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The exterior Bernoulli free boundary problem was studied via shape optimization technique. The problem was reformulated into
the minimization of the so-called Kohn-Vogelius objective functional, where two state variables involved satisfy two boundary
value problems, separately. The paper focused on solving the second-order shape derivative of the objective functional using the
velocity method with nonautonomous velocity fields. This work confirms the classical results of Delfour and Zolésio in relating
shape derivatives of functionals using velocity method and perturbation of identity technique.

1. Introduction

Shape optimization is a key research topic withmany applica-
tions in various fields of pure and applied sciences, especially
in biomechanics and engineering (cf. [1, 2] for applications
in structural mechanics, [3] for some applications in fluid
mechanics or aerodynamics, and [4] for other applications).
A typical problem in this line of research is to find a domain,
for instance, Ω, in a set of admissible domains A such that
an objective functional 𝐽 achieves aminimum (ormaximum)
on it [3]. For instance, suppose, among all three-dimensional
shapes of given volume, thatwewish to find the onewhich has
a minimal surface area. In this particular case, the problem
can be described mathematically as finding the minimum of
𝐽(Ω) = Area(𝜕Ω) with the constraint 𝐸(Ω) = Volume(Ω) −

constant. Obviously, the answer to this question would be the
sphere. In general and in most cases of greater interest, shape
optimization problems can be described mathematically as

min
(𝑢,Ω)

𝐽 (𝑢, Ω)

s.t. 𝐸 (𝑢,Ω) = 0, Ω ∈ A,

(1)

where the state 𝑢 is the solution to a partial differential
equation (PDE) 𝐸 on the domain Ω. For an extensive

introduction to shape optimization problems, we refer to the
book of Delfour and Zolésio [5] (see also [6]).

Recently, there has been an increasing interest in the
applications of shape optimization in the study of Bernoulli
problems. Abda et al. [7] rephrased the Bernoulli problem
into a shape optimization problem and explicitly determined
the shape derivative of the cost functional being studied. In
[8], a framework for calculating the shape Hessian for the
domain optimization problem with a PDE as the constraint
was presented. In [9], a similar approach as in [8] was applied
in solving a shape optimization problem.

Another way to approach the solutions of shape opti-
mization problems is through iterative methods. For the past
few decades, several numericalmethods have been developed
to solve the two-dimensional Bernoulli problem (see, e.g.,
[10–13]). These strategies were also developed based on
reformulating the Bernoulli problem as a shape optimization
problem.This reformulation can be achieved in several ways.
For instance, for a given domain, one can choose one of
the boundary conditions on the free boundary to obtain a
well-posed state equation. The domain is determined by the
requirement that the other condition on the free boundary is
satisfied in a least square sense (see [13–15]).
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Many authors have also studied the second variation of
a cost functional for linear PDEs. Building on the shape
optimization setting that is based on the perturbation of the
identity method introduced byMurat and Simon (cf. [16, 17]),
Fujii [18] used a second-order perturbation of the identity
along the normal of the boundary for second-order elliptic
problems in 1986. Simon [19] computed the second variation
via the first-order perturbation of the identity in 1988. A
general approach via the velocity method (Figure 2) was
systematically characterized by Delfour and Zolésio [20, 21],
and they computed the shape Hessian for a simple Neumann
problem in [20] and a nonhomogeneous Dirichlet problem
in [21].

However, a standard approach in dealing with the solu-
tion to (1) requires some information on gradients. So shape
derivatives are essential in understanding the problem.

The recent paper focuses on the exterior Bernoulli free
boundary problem (FBP).As far as the authors are concerned,
the same functional was first studied by Eppler andHarbrecht
andpublished in [22]wherein the first-order shape derivative,
or equivalently the shape gradient, was derived for arbitrary
variations in terms of the perturbation of the identity.
Moreover, the second-order shape derivative, or equivalently
the shape Hessian, has been computed and analyzed for
the special cases of star-like domains. As a main result, by
analyzing the shape Hessian at the optimal domain, Eppler
and Harbrecht found out that the optimization problem
is algebraically ill posed. In the present paper, the same
functional is studied again but we focus on the application of
velocity method in dealing with shape optimization problem.
It would be a challenging research in the near future to
study the ill-posedness of the shape optimization problem
for general domains, as well as the comparison of the shape
Hessians in this paper from [22] for the former uses Cartesian
coordinates, while the latter used spherical/polar coordinates.
The nice thing in the present paper is that the results attest to
classical results in shape optimization problems.

Now, the exterior Bernoulli FBP is formulated as follows.
Given a bounded and connected domain 𝐴 ⊂ R2 with a

fixed boundary 𝜕𝐴 fl Γ, we need to find a bounded connected
domain 𝐵 with a free boundary Σ that contains the closure of
𝐴,𝐴, and an associated real-valued (state) function 𝑢 defined
on Ω (where Ω is the annulus formed by 𝐵 and 𝐴; refer
to Figure 1) such that both unknowns 𝑢 and Ω satisfy the
following boundary value problem:

−Δ𝑢 = 0 in Ω,

𝑢 = 0 on Σ,

𝑢 = 1 on Γ,

𝜕𝑢

𝜕n
= 𝜆 on Σ,

(BP)

where 𝜆 < 0.
In recent papers, Bacani and Peichl employed shape

optimization methods to study the exterior Bernoulli FBP by
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Figure 1: The exterior Bernoulli free boundary problem.
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Figure 2: Transport of Ω by velocity method.

reformulating it into Kohn-Vogelius-type cost functional 𝐽KV,
which is defined as

𝐽 (Ω) fl 𝐽KV =
1

2
∫
Ω

∇ (𝑢𝐷 − 𝑢𝑁)


2
𝑑𝑥, (KV)

and minimizing this functional over a class of admissible
domains, where the two state functions 𝑢𝐷 and 𝑢𝑁 solve a
homogenous Dirichlet (𝐷) and nonhomogenous Neumann
(𝑁) problem, respectively:

−Δ𝑢𝐷 = 0 in Ω,

𝑢𝐷 = 1 on Γ,

𝑢𝐷 = 0 on Σ,

(𝐷)

and

−Δ𝑢𝑁 = 0 in Ω,

𝑢𝑁 = 1 on Γ,

𝜕𝑢𝑁

𝜕n
= 𝜆 on Σ.

(𝑁)

Bacani and Peichl presented two strategies in computing
the first-order shape derivative of the Kohn-Vogelius objec-
tive functional. One is by using the Hölder continuity of
the two state variables involved [9], and the other one is
by using the shape derivatives of states [23]. The authors
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also computed its second-order shape derivative for general
domains via the boundary differentiation scheme and via
Tiihonen’s approach [24]. The computation is found in [25].

In this recent paper, we are going to solve the shape
optimization problem using velocity method, wherein we
consider nonautonomous velocity fields. The study is impor-
tant since it confirms a classical result of Delfour and Zolésio
in relating shape derivatives of functionals using velocity
method and the perturbation of identity technique (cf. [26]).

