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We study in this paper nonlinear anisotropic problems with Robin boundary conditions. We prove, by using the technic of
monotone operators in Banach spaces, the existence of a sequence of weak solutions of approximation problems associated with the
anisotropic Robin boundary value problem. For the existence and uniqueness of entropy solutions, we prove that the sequence of
weak solutions converges to a measurable function which is the entropy solution of the anisotropic Robin boundary value problem.

1. Introduction

The aim of this paper is to study the following nonlinear
anisotropic elliptic Robin boundary value problem:

)

where Q) is an open bounded domain of RY (N > 3) with
smooth boundary and meas(Q2) > 0, f € L'(Q), n =
(> - .>7My) is the unit outward normal on 0Q, and y(u) =

|u|r(x)72u.

All papers on problems like (1) considered particular
cases of function b. Indeed, in [1], Bonzi et al. studied the
following problems:

N
_Za%“" (x, %) + P2y = f

_ | |r(x)—2 (2)

on 0Q),

where f € L'(Q). The authors use minimization technics
used in [2] or [3] (see also [4, 5]) to prove the existence and
uniqueness of entropy solution.

The Robin type boundary conditions in the variable
exponents setting are new and interesting problems and were
for the first time studied by Boureanu and Radulescu in [3].
The main difficulty for the study of problem in [3] was the
definition of an admissible space of solutions. The authors
defined the appropriate space and obtained its properties
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which permit them to use minimization method to prove the
existence of weak solutions to the following problem:

—iia (x B_u) +b(x) [ulP 7w = f (x,u)
ox;, '\ ox; - ’

on 0Q.

Since we consider L'-data f instead of the function f(x, u)
considered in [3], the suitable notion of solution is the
entropy solution introduced by Bénilan et al. in [6] (see also
[7]). With the Robin type boundary conditions, the values
of the solutions at the boundary must be precise and the
notion of solutions considered must include the boundary
condition. In this paper, as the function b is more general, it is
not possible to use minimization technic to get the existence
of solution. Therefore, we used the technic of monotone
operators in Banach spaces (see [8]) to get the existence of
entropy solutions of (1).

For presenting our main result, we first have to describe
the data involved in our problem. Let 2 be a bounded domain
in RN (N > 3) with smooth boundary domain 0Q and p(-) =
(p1()s..., pn() such that, foranyi = 1,...,N, p,(-) : Q@ —
[2; N) is a continuous function with

1 < p; essinf p; (x) < esssupp; (x) p; < +oo0. (4)
x€Q) xeQ

Foranyi=1,...,N,letg, : Q x R — R be a Carathéodory
function satisfying the following:

(i) There exists a positive constant C; such that

o ()] < €, (i o)+ [, 5)

for almost every x € Q and for every £ € R, where
j; is a nonnegative function lying in L?(Q), with

(1/pi(x)) + (1/p;(x)) = 1.

(ii) For &, € R with & # # and for almost every x € Q,
there exists a positive constant C, such that

(@ (x,€) = a; (x,1)) (€ - )
. {Cz S S ESNNC
[ (o LT Y P
(iii) There exists a positive constant C; such that
a; (x.8) - &> G g, 7)

for & € R and for almost every x € Q.
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The hypotheses on g; are classical in the study of nonlinear
problems (see [1, 3]).
The function b is such that

b: R — R is continuous, surjective, nondecreasing
(8)
with b(0) = 0.
Throughout this paper, for anyi = 1,..., N, we assume that

PIN-1) _ _ _P(N-1)

w0 <P —,
N(p-1) N-p
pi-pi-1_ P-N
. PN-1’ ©)
N1
— >1,
P

where N/p = YN, (1/p;).
We put for all x € Q,

par () max {p, (x),..., py (%)},

(10)
P (X)min {p; (x),..., py (%)}
and for all x € 0Q),
(N-1)p(x) .
— s if <N,
Pw={ N-px P )
+00 if p(x) > N.
We make the following assumption:
reC (5)
o (12)
with 1 <r <r < )rcrelgg{p?(x),...,p?\,(x)}.

Note that the function y is continuous, defined on R with
p(t)t > 0 for all t in R and y(0) = 0.

A prototype example that is covered by our assumptions
is the following anisotropic p(-)-harmonic system:

N i(x)-2
0 ( i ou )
i;axi

0x;
which, in the particular case when p; = pforanyi=1,...,N,
is the p-Laplace equation.
The rest of the paper is organized as follows. In Section 2,
we present some preliminary results. In Section 3, we study
the existence and uniqueness of entropy solution.

ou
0x;

2. Preliminaries

We recall in this section some definitions and basic properties
of anisotropic Lebesgue and Sobolev spaces with variable
exponent. Set

C+(5)={p€C(§) suchthatmigp(x)>1}. (14)

x€Q)
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For any p € C,(Q), the variable exponent Lebesgue space is
defined by

Q) {u o)
(15)
— R, measurable such that J |u|P(x) dx < oo} ,
Q
endowed with the so-called Luxemburg norm
Il
p(x) (16)
inf<l/\>Osuchthat J @ dxsl}.
Q

