 𝑛 − 1 (see [6]). The
energy of 𝐶1,𝛾

𝑛
is then given by

𝐸 (𝐶
1,𝛾

𝑛
) = 2

𝑛−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

cos(2𝜋𝑘

𝑛
) + cos(

2𝜋𝛾𝑘

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (4)

Let 𝛾 = 2. The two roots of the equation cos𝑥 + cos(2𝑥) = 0

for 𝑥 ∈ [0, 𝜋] are 𝜋/3 and 𝜋. We write the energy as

𝐸 (𝐶
1,2

𝑛
) = 4 + 4

⌈𝑛/2⌉−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

cos(2𝜋𝑘

𝑛
) + cos(4𝜋𝑘

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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= 4 + 4

⌊𝑛/6⌋

∑

𝑘=1

(cos(2𝜋𝑘

𝑛
) + cos(4𝜋𝑘

𝑛
))

− 4

⌈𝑛/2⌉−1

∑

𝑘=⌊𝑛/6⌋+1

(cos(2𝜋𝑘

𝑛
) + cos(4𝜋𝑘

𝑛
)) .

(5)

The sum of cos(𝑘𝑥) over consecutive 𝑘’s can be expressed in
terms of the Dirichlet kernel; namely,

𝐷
𝑛
(𝑥) = 1 + 2

𝑛

∑

𝑘=1

cos (𝑘𝑥) =
sin ((𝑛 + 1/2) 𝑥)

sin (𝑥/2)
. (6)

As a consequence,

2

𝑚

∑

𝑘=𝑛+1

cos (𝑘𝑥) = 𝐷
𝑚
(𝑥) − 𝐷

𝑛
(𝑥) . (7)

The energy of 𝐶1,2
𝑛

is thus given by

𝐸 (𝐶
1,2

𝑛
) = 4𝐷

⌊𝑛/6⌋
(
2𝜋

𝑛
) + 4𝐷

⌊𝑛/6⌋
(
4𝜋

𝑛
)

− 2𝐷
⌈𝑛/2⌉−1

(
2𝜋

𝑛
) − 2𝐷

⌈𝑛/2⌉−1
(
4𝜋

𝑛
) .

(8)

The formula then follows from the fact that, for odd 𝑛,
𝐷
(𝑛−1)/2

(2𝜋𝑚/𝑛) = 0 for𝑚 = 1, 2, and, for even 𝑛, 𝐷
𝑛/2−1

(2𝜋/

𝑛) = 1 and 𝐷
𝑛/2−1

(4𝜋/𝑛) = −1.

Let 𝛾 ⩾ 3. For odd 𝛾, the 𝛾 solutions of the equation cos𝑥+
cos 𝛾𝑥 = 0 for 𝑥 ∈ [0, 𝜋] are given in the increasing order by
𝜋/(𝛾 + 1), 𝜋/(𝛾 − 1), 3𝜋/(𝛾 + 1), 3𝜋/(𝛾 − 1), . . . , (𝛾 − 2)𝜋/(𝛾 −

1), 𝛾𝜋/(𝛾 + 1). For even 𝛾, they are given by 𝜋/(𝛾 + 1), 𝜋/(𝛾 −

1), 3𝜋/(𝛾+1), 3𝜋/(𝛾−1), . . . , (𝛾−3)𝜋/(𝛾−1), (𝛾−1)𝜋/(𝛾+1), 𝜋.
Let 𝑛 be odd. We split the sum over 𝑘 of cosines to group the
positive terms together and the negative terms together. The
energy is given by

𝐸 (𝐶
1,𝛾

𝑛
) = 4 + 4

(𝑛−1)/2

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

cos(2𝜋𝑘

𝑛
) + cos(

2𝜋𝛾𝑘

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 4 + 4

⌊𝑛/(2(𝛾+1))⌋

∑

𝑘=1

(cos(2𝜋𝑘

𝑛
) + cos(

2𝜋𝛾𝑘

𝑛
))

+ 4

⌈𝛾/2⌉−2

∑

𝑙=0

⌊(2𝑙+3)𝑛/(2(𝛾+1))⌋

∑

𝑘=⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋+1

(cos(2𝜋𝑘

𝑛
)

+ cos(
2𝜋𝛾𝑘

𝑛
))

− 4

⌈𝛾/2⌉−1

∑

𝑙=0

⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋

∑

𝑘=⌊(2𝑙+1)𝑛/(2(𝛾+1))⌋+1

(cos(2𝜋𝑘

𝑛
)

+ cos(
2𝜋𝛾𝑘

𝑛
)) .