In the next section (Section 2), we present an overview
of some concepts necessary for the understanding of the
present study. The section also includes some important
results of methods of shape optimization which will be
useful in our investigation. We formally present our main
contribution which pertains to the form of the second-order
shape derivative of the Kohn-Vogelius objective functional
in Section 3. Finally, we end our paper by summarizing our
results in Section 4.

2. Preliminaries

In this section we provide some important (but not exhaus-
tive) background of some shape optimization techniques.We
give an overview of these concepts to understand the present
study.

2.1. Perturbation of the Identity. Let Ω and the universal or
hold-all domain 𝑈 be smooth subdomains of R2, such that
Ω ⊆ 𝑈. A class of perturbationsΩ𝑡 of the domainΩ obtained
from the perturbation of identity operator 𝑇𝑡 is defined as

𝑇𝑡 = 𝐼 + 𝑡V : 𝑈 → R
2
,

𝑇𝑡 (𝑥) = 𝑥 + 𝑡V (𝑥) , 𝑥 ∈ 𝑈,

(2)

where the deformation field V is in Θ1 defined as

Θ1 = {V ∈ 𝐶
1,1

(𝑈,R
2
) : V|Γ∪𝜕𝑈 = 0} . (3)

Then, for sufficiently small 𝑡, (i) 𝑇𝑡 : 𝑈 → 𝑈 is a
homeomorphism, (ii) 𝑇𝑡 : 𝑈 → 𝑈 is a 𝐶

1,1 diffeomorphism
and, in particular,𝑇𝑡 : Ω → Ω𝑡 is a𝐶

1,1 diffeomorphism, (iii)
Γ𝑡 = 𝑇𝑡(Γ) = Γ, and 𝜕Ω𝑡 = Γ ∪ Σ𝑡, and (iv) 𝜕Ω𝑡 = Γ ∪ Σ𝑡 (cf.
[9, Theorem 7]). For convenience, we will use the following
notations throughout the discussion:

𝐼𝑡 (𝑥) = det𝐷𝑇𝑡 (𝑥) ,

𝑀𝑡 (𝑥) = (𝐷𝑇𝑡 (𝑥))
−𝑇

,

𝐴 𝑡 (𝑥) = 𝐼𝑡 (𝑥)𝑀
𝑇

𝑡 (𝑥)𝑀𝑡 (𝑥) ,

𝑥 ∈ 𝑈,

𝑤𝑡 (𝑥) = 𝐼𝑡 (𝑥)

(𝐷𝑇𝑡 (𝑥))

−𝑇 n (𝑥)

, 𝑥 ∈ Σ.

(4)

The next lemma provides some properties of the transforma-
tion𝑇𝑡 which are useful in accomplishing ourmain objective.

Lemma 1 (see [13, 27]). Consider a fixed vector field V ∈

Θ1 and the transformation 𝑇𝑡 (the perturbation of identity
operator). Then, we can find a constant 𝑡𝑉 > 0 such that the
functions defined above restricted to the interval 𝐼𝑉 = (−𝑡𝑉, 𝑡𝑉)

have the following regularities and properties:

(1) 𝑡 → 𝑇𝑡 ∈ 𝐶
1
(𝐼𝑉, 𝐶

1
(𝑈)),

(2) 𝑡 → 𝐼𝑡 ∈ 𝐶
1
(𝐼𝑉, 𝐶(Ω)),

(3) 𝑡 → 𝑤𝑡 ∈ 𝐶
1
(𝐼𝑉, 𝐶(Σ)),

(4) 𝑡 → 𝑇
−1
𝑡 ∈ 𝐶(𝐼𝑉, 𝐶

1
(𝑈)),

(5) 𝑡 → 𝐴 𝑡 ∈ 𝐶
1
(𝐼𝑉, 𝐶

1
(Ω)),

(6) 𝐼𝑡 = 1 + 𝑡 divV + 𝑡
2 det𝐷V,

(7) there are positive constants 𝛼1, 𝛼2, and 𝛽 such that 0 <

𝛼1 ≤ 𝐼𝑡(𝑥) ≤ 𝛼2 and 𝐴 𝑡(𝑥) ≥ 𝛽𝐼 for 𝑥 ∈ Ω,
(8) (𝑑/𝑑𝑡)𝐷𝑇𝑡|𝑡=0 = −(𝑑/𝑑𝑡)(𝐷𝑇𝑡)

−1
|𝑡=0 = 𝐷V,

(9) (𝑑/𝑑𝑡)𝑇𝑡|𝑡=0 = V,
(10) (𝑑/𝑑𝑡)𝐼𝑡|𝑡=0 = divV,
(11) lim𝑡↓0𝑤𝑡 = 1,

(12) (𝑑/𝑑𝑡)𝐴 𝑡|𝑡=0 = 𝐴, where𝐴 = (divV)𝐼−(𝐷V+(𝐷V)
𝑇
),

(13) (𝑑/𝑑𝑡)𝑤𝑡|𝑡=0 = divΣV, where the surface divergence
divΣ is defined by

divΣV = divV|Σ − (𝐷Vn) ⋅ n. (5)

2.2. The Velocity (Speed) Method (See [5, 20, 21]). In this
paper, we are interested in solving the second-order shape
derivative of the Kohn-Vogelius objective functional via
the velocity method with nonautonomous velocity fields.
Detailed discussions about this method can be seen in [5,
20, 21]. We present some of the details here. As our primary
interest is focused on nonautonomous velocity fields, we will
use the notation V̂ to denote time-dependent velocity fields
in contrast to velocity fields denoted byVwhich are not time-
dependent.

Let V̂ : [0, 𝑡𝑉] × R2 → R2 be a given velocity field for
some fixed 𝑡𝑉 > 0.Themap V̂ can be viewed as a family {V̂(𝑡)}

of nonautonomous velocity fields onR2 defined by

𝑥 → V̂ (𝑡) (𝑥) fl V̂ (𝑡, 𝑥) : R
2
→ R

2
. (6)

Let V̂ satisfy

(V1) ∀𝑥 ∈ R2, V̂(⋅, 𝑥) ∈ 𝐶([0, 𝑡𝑉);R
2
),

(V2) ∃𝑐 > 0, ∀𝑥, 𝑦 ∈ R2, ‖V̂(⋅, 𝑦)−V̂(⋅, 𝑥)‖𝐶([0,𝑡𝑉);R
2) ≤

𝑐‖𝑦 − 𝑥‖,

where V̂(⋅, 𝑥) denotes the function 𝑡 → V̂(𝑡, 𝑥). Associate
with V̂ the solution 𝑥(𝑡; 𝑋) of the ODE:

𝑑𝑥

𝑑𝑡
(𝑡) = V̂ (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 𝜏] , 𝑥 (0) = 𝑋 ∈ R

2
. (7)

That is, we suppose that V̂ is continuous in 𝑡 and at the
same time Lipschitz in spatial variables. We remark that, in
the case of autonomous velocity fields, the condition to be
satisfied can be simplified as

(V2) ∃𝑐 > 0, ∀𝑥, 𝑦 ∈ R2, ‖V(𝑥) − V(𝑦)‖ ≤ 𝑐‖𝑥 − 𝑦‖.
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Remark 2. Theabove statement can be described equivalently
as follows: Let V̂ belong to 𝐸