The p(-)-modular of the L? Q) space is the mapping p,, :
LP9(Q) — R defined by

b @) | 1" . (17)

Foranyu € L? ) (Q), the following inequality (see [9, 10]) will
be used later:

. Py, P
min {[ul?) 5 1l < pyey () ”
<max{|u|pi ~|u|p+ }
= p() > 10y

For any u € LPY(Q) and v € L1(Q) with (1/p(x)) +
(1/g(x)) = 1 in Q, we have the following Holder type
inequality:

1 1
IL uvdx| < <p— ‘ q—) ot s - (19)
If O is bounded and p,q € C+(5) such that p(x) < q(x)
for any x € €, then the embedding L1V (Q) — LPY(Q) is
continuous (see [11, Theorem 2.8]).
Herein, we need the following anisotropic Sobolev space
with variable exponent:

whB0) Q) {u e [PmO) (Q) such that aa_u

(20)
e P (Q), i= 1,...,N}.

whp (')(Q) is a separable and reflexive Banach space (see [2])
under the norm

u

5 1)

N
lullpe) = 1ulpye) + )
£

i=1 pi()

We need the following embedding and trace results.

Theorem 1 (see [9, Corollary 2.1]). Let Q C RY (N > 3)
be a bounded open set and for alli = 1,...,N, p, € L*(Q),

pi(x) = 1 a.e. in Q. Then, for any g € L°(Q) with q(x) > 1
a.e. in Q such that

ess chrelgf) (pa (%) —q (%)) >0, (22)
one has the compact embedding
Wb () - 110 Q). (23)
Theorem 2 (see [3, Theorem 6]). Let Q ¢ RN (N > 2)
be a bounded open set with smooth boundary and let p(-) €
(C+(§))N, r e C(Q) satisfy the condition
1<r(x) <min{p] (x),....p4 0}, Vxedq (24)
Then, there is a compact boundary trace embedding
w0 (@) - L'V (00) . (25)

We introduce the numbers

_N(p-1)

N-1"~

_ (26)
. _N(-1)_ Nq

N-p N-gq

The following result is due to Troisi (see [12]).

Theorem 3. Let p,...,py € [1,+00); g € W PPN ()
and

if (p)"<N,
if (p)"2N.

Then, there exists a constant C, > 0 depending on N, p,, ...,
pn if p < N and also on q and meas(Q) if p > N such that

1/N
a_g ] . (28)
0X; Il i ()}

a=(p)
(27)
q € [1,+ 00)

N
oo LT | ol *
i=1

In this paper, we will use the Marcinkiewicz space .41(Q2)
(1 < g < +00) as the set of measurable functions g: O — R
for which the distribution function

Ay (k) = meas ({x € Q:|g(x)|>k}), k=0 (29)
satisfies an estimate of the form
Ay (k) < Ck™, for some finite constant C > 0.  (30)
We will use the following pseudonorm in .Z4(Q)):
lgllysq inf {C>0: 4, (k) <Ck™, Vk>0}.  (31)
For any k > 0, the truncation function T} is defined by
Ty (s) = max {—k; min {k; s}} . (32)

It is clear that limy _, , T} (s) = s and |T;.(s)| = min{|s|; k}.



In order to simplify the notation, for any v € WhPO(Q),
we use v instead of Vo for the trace of v on 0Q.

Set 1P ©)(Q) as the set of the measurable functigns u:
QO — R such that, for any k > 0, T(u) € W"PO(Q).
We define the space 7.7 9(Q) as the set of functions u €
T PO () such that there exists a sequence (1), ¢ W0 (Q)
satisfying

u, — u ae. in Q,

T,
a k (un) N aTk (u) in Ll (Q), Vk N 0’
0x; 0x; (33)

there exists a measurable function v on 0Q such that u,

— v a.e. on Q.
We need the following lemma proved in [13].

Lemma 4. Let g be a nonnegative function in whPO(Q).
Assume p < N and there exists a constant C > 0 such that

dg

Xi

pi
dx<C(1+k),
(34)

vk > 0.

L T (9| dax + i J

i=1 Jlgl=k}

Then, there exists a constant D, depending on C, such that
Igll @ <D (35)
whereq" = N(p— 1)/(N - p).

3. Entropy Solutions

The notion of entropy solutions to problem (1) where the data
f belongs to L' (Q) is the following.

Definition 5. A measurable function u € tlr’ﬁ 9(Q) is an
entropy solution of problem (1) if b(u) € LY(Q), p(u) €
Ll(aQ), and, for every k > 0,

N
oul 0
ZJ a; <x$> a_x,.T" (u—@)dx

i=1 7Q i

+J bw) Ty (u—¢)dx (36)
Q
+J V(u)Tk(u_Qo)dGSj fTi (u - 9)dx,

30 o

for every ¢ € Wl’ﬁ(')(Q) NL®(Q).
The existence result is the following theorem.

Theorem 6. Assume that (4)-(12) hold. Then, problem (1)
admits at least one entropy solution.
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Proof. The proof is done in three steps.

