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A probabilistic model is proposed to study the transmission dynamics of the cocaine consumption in Spain during the period of
1995–2011. Using the so-called probabilistic fitting technique, we study if the model is able to capture the data uncertainty coming
from surveys. The proposed model is formulated through a nonlinear system of difference equations whose coefficients are treated
as stochastic processes. A discussion regarding the usefulness and limitations of probabilistic fitting technique in order to capture
the data uncertainty of the proposed model is presented.

1. Introduction

In [1], the authors presented an epidemiologically based
model to study the transmission dynamics of the cocaine con-
sumption in Spain. This model worked well in the presented
scenario, 1995–2005, where the population of cocaine con-
sumers had an increasing trend. However, in 2008, the eco-
nomic crisis began and the SpanishHealthMinistry started to
apply the National Drug Plan. As a consequence, the noncon-
sumer population increased and the consumer populations
started to decrease.This sudden change could not be captured
by the model as it was shown in [2].

In this work, we propose to use a variation of the model
stated in [1] and assume that the model parameters are var-
iable over the time in order to see if the variable model
parameters are able to adapt and help the model to capture
the observed changes in the cocaine consumption.

With this aim, we use the probabilistic fitting technique
recently developed in [3, 4] by some of the authors. With this
technique, we expect to capture the data uncertainty (data
coming from surveys), despite the change of trend, and
provide an estimation to the probability distribution of the
model parameters.The latter will help us study if the observed
data variation also produces variations in some or all model
parameters as well as their quantification.

These types of mathematical models also have been used
in the study of epidemics and other drug addictions, such as
alcohol, tobacco, ecstasy, or heroin addiction [5–9], and in the
approach to other sociological topics that are spread by social
contact as obesity or extreme ideological behaviors [10, 11].

The work is organized as follows. In Section 2, we present
the data we are going to use about cocaine consumers in
Spain. In Section 3, we build a type-epidemiological model
describing the cocaine consumption dynamics in Spain. Also,
the model is scaled in order to match data and model mag-
nitudes. In Section 4, we recall and adapt the probabilistic
fitting technique introduced in [3]. This technique is applied
to the model in order to obtain both data estimation with
uncertainty and an estimation of the probability distribution
of themodel parameters. In Section 5, we present and discuss
the results. In Section 6, conclusions are drawn.

2. Data

In this study, we use data from the Survey on Alcohol and
Drugs in Spain (EDADES), part of the Spanish National
Drug Plan [12]. This survey is published every two years.
Specifically, we have focused on the following key question
quoted in this survey: how often have you consumed cocaine?
The available responses were as follows: “never consumed
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Table 1: Survey results. % of people who belong to nonconsumers,
occasional consumers, regular consumers, or habitual consumers of
cocaine in Spain from 1995 to 2011.

Survey dates Nonconsumer Occasional Regular Habitual
consumer consumer consumer

𝑡1 = 1995 0.944 0.034 0.018 0.004
𝑡2 = 1997 0.948 0.032 0.015 0.005
𝑡3 = 1999 0.948 0.031 0.015 0.006
𝑡4 = 2001 0.911 0.049 0.026 0.014
𝑡5 = 2003 0.903 0.059 0.027 0.011
𝑡6 = 2005 0.884 0.070 0.030 0.016
𝑡7 = 2007 0.874 0.080 0.030 0.016
𝑡8 = 2009 0.860 0.102 0.026 0.012
𝑡9 = 2011 0.879 0.088 0.022 0.011

(nonconsumers),” “at least once in your life (occasional con-
sumers),” “at least once in the past year (regular consumers),”
and “at least once in the past 30 days (habitual consumers).”
This survey was launched in 1995 and we have data until 2011.
The data are collected in Table 1.

In order to simplify the notation, we are going to define
the set of time instants where survey data are available:

Ω = {𝑡1 = 1995, 𝑡2 = 1997, 𝑡3 = 1999, 𝑡4 = 2001, 𝑡5
= 2003, 𝑡6 = 2005, 𝑡7 = 2007, 𝑡8 = 2009, 𝑡9
= 2011} .