𝑘
= 𝐶([0, 𝑡𝑉); 𝐶

𝑘
(R2,R2)) for

some integer 𝑘 ≥ 2 and a small real number 𝑡𝑉 > 0. Let Ω ⊂

R2 be a smooth bounded domain with boundary Γ which is
at least twice differentiable. The field

V̂ (𝑡) (𝑥) = V̂ (𝑡, 𝑥) , 𝑥 ∈ R
2 (8)

is an element of 𝐶𝑘(R2,R2) which may depend on 𝑡 ≥ 0. It
generates the transformations

𝑇𝑡 (V̂) (𝑋) fl 𝑇𝑡 (𝑋) = 𝑥 (𝑡; 𝑋) , 𝑡 ≥ 0, 𝑋 ∈ R
2 (9)

through the differential equation

𝑑𝑥

𝑑𝑡
(𝑡; 𝑋) = V̂ (𝑡, 𝑥 (𝑡; 𝑋)) , 𝑥 (0; 𝑋) = 𝑋. (10)

As already described in the previous section, we denote
the transformed domain 𝑇𝑡(Ω) at 𝑡 ≥ 0 by Ω𝑡.

Now, the following theorem describes the relation
between the perturbation of the identity method and the
velocity method. The theorem basically tells us that we can
start from either a family of velocity fields {V̂(𝑡)} on R𝑁

or a family of transformations {𝑇𝑡} of R
𝑁 provided that the

map V̂, V̂(𝑡, 𝑥) = V̂(𝑡)(𝑥), verifies (V1) and (V2) or the map
𝑇, 𝑇(𝑡, 𝑋) = 𝑇𝑡(𝑋), verifies assumptions (T1), (T2) and (T3)
given below.

Theorem3 (see [21]). (i) Under assumptions (V1) and (V2) on
the map V̂, the maps 𝑇𝑡 defined previously have the following
properties:

(T1) ∀𝑋 ∈ R𝑁, 𝑇(⋅, 𝑋) ∈ 𝐶
1
([0, 𝑡𝑉];R

𝑁
),

∃𝑐 > 0, ∀𝑋, 𝑌 ∈ R𝑁, ‖𝑇(⋅, 𝑌) − 𝑇(⋅, 𝑋)‖𝐶1([0,𝑡𝑉];R
𝑁) ≤

𝑐|𝑌 − 𝑋|,
(T2) ∀𝑡 ∈ [0, 𝑡𝑉], 𝑋 → 𝑇𝑡(𝑋) = 𝑇(𝑡, 𝑋) : R𝑁 → R𝑁 is

bijective,
(T3) ∀𝑥 ∈ R𝑁, 𝑇−1(⋅, 𝑥) ∈ 𝐶([0, 𝑡𝑉);R

2
),

∃𝑐 > 0, ∀𝑥, 𝑦 ∈ R𝑁, ‖𝑇−1(⋅, 𝑦)−𝑇
−1
(⋅, 𝑥)‖𝐶([0,𝑡𝑉);R

2) ≤

𝑐|𝑦 − 𝑥|.

(ii) If there exists a real number 𝑡𝑉 > 0 and a map 𝑇 :

[0, 𝑡𝑉] × R𝑁 → R𝑁 verifying assumptions (T1), (T2), and
(T3), then the map

(𝑡, 𝑥) → V̂ (𝑡, 𝑥) =
𝜕𝑇

𝜕𝑡
(𝑡, 𝑇
−1

(𝑥)) : [0, 𝑡𝑉] ×R
𝑁

→ R
𝑁

(11)

verifies assumptions (V1) and (V2), where 𝑇−1𝑡 is the inverse of
𝑋 → 𝑇𝑡(𝑋).

In the above discussion, we see that the solution to the
differential equation (10), V̂ = V ∈ Θ1, is the perturbation of
the identity operator 𝑇𝑡. Conversely, if 𝑇𝑡 is the perturbation
of the identity operator, then (10) is satisfied. Hence, we

consider the special case, where 𝑥(𝑡) = 𝐼 + 𝑡V, and determine
the relationship of the autonomous field V ∈ Θ1 and the
nonautonomous V̂ defined in (10). Differentiating 𝑥(𝑡) =

𝐼 + 𝑡V with respect to 𝑡, we get

𝑑𝑥

𝑑𝑡
(𝑡; 𝑋) = V (𝑋) = V̂ (𝑡, 𝑥 (𝑡; 𝑋)) , 𝑋 ∈ Ω. (12)

This simply implies that V(𝑋) = V̂(𝑡, (𝐼 + 𝑡V)(𝑋)). Now,
replacing𝑋 by (𝐼 + 𝑡V)

−1
(𝑋), we getV(𝑇

−1
𝑡 (𝑋)) = V̂(𝑡, 𝑋) or,

equivalently, V̂(𝑡) = V∘𝑇
−1
𝑡 .This iswhymany results obtained

by the perturbation of identity technique can be acquired
as well through the velocity method using nonautonomous
velocity fields. As an immediate consequence, we note that
V̂(0) = V. The relation V̂(𝑡) = V ∘ 𝑇

−1
𝑡 also implies that

𝜕V̂
𝜕𝑡

(𝑡) = 𝐷V (𝑇
−1

𝑡 )
𝜕𝑇
−1
𝑡

𝜕𝑡
. (13)

So, in particular, we have

𝜕V̂ (0)

𝜕𝑡
fl ̇̂V (0) = − [𝐷V]V. (14)

2.3. Domain andBoundary Transformation. Werecall the fol-
lowing theorems on domain and boundary transformations.

Lemma 4 (see [28]). We have the following important trans-
formations which will also be central to our investigation:

(1) Let 𝜑𝑡 ∈ 𝐿
1
(Ω𝑡). Then 𝜑𝑡 ∘ 𝑇𝑡 ∈ 𝐿

1
(Ω) and

∫
Ω𝑡

𝜑𝑡𝑑𝑥𝑡 = ∫
Ω

𝜑𝑡 ∘ 𝑇𝑡𝐼𝑡𝑑𝑥. (15)

(2) Let 𝜑𝑡 ∈ 𝐿
1
(Σ𝑡). Then 𝜑𝑡 ∘ 𝑇𝑡 ∈ 𝐿

1
(Σ) and

∫
Σ𝑡

𝜑𝑡𝑑𝑠𝑡 = ∫
Σ

𝜑𝑡 ∘ 𝑇𝑡𝑤𝑡𝑑𝑠. (16)

2.4. Material Derivatives. Thematerial and shape derivatives
of the state variables are defined as follows (see [4, 24]).

Let 𝑢 be defined in [0, 𝑡𝑉] × 𝑈. An element �̇� ∈ 𝐻
𝑘
(Ω),

called thematerial derivative of 𝑢, is defined as

�̇� fl �̇� (0, 𝑥) fl lim
𝑡↓0

𝑢 (𝑡, 𝑇𝑡 (𝑥)) − 𝑢 (0, 𝑥)

𝑡

=
𝑑

𝑑𝑡
𝑢 (𝑡, 𝑥 + 𝑡V (𝑥))

𝑡=0

(17)

if the limit exists in𝐻
𝑘
(Ω).