Step 1 (the approximate problem). We define the reflexive
space

E = lef’(') Q) x Pm0) Q). (37)
Let X, be the subspace of E defined by

Xo={(u,v) € E:v=1(u)}, (38)

where 7(u) is the trace of u € tlr’P (')(Q) in the usual sense,
sinceu € WP0(Q). In the sequel, we will identify an element
(u,v) € X, with its representative u € WO ().

For any n € Nand € > 0, we consider the sequence of
approximate problems:

S aun ov pm(x)-2
ZJ-Q a,-<x,a—xi> a—dx+sJQ || u,vdx

i1 Xi

N jQ T, (b (u,)) vdx + LQ T, (y(w))vde 39

= J. fovdx,
Q

where f,, = T,(f), and we define an operator A, by

(A, (w),v) =(A),v) + L T, (b(u))vdx

(40)
+ J T,(y(w)vdo Yu,ve X,
20
where
N ou\ ov
(A =3 | a (x, a) o
" (41)
te J [P 4y dx.
Q
Note that
171,
I = 2
Il = [ 1l < | Lflds =], (42
Sa T fin L (Q), a.e. in Q.
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Assertion 1 (the operator A is of type M). (i) The operator A
is monotone. Indeed, for u, v € W9 (Q), we have

(Aw)-AW),u—v)y=(Aw),u—-v)+(AW),v

N ou\ ow—-v)
_u)_JQl;ai(x,a—xi) i dx

i

te J [P 4 (4 - v) dx
Q

N
ov\o(v—u) J par()-2
+ JQ Zai (x, 3 > I dx+e| |v|

i=1 X i Q (43)

-v(v—u)dx

[ 2o (= 5)-a(m )]

ou ov Par(x)-2
<axi aXi>dx+eL(|u| u

— |y|pm)2 v) (u—v)dx.
Therefore,
(Aw)—-A(W),u—-v) >0, (44)

since fori = 1,..., N, for almost every x € Q, g;(x,-) and
t > [¢]P#*)"2¢ are monotone.
(ii) The operator A is hemicontinuous. Indeed, for every

u,vin Wl’ﬁ(')(Q), let
p:teR—@t)=(Au+tv),v) (45)

andlett,t, € R besuch thatt — t,. Wehavew =u+tv —
wy =u+tyvin WhPO(Q).

Using the Holder type inequality, there exists i, €
{1,..., N} such that

o (6) = ¢ ()] = (A (u +tv),v) = (A (u+14v),v)]|

N
SZJ ai<x,%>—ai<x,%—ts>

i=1 7 i

i
0x;

dx

t+e J ||w|PM(x)—2 w— |w0|PM(x)*2 w0| v dx
Q

SN<L+;_)
P (o)) (46)

<x 8w> B (x aw0> ov
10 > . h l() > . .
0x; ox;, O ox;, 2u )
( : : )

el —+ =

Pu ()

-2 (x)-2

‘|hUVM&) w = [wp [P ub|, LPWOR

Let us denote Vi (x,w) = aio(x, ow/ axio).

Using assumption (5) and [11, Theorems 4.1 and 4.2]

!
we have v, (x,w) — ; (x,w,) in LPoO(Q). Then, we
deduce that ¢ is continuous; namely, the operator A is
hemicontinuous.

Since the operator A is monotone and hemicontinuous,
then according to Lemma 2.1 in [8], A is of type M.

Assertion 2 (the operator A, is of type M). Indeed, let (14 ke
be a sequence in X, such that

w, — u  weakly in X,
A, — x  weakly in X, (47)

lim sup (A, (), ue) < (x 1) -

k— +oco
Since

T,bWw)u=0,

(48)
T,(y(w)u =0,
by Fatou’s lemma, we obtain that
lim inf (J T, (b(u,)) udx + j T, (y (u)) ukd0>
k— +o0 Q 2Q (49)

ZJ Tn(b(u))udx+J T, (y(w)udo
Q 20

and thanks to the Lebesgue dominated convergence theorem,
we have

lim (L T, (b (u)) vdx + Jao T, (y (u)) vdo)

k — +00

(50)
= J T, (b (w)vdx + J T,(yw)vdo,
Q 20
for all v in X,,. Consequently,
Tn (b(uk)) +Tn (]/ (uk)) - Tn (b (u)) +Tn (y(u)) ( )
51

weakly in Xj.
Therefore, we deduce that

Auy — x - (T, (b W) + T, (y w)))

As in Assertion 1, we prove that the operator A is of type M,
so we have

weakly in X('). (52)

Au=x - (T, (b W) +T,(yw)). (53)
Thus, it follows that
Au=y. (54)
Hence, A,, is of type M.
Assertion 3 (the operator A, is coercive). Indeed, since

T,b@)u+T,(yw)u=0, (55)



then
(A, (w),u) = (A(w),u). (56)

