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Copyright © 2015 Juan Carlos Muñoz Grajales. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We establish existence and uniqueness of solutions to the Cauchy problem associated with a new one-dimensional weakly-
nonlinear, weakly-dispersive system which arises as an asymptotical approximation of the full potential theory equations for
modelling propagation of small amplitude water waves on the surface of a shallow channel with variable depth, taking into account
the effect of surface tension. Furthermore, numerical schemes of spectral type are introduced for approximating the evolution in
time of solutions of this system and its travelling wave solutions, in both the periodic and nonperiodic case.

1. Introduction

In this paper we study the propagation of water waves on the
surface of a shallow channel with variable depth, considering
the effect of surface tension. To describe this phenomenonwe
will derive a new water wave model from Euler’s equations
(in dimensionless variables) for an inviscid, incompressible
liquid bounded above by a free surface and bounded below
by an impermeable bottom topography [1]:
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at 𝑦 = 𝛼𝜂(𝑥, 𝑡). Here 𝜙(𝑥, 𝑦, 𝑡) denotes the potential velocity
and 𝜂(𝑥, 𝑡) the wave elevation measured with respect to

the undisturbed free surface 𝑦 = 0. The dimensionless
parameters 𝛼 and 𝛽 are small positive real numbers which
measure the strength of nonlinear and dispersive effects,
respectively. The parameter 𝛾 measures the ratio inhomo-
geneities/wavelength and the parameter 𝜎 is associated with
the surface tension.TheNeumann condition at the imperme-
able bottom is
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The bottom topography is described by 𝑦 = −𝐻(𝑥/𝛾), where
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We will see in Section 3 that system (1)–(3) is equivalent to
leading order provided that 𝛼 ≪ 1, 𝛽 ≪ 1 to the weakly-
nonlinear, weakly-dispersive system
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The variables 𝜉 and 𝑡 are the space and time coordinates,
respectively, V = 𝑀(𝜉)𝜂(𝜉, 𝑡) with 𝜂(𝜉, 𝑡) denoting the
elevation of the free surface, and Φ(𝜉, 𝑡) represents the
potential fluid velocitymeasured at the channel’s bottom.The
metric coefficient 𝑀(𝜉) is related to the channel’s bottom
𝑦 = −𝐻(𝑥/𝛾) and it is defined as

𝑀(𝜉) =
𝜋

4√𝛽
∫
∞

−∞

𝐻(𝑥 (𝜉
0
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𝑑𝜉
0
, (6)

where (𝑥, 𝑦) → (𝜉, 𝜁) is the coordinate transformation used
in the derivation of system (5) to map the original physical
channel with variable depth onto a strip in the complex
plane. This strategy of change of variable was introduced by
Hamilton [2] and later used successfully by Nachbin in [3] to
study wave propagation over a channel with a highly variable
topography. Observe from (6) that the coefficient 𝑀(𝜉) is
infinitely differentiable although the function describing the
channel’s bottom is not smooth. In case of constant depth, the
coefficient𝑀(𝜉) is identically one and system (5) reduces to
a system derived by Quintero and Montes in [4].

Wave-topography interaction has been the subject of
considerable mathematical research [5–18]. The physical
applications range from coastal surface waves [19] to atmo-
spheric flows over mountain ranges [20, 21]. In particular, the
interaction of waves with fine features of the topography is of
great interest. As pointed out in the introduction to theOrog-
raphy proceedings [21] of the European Centre for Medium-
Range Weather Forecasts (ECMWF), “the representation . . .
of subgrid-scale orographic processes is recognized as crucial
to numerical weather prediction at all time ranges.” In the
atmospheric literature, orography implies mountain ranges
[20].

In previous works, some weakly-nonlinear, weakly-
dispersive models have been developed to describe the inter-
action of a long pulse with small amplitude that propagates
on the surface of a channel with a variable bottom [2, 3, 5, 7–
9, 22–24]. However, these models either neglect the effect of
surface tension on the free surface where the wave propagates
or are not applicable to bottoms described by a discon-
tinuous/nondifferentiable function or the wave elevation is
removed in their physical derivation. For instance, Milewski
[23] derived a bidirectional scalar Benney-Luke type equa-
tion in terms of the potential velocity which includes the
surface tension effect and the influence of a variable bottom.
However, the asymptotical derivation of this model implies
eliminating the wave elevation and consequently neglecting
several second-order terms in the parameters 𝛼 and 𝛽.