(1)

3. Model Building

From the available survey data, we then introduce an epi-
demiological model to describe the dynamics of the four
subpopulations over the time. While a traditional epidemi-
ological study considers the transmission of a biological
contagion, for our study, we will apply a social contagion
approach.Theunderlying assumption is the following: we can
consider cocaine consumption to be a contagion insofar as
the probability that one individual becomes a cocaine con-
sumer depends on the interaction with people who already
exhibit this behavior, that is, fellow cocaine consumers [1, 13].
Let us assume homogeneous population mixing; that is, each
individual can contact with any other individual [14, 15].With
this assumption, we can now build a system of difference
equations based on the model introduced in [1] to further
describe the transmission dynamics.

As with the survey results, we divide the Spanish 15–65-
year-old population (the age group considered in the surveys)
into four subpopulations:

(1) 𝑁𝑡, the amount of people who have never consumed
cocaine at year 𝑡

(2) 𝑂𝑡, the amount of people who occasionally consume
cocaine (at least once in their lives) at year 𝑡

(3) 𝑅𝑡, the amount of people who regularly consume
cocaine (at least once in the past year) at year 𝑡

(4) 𝐻𝑡, the amount of people who habitually consume
cocaine (at least once in the past month) at year 𝑡

Furthermore, we have the total population

𝑇𝑡 = 𝑁𝑡 + 𝑂𝑡 + 𝑅𝑡 + 𝐻𝑡, (2)

which is not going to be a constant value over the time.
The transitions between the different subpopulations are

determined as follows:

(i) Let us consider that the newly recruited 15-year-old
individuals become members of 𝑁𝑡 subpopulation
at rate 𝜇; that is, we consider that they have never
consumed cocaine before.

(ii) An individual in the nonconsumer population can
become an occasional consumer through contact
with occasional, regular, or habitual consumers.Then,
this social contagion term can be modeled with𝛽𝑡(𝑁𝑡/𝑇𝑡)(𝑂𝑡 + 𝑅𝑡 + 𝐻𝑡).

(iii) An occasional consumer can increase their consump-
tion and become a regular consumer. This transition
term can be modeled by 𝛾𝑡𝑂𝑡.

(iv) A regular consumer can increase their consumption
and become a habitual consumer.We assume that this
can be modeled by the term 𝜎𝑡𝑅𝑡.

(v) A habitual consumer can decide to go to drug-treat-
ment therapy. If he/she stays in therapy for 6 months,
according to experts, he/she can be considered a
nonconsumer [16]. This term is modeled by 𝜖𝑡𝐻𝑡.

Using the above assumptions, a dynamic cocaine con-
sumption model for the 15–65-year-old Spanish population
is given by the following nonlinear system of difference
equations:

𝑁𝑡+1 = 𝑁𝑡 + 𝜇𝑇𝑡 − 𝑑𝑁𝑁𝑡 − 𝛽𝑡𝑁𝑡𝑇𝑡 (𝑂𝑡 + 𝑅𝑡 + 𝐻𝑡)
+ 𝜖𝑡𝐻𝑡,

(3)

𝑂𝑡+1 = 𝑂𝑡 − 𝑑𝑂𝑂𝑡 + 𝛽𝑡𝑁𝑡𝑇𝑡 (𝑂𝑡 + 𝑅𝑡 + 𝐻𝑡) − 𝛾𝑡𝑂𝑡, (4)

𝑅𝑡+1 = 𝑅𝑡 − 𝑑𝑅𝑅𝑡 + 𝛾𝑡𝑂𝑡 − 𝜎𝑡𝑅𝑡, (5)

𝐻𝑡+1 = 𝐻𝑡 − 𝑑𝐻𝐻𝑡 + 𝜎𝑡𝑅𝑡 − 𝜖𝑡𝐻𝑡, (6)

where

(i) 𝜇 is the birth rate (the mortality between 0 years old
and 14 years old is so small that it can be discarded),

(ii) 𝑑𝑁 is the death rate for nonconsumers,

(iii) 𝑑𝑂 is the death rate for occasional consumers,

(iv) 𝑑𝑅 is the death rate for regular consumers,

(v) 𝑑𝐻 is the death rate for habitual consumers,
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Figure 1: Flow diagram of the mathematical model (3)–(6) for the
dynamics of cocaine consumption in Spain.The boxes represent the
subpopulations and the arrows represent the transitions between the
subpopulations. Arrows are labeled by the parameters of the model.