According to (7), we have

N au pix)
(A (u),u) 2C3J Z — dx+sj [ulP*® dx. (57)
o5 l10x; Q
Denote
S =4ief{l,...,N} ou <lt,
0 ilp()
(58)
. ou
j = 1€ {1) )N} P — > 1 .
ax’ i)
We have
N (x) i(x)
a i a bi
J Z il dx = Z J u dx
05 |ox; gt ax
pi(x)
+ Z I a_u dx
icg 70 axi
ou |7 ou |P
> Y |=| +)Y|—
i 10%i 1,0 i 10%i 15
(59)
P P
Sy ou
7 19%ilp0 i ax ()
N P P
S et o
S10xi1,0 e 10X,
N _
u P
> — - N.
; 0| p,)

Using the convexity of the application t € R* + tPn, p~ > 1,

we obtain
pi(x) N P
x> —— (Y2 ) N 60
Npm71 i axi FX0)

N

2

Then,

ou

ox;

ou

>Pm
i) (61)

0x;

(A, (w),u) =

N
w2

€ J [u|P® dy — CsN.
Q

(i) Assume |ul, () > 1. Then, (18) gives _fQ [ulP®dx >

Pm
lulPM(‘)'
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So, combining (56) and (61) we get

Nl ou P
<An(u)’u>2c (Z a_ > +|u|p )
i1pi()
C (62)
-GN >l -GN,

-1’

where C = min{ C_3 's} .
N

(ii) Assume IuIPM(,) < 1. Then, combining (56) and (61)

we get

(A, (u),u) >C [(Z

-C3;N+e J [u|P#® dx
Q (63)

zp— 1 ”u"P() _C3N’

where C = min {C—?, 1} .
I\]pm_1

Consequently, since p,, > 1, the operator A, is coercive.

Besides, the operator A,, is bounded and hemicontinu-

ous.
Then, for any F, = T,(f) € E' ¢ X;, we can deduce the
existence of a function u,, € X, such that

(A, (u,),v) = (Ev)s

Namely, u,, is a weak solution of problem (39).

Vv e X,. (64)

We are now going to prove that these approximated
solutions u, tend, as n goes to infinity, to a measurable
function u which is an entropy solution of problem (1). To
start with, we establish some a priori estimates.

Step 2 (a priori estimates). Assume (4)-(12) and let u,, be a
solution of problem (39). We have the following results.

Lemma 7. There exists a constant Cs > 0 such that

J Ty (1) dax + ZJ

{lu,|<k}

Jdu, P
0x;

(65)
<Cs(k+1).

Proof. Let us take T (u,,) as a test function in (39). Since

[ 70 Te ) dxve [ o7, T )
Q Q (66)

o[ 10 T ) do >0
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using relation (7), we obtain

N
¢y |
; {lu,| <k}

Then, we have

N
; J{|un|sk}

> j
i=1 7 tlu,|<kslou, /ox;|>1}

aun pilx

ox;

)
dx < k| f],-

pi
ou,,

ox;

pi

ou,, dx

0x;

N ou,, 2

ox;

+ J
i JHlu,|<ks|ou, /ox;1<1}

S

i=1 Jlu,|<k}

pi(x)

Oty dx + N - meas (Q)

ox;

< £ ||f||1 + N - meas (Q0).
G
Moreover, we have

Jo Tt - T (0, dx

J{lTk(MnNSl}
+ J | Ty (%)W dx
(T, >1}

< meas (Q) + J kPmdx

{1 Ty ()| >1}

< meas (Q) (1 + kP;">.
Therefore, we get

pi
dx

ou,,
0x;

_ N
T, ()" dx + J
Lzl i () ,Z Iy}

i=1
- k

< meas(Q)(l +N+kPM> + C. ||f||1
3

<Cs(l+k),

where Cs = max{meas(Q)(1 + N + kP); (1/C,)| fIl,}.

(67)

(68)

(69)

(70)

O

Lemma 8. Foranyk > 0, there exist two constants C, > 0 and

Cg > 0 such that

(i) ”un”/%q* ) < C7)

(ii) [|ou,,/ox;| <Cg Vi=1,...,N.

‘/%P;LZ/E(Q)

Proof. (i) This is a consequence of Lemmas 4 and 7.

(ii)

(a) Let > 1. For any k > 1, we have

Adu, Jox, (@) = meas <{x €eQ: ’au"

axi g 05]’)
= meas (” Oty
- Ox;

>(x;|un|§k}>
+meas<”2—lz > o |uy| >k]>>

j dx+ 1, (k)
{10u,,/0x;|> s |u, | <k} "

fon (5
< -
{lu, <k} \ &

<aPCk+Ck T,

(71)

<

Oty

pi
o > dx+ 1, (k)

Then, there exists a positive constant Cg such that
Noujom, (@) < Co (kP + k71" (72)

Let us consider the function

g:[l,+00) — R,

¢ . (73)
t—gt)=—+t 1.
obi

We have g/(t) = 0 for t = (q*ocp;)l/(q*“). Thus, if we
take k = (q*apf)l/(q D> 1in (72) we get

+101 (@G +))pr
Aaun/axi (0() < C6k<q . _,> < C;(X @ /(@ +1)p;
9 o
—oralp 74
<ClaP ap, (74)
Vo > 1, where Cg is a positive constant.
(b) If 0 < & < 1, we have
ou,,
Adu, jox, (@) = meas 5 >ap | < meas(Q)
i (75)

< meas (Q) a P VP,
Then
Now, o, (@) < (Cf + meas (Q)) a P97, va>0. (76)

Therefore, we deduce that there exists a positive
constant Cq such that

ou,,

-— <Cq Vi=1,...,N.
axi 8 (77)

‘/”P;q/f(g)

O



Step 3 (existence of entropy solution). Using Lemma 8, we
have the following useful lemma (see [13]).