Remark 5. As pointed out in [9], thematerial derivative of the
state function 𝑢 can be written as

�̇� (𝑥) = lim
𝑡↓0

𝑢𝑡 ∘ 𝑇𝑡 (𝑥) − 𝑢 (𝑥)

𝑡
=

𝑑

𝑑𝑡
(𝑢𝑡 ∘ 𝑇𝑡 (𝑥))

𝑡=0

(18)

and it, in fact, characterizes the behavior of the function 𝑢 at
𝑥 ∈ Ω ⊂ 𝑈 in the direction V(𝑥).
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Now, on the other hand, an element 𝑢 ∈ 𝐻
𝑘
(Ω) is called

the shape derivative of 𝑢 at Ω at the direction of V, if the
following limit exists in𝐻

𝑘
(Ω):

𝑢
 fl 𝑢

(0, 𝑥) fl lim

𝑡↓0

𝑢 (𝑡, 𝑥) − 𝑢 (0, 𝑥)

𝑡

fl
𝜕

𝜕𝑡
𝑢𝑡 (𝑥)

𝑡=0

.

(19)

Remark 6. We note that if �̇� and ∇𝑢 ⋅ V exist in 𝐻
𝑘
(Ω), then

the shape derivative can be expressed as

𝑢

(𝑥) = �̇� (𝑥) − (∇𝑢 ⋅ V) (𝑥) . (20)

In general, if �̇�(𝑥) and ∇𝑢 ⋅ V(𝑥) both exist in𝑊
𝑚,𝑝

(Ω), then
so does 𝑢(𝑥).

2.5. The First- and Second-Order Eulerian Shape Derivatives.
We first recall the definition of directional Eulerian shape
derivative or simply shape derivative of a shape functional.

Suppose that the shape functional 𝐽 : Ω → R is
well-defined. Given the deformation field V̂, the directional
Eulerian shape derivative of 𝐽 at Ω in the direction of
deformation field V̂ is defined as

𝑑𝐽 (Ω; V̂) fl lim
𝑡↓0

𝐽 (Ω𝑡) − 𝐽 (Ω)

𝑡
(21)

if the limit exists. The objective functional 𝐽 is shape differ-
entiable at Ω provided that 𝑑𝐽(Ω; V̂) exists for all V̂ and if
𝑑𝐽(Ω; V̂) is linear and continuous with respect to V̂. On the
other hand, the second-order Eulerian shape derivative of a
well-defined shape functional 𝐽 at Ω in the direction of the
deformation fields V̂ and Ŵ is defined to be

𝑑
2
𝐽 (Ω; V̂, Ŵ) fl lim

𝑠↓0

𝑑𝐽 (Ω𝑠 (Ŵ) ; V̂) − 𝑑𝐽 (Ω; V̂)

𝑠

=
𝑑

𝑑𝑠
(𝑑𝐽 (Ω𝑠; V̂))

𝑠=0

(22)

if the limit exists. The functional is said to be twice shape
differentiable if, for all V̂ and Ŵ, 𝑑2𝐽(Ω; V̂; Ŵ) exists and
if 𝑑
2
𝐽(Ω; V̂; Ŵ) is bilinear and continuous with respect to

V̂ and Ŵ. Following these definitions, the second-order
shape derivative of the functional being studied can also be
computed as follows:

𝑑
2
𝐽 (Ω; V̂; Ŵ) =

𝜕

𝜕𝑠
{

𝜕

𝜕𝑡
𝑑𝐽 (Ω𝑡,𝑠)

𝑡=0

}

𝑠=0

. (23)

In this case, the transported domainΩ𝑡,𝑠 which is a result
of two deformation fields V̂ and Ŵ is illustrated in Figure 3.

Remark 7. Under appropriate hypothesis on the map V̂ →

𝑑𝐽(Ω; V̂(0)), one can show that 𝑑𝐽(Ω; V̂) = 𝑑𝐽(Ω; V̂(0))

(cf. [21]). Therefore, if V̂ is associated with the deformation
field V in the perturbation of the identity, then 𝑑𝐽(Ω; V̂(0))

X1

x1(t) = X2

x2(t)

Ω

Ωt = Tt(Ω)

Ωt,s = Ts(Tt(Ω))

V
W

Figure 3: Transport of Ω after two deformations.

coincides with 𝑑𝐽(Ω; V̂) by V̂(0) = V. Hence, the first-
order shape derivative of a cost functional obtained via the
velocity method coincides with the one obtained from the
perturbation of the identity technique.

3. Analysis for the Nonautonomous Case

In this section, we will see how important is the expression
V ∘ 𝑇
−1
𝑠 in considering nonautonomous velocity fields V̂. Of

course ifV is autonomous,V∘𝑇
−1
𝑠 is no other than V̂(𝑠). Since

we are interested in the second-order shape derivative of
the Kohn-Vogelius objective functional, we should first recall
(without proof) the first-order shape derivative of the Kohn-
Vogelius objective functional which is stated in the following
theorem.

Theorem 8 (see [9, 22, 23]). For a 𝐶
1,1-bounded domain,

the first-order shape derivative of the Kohn-Vogelius (KV) cost
functional in the direction of a perturbation field V̂ ∈ Θ,
where V̂ ∈ Θ = {V̂ ∈ 𝐶

1,1
(𝑈,R2) : V̂|Γ∪𝜕𝑈 = 0} and the state

functions 𝑢𝐷 and 𝑢𝑁 satisfy the Dirichlet problem (𝐷) and the
Neumann problem (𝑁), respectively, is given by

𝑑𝐽 (Ω; V̂) =
1

2

⋅ ∫
Σ

(𝜆
2
− (∇𝑢𝑁 ⋅ 𝜏)

2
− (∇𝑢𝐷 ⋅ n)

2
+ 2𝜆𝑢𝑁𝜅)V

⋅ n 𝑑𝑠.

(J1)

where n is the unit exterior normal vector to Σ, 𝜏 is a unit
tangent vector to Σ, and 𝜅 is the mean curvature of Σ.

Theabove result was first proven by Eppler andHarbrecht
in [22]. Other proofs were also given by Bacani and Peichl
[9, 23], by using two different approaches.

Now, we give our main result of the second-order shape
derivative of the Kohn-Vogelius objective functional via
velocity method.