(9)

Writing the above relation in terms of Dirichlet kernels, we
have

𝐸 (𝐶
1,𝛾

𝑛
) = 2 ∑

𝑚∈{1,𝛾}

(𝐷
⌊𝑛/(2(𝛾+1))⌋

(
2𝜋𝑚

𝑛
) +

⌈𝛾/2⌉−2

∑

𝑙=0

(𝐷
⌊(2𝑙+3)𝑛/(2(𝛾+1))⌋

(
2𝜋𝑚

𝑛
) − 𝐷

⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋
(
2𝜋𝑚

𝑛
))

−

⌈𝛾/2⌉−1

∑

𝑙=0

(𝐷
⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋

(
2𝜋𝑚

𝑛
) − 𝐷

⌊(2𝑙+1)𝑛/(2(𝛾+1))⌋
(
2𝜋𝑚

𝑛
))) .

(10)

Hence,

𝐸 (𝐶
1,𝛾

𝑛
) = ∑

𝑚∈{1,𝛾}

(4

⌈𝛾/2⌉−1

∑

𝑙=0

𝐷
⌊(2𝑙+1)𝑛/(2(𝛾+1))⌋

(
2𝜋𝑚

𝑛
)

− 4

⌈𝛾/2⌉−2

∑

𝑙=0

𝐷
⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋

(
2𝜋𝑚

𝑛
)

− 2𝐷
⌊𝑛/2⌋

(
2𝜋𝑚

𝑛
)) .

(11)

The formula follows from the fact that𝐷
⌊𝑛/2⌋

(2𝜋𝑚/𝑛) = 0 for
𝑚 = 1, 𝛾.

Let 𝑛 be even. As for the case when 𝑛 is odd, we write the
energy as follows:

𝐸 (𝐶
1,𝛾

𝑛
) = 4 (1 + 𝛿

𝛾 odd)

+ 4

𝑛/2−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

cos(2𝜋𝑘

𝑛
) + cos(

2𝜋𝛾𝑘

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(12)

where 𝛿
𝛾 odd = 1 if 𝛾 is odd and 0 otherwise.

For even 𝛾, relations (9), (10), and (11) also hold. The
theorem then follows from the fact that𝐷

𝑛/2
(2𝜋/𝑛) = −1 and

𝐷
𝑛/2

(2𝜋𝛾/𝑛) = 1. For odd 𝛾, we have

𝐸 (𝐶
1,𝛾

𝑛
) = 8 + 4

⌊𝑛/(2(𝛾+1))⌋

∑

𝑘=1

(cos(2𝜋𝑘

𝑛
)

+ cos(
2𝜋𝛾𝑘

𝑛
))
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Figure 1: Energy of circulant graphs.

+ 4

⌈𝛾/2⌉−2

∑

𝑙=0

⌊(2𝑙+3)𝑛/(2(𝛾+1))⌋

∑

𝑘=⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋+1

(cos(2𝜋𝑘

𝑛
)

+ cos(
2𝜋𝛾𝑘

𝑛
))

− 4

⌈𝛾/2⌉−2

∑

𝑙=0

⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋

∑

𝑘=⌊(2𝑙+1)𝑛/(2(𝛾+1))⌋+1

(cos(2𝜋𝑘

𝑛
)

+ cos(
2𝜋𝛾𝑘

𝑛
))

− 4

𝑛/2−1

∑

𝑘=⌊(2⌈𝛾/2⌉−1)𝑛/(2(𝛾+1))⌋+1

(cos(2𝜋𝑘

𝑛
)

+ cos(
2𝜋𝛾𝑘

𝑛
)) .