(vi) 𝛽𝑡 is the time-dependent transmission rate for cocaine
consumption,

(vii) 𝛾𝑡 is the time-dependent transition rate between occa-
sional and regular cocaine consumers,

(viii) 𝜎𝑡 is the time-dependent transition rate between reg-
ular and habitual cocaine consumers,

(ix) 𝜖𝑡 is the time-dependent rate at which habitual con-
sumers enter and complete drug-treatment therapy.

Figure 1 shows the flow diagram of the dynamic cocaine
consumption model. The boxes represent the subpopula-
tions and the arrows represent the transitions between the
subpopulations. Arrows are labeled by their corresponding
parameters of the model.

Following the idea proposed in [1], we are going to
determine bounds for the model parameters. The birth rate𝜇 ∈ [0.009168052, 0.011275930]; both ends of this interval
represent the minimum and maximum values for the birth
rate during the period 1995–2011 [17]. Analogously, the death
rate 𝑑𝑁 ∈ [0.008166102, 0.009228115]. Taking into account
the fact that the death rate of the consumersmay be up to 6.8%
higher than 𝑑𝑁 [12] and the fact that the more an individual
consumes drugs the higher probability to die because of drug
abuse is, we have that 𝑑𝑁 < 𝑑𝑂 < 𝑑𝑅 < 𝑑𝐻 ≤ 0.009228115 ×1.068.

Also, we have the time-dependent parameters 𝛽𝑡, 𝛾𝑡, 𝜎𝑡,
and 𝜖𝑡 for 𝑡 ∈ Ω for which we consider that all of them lie
between 0 and the double of the values given in [1] (maximum
likelihood). Then, 𝛽𝑡 ∈ [0, 2 × 0.09614], 𝛾𝑡 ∈ [0, 2 × 0.0596],𝜎𝑡 ∈ [0, 2 × 0.0579], and 𝜖𝑡 ∈ [0, 2 × 0.0000456], for 𝑡 ∈ Ω.

The time step for simulations will be of two years accord-
ing to the time instants inΩ.Then, the total number ofmodel
parameters is 1 birth rate, 4 death rates, 9𝛽𝑡, 9𝛾𝑡, 9𝜎𝑡, and 9𝜖𝑡,
that is, 41model parameters.

3.1. Model Scaling. Despite the fact that (3)–(6) describe the
cocaine consumption dynamics in Spain, there is a mismatch
between the input for these difference equations, which is
formulated for total population counts, and the survey data
available, which is stated in percentages. We therefore need
to scale the equations. To do this, we add together (3)–(6).
Then, taking into account (2), the left-hand side yields

𝑁𝑡+1 + 𝑂𝑡+1 + 𝑅𝑡+1 + 𝐻𝑡+1 = 𝑇𝑡+1, (7)

while the right-hand side yields

𝑇𝑡 + 𝜇𝑇𝑡 − 𝑑𝑁𝑁𝑡 − 𝑑𝑂𝑂𝑡 − 𝑑𝑅𝑅𝑡 − 𝑑𝐻𝐻𝑡. (8)

Now, we shall define

𝑛𝑡 = 𝑁𝑡𝑇𝑡 ,
𝑜𝑡 = 𝑂𝑡𝑇𝑡 ,
𝑟𝑡 = 𝑅𝑡𝑇𝑡 ,
ℎ𝑡 = 𝐻𝑡𝑇𝑡 ,

(9)

from which we get 𝑛𝑡 + 𝑜𝑡 + 𝑟𝑡 + ℎ𝑡 = 1. From here, we will
scale the equations, starting with (3). Here, using (8)-(9), one
obtains

𝑛𝑡+1 = 𝑁𝑡+1𝑇𝑡+1
= 𝑁𝑡 + 𝜇𝑇𝑡 − 𝑑𝑁𝑁𝑡 − 𝛽𝑡 (𝑁𝑡/𝑇𝑡) (𝑂𝑡 + 𝑅𝑡 + 𝐻𝑡) + 𝜖𝑡𝐻𝑡𝑇𝑡 + 𝜇𝑇𝑡 − 𝑑𝑁𝑁𝑡 − 𝑑𝑂𝑂𝑡 − 𝑑𝑅𝑅𝑡 − 𝑑𝐻𝐻𝑡 ,