Some of the features of new formulation (5) are the
following:

(i) It can be applied to study wave propagation over a
shallow channel with a discontinuous or nondifferen-
tiable bottom, provided that the bottom’s fluctuations
satisfy |𝑛| < 1. This is a consequence of introducing
the conformal mapping (𝑥, 𝑦) → (𝜉, 𝜁) mentioned
above. Observe that all coefficients of the reduced
equations (5) in the new coordinate system result in
being infinitely differentiable since they depend on
the smooth function𝑀(𝜉).

(ii) One-dimensional system (5) models bidirectional
waves and it incorporates the simultaneous effects of
surface tension and variable depth upon the shape
of a water wave that propagates on the surface of an
irregular shallow channel.

(iii) Furthermore, in the derivation of system (5), we do
not eliminate the wave elevation (which prevents us
from neglecting additional terms of order 𝑂(𝛼2, 𝛽2)),
as done, for example, in [23]. Therefore, the new
formulation (5) is expected to be a more accurate
approximation of the full potential theory equations.

In the present paper, we establish existence and unique-
ness of a solution to Cauchy problem (5) using classical
semigroup theory and Banach’s fixed point principle. In [4]
the well-posedness of system (5) was analyzed but only in
the case that 𝑀(𝜉) ≡ 1. In second place, we formulate a
Galerkin-spectral numerical scheme of spectral accuracy in
space to approximate the solutions of system (5) based on the
Fourier basis and using an implicit-explicit (IMEX) second-
order strategy for time stepping. This type of temporal
discretization is described, for instance, in [25], and it has
been used in conjunction with spectral methods [26, 27] for
the time integration of spatially discretized PDEs of diffusion-
convection type. IMEX schemes have also been successfully
applied to the incompressible Navier-Stokes equations [28]
and in environmental modelling studies [29]. On the other
hand, we develop a numerical solver to compute travelling
wave solutions of system (5) by using a Fourier-collocation
strategy combined with a Newton-type iterative procedure.
We also indicate how to determine appropriate starting points
for this iterative process in order to achieve convergence.
Existence results on travelling wave solutions (in the periodic
and nonperiodic case) of system (5) with 𝑀 ≡ 1 have also
been established in [4]. Travelling wave solutions exist as a
consequence of a balance between nonlinear and dispersive
effects present in a system; these waves travel with a constant
speed without any temporal evolution in shape or size when
the frame of referencemoveswith the same speed of thewave.
In the last decades, the study of travelling waves has grown
enormously because they appear in several and varied fields
of application, such as fluid mechanics, optics, acoustics,
oceanography, and astronomy. Thus, to determine existence
and properties of such type of solutions is a fundamental
problem in the theory of ordinary and partial differential
equations of great interest for both pure and applied math-
ematicians.
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The rest of this paper is organized as follows. In Section 2,
we introduce the functional spaces and notation to be
employed in the paper. In Section 3, we present in detail the
derivation of model (5) starting from the potential theory
equations including the surface tension effect. In Section 4,
we discuss existence and uniqueness of a solution of the
Cauchy problem associated with system (5) by using Banach’s
fixed point principle and semigroup theory. In Section 5,
we introduce the numerical schemes for approximating the
evolution of a solution of system (5) and computing their
travelling wave solutions (periodic and nonperiodic cases).
Section 6 presents a set of numerical simulations to check the
accuracy of the numerical schemes developed in the paper.
Furthermore, some numerical experiments are included to
illustrate the interaction between thewave-topography effects
and surface tension. Finally in Section 7 are the conclusions
of the paper.