(13)

Expressing it in terms of Dirichlet kernels, we have

𝐸 (𝐶
1,𝛾

𝑛
) = 4 + 2 ∑

𝑚∈{1,𝛾}

(𝐷
⌊𝑛/(2(𝛾+1))⌋

(
2𝜋𝑚

𝑛
) +

⌈𝛾/2⌉−2

∑

𝑙=0

(𝐷
⌊(2𝑙+3)𝑛/(2(𝛾+1))⌋

(
2𝜋𝑚

𝑛
) − 𝐷

⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋
(
2𝜋𝑚

𝑛
))

−

⌈𝛾/2⌉−2

∑

𝑙=0

(𝐷
⌊(2𝑙+1)𝑛/(2(𝛾−1))⌋

(
2𝜋𝑚

𝑛
) − 𝐷

⌊(2𝑙+1)𝑛/(2(𝛾+1))⌋
(
2𝜋𝑚

𝑛
)) − 𝐷

𝑛/2−1
(
2𝜋𝑚

𝑛
) + 𝐷

⌊(2⌈𝛾/2⌉−1)𝑛/(2(𝛾+1))⌋
(
2𝜋𝑚

𝑛
)) .

(14)

The theorem follows from the fact that 𝐷
𝑛/2−1

(2𝜋𝑚/𝑛) = 1

for 𝑚 = 1, 𝛾.

A graph is called hyperenergetic if its energy is greater
than the one of the complete graph 𝐾

𝑛
. The eigenvalues of

the adjacency matrix of 𝐾
𝑛
are given by 𝑛 − 1 and −1 with

multiplicity 𝑛 − 1, so that its energy is given by 𝐸(𝐾
𝑛
) =

2(𝑛 − 1).
Figure 1(a) shows how the energy of 𝐶

1,𝛾

𝑛
grows with

respect to 𝑛 for 𝛾 = 8. We see that it is not hyperenergetic

and that the energy grows more or less linearly with respect
to 𝑛. Figure 1(b) shows the energy of 𝐶1,𝛾

𝑛
with fixed 𝑛 as 𝛾

varies. We observe that the energy stays more or less constant
independently of 𝛾.

As a consequence of the theorem, we can carry out the
sum of the Dirichlet kernels when the number of vertices is
proportional to 2(𝛾 − 1)(𝛾 + 1).

Corollary 2. Given integers 𝛾 ⩾ 3 and 𝛼 ⩾ 1, the energy of the
circulant graph 𝐶

1,𝛾

2𝛼(𝛾−1)(𝛾+1)
is given by

𝐸(𝐶
1,𝛾

2𝛼(𝛾−1)(𝛾+1)
) = 4 ∑

𝑚∈{1,𝛾}

(
sin (𝜋𝑚 (⌈𝛾/2⌉ + 1/ (2𝛼 (𝛾 − 1))) / (𝛾 + 1)) sin (⌈𝛾/2⌉ 𝜋𝑚/ (𝛾 + 1))

sin (𝜋𝑚/ (2𝛼 (𝛾 − 1) (𝛾 + 1))) sin (𝜋𝑚/ (𝛾 + 1))

−
sin (𝜋𝑚 (⌈𝛾/2⌉ − 1 + 1/ (2𝛼 (𝛾 + 1))) / (𝛾 − 1)) sin ((⌈𝛾/2⌉ − 1) 𝜋𝑚/ (𝛾 − 1))

sin (𝜋𝑚/ (2𝛼 (𝛾 − 1) (𝛾 + 1))) sin (𝜋𝑚/ (𝛾 − 1))
) .