(10)

and by dividing the numerator and denominator by 𝑇𝑡, one
gets

𝑛𝑡+1 = 𝑛𝑡 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝛽𝑡𝑛𝑡 (𝑜𝑡 + 𝑟𝑡 + ℎ𝑡) + 𝜖𝑡ℎ𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 . (11)

Applying the same method to the other equations, the
following expressions are obtained:

𝑜𝑡+1 = 𝑂𝑡+1𝑇𝑡+1
= 𝑂𝑡 − 𝑑𝑂𝑂𝑡 + 𝛽𝑡 (𝑁𝑡/𝑇𝑡) (𝑂𝑡 + 𝑅𝑡 + 𝐻𝑡) − 𝛾𝑡𝑂𝑡𝑇𝑡 + 𝜇𝑇𝑡 − 𝑑𝑁𝑁𝑡 − 𝑑𝑂𝑂𝑡 − 𝑑𝑅𝑅𝑡 − 𝑑𝐻𝐻𝑡
= 𝑜𝑡 − 𝑑𝑂𝑜𝑡 + 𝛽𝑡𝑛𝑡 (𝑜𝑡 + 𝑟𝑡 + ℎ𝑡) − 𝛾𝑡𝑜𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 ,

𝑟𝑡+1 = 𝑅𝑡+1𝑇𝑡+1
= 𝑅𝑡 − 𝑑𝑅𝑅𝑡 + 𝛾𝑡𝑂𝑡 − 𝜎𝑡𝑅𝑡𝑇𝑡 + 𝜇𝑇𝑡 − 𝑑𝑁𝑁𝑡 − 𝑑𝑂𝑂𝑡 − 𝑑𝑅𝑅𝑡 − 𝑑𝐻𝐻𝑡
= 𝑟𝑡 − 𝑑𝑅𝑟𝑡 + 𝛾𝑡𝑜𝑡 − 𝜎𝑡𝑟𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 ,
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ℎ𝑡+1 = 𝐻𝑡+1𝑇𝑡+1
= 𝐻𝑡 − 𝑑𝐻𝐻𝑡 + 𝜎𝑡𝑅𝑡 − 𝜖𝑡𝐻𝑡𝑇𝑡 + 𝜇𝑇𝑡 − 𝑑𝑁𝑁𝑡 − 𝑑𝑂𝑂𝑡 − 𝑑𝑅𝑅𝑡 − 𝑑𝐻𝐻𝑡
= ℎ𝑡 − 𝑑𝐻ℎ𝑡 + 𝜎𝑡𝑟𝑡 − 𝜖𝑡ℎ𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 .

(12)

And the scaled equations can be written in the following
form:

𝑛𝑡+1 = 𝑛𝑡 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝛽𝑡𝑛𝑡 (𝑜𝑡 + 𝑟𝑡 + ℎ𝑡) + 𝜖𝑡ℎ𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 ,
𝑜𝑡+1 = 𝑜𝑡 − 𝑑𝑂𝑜𝑡 + 𝛽𝑡𝑛𝑡 (𝑜𝑡 + 𝑟𝑡 + ℎ𝑡) − 𝛾𝑡𝑜𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 ,
𝑟𝑡+1 = 𝑟𝑡 − 𝑑𝑅𝑟𝑡 + 𝛾𝑡𝑜𝑡 − 𝜎𝑡𝑟𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 ,
ℎ𝑡+1 = ℎ𝑡 − 𝑑𝐻ℎ𝑡 + 𝜎𝑡𝑟𝑡 − 𝜖𝑡ℎ𝑡1 + 𝜇 − 𝑑𝑁𝑛𝑡 − 𝑑𝑂𝑜𝑡 − 𝑑𝑅𝑟𝑡 − 𝑑𝐻ℎ𝑡 .

(13)

4. Probabilistic Fitting

This technique consists of using information of the data
survey to assign probability distributions to the data. Then,
we sample data values from these probability distributions
and fit the model to the sampled data. Thus, we find
model parameters that fit not only the data but also the
uncertainty contained into the intrinsic survey error. Thus,
these model parameters will allow the model to capture the
data uncertainty (with 95% confidence intervals).

4.1. Data 95% Confidence Intervals (95% CI). Data in Table 1
correspond to the mean percentage obtained from the
EDADES survey conducted between 1995 and 2011 every two
years. In the technical specifications of each survey, we can
see sample sizes of 15000, 15000, 15000, 15000, 15000, 27934,
23715, 20109, and 22128 interviews, respectively.