Lemma9. Fori=1,...,N,asn — +00, one has

o (x, aun> — q <x, a—”) in L' (Q) ae. xe€Q. (78)
0x; 0x;

In order to pass to the limit in relation (39), we also need the
following convergence results which can be proved as in [7] (see
also [1, 13]).

Proposition 10. Assume (4)-(12). If u,, € Wl’ﬁ(')(Q) is a
weak solution of (P,) then the sequence (u,,),en+ is Cauchy in
measure. In particular, there exist a measurable function u and
a subsequence still denoted by u,, such thatu,, — u in measure.

Proposition 11. Assume (4)-(12). Ifu,, € Wl’ﬁ(')(Q) is a weak
solution of (P,) then
(i) there exists s > 1 such that u, — u a.e. in Q and
moreover u, — u in W>*(Q),
(ii) for all i = 1,...,N, 0u,/0x; converges strongly
in LY(Q). Moreover a;(x,0u,/0x;) converges to
a;,(x, 0u/dx;) in L' (Q) strongly and in L (Q) weakly
foralli=1,...,N,

(iii) u,, converges to some measurable function v a.e. in 0Q.

We can now pass to the limit in relation (39).
Letg € Wl’P(')(Q) N L™(Q) and choosing Ty (u,, — @) as a
test function in (39), we get

al ou,\ 0
> (% 52) 21, (- g)ax

i=1 7 i

¢ [ T T, - g

Te J |L£Vl|pM(.X)72 unTk (un - (P) dx (79)
Q
v [ T ) T, - ) do
0Q

- | AT, - g)ax

For the right-hand side of (79), we have

|, £, T, - p)dx — | F@T-g)an 60
Q Q

since f, converges strongly to f in L'(Q) and T (u, — ¢)
converges weakly-* to Ty.(u — ¢) in L(Q) and a.e. in Q.
For the first term of (79), we have (see [13])

N
o ou,\ 0
lim inf)" Joe <x’a—x,.> o, Tk (4 = @) dx

(81)
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We now focus our attention on the second term of (79). We
have

T,y (b (u,)) Ty (1, = ) — b (W) Ty (1 — @)
ae x €, (82)

|T, (b (,)) Ty (, = )| < ke [b (1,)]

Now we show that |b(u,)| < | fll;/meas(Q). Indeed, let us
denote by

Hy (s) = min(i; 1) ,

1)
83
e () 1 ifs>0, (83)
Slgn S) =
0 0 ifs<o.

If 0 is a maximal monotone operator defined on R, we denote
by 6, the main section of 6; that is,

90 (s)
minimal absolute value of 6 (s) if 6(s) # 0,
(84)
=4 +00 if [s,+00)ND(0) =0,
-00 if (—co,s]ND () =0.

Remark that as & goes to 0, Hy(s) goes to signj (s).

We take ¢ = Hg(u,, — M) as a test function in (39) for the
weak solution u, and M > 0 (a constant to be chosen later)
to get

™ ou,\ 0
(e, 2 ) 2l (u, - M)d
i_zl-[ﬂal (.X axi)axi S(un ) X
pam(x)-2
+sj || u,Hg (u, — M) dx
Q
ARG EACES IS
Q

e [T ) Hi (0, = M) dor

= | fuHs (1, - M) .
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We have
N
ou 0
| x,—2)—H -M)d
Z JQ al <x axi > axi 5 (un ) X

i=1

ij a<x %>i(u - M)"dx
£ {(u,—M)*/5<1} ! ’ ox; axi "

i=1

zlgﬁ

> 0 according to (7),

| =

0<u,—M<d}

> |

(86)
J |ut, |7 0, Hy (1, — M) dx
Q

(un - M)+
" o

unlpm(x)—Z u

= J dx
{(u,—M)* /5<1}

-2
+ I |t |72 dx
{(w,~M)"/6=1}

1

Pum(x)-2
= u u, (u
é J'{M<un<M+6}| "l q

> . —M)dx > 0.

Note also that since the function y is nondecreasing with
y(0) = 0, we have

| T ) Hi (1, = M) do

Tn (Y (un)) H8 (un - M) do

Jaﬂn{(un—M)*/6<1}

v T, (y (4,)) H (s, - M) do
0N {(,—M)* /5=1}

= T, (y () o (87)

.
J (un - M) d
00N (1, ~M)*/8<1} 9

v 1, (y (w,)) do
0N {(u, ~M)* /5=1}

Tn (y (un)) (un - M) do

3|
) 0QN{0<u,,—M<4}

+ J T, (y (u,))do > 0.
30N {u,~M=3}

Then, (85) gives

JQ Tn (b (un)) H5 (un - M) dx
(88)

< || fuHs (1w, - M) d,

which is equivalent to saying

[, (b)) ~ T, 0 09) Hy (1, - M)

(89)
< [ =T 0) Hy G~ M)
We now let 8 go to 0 in the above inequality to obtain
|, (@) -1, G o) dx
(90)

< [ (-, 0 sgn; (w, - M) ax.