(15)
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Proof. Let 𝑎 ⩾ 1 and 𝐾 ⩾ 0 be integers. The sum over 𝑘 of
Dirichlet kernels of index (2𝑘 + 1)𝑎 is given by

𝐾

∑

𝑘=0

𝐷
(2𝑘+1)𝑎

(𝑥) =

𝐾

∑

𝑘=0

sin (((2𝑘 + 1) 𝑎 + 1/2) 𝑥)

sin (𝑥/2)
. (16)

By multiplying the summation by sin(𝑎𝑥)/ sin(𝑎𝑥) and using
the trigonometric identity 2 sin 𝜃 sin𝜙 = cos(𝜃 − 𝜙) − cos(𝜃 +

𝜙), we have
𝐾

∑

𝑘=0

𝐷
(2𝑘+1)𝑎

(𝑥)

=
cos (𝑥/2) − cos (((2𝐾 + 2) 𝑎 + 1/2) 𝑥)

2 sin (𝑥/2) sin (𝑎𝑥)

=
sin (((2𝐾 + 2) 𝑎 + 1) 𝑥/2) sin ((𝐾 + 1) 𝑎𝑥)

sin (𝑥/2) sin (𝑎𝑥)
.

(17)

The corollary then follows by applying the above relation first
with 𝑎 = 𝛼(𝛾 − 1), 𝐾 = ⌈𝛾/2⌉ − 1 and second with 𝑎 = 𝛼(𝛾 +

1), 𝐾 = ⌈𝛾/2⌉ − 2, and 𝑥 = 2𝜋𝑚/𝑛, 𝑚 ∈ {1, 𝛾}.

In [7], the author considered the graphs𝐾
𝑛
−𝐻, where𝐾

𝑛

is the complete graph on 𝑛 vertices and𝐻 is a Hamilton cycle
of𝐾
𝑛
, and asked whether these graphs are hyperenergetic. In

[4], the authors showed that the energy of𝐾
𝑛
−𝐻 is given by

𝐸 (𝐾
𝑛
− 𝐻) = 𝑛 − 3 +

𝑛−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + 2 cos(2𝜋𝑘

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(18)

and that as 𝑛 goes to infinity, it is hyperenergetic. In the
following proposition, we give a formula for it for all 𝑛 ⩾ 3.

Proposition 3. For all 𝑛 ⩾ 3, the energy of𝐾
𝑛
− 𝐻 is given by

𝐸 (𝐾
𝑛
− 𝐻) = 2 (𝑛 − 3 − (⌊

2𝑛

3
⌋ − ⌊

𝑛

3
⌋)) + 2

⋅
sin ((⌊𝑛/3⌋ + 1/2) 2𝜋/𝑛) − sin ((⌊2𝑛/3⌋ + 1/2) 2𝜋/𝑛)

sin (𝜋/𝑛)
.

(19)

Proof. We have
𝑛−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + 2 cos(2𝜋𝑘

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

⌊𝑛/3⌋

∑

𝑘=1

(1 + 2 cos(2𝜋𝑘

𝑛
))

−

⌊2𝑛/3⌋

∑

𝑘=⌊𝑛/3⌋+1

(1 + 2 cos(2𝜋𝑘

𝑛
))

+

𝑛−1

∑

𝑘=⌊2𝑛/3⌋+1

(1 + 2 cos(2𝜋𝑘

𝑛
))

= 𝑛 − 2 − 2 (⌊
2𝑛

3
⌋ − ⌊

𝑛

3
⌋) + 2𝐷

⌊𝑛/3⌋
(
2𝜋

𝑛
)

− 2𝐷
⌊2𝑛/3⌋

(
2𝜋

𝑛
) + 𝐷

𝑛−1
(
2𝜋

𝑛
) .

(20)

Since 𝐷
𝑛−1

(2𝜋/𝑛) = −1, the proposition follows.

By elementary analysis, one can show that 𝐸(𝐾
𝑛
− 𝐻) −

2(𝑛−1) is increasing in 𝑛. As a consequence, we find that𝐾
𝑛
−

𝐻 are hyperenergetic for all 𝑛 ⩾ 10. This has been previously
found in [4].
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