Theorem 9. Denote 𝐹 = 𝜆
2
− (∇𝑢𝐷 ⋅n)

2
+2𝜆𝜅𝑢𝑁− (∇𝑢𝑁 ⋅ 𝜏)

2

and let V̂ and Ŵ be any two velocity fields from the set

Θ2 = {V̂ ∈ 𝐶
2,1

(𝑈,R
2
) : V̂Γ∪𝜕𝑈

= 0} . (24)

Assume that, for some sufficiently small 𝑡, 𝑑𝐽(Ω𝑡(Ŵ); V̂(𝑡))

exists at Ω𝑡(Ŵ) = 𝑇𝑡(Ŵ)(Ω) in the direction V̂(𝑡). Then, for
a 𝐶
2,1-bounded domain, the second-order shape derivative of
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the Kohn-Vogelius (KV) cost functional in the directions of the
two perturbation fields V̂ and Ŵ and the state functions𝑢𝐷 and
𝑢𝑁 which satisfy the Dirichlet problem (𝐷) and the Neumann
problem (𝑁), respectively, is given by

𝑑
2
𝐽 (Ω; V̂; Ŵ) = ∫

Σ

�̇�𝑊V𝑛 + (
𝜕𝐹

𝜕n
+ 𝜅𝐹) V𝑛𝑤𝑛𝑑Σ

− ∫
Σ

𝐹 (VΣ ⋅ 𝐷Σn𝑤Σ + n ⋅ 𝐷Σk𝑤Σ + n ⋅ 𝐷ΣwVΣ) 𝑑Σ

+ ∫
Σ

𝐹 (𝐷V)W ⋅ n + 𝐹V (0) ⋅ n 𝑑Σ,

(25)

where n is the unit exterior normal vector to Σ, 𝜏 is a unit
tangent vector to Σ, and 𝜅 is the mean curvature of Σ.

Before we proceed in the formal computation of the
second-order shape derivative of the Kohn-Vogelius objective
functional, we first prove the following auxilliary result.

Lemma 10. Let 𝐹 and �̇�𝑊 be, respectively, defined as follows:

𝐹 fl 𝜆
2
− (∇𝑢𝐷 ⋅ n)

2
+ 2𝜆𝜅𝑢𝑁 − (∇𝑢𝑁 ⋅ 𝜏)

2

�̇�𝑊 fl −2 (∇𝑢𝐷 ⋅ n) {− (𝐷W)
𝑇
∇𝑢𝐷 ⋅ n + ∇𝑢



𝐷,𝑊 ⋅ n

+ ∇ (∇𝑢𝐷 ⋅W) ⋅ n} − 2 (∇𝑢𝑁 ⋅ 𝜏) [(−𝐷W)
𝑇
∇𝑢𝑁

+ ∇𝑢


𝑁,𝑊 ⋅ 𝜏 + ∇ (∇𝑢𝑁 ⋅W) ⋅ 𝜏 + ∇𝑢𝑁 ⋅ ̇𝜏𝑊]

+ 2𝜆 [�̇�𝑊𝑢𝑁 + 𝜅 (𝑢


𝑁,𝑊 + ∇𝑢𝑁 ⋅W)] .

(26)

Then, we have

𝜕

𝜕𝑠
[(𝐹𝑠 ∘ 𝑇𝑠) 𝑤𝑠]

𝑠=0

= �̇�𝑊 + 𝐹divΣW. (27)

Proof. We first note the following:

𝑤𝑠
𝑠=0

= 1,

(𝐹𝑠 ∘ 𝑇𝑠)
𝑠=0

= 𝐹,

𝜕

𝜕𝑠
𝑤𝑠

𝑠=0

= divΣW.

(28)

Now, for the expression (𝜕/𝜕𝑠)(𝐹𝑠 ∘ 𝑇𝑠)|𝑠=0, we note that

𝐹𝑠 ∘ 𝑇𝑠 = (𝜆
2
∘ 𝑇𝑠) − ((∇𝑢𝐷,𝑠 ∘ 𝑇𝑠) ⋅ n𝑠 ∘ 𝑇𝑠)

2

+ 2 (𝜆 ∘ 𝑇𝑠) (𝜅𝑠 ∘ 𝑇𝑠) (𝑢𝑁,𝑠 ∘ 𝑇𝑠)

− [(∇𝑢𝑁,𝑠 ∘ 𝑇𝑠) ⋅ (𝜏𝑠 ∘ 𝑇𝑠)]
2
,

(29)

and since 𝜆 is constant, 𝜆 ∘ 𝑇𝑠 = 𝜆. Hence, we get

𝜕

𝜕𝑠
[(𝐹𝑠 ∘ 𝑇𝑠) 𝑤𝑠]

𝑠=0

= {
𝜕

𝜕𝑠
(𝐹𝑠 ∘ 𝑇𝑠) 𝑤𝑠 + (𝐹𝑠 ∘ 𝑇𝑠)

𝜕

𝜕𝑠
𝑤𝑠}

𝑠=0

,

(30)

by applying product rule. Furthermore, by substitution and
distributing the (partial) differential operator, we obtain

𝜕

𝜕𝑠
[(𝐹𝑠 ∘ 𝑇𝑠) 𝑤𝑠]

𝑠=0

=
𝜕

𝜕𝑠
𝜆
2
𝑠=0

−
𝜕

𝜕𝑠
[[(∇𝑢𝐷,𝑠 ∘ 𝑇𝑠) ⋅ (n𝑠 ∘ 𝑇𝑠)]

2
]

𝑠=0

+
𝜕

𝜕𝑠
[2 (𝜆 ∘ 𝑇𝑠) (𝜅𝑠 ∘ 𝑇𝑠) (𝑢𝑁,𝑠 ∘ 𝑇𝑠)]

𝑠=0

−
𝜕

𝜕𝑠
[[(∇𝑢𝑁,𝑠 ∘ 𝑇𝑠) ⋅ (𝜏𝑠 ∘ 𝑇𝑠)]

2
]

𝑠=0

.

(31)

Using the chain rule and again the product rule twice, we have

𝜕

𝜕𝑠
[(𝐹𝑠 ∘ 𝑇𝑠) 𝑤𝑠]

𝑠=0

= −2 (∇𝑢𝐷 ⋅ n)

⋅
𝜕

𝜕𝑠
[(∇𝑢𝐷,𝑠 ∘ 𝑇𝑠) ⋅ (n𝑠 ∘ 𝑇𝑠)]

𝑠=0

+ 2𝜆
𝜕

𝜕𝑠
((𝜅𝑠 ∘ 𝑇𝑠) (𝑢𝑁,𝑠 ∘ 𝑇𝑠))

𝑠=0

−
𝜕

𝜕𝑠
[[(∇𝑢𝑁,𝑠 ∘ 𝑇𝑠) ⋅ (𝜏𝑠 ∘ 𝑇𝑠)]

2
]

𝑠=0

= −2 (∇𝑢𝐷 ⋅ n)

⋅
𝜕

𝜕𝑠
[(𝐷𝑇𝑠)

−𝑇
∇ (𝑢𝐷,𝑠 ∘ 𝑇𝑠) ⋅ (n𝑠 ∘ 𝑇𝑠)]

𝑠=0

+ 2𝜆
𝜕

𝜕𝑠
((𝜅𝑠 ∘ 𝑇𝑠) (𝑢𝑁,𝑠 ∘ 𝑇𝑠))

𝑠=0

− 2 (∇𝑢𝑁 ⋅ 𝜏)

⋅
𝜕

𝜕𝑠
((𝐷𝑇𝑠)

−𝑇
∇ (𝑢𝑁,𝑠 ∘ 𝑇𝑠) ⋅ (𝜏𝑠 ∘ 𝑇𝑠))

𝑠=0

=: 𝐸1

+ 𝐸2 + 𝐸3.