Choosing M = b, Al [l in the above inequality (since b is
surjective), we obtain

[ (@ 0@ -7, Ul dx
<[ (1A o

- sign, (un - bo_1 (||fn||oo)) dx.
For any n > | fl,/meas(Q), we have

J, =T 1o s (s = 5" (1)

R TANE= ORI A

<0.

Then, (91) gives

[ @) -1n1) aezo s Voo

Hence, for all n > | f[l,/meas(Q)), we have (T,(b(u,)) —
[ £ulloo)” = 0 a.e. in Q, which implies that

meas (Q)°

T, (b () < | fulloo
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Let us remark that as u,, is a weak solution of (39), then (-u,,)
is a weak solution to the following problem:

ul ou,,
; i <x>$>’7i = ‘Y(un)

where @(x, &) = —a,(x,~£), b(s) = -b(-s), and f, = - f,,.
According to (94) we deduce that

b)) < Ik > )
Therefore
ORI 1A I | Sty

It follows from (94) and (97) that, for alln > | f||,/ meas(Q),
IT, (b)) < |l f, | which implies

_ s

< .e. in Q. 98
" meas (Q) e m %8)

b () < (£l

We can now use the Lebesgue dominated convergence
theorem to get

Jdim | T, (b)) T (n, - 9) dx

(99)
= L b(u) Ty (u— ) dx.

By using again the Lebesgue dominated convergence theo-
rem, we obtain

[ T @) T (s, = 9)do

(100)
— [ yr - g)do
20
For the third term of (79), let us prove that
lim infe J |1,¢n|pM(x)_2 u, Ty (u, —@)dx >0
Q (101)
for e — 0.
We have
,[ a1 0, (0, — ) dlx
Q
(x)-2 (x)-2
- L (el 0, = 0] @) Ty (, ~ 9) dx - (102)

" JQ |p|? 72 9Ty (1, — 9) dx.

International Journal of Differential Equations

)+T b(u,) )+s|un|p’“(x)_2un=]“;1 in Q,

(95)
on 0Q),

Since the quantity (Ju,|P#™ 2, — |@|P*®2Q)T, (4, — @) is
nonnegative and since for all x in Q, the application £ —
|E|P™)=2 s continuous, we have

(loal ™7 0, = [0 ) Ty (11, - 9)
. (|M|PM(X)—2 " Iq)lPM(x)*Z ‘P) T, (1 - ¢) (103)

a.e. in Q)

and by Fatou’s lemma, it follows that

IR

n— +00

-Tk(un—q))dxzj (lup=2 4, (104)
Q
~ ol ) Ty (u - 9) dx
We have
J “(P|PM(x)—2 ‘P‘d J |Pm(x
Q Q
< | (ol ax
Q
<] el
{lplloo=1}
(105)

< meas (QQ)

+ (Joll.,)P " meas ()

< +00.

Hence, [p|®2¢ ¢ L'(Q).
Since T} (u,,— ) converges weakly-" to T}, (u—¢) in L (Q2)
and |p|?®2¢ ¢ L'(Q), it follows that
: Pu(x)-2
(Jm JQ o™ 9Tic (u, — ) dx

(106)
= [ 1ol oy (- ) dx
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By adding (104) and (106), we get

lim inf L |2 0 T, (u, - @) dx

n— +0o
(107)
> J P72 uT, (u - @) dx.
Q
Since
J P2 uT (u - @) dx < k J P
Q Q (108)
< +00,
thus we get
lim infe J |un|‘DM(x)_2 u, Ty (u, — ¢)dx >0
n—+o0 Jq (109)
for e — 0.
Combining (80), (81), (99), (100), and (109) we obtain
N
ou\ 0
;L a; (x, a_x,) B_xiTk (u—¢)dx
+ J b)) Ty (u—¢)dx (110)
Q

o YT u-g)dos | ST (u-g)ds
0Q Q

Then, u is an entropy solution of problem (1). That completes
the proof of Theorem 6.

We now state the uniqueness result of entropy solution.
Theorem 12. Assume that (4)-(12) hold true and let u be an
entropy solution of (1). Then, u is unique.

Proof. The proof is done in two steps.
Step 1 (a priori estimates). We consider the following.