Taking into account the fact that the sample is not the
same for each survey, let us assume that the survey outputs
are independent. For each one of the 9 available surveys, let
us denote by𝑋𝑗 = (𝑋𝑗1, 𝑋𝑗2, 𝑋𝑗3, 𝑋𝑗4), 0 ≤ 𝑋𝑗𝑖 ≤ 𝑛𝑗, 𝑖 = 1, 2, 3, 4,
and 𝑗 = 1, . . . , 9, a random vector whose entries are 𝑋𝑗1 = #
nonconsumers,𝑋𝑗2 = # occasional consumers,𝑋𝑗3 = # regular
consumers, and 𝑋𝑗4 = # habitual consumers and 𝑛1 = 15000,𝑛2 = 15000, 𝑛3 = 15000, 𝑛4 = 15000, 𝑛5 = 15000, 𝑛6 = 27934,𝑛7 = 23715, 𝑛8 = 20109, and 𝑛9 = 22128 are the sample sizes
of surveys. These components represent exclusive selections
(events) with probabilities

𝑃𝑗 (𝑋𝑗1 = 𝑥1) = 𝜃𝑗1,
𝑃𝑗 (𝑋𝑗2 = 𝑥2) = 𝜃𝑗2,

𝑃𝑗 (𝑋𝑗3 = 𝑥3) = 𝜃𝑗3,
𝑃𝑗 (𝑋𝑗4 = 𝑥4) = 𝜃𝑗4,

𝑗 = 1, . . . , 9,
(14)

where 𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3, and 𝜃𝑗4 are the percentages collected in Table 1
for each survey 𝑗: 𝑗 = 1, . . . , 9. Thus, each random vector 𝑋𝑗
follows a multinomial probability distribution.Therefore, the
probability that 𝑋𝑗1 occurs 𝑥1 times, 𝑋𝑗2 occurs 𝑥2 times, 𝑋𝑗3
occurs 𝑥3 times, and𝑋𝑗4 occurs 𝑥4 times is given by

𝑃𝑗𝑛𝑗 (𝑥1, 𝑥2, 𝑥3, 𝑥4)
= 𝑛𝑗!𝑥1!𝑥2!𝑥3!𝑥4! (𝜃

𝑗
1)𝑥1 (𝜃𝑗2)𝑥2 (𝜃𝑗3)𝑥3 (𝜃𝑗4)𝑥4 ,

𝑗 = 1, . . . , 9,
(15)

where 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 𝑛𝑗. The resulting multinomials for
each EDADES survey can be seen in Table 2.

Now, we compute the quantiles 2.5 and 97.5 (95% CI) of
each one of the joint multinomial distributions in Table 2: 𝑗 =1, 2, . . . , 9. The obtained 95% CI are collected in Table 3.

4.2. Probabilistic Estimation. Let𝑀(𝑡; 𝛼) be a short represen-
tation of the scaled model (13), where 𝛼 denotes the list of 41
model parameters; that is,

𝛼 = (𝜇, 𝑑𝑁, 𝑑𝑂, 𝑑𝑅, 𝑑𝐻, 𝛽𝑡1 , . . . , 𝛽𝑡9 , 𝛾𝑡1 , . . . , 𝛾𝑡9 , 𝜎𝑡1 , . . . , 𝜎𝑡9 ,
𝜖𝑡1 , . . . , 𝜖𝑡9) .

(16)

Also, we have the data 95% confidence intervals (95%
CI) of Table 3 obtained by sampling the joint probability
distributions of Table 2 and calculating the percentiles 2.5 and97.5.

Given the probability distributions 𝑃𝑖, 𝑖 = 1, . . . , 9, in
Table 2, we take a sample 𝑑∗𝑡𝑖𝑗, 𝑖 = 1, . . . , 9 and 𝑗 = 1, . . . , 4,
and we look for the values to the parameters 𝛼∗ so that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[[[[[[
[

𝑀(𝑡1; 𝛼∗)𝑀 (𝑡2; 𝛼∗)...
𝑀 (𝑡9; 𝛼∗)

]]]]]]
]
−
[[[[[[[
[

𝑑∗𝑡11, 𝑑∗𝑡12, 𝑑∗𝑡13, 𝑑∗𝑡14𝑑∗𝑡21, 𝑑∗𝑡22, 𝑑∗𝑡23, 𝑑∗𝑡24...
𝑑∗𝑡91, 𝑑∗𝑡92, 𝑑∗𝑡93, 𝑑∗𝑡94