(32)

Now,we simplify each of the expressions𝐸1,𝐸2, and𝐸3. In the
sequel, we will be needing the material and shape derivatives
of the vectors n and 𝜏 and the mean curvature 𝜅. For their
corresponding forms, we refer the readers to [25,Theorems 4,
5, and 6] which are proven in [5, 28]. Sowe proceed as follows.
First, using the product rule twice and then the chain rule, we
get

𝐸1 = −2 (∇𝑢𝐷 ⋅ n)

⋅
𝜕

𝜕𝑠
[(𝐷𝑇𝑠)

−𝑇
∇ (𝑢𝐷,𝑠 ∘ 𝑇𝑠) ⋅ (n𝑠 ∘ 𝑇𝑠)]

𝑠=0

= −2 (∇𝑢𝐷 ⋅ n) {
𝜕

𝜕𝑠
[(𝐷𝑇𝑠)

−𝑇
∇ (𝑢𝐷,𝑠 ∘ 𝑇𝑠)]

𝑠=0

⋅ (n𝑠 ∘ 𝑇𝑠)
𝑠=0

} − 2 (∇𝑢𝐷 ⋅ n)

⋅ {(𝐷𝑇𝑠)
−𝑇

∇ (𝑢𝐷,𝑠 ∘ 𝑇𝑠)
𝑠=0
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⋅
𝜕

𝜕𝑠
(n𝑠 ∘ 𝑇𝑠)

𝑠=0

} = −2 (∇𝑢𝐷 ⋅ n)

⋅ {
𝜕

𝜕𝑠
[(𝐷𝑇𝑠)

−𝑇
∇ (𝑢𝐷,𝑠 ∘ 𝑇𝑠)]

𝑠=0

⋅ n + ∇𝑢𝐷 ⋅ [− [(𝐷W)
𝑇 n]
Σ
]} = −2 (∇𝑢𝐷 ⋅ n)

⋅ {
𝜕

𝜕𝑠
(𝐷𝑇𝑠)

−𝑇
𝑠=0

∇ (𝑢𝐷,𝑠 ∘ 𝑇𝑠)

𝑠=0

⋅ n}

− 2 (∇𝑢𝐷 ⋅ n) {(𝐷𝑇𝑠)
−𝑇𝑠=0

𝜕

𝜕𝑠
∇ (𝑢𝐷,𝑠 ∘ 𝑇𝑠)

𝑠=0

⋅ n} − 2 (∇𝑢𝐷 ⋅ n) {∇𝑢𝐷 ⋅ [− [(𝐷W)
𝑇 n]
Σ
]} .

(33)

Interchanging the gradient and the differential operator
and upon evaluation of 𝑠 at 0, we get

𝐸1 = −2 (∇𝑢𝐷 ⋅ n)

⋅ {[(−𝐷𝑊)
𝑇
∇𝑢𝐷 + ∇[

𝜕

𝜕𝑠
(𝑢𝐷,𝑠 ∘ 𝑇𝑠)

𝑠=0

]] ⋅ n}

− 2 (∇𝑢𝐷 ⋅ n) {∇𝑢𝐷 ⋅ [− [(𝐷W)
𝑇 n]
Σ
]}

= −2 (∇𝑢𝐷 ⋅ n) {− (𝐷W)
𝑇
∇𝑢𝐷 ⋅ n + ∇�̇�𝐷,𝑊 ⋅ n}

− 2 (∇𝑢𝐷 ⋅ n) {∇𝑢𝐷 ⋅ [(𝐷Wn ⋅ n)n − (𝐷W)
𝑇 n]} .

(34)

Here we note that �̇�𝐷,𝑊 is the material derivative of 𝑢𝐷 in
the directionW. By definition, �̇�𝐷,𝑊 can be written in terms
of the shape derivative 𝑢𝐷,𝑊: �̇�𝐷,𝑊 = 𝑢


𝐷,𝑊 + ∇𝑢𝐷 ⋅W, where

𝑢

𝐷,𝑊 satisfies

−Δ𝑢


𝐷,𝑊 = 0 in Ω,

𝑢


𝐷,𝑊 = 0 on Γ,

𝑢


𝐷,𝑊 = −
𝜕𝑢𝐷

𝜕n
W ⋅ n on Σ.

(35)

Now, for the second expression 𝐸2, we have

𝐸2 = 2𝜆
𝜕

𝜕𝑠
((𝜅𝑠 ∘ 𝑇𝑠) (𝑢𝑁,𝑠 ∘ 𝑇𝑠))

𝑠=0

= 2𝜆 [(
𝜕

𝜕𝑠
(𝜅𝑠 ∘ 𝑇𝑠)) (𝑢𝑁,𝑠 ∘ 𝑇𝑠)

+ (𝜅𝑠 ∘ 𝑇𝑠) (
𝜕

𝜕𝑠
(𝑢𝑁,𝑠 ∘ 𝑇𝑠))]

𝑠=0

= 2𝜆 (�̇�𝑊𝑢𝑁

+ 𝜅�̇�𝑁,𝑊) .

(36)

Here we stress that �̇�𝑁,𝑊 is the material derivative of 𝑢𝑁
in the directionW. Also, �̇�𝑁,𝑊 = 𝑢


𝑁,𝑊+∇𝑢𝑁 ⋅W, where 𝑢𝑁,𝑊

satisfies

−Δ𝑢


𝑁,𝑊 = 0 in Ω,

𝑢


𝑁,𝑊 = 0 on Γ,

𝜕𝑢

𝑁,𝑊

𝜕n
= divΣ (W ⋅ n∇Σ𝑢𝑁) + 𝜅𝜆W ⋅ n on Σ.

(37)

The expression �̇�𝑊 represents the material derivative of
the mean curvature 𝜅 and it can be shown that �̇�𝑊 =

−Tr[𝐷n𝐷W] − (𝐷[(𝐷Wn ⋅ n)n − (𝐷W)
𝑇n])n ⋅ n.

Finally, for the last expression 𝐸3, we have the following:

𝐸3 = −2 (∇𝑢𝑁 ⋅ 𝜏)

⋅
𝜕

𝜕𝑠
((𝐷𝑇𝑠)

−𝑇
∇ (𝑢𝑁,𝑠 ∘ 𝑇𝑠) ⋅ (𝜏𝑠 ∘ 𝑇𝑠))

𝑠=0

= −2 (∇𝑢𝑁 ⋅ 𝜏)

⋅ [(
𝜕

𝜕𝑠
[(𝐷𝑇𝑠)

−𝑇
∇ (𝑢𝑁,𝑠 ∘ 𝑇𝑠)]) ⋅ (𝜏𝑠 ∘ 𝑇𝑠)]

𝑠=0

− 2 (∇𝑢𝑁 ⋅ 𝜏) [(∇ (𝑢𝑁,𝑠 ∘ 𝑇𝑠)) ⋅
𝜕

𝜕𝑠
(𝜏𝑠 ∘ 𝑇𝑠)]

𝑠=0

= −2 (∇𝑢𝑁 ⋅ 𝜏)

⋅ [[(−𝐷W)
𝑇
∇𝑢𝑁 + ∇�̇�𝑁,𝑊] ⋅ 𝜏 + ∇𝑢𝑁 ⋅ ̇𝜏𝑊] ,

(38)

where ̇𝜏𝑊 is the material derivative of 𝜏 in the direction W
and is given by ̇𝜏 = [(𝐷W)

𝑇n ⋅ 𝜏]n.
Combining all of these simplification expressions and by

the relations in (28), we get the desired result.