2. Preliminaries

To analyze existence of solutions of problem (5), we will use
the standard notation. For 1 ≤ 𝑝 ≤ ∞, we will denote
by 𝐿𝑝(R) (or simply 𝐿𝑝) the Banach space of measurable
functions inR such that ∫

R
|𝑓(𝑥)|𝑝𝑑𝑥 < ∞ if 1 ≤ 𝑝 < ∞ and

ess supR|𝑓| < ∞, if 𝑝 = ∞. We define the norm in 𝐿𝑝(R) for
1 ≤ 𝑝 < ∞ by

𝑓
𝐿𝑝 = (∫

R

𝑓 (𝑥)

𝑝

)
1/𝑝

(7)

and in𝐿∞(R) by ‖𝑓‖
∞
= ess supR|𝑓|.𝐿

2(R) is aHilbert space
for the scalar product

⟨𝑓, 𝑔⟩ = ∫
R

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥. (8)

We set ‖𝑓‖ = ‖𝑓‖
𝐿
2 . For function 𝑓 ∈ 𝐿1(R), the Fourier

transform is defined as

F (𝑓) (𝑦) = 𝑓 (𝑦) = ∫
R

𝑓 (𝑥) 𝑒
−𝑖𝑥𝑦𝑑𝑥, 𝑦 ∈ R, (9)

and the inverse Fourier transform is defined by

F
−1 (𝑓) (𝑦) = �̌� (𝑦) =

1

2𝜋
∫
R

𝑓 (𝑥) 𝑒
𝑖𝑥𝑦𝑑𝑥, 𝑦 ∈ R. (10)

We will also denote by F(𝑓) (or 𝑓) and F−1(𝑓) (or �̌�) the
extensions of these operators to 𝐿2(R). The convolution of
two functions, 𝑓, 𝑔 ∈ 𝐿2(R), is defined as

𝑓 ∗ 𝑔 (𝑥) = ∫
R

𝑓 (𝑥 − 𝑦) 𝑔 (𝑦) 𝑑𝑦. (11)

We recall that 𝑓 ∗ 𝑔(𝑦) = 𝑓(𝑦)𝑔(𝑦). For 𝑠 ∈ R, we define
the Sobolev space𝐻𝑠(R) (sometimes written for simplicity as
𝐻𝑠) as the completion of the Schwartz space (rapidly decaying
functions) defined as

𝑆 (R) := {𝑓 ∈ 𝐶
∞
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𝑥
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with respect to the norm
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𝑠
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R
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𝑓 (𝑦) 𝑔 (𝑦) 𝑑𝑦. (14)

The product norm in the space𝐻𝑠(R) × 𝐻𝑠(R) is defined by

(𝜁, 𝑢)
𝐻𝑠×𝐻𝑠 =

𝜁
𝐻𝑠 + ‖𝑢‖𝐻𝑠 , (15)

for (𝜁, 𝑢) ∈ 𝐻𝑠(R) × 𝐻𝑠(R). Sometimes, we will also use the
equivalent product norm

(𝜁, 𝑢)
𝐻𝑠×𝐻𝑠 = (

𝜁

2

𝐻
𝑠 + ‖𝑢‖

2

𝐻
𝑠)
1/2

. (16)

For 𝑇 > 0, we will denote by 𝐶([0, 𝑇],𝐻𝑠(R)) the space of
continuous functions 𝑓 : [0, 𝑇] → 𝐻𝑠(R), that is, the space
of continuous functions 𝑡 → 𝑓(𝑡, ⋅) ∈ 𝐻𝑠(R), 𝑡 ∈ [0, 𝑇], with
the supremum norm

𝑓
𝐶(0,𝑇) = sup

𝑡∈[0,𝑇]

𝑓 (𝑡, ⋅)
𝐻𝑠 (17)

and the product norm

(𝜁, 𝑢)
𝐶(0,𝑇)2 =

𝜁
𝐶(0,𝑇) + ‖𝑢‖𝐶(0,𝑇) , (18)

for (𝜁, 𝑢) ∈ 𝐶([0, 𝑇], 𝐻𝑠(R) × 𝐻𝑠(R)).