]]]]]]]
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹
(17)

is as minimum as possible, with ‖ ⋅ ‖𝐹 being the Frobenius
norm [18]:

󵄩󵄩󵄩󵄩󵄩[𝑎𝑖𝑗]󵄩󵄩󵄩󵄩󵄩𝐹 = √∑
𝑖

∑
𝑗

𝑎2𝑖𝑗. (18)

This procedure is a classic optimization problem that
can be carried out through genetic algorithms, PSO, Nelder-
Mead, and so forth [19, 20] but having the following key



Abstract and Applied Analysis 5

Table 2: Date and data joint multinomial probability function of each survey.

Survey dates Joint multinomial probability functions

𝑡1 = 1995 𝑃1 = 𝑃115000(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 15000!𝑥1!𝑥2!𝑥3!𝑥4! 0.944𝑥10.034𝑥20.018𝑥30.004𝑥4
𝑡2 = 1997 𝑃2 = 𝑃215000(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 15000!𝑥1!𝑥2!𝑥3!𝑥4! 0.948𝑥10.032𝑥20.015𝑥30.005𝑥4
𝑡3 = 1999 𝑃3 = 𝑃315000(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 15000!𝑥1!𝑥2!𝑥3!𝑥4! 0.948𝑥10.031𝑥20.015𝑥30.006𝑥4
𝑡4 = 2001 𝑃4 = 𝑃415000(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 15000!𝑥1!𝑥2!𝑥3!𝑥4! 0.911𝑥10.049𝑥20.026𝑥30.014𝑥4
𝑡5 = 2003 𝑃5 = 𝑃515000(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 15000!𝑥1!𝑥2!𝑥3!𝑥4! 0.903𝑥10.059𝑥20.027𝑥30.011𝑥4
𝑡6 = 2005 𝑃6 = 𝑃627934(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 27934!𝑥1!𝑥2!𝑥3!𝑥4! 0.884𝑥10.07𝑥20.03𝑥30.016𝑥4
𝑡7 = 2007 𝑃7 = 𝑃723715(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 23715!𝑥1!𝑥2!𝑥3!𝑥4! 0.874𝑥10.08𝑥20.03𝑥30.016𝑥4
𝑡8 = 2009 𝑃8 = 𝑃820109(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 20109!𝑥1!𝑥2!𝑥3!𝑥4! 0.86𝑥10.102𝑥20.026𝑥30.012𝑥4
𝑡9 = 2011 𝑃9 = 𝑃922128(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 22128!𝑥1!𝑥2!𝑥3!𝑥4! 0.879𝑥10.088𝑥20.022𝑥30.011𝑥4

Table 3: 95% CI of the EDADES surveys data using the joint multinomial probability function of each survey.

Survey dates Nonconsumer Occasional Regular Habitual
consumer consumer consumer

𝑡1 = 1995 [0.940, 0.947] [0.031, 0.037] [0.016, 0.020] [0.003, 0.005]
𝑡2 = 1997 [0.944, 0.952] [0.029, 0.035] [0.013, 0.017] [0.004, 0.006]
𝑡3 = 1999 [0.944, 0.952] [0.028, 0.034] [0.013, 0.017] [0.005, 0.007]
𝑡4 = 2001 [0.906, 0.916] [0.046, 0.053] [0.023, 0.029] [0.012, 0.016]
𝑡5 = 2003 [0.898, 0.908] [0.055, 0.063] [0.024, 0.030] [0.009, 0.013]
𝑡6 = 2005 [0.880, 0.888] [0.067, 0.073] [0.028, 0.032] [0.015, 0.018]
𝑡7 = 2007 [0.870, 0.878] [0.076, 0.083] [0.028, 0.032] [0.014, 0.018]
𝑡8 = 2009 [0.855, 0.865] [0.098, 0.106] [0.024, 0.028] [0.011, 0.014]
𝑡9 = 2011 [0.875, 0.883] [0.084, 0.092] [0.020, 0.024] [0.010, 0.012]

Table 4: Model fitting to 𝑁 samples of the data’s probability
distributions.