Now, we are in the position to prove our main result.
In the sequel, we suppose V̂ and Ŵ to be nonautonomous
velocity fields and proceed for the computation as follows.
Letting 𝐹𝑠 = 𝜆

2
− (∇𝑢𝐷,𝑠 ⋅ n𝑠)

2
+ 2𝜆𝜅𝑠𝑢𝑁,𝑠 − (∇𝑢𝑁,𝑠 ⋅ 𝜏𝑠)

2, we
have

𝑑
2
𝐽 (Ω; V̂; Ŵ) = lim

𝑠↓0

𝑑𝐽 (Ω𝑠 (Ŵ) ; V̂) − 𝑑𝐽 (Ω; V̂)

𝑠

=
𝜕

𝜕𝑠
{

𝜕

𝜕𝑡
𝑑𝐽 (Ω𝑡,𝑠)

𝑡=0

}

𝑠=0

=
𝜕

𝜕𝑠
(∫
Σ

[𝐹𝑠 (V ∘ 𝑇
−1

𝑠 ) ⋅ n𝑠]

∘ 𝑇𝑠 det𝐷𝑇𝑠


(𝐷𝑇𝑠)

−𝑇 n

𝑑Σ)

𝑠=0

=
𝜕

𝜕𝑠
(∫
Σ

[𝐹𝑠 (V ∘ 𝑇
−1

𝑠 ) ⋅ n𝑠] ∘ 𝑇𝑠𝑤𝑠𝑑Σ)
𝑠=0

= ∫
Σ

𝜕

𝜕𝑠
{(𝐹𝑠 ∘ 𝑇𝑠) [V ⋅ (n𝑠 ∘ 𝑇𝑠)] 𝑤𝑠}

𝑠=0

𝑑Σ
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= ∫
Σ

[
𝜕

𝜕𝑠
((𝐹𝑠 ∘ 𝑇𝑠) 𝑤𝑠)

𝑠=0

] [V

⋅ (n𝑠 ∘ 𝑇𝑠)
𝑠=0

] 𝑑Σ + ∫
Σ

[ (𝐹𝑠 ∘ 𝑇𝑠) 𝑤𝑠
𝑠=0

]

⋅ [
𝜕

𝜕𝑠
{V ⋅ (n𝑠 ∘ 𝑇𝑠)}

𝑠=0

] 𝑑Σ =: ∫
Σ

Ξ1Ξ2𝑑Σ

+ ∫
Σ

Ξ3Ξ4𝑑Σ.

(39)

Note that we already have a simplified form for Ξ1 from
Lemma 10, so we only need to simplify the expressionsΞ2,Ξ3,
and Ξ4. For Ξ2, we have need for Ξ2 = V ⋅ (n𝑠 ∘ 𝑇𝑠)|𝑠 = V ⋅ n
and, for Ξ3, we easily get Ξ3 = (𝐹𝑠 ∘ 𝑇𝑠)𝑤𝑠|𝑠 = 𝐹, where 𝐹 is
the same with what is given in Lemma 10. Now, for the last
expression Ξ4, we have

Ξ4 =
𝜕

𝜕𝑠
{V ⋅ (n𝑠 ∘ 𝑇𝑠)}

𝑠=0

= V ⋅
𝜕

𝜕𝑠
(n𝑠 ∘ 𝑇𝑠)

𝑠=0

+
𝜕

𝜕𝑠
V
𝑠=0

⋅ n

= V ⋅ [(𝐷Wn ⋅ n)n − (𝐷W)
𝑇 n] + (𝐷Wn ⋅ n) V𝑛

− (𝐷W)V ⋅ n + V (0) ⋅ n + (𝐷V)W ⋅ n.

(40)

Here, we stress that (𝜕V/𝜕𝑠)|𝑠=0 = (𝜕V(0)/𝜕𝑠)|𝑠=0 and that the
relation V = V(𝑠) ∘ 𝑇𝑠 implies the identity

𝜕V
𝜕𝑠

𝑠=0

=
𝜕

𝜕𝑠
[V (𝑠) ∘ 𝑇𝑠]

𝑠=0

= V̇ (0)

= V (0) + 𝐷VW,

(41)

where V(0)(𝑥) = lim𝑡↓0(1/𝑡)[V(𝑡, 𝑥) − V(0, 𝑥)].

With these identities, we now have

𝑑
2
𝐽 (Ω; V̂; Ŵ) = ∫

Σ

{[�̇�𝑊 + 𝐹divΣW]V ⋅ n

+ 𝐹 [(𝐷Wn ⋅ n) V𝑛 − (𝐷W)V ⋅ n]

+ [V (0) + (𝐷V)W] ⋅ n} 𝑑Σ = ∫
Σ

{�̇�𝑊V𝑛

+ 𝐹 [divW − 𝐷Wn ⋅ n] V𝑛 + 𝐹 [(𝐷Wn ⋅ n) V𝑛]

− 𝐹 [(𝐷W)V ⋅ n] + [V (0) + (𝐷V)W] ⋅ n} 𝑑Σ

= ∫
Σ

{�̇�𝑊V𝑛 + 𝐹 (divW) V𝑛 − 𝐹 (𝐷W)V ⋅ n} 𝑑Σ

+ ∫
Σ

{𝐹 (𝐷V)W ⋅ n + 𝐹V (0) ⋅ n} 𝑑Σ

= ∫
Σ

{�̇�𝑊V𝑛 + (
𝜕𝐹

𝜕n
+ 𝜅𝐹) V𝑛𝑤𝑛}𝑑Σ

− ∫
Σ

𝐹 (VΣ ⋅ 𝐷Σn𝑤Σ + n ⋅ 𝐷Σk𝑤Σ + n

⋅ 𝐷ΣwVΣ) 𝑑Σ + ∫
Σ

{𝐹 (𝐷V)W ⋅ n + 𝐹V (0)

⋅ n} 𝑑Σ.
(42)

Now,wenote that, for autonomous velocity fields, we have
the relation V̂(0) = V (i.e., for V̂(𝑠) = V ∘𝑇

−1
𝑠 , we have V̂(0) =

V). Thus, we now have

𝑑
2
𝐽 (Ω;V (0) ;W (0)) = 𝑑

2
𝐽 (Ω; V̂; Ŵ) = ∫

Σ

�̇�𝑊V𝑛

+ 𝐹 (divW) V𝑛 − 𝐹 (𝐷W)V ⋅ n + 𝐹 (𝐷V)W ⋅ n 𝑑Σ,

(43)

from which we see that

𝑑
2
𝐽 (Ω; V̂; Ŵ) = 𝑑

2
𝐽 (Ω;V (0) ;W (0))

+ 𝑑𝐽 (Ω;V (0))
(44)

and here we remark that this result coincides with the one
presented by Delfour and Zolésio in [5, page 1420, Equation
(28)]. This proves the mainTheorem 9.