3. Governing Equations

We start by presenting the potential theory formulation for
Euler’s equations (in dimensionless variables) for an inviscid,
incompressible liquid bounded above by a free surface and
bounded below by an impermeable bottom topography and
including the effect of surface tension [1]:

𝛽𝜙
𝑥𝑥
+ 𝜙

𝑦𝑦
= 0

for − 𝐻(𝑥
𝛾
) < 𝑦 < 𝛼𝜂 (𝑥, 𝑡) , −∞ < 𝑥 < ∞,

(19)

with the nonlinear free surface conditions

𝜂
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(
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𝑥

√1 + 𝛽𝛼2 (𝜂
𝑥
)
2

)

= 0,

(20)
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Figure 1: The symmetric domain in the complex 𝑧-plane, where
𝑧 = 𝑥(𝜉, 𝜁) + 𝑖𝑦(𝜉, 𝜁). The lower half (𝑥 ∈ [−5, 5], 𝑦 ∈ [−3, 0]) is
the physical channel with 𝑦 = 𝜁 = 0 indicating the undisturbed
free surface. Superimposed in this complex 𝑧-plane domain are
the (curvilinear) coordinate level curves from the 𝑤-plane system
𝜉𝜁. The polygonal line at the bottom of the figure is a schematic
representation of the topography (where 𝜁 = ±√𝛽). This figure was
generated using SC Toolbox [30].

at 𝑦 = 𝛼𝜂(𝑥, 𝑡). Here 𝜙(𝑥, 𝑦, 𝑡) denotes the potential velocity
and 𝜂(𝑥, 𝑡) the wave elevation measured with respect to
the undisturbed free surface 𝑦 = 0. The dimensionless
parameters 𝛼 and 𝛽 measure the strength of nonlinear and
dispersive effects, respectively. The parameter 𝛾 measures
the ratio inhomogeneities/wavelength and 𝜎 is related to
the surface tension effects. The Neumann condition at the
impermeable bottom is

𝜙
𝑦
+
𝛽

𝛾
𝐻 (

𝑥

𝛾
)𝜙

𝑥
= 0. (21)

The bottom topography is described by 𝑦 = −𝐻(𝑥/𝛾), where

𝐻(
𝑥

𝛾
) =
{
{
{

1 + 𝑛(
𝑥

𝛾
) , when 0 < 𝑥 < 𝐿

1, when 𝑥 ≤ 0 or 𝑥 ≥ 𝐿.
(22)

The bottom profile is described by the (possibly rapidly
varying) function −𝑛(𝑥/𝛾).The topography is rapidly varying
when 𝛾 ≪ 1. The scale 𝐿 represents the total length of the
irregular section of the coast. The undisturbed depth is given
by 𝑦 = −1 and the topography can be of large amplitude
provided that |𝑛| < 1. The fluctuations 𝑛 are not assumed to
be small, nor continuous, nor slowly varying.

Let us consider a symmetric flow domain by reflecting the
original one about the undisturbed free surface (cf. Figure 1).
This domain is denoted by Ω

𝑧
where 𝑧 = 𝑥 + 𝑖√𝛽𝑦 and can

be considered as the conformal image of the strip Ω
𝑤
where

𝑤 = 𝜉 + 𝑖𝜁 with |𝜁| ≤ √𝛽. Then 𝑧 = 𝑥(𝜉, 𝜁) + 𝑖√𝛽𝑦(𝜉, 𝜁) =
𝑥(𝜉, 𝜁)+𝑖𝑦(𝜉, 𝜁)with 𝑥 and 𝑦, a pair of harmonic functions on
Ω
𝑤
. Following the strategy suggested by Hamilton in [2] and

Nachbin [3] within the weakly-nonlinear, weakly-dispersive
regime (𝛼 ≪ 1, 𝛽 ≪ 1) and using the relationships

𝜙
𝑥
=
1

|𝐽|
[𝑦̃
𝜁
𝜙
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− 𝑦
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1
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(𝜙2
𝜉
+ 𝜙2

̃
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𝜕
𝑥
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1
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(𝑦̃
𝜁
𝜕
𝜉
− 𝑦

𝜉
𝜕̃
𝜁
) ,

(23)

where

|𝐽| = 𝑥
𝜉
𝑦̃
𝜁
− 𝑦

𝜉
𝑥̃
𝜁
= 𝑦2

̃
𝜁

+ 𝑦2
𝜉
, (24)

and the variable free surface coefficient