Error Parameters Model𝑒∗1 𝛼1 𝑀(𝑡; 𝛼1)𝑒∗2 𝛼2 𝑀(𝑡; 𝛼2)... ... ...𝑒∗𝑁 𝛼𝑁 𝑀(𝑡; 𝛼𝑁)

difference: now we will fit the data sampled from probability
distributions instead of the raw data. We shall perform the
fitting 𝑁 times (𝑁 being a large number), storing both the
parameter values 𝛼∗ and the calculated errors 𝑒∗, ordered
from smallest to largest errors. The result of this procedure is
a list of model parameters fitted to a sample of the data with
their corresponding errors represented in Table 4.

The value𝑁 should be a large number in order to capture
as much data uncertainty as possible during the sampling
process and this uncertainty could be fitted by the model. In
our case, we take𝑁 = 25000.

Now, we take 𝑀(𝑡; 𝛼1) and 𝑀(𝑡; 𝛼2) in Table 4 and
calculate the outputs for times 𝑡1, . . . , 𝑡9 inΩ, the time instants
where data are available. For each time instant, we shall
calculate percentiles 2.5 and 97.5, one for each one of the
4 subpopulations. Hence, we will name 𝑚2 the sum of the
following:

(i) The Frobenius norm of the difference between the
percentiles 2.5 from the model output and from the
data percentiles 2.5 in Table 3

(ii) The Frobenius norm of the difference between the
percentiles 97.5 from the model output and from the
data percentiles 97.5 in Table 3
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Figure 2: Result of the probabilistic fitting. The green band corresponds to 95% CI model output and the blue line its mean. The red points
are the 95% CI data given in Table 3 and the black points their means. We can see how the model tries to capture the data uncertainty, but
the goal is not achieved completely.

We will repeat the above process with the outputs from𝑀(𝑡; 𝛼1), 𝑀(𝑡; 𝛼2), and 𝑀(𝑡; 𝛼3), obtaining 𝑚3, the measure
between the confidence bands from the outputs and the data.
The same shall be done for 𝑚4 with 𝑀(𝑡; 𝛼1), 𝑀(𝑡; 𝛼2),𝑀(𝑡; 𝛼3), and𝑀(𝑡; 𝛼4) and so on, until𝑀(𝑡; 𝛼1),𝑀(𝑡; 𝛼2), . . .,𝑀(𝑡; 𝛼𝑁), obtaining 𝑚𝑁 as the measure between the confi-
dence bands from the outputs and the data.

Taking 𝑚𝑘 = min{𝑚1, . . . , 𝑚𝑁}, we ensure that the 95%
confidence band of the outputs from 𝑀(𝑡; 𝛼1),𝑀(𝑡; 𝛼2), . . .,𝑀(𝑡; 𝛼𝑘) is the closest to the 95% confidence band from the
data, with which our model will capture the maximum un-
certainty of the data from the output of the models𝑀(𝑡; 𝛼1),𝑀(𝑡; 𝛼2), . . . ,𝑀(𝑡; 𝛼𝑘).
5. Results

The probabilistic fitting procedure returns, as the best fitting,
the one giving for 𝑘 = 40 with an error of𝑚𝑘 = 0.0502666. A
graphical representation of this result can be seen In Figure 2.

The model 95% CI band captures almost all data uncer-
tainty except 1999 and 2011 in nonconsumers, 2009 in occa-
sional consumers, and 2001 and 2011 in habitual consumers
(there is no intersection between the model output band and
these data 95% CI).

The decrease in the nonconsumer subpopulation during
the period of 1997–2001 is not properly captured by the
model. With regard to the economic crisis and the National

Drug Plan proposed in 2008 by the Spanish government,
their effect does not appear until 2011, where an increase in
nonconsumers and a decrease in occasional consumers arise.
As can be seen in Figure 2, for these two subpopulations, the
model is unable to capture the data uncertainty. Also, in the
habitual consumers’ subpopulation, the model still does not
realize the trend change.

All these comments lead us to say that the proposed
model was fairly good to explain what happened when the
number of consumers was increasing, mainly in occasional
and regular consumers; nevertheless when the trend changed,
it could not adapt and explain entirely what was happening.

With respect to themodel parameters, in Figure 3, we can
see the estimation of the probability density function (PDF)
of 𝛽𝑡, 𝛾𝑡, 𝜎𝑡, and 𝜖𝑡 for every 𝑡 ∈ Ω.