3.1. On the Boundary Transformation Approach. Now, in this
section we compute for the second-order shape derivative
of the Kohn-Vogelius objective functional through boundary
transformation approach. Again, we assume V̂ and Ŵ to be
nonautonomous velocity fields. So we proceed as follows.

First, using the definition of the second-order shape
derivative and by the relation V̂ = V ∘ 𝑇

−1
𝑡 , we have

𝑑
2
𝐽 (Ω; V̂; Ŵ) =

𝜕

𝜕𝑠
{

𝜕

𝜕𝑡
𝑑𝐽 (Ω𝑡,𝑠)

𝑡=0

}

𝑠=0

=
𝜕

𝜕𝑠
(∫
Σ𝑠

𝐹𝑠V̂ ⋅ N𝑠𝑑Σ𝑠)
𝑠=0

=
𝜕

𝜕𝑠
(∫
Σ𝑠

𝐹𝑠 (V ∘ 𝑇
−1

𝑠 ) ⋅ N𝑠𝑑Σ𝑠)
𝑠=0

.

(45)

Invoking the boundary differentiation rule, we get

𝑑
2
𝐽 (Ω; V̂; Ŵ) = ∫

Σ

{[
𝜕

𝜕n
(𝐹𝑠 (V ∘ 𝑇

−1

𝑠 ) ⋅N𝑠) + 𝜅𝑠𝐹𝑠 (V ∘ 𝑇
−1

𝑠 ) ⋅ N𝑠]W ⋅ n}
𝑠=0

𝑑Σ

+ ∫
Σ

{
𝜕

𝜕𝑠
(𝐹𝑠 (V ∘ 𝑇

−1

𝑠 ) ⋅ N𝑠)}
𝑠=0

𝑑Σ
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= ∫
Σ

{𝐹𝑠
𝑠=0

𝜕

𝜕𝑠
[(V ∘ 𝑇

−1

𝑠 ) ⋅ N𝑠]
𝑠=0

+ [
𝜕

𝜕n
(𝐹V ⋅ n) + 𝜅𝐹V ⋅ n]W ⋅ n}𝑑Σ

+ ∫
Σ

{[
𝜕

𝜕𝑠
𝐹𝑠

𝑠=0

] [(V ∘ 𝑇
−1

𝑠 ) ⋅ N𝑠
𝑠=0

]} 𝑑Σ

= ∫
Σ

{𝐹[
𝜕

𝜕𝑠
(V (𝑠))

𝑠=0

⋅ N𝑠
𝑠=0

+ (V ∘ 𝑇
−1

𝑠 )
𝑠=0

⋅
𝜕

𝜕𝑠
N𝑠

𝑠=0

]}𝑑Σ

+ ∫
Σ

{[
𝜕

𝜕n
(𝐹V ⋅ n) + 𝜅𝐹V ⋅ n]W ⋅ n}𝑑Σ + ∫

Σ

𝐹


𝑊 (V ⋅ n) 𝑑Σ

= ∫
Σ

{𝐹 [(𝐷V) (−W) ⋅ n + V ⋅ N] + [
𝜕

𝜕n
(𝐹V ⋅ n) + 𝜅𝐹V ⋅ n]W ⋅ n + 𝐹



𝑊V𝑛}𝑑Σ

= ∫
Σ

{𝐹


𝑊V𝑛 + 𝐹V ⋅ N + [
𝜕

𝜕n
(𝐹V ⋅ n) + 𝜅𝐹V ⋅ n]W ⋅ n + 𝐹V̇ (0) ⋅ n}𝑑Σ

= ∫
Σ

{𝐹


𝑊V𝑛 + (
𝜕𝐹

𝜕n
+ 𝜅𝐹) V𝑛𝑤𝑛 − 𝐹 (VΣ ⋅ 𝐷Σn𝑤Σ + n ⋅ 𝐷Σk𝑤Σ + n ⋅ 𝐷ΣwVΣ)} 𝑑Σ

+ ∫
Σ

𝐹 (𝐷V)W ⋅ n + 𝐹V̇ (0) ⋅ n 𝑑Σ = 𝑑
2
𝐽 (Ω;V (0) ;W (0)) + 𝑑𝐽 (Ω; V̇ (0)) .

(46)

Remark 11. Here, 𝑑
2
𝐽(Ω;V(0);W(0)) is the bilinear term

which Delfour and Zolésio refer to as the shape Hessian.

Remark 12. We remark that, as compared to the form of
the shape Hessian presented in [22], the result we have
established here in Theorem 9 clearly shows the relation
pointed in [26] by Delfour and Zolésio about the form of
shape Hessians obtained through nonautonomous velocity
fields.

4. Conclusion

We have computed the second-order shape derivative
𝑑
2
𝐽(Ω; V̂; Ŵ) of the Kohn-Vogelius objective functional 𝐽KV

in the direction of two (nonautonomous) deformation fields
V̂ and Ŵ via velocity method. The computed expression for
𝑑
2
𝐽(Ω; V̂; Ŵ) is given by

𝑑
2
𝐽 (Ω; V̂; Ŵ) = ∫

Σ

�̇�𝑊V𝑛 + (
𝜕𝐹

𝜕n
+ 𝜅𝐹) V𝑛𝑤𝑛𝑑Σ

− ∫
Σ

𝐹 (VΣ ⋅ 𝐷Σn𝑤Σ + n ⋅ 𝐷Σk𝑤Σ + n ⋅ 𝐷ΣwVΣ) 𝑑Σ

+ ∫
Σ

𝐹 (𝐷V)W ⋅ n + 𝐹V (0) ⋅ n 𝑑Σ,

(47)

where 𝐹 = 𝜆
2
− (∇𝑢𝐷 ⋅ n)2 + 2𝜆𝜅𝑢𝑁 − (∇𝑢𝑁 ⋅ 𝜏)

2, n is the
unit exterior normal vector to Σ, 𝜏 is a unit tangent vector to
Σ, and 𝜅 is the mean curvature of Σ. We stress out that the
expression computed for the second-order shape derivative
of 𝐽KV is not yet in its explicit form. The explicit form,
however, could easily be obtained by substituting all those
computed values for each of the expressions found on the

integrand or the interested reader may refer directly to [29]
for the explicit form of 𝑑2𝐽(Ω; V̂; Ŵ). It is apparent in our first
result that the computed expression for the shape derivative
coincides with the one presented by Delfour and Zolésio
in [5]. Interestingly, the result obtained through boundary
transformation approach which again uses nonautonomous
velocity fields also verifies the result found by Delfour and
Zolésio in [5].
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