Lemma 13. Assume (4)-(12) and f € LY(Q). Let u be an
entropy solution of (1). Then

N
i:zl J{|u|£k}

and there exists a positive constant Cq such that

6 W], < Cy-meas(Q) + ||f”1 . (112)

ou pi(x)

ox;

k
ars

Proof. Let us take ¢ = 0 in the entropy inequality (36).
(i) By the fact that [ b(u)Ty(w)dx + [, y()Ti(w)do >
0, using (7), we get (111).
(ii) Also, using the fact that Y%, [ a;(x,0u/dx,)(d/
E)x,‘)Tk(1,t)dx+_[aQ ()T (u)do > 0, relation (36) gives

J bu)T) (u)dx < J f(x) T (u) dx. (113)
Q Q

1
By (113), we deduce that
J bw) Ty (u)dx + J bu) Ty (u)dx
{lul<k} {lul>k} (114)
< k|1l
which imply that
j b(u) Ty (u) dx < k| f]], (115)
{lul>k}
or
j b () dox + j budx<|f],.  6)
{u>k} {u<—k)
Therefore,

J bl dx < | £]), a17)
{lul>k}
So, we obtain

J |b(u)|dx = J |b(u)|dx+J |b(u)| dx
Q {lul<k} {lul>k}
(118)
< b d .
< widcs s,

Since the function b is nondecreasing, then
j |b(u)| dx < max {b(k);|b(-k)|} - meas (). (119)
{lul<k}

Consequently, there exists a constant C, = max{b(k); |[b(-k)[}
such that

Ib @), < Cy - meas (Q) + | f]], - (120)

O

Lemma 14. Assume (4)-(12) and let f € LY(Q). Ifuis an
entropy solution of (1), then there exists a constant D which
depends on f and Q such that

D

meas ({{u| > k}) < min {b (k), |b(=k)|}’

vk>0 (121)

and a constant D' > 0 which depends on f and Q such that

ou D'
meaS({la—Xi|>k}>SW, vk > 1. (122)
Proof. (i) For any k > 0, relation (112) gives
[ minp@. oy | peldx
{lul>k} {lul>k} (123)
< Cy-meas (Q) + || f], -
Therefore,
min {b (k) , |b (=k)[} - meas ({lu] > k})
(124)

< C, - meas (Q) + ||f"1 = D;
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that is,

D
min {b (k), [b (-k)[}

(ii) See [7] for the poof of (122). O

meas ({|u| > k}) <

(125)

Lemma 15. Assume (4)-(12) and let f € LY(Q). If u is an
entropy solution of (1), then

lim J |£] Xiu>h-ndx = 0, (126)

h—+00 J

whereh > 0 andt > 0.

Proof. Since the function b is surjective, according to
Lemma 14-(121), we have

lim meas({|u|>h-t})=0 (127)
h— +oo

andas f € L'(Q), it follows by using the Lebesgue dominated
convergence theorem that

lim JQ |f] Xtjupsh-nydx = 0. (128)

h— +00
[

Lemma 16. Assume (4)-(12) and let f € LY(Q). If u is an
entropy solution of (1), then there exists a positive constant K
such that

Ppi() (

{h<lul<h+k},h>0k>O0.

ou

pi(x)-1
— <K, Vi=1,...,N, 129
axi XF) ( )

where F =
Proof. Let = T),(u) as test function in the entropy inequality
(36). We get
a; <x, ) =—Ti (u-T, w))dx
1 Q

A RICEACEEATIEE

(130)
v [ v T, w)do
fTx

(u =T, W) dx.

<,

Thus,

™Mz

ou \ ou
J{h<|u|<h+k} ,(x axi) Ox: x ”f"1 (131)

1

and using (7), we have

ou |P

Jl5

ox;

< Eufl visnoN. o
3
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Consequently,
Prio) (

Step 2 (uniqueness of entropy solution). Let/ > 0 and u, v be
two entropy solutions of (1). We write the entropy inequality
corresponding to the solution u, with Tj,(v) as test function,
and to the solution v, with Tj,(u) as test function to get

ou

pi(x)-1
-— <K, Vi=1,...,N. 133
axi XF) 1 ( )

O

ij ( xl)%Tk(u—Thm)dx

+J bw) Ty (u—T,(v))dx
Q

vy T -1, do
0Q

: J [T (u=T, (v)) dx,
Q
(134)
S 0
Z J-Qa < _x> ax, * (v=T), (w)dx
+J b(v) Ty (v - Ty, (u))dx
Q
" J YW T (v=T, W) do
20
<[ rmtv -1, 00)
Q
Upon addition, we get
S ou\ 0
; L K (x’ a_x,> ax, Lk (u—T, () dx
N ov\ 0
' 1:21 JQ K <x’ a_x,-) a_xfT" (v =T, (w)dx
o[ b -, 0)dx
(135)

+J bW T (v—T, w)dx

Q

+J y W) Ty (u—T), (v))do
90

+J YW Ty (v-T, (w)do
20

< Jﬂ FIT (=T, ) + Ty (v = T, (w))] dx.
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Define the following sets:

We start with the first integral in (135). We have

™Mz

E {lu—-v| <k |v| <h};
E,E, n{lu| < h},
E,E, N {ju| > h}.

ou ) p)
ai T u— T (V)
j{Iu T, (v)|<k} ( " 0x; ) 0x; ( n (V) dx

N
= Z J ai <x,
i=1 Hlu=T,()I<kin{lvI<h}

ou
0x;