Figure 3 has been built taking 𝑘 = 40 sets ofmodel param-
eters selected by the probabilistic fitting procedure, in partic-
ular corresponding to 𝛽𝑡, 𝛾𝑡, 𝜎𝑡, and 𝜖𝑡 for 𝑡 ∈ Ω, and generate
a kernel PDF in each time instant inΩ using theMathematica
[21] command KernelMixtureDistribution [].

In Figures 3 and 4, we can see the variability of the param-
eters over the time, trying to adapt to the cocaine consump-
tion behavior changes. Note that 𝜖𝑡 has a mean and 95%
confidence interval fairly stable, which means that the flow
of people going to therapy is almost invariable over the
time with independence of the changes in the consumption
behavior. Therefore, we could make 𝜖𝑡 = 𝜖 for all 𝑡 ∈ Ω and
transform this random process into a random variable.
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Figure 3: Estimation of the random processes 𝛽𝑡, 𝛾𝑡, 𝜎𝑡, and 𝜖𝑡 using the estimated PDF of the parameters in the time instants inΩ.

The use of variable parameters may allow us to identify
changes in the studied phenomenon which have not been
considered in the hypotheses or which could arise unexpect-
edly, as it seems to happen in this regard to the economic
crisis and the National Drug Plan, in this case. Accordingly,
we can see in Figure 4 how parameters 𝛽𝑡 and 𝛾𝑡, and with
lower changes parameter 𝜎𝑡, try to adapt in the rightmost
part of the graphs to data changes, but, unfortunately, they
do not change enough to capture the data uncertainty when
the consumption trend varies. This leads us to think that
the model may not be appropriate to explain the decreasing
trends in cocaine consumption.

6. Conclusion

In this work, we present amodel formulated through a system
of nonlinear difference equations, where the model parame-
ters are variable over the time.This model intends to describe
the cocaine consumption dynamics in Spain in the period
of 1995–2011. The model follows fairly well the dynamics
until 2009, where the effect of two nonconsidered facts, the
effect of the economic crisis and the implantation of the
National Drug Plan, introduced a change in the behavior of

the individuals, especially in the young people who are the
group that is increasing the nonconsumer subpopulation.

We expected that the introduction of variable parameters
over the time would allow us to capture the changes in the
cocaine consumption dynamics; however, it could not. This
indicates that the proposed model may not be appropriate
when a decreasing trend in cocaine consumption emer-
ges.

With regard to the parameters, wemust say that it was not
necessary to consider the parameter 𝜖𝑡 as variable, because it
is fairly stable over the time. The remaining parameters, 𝛽𝑡,𝛾𝑡, and 𝜎𝑡, are trying to adapt to the data trend changes, but,
in nonconsumer and habitual consumer subpopulations, they
fail to do it accurately.

Finally, the three sides that this study, a model with
variable parameters using the probabilistic fitting technique,
provides should be pointed out:

(1) Consider the model parameters by default as random
processes (a family of random variables indexed by
time), which is more versatile than considering them
as random variables, and then we can detect if they
really vary over the time.



8 Abstract and Applied Analysis

2000 2005 2010

0.05

0.10

0.15

0.20 𝛽

Percentile 2.5
Mean
Percentile 97.5

𝛾

0.02

0.04

0.06

0.08

0.10

0.12

2000 2005 2010

Percentile 2.5
Mean
Percentile 97.5

𝜖

0.0001

0.0002

0.0003

0.0004

2000 2005 2010

Percentile 2.5
Mean
Percentile 97.5

𝜎

2000 2005 2010

Percentile 2.5
Mean
Percentile 97.5

0.02

0.04

0.06

0.08

0.10

Figure 4: Estimated 95% confidence intervals (band) and means of the random processes 𝛽𝑡, 𝛾𝑡, 𝜎𝑡, and 𝜖𝑡 plotted in Figure 3.

(2) Study the estimation of the parameter random pro-
cesses and obtain estimations for the means, the con-
fidence intervals, the PDFs, and hence other higher
statistical moments.

(3) Determine the usefulness of the model in several
realistic situations or when data changes because
unexpected scenarios emerge.

Although it was not mentioned before, a great compu-
tational effort has been done to obtain the presented results
and this is one of the major drawbacks we want to improve in
future works.
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