N
zj %<&
i=1 Hlu=T,(v)|<k}n{|v|>h}

> aiT (u—-T, (v))dx

| o)

i=1 Jlu—vI<k}n{|v|<h}
N
ou ' ou
Z J a; <x, —) d
{lu=h sign(v)|<k}n{[v|>h} ox;

i=1

0
) 32T e, ) d

QJQ)
N

+

N

$] o (s2) s B

oul 0
a—xl> a—xi(u—v)dx

N
ou\ o
+ZL3 a; <x,$> T(u—v)dx.

i=1 i i

Then, we obtain

2]

= N,k

QU
x

1

—dx
0x;

o(x

a; <x, a—”) iTk (u—-T,(v))dx

(136)

(137)

(138)

13

According to (5) and the Holder type inequality, we have

N (x)-1
ou [P ov
<C J i (%) + |=— —|dx
121 B, (J' ox, ox;
(139)
N (x)-1
au 2
sqz(m )
()
S\ dx; PO th<lulsh+k)
ov
ox; (), {h—k<|v|<h}
where
ou pi(x)-1
0x; PO h<ul<h+k}
(140)
‘ ou pi(x)-1
ox; L9 (h<lul<h+k))

Thanks to relation (18) and Lemma 16, the quantity (| ;] ot
1100/02; 1% |y hetutensny) is fimite for all i = 1,..., N.

According to Lemmal5, the quantity |dv/
OXil (), (h-k<|v<n) CONVerges to zero as h goes to infinity.
Consequently, the last integral of (138) converges to zero as h
goes to infinity. Then,

N

ou > 0
alx,— | —T (u-T,(v))dx
,_le{|u—Th<v)|sk} ( 0x; ) 0x; =T )

>Ih+ZJ- < l)ai( —v)dx,

with limh_>+oo.[h =0.
We may adopt the same procedure to treat the second
term in (135) to obtain

(141)

N

ov ) 0
ai| %, = | =T (v—T) (u)) dx
;LIvTh(u)lsk} < " 0x; ) 0Ox; k(v =T, ()

S v\ 9
ZIh—iZJEzai x,a—Xi a—Xi(u—v)dx,

(142)

with lim, . J, = 0.
For the other terms in the left-hand side of (135), we
denote

K, = JQ bw) Ty (u-T,(v))dx
+ J b(v) Ty (v—T, (w)dx,
Q
(143)

Li= [y T (=T, 0))do
oQ

+ [ YW= T w)do
oQ
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We have
bW) Ty (u—T,(v)) — bw) T (u-v)
a.e. in Q) since h — +00, (144)
b (W) Ty (u—T, ()| < klb@)] € L' ().

Then, by the Lebesgue dominated convergence theorem, we
obtain

lim J bWw) Ty (u-"T,(v))dx
h—+00 JQ

=J b (w) T, (u — v) dx,
Q

(145)
lim J b)) Ty (v—T, w)dx
h—+00 JQ
- J b() T, (v—u)dx.
Q
Then,
lim K, = J Gw)-bW) T, (u—-v)dx. (146)
h— 400 Q
In the same way, we get
hlim L, = J (yw) -y () Ty (u-v)do. (147)
— +00 oQ

Now, consider the right-hand side of inequality (135). We have
hETmf (T (u =T, (v)) + T (v = T), (w))) = 0
a.e. in Q,
(148)
|f () (T (= T, () + Ty (v = T, )| < 2k | £
el'(Q).

By the Lebesgue dominated convergence theorem, we obtain

Jim [ F () (T (=T, 0) + Ty (0= Ty @) dx

(149)
=0.

After passing to the limit as h goes to +00 in (135), we get

3o (255
5 Juvizig \T\ 7 0x;

ov 0
—-a (x,a—xl>> a_x, (u—-v)dx (150)

+J (b(u)—b(v))Tk(u—v)dx+J (y (w)
Q 20

—y() T (u—v)do <0.
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Since b, y, and g;(x, ) are monotone, then

J Gw)-bW) T, (u—-v)dx =0, (151)
Q
LQ (yw)-y») Ty (u—-v)do =0, (152)
N ou
J{lu—vlsk} ,; (ai (x, a_x,>
A
a; | x, ox.)) ox, u-—v)dx
=0.

According to (6), we deduce from (153) that

u—-v=c ae x¢€Q, wherecis a real constant. (154)

For x fixed in 9Q, s +— |s|P™%s is nondecreasing and
vanishes at 0. Then,

(y (@ (x) =y (v(x)) Ty (u(x) = v(x)) 2 0,
Vx € 0Q), Vk > 0.

(155)

Now, by inequality above and (152), we deduce that for all k €
N* there exists C, ¢ 0Q with meas(C;) = 0 such that, for all
x € 0Q\ Cy,

(y (@ (x)) =y (v (x))) Ty (14 () = v () = 0. (156)
Therefore,
(y () =y (v(x))) (u(x) - v(x)) = 0,
Vx €dQ\ Gy (157)
keN*

As p~ > 1, the following relation is true forany &, € R, & # i
(cf. [14]):

(EF 2= g2 n) (=) >0 (58)
From inequality above and (157), we get
u—v=0 ae. on oQ. (159)
Finally as
u—-v=c ae inQ,
(160)
u-v=0 ae onoQ,
it follows that
u=v ae. in Q. (161)

That completes the proof of Theorem 12.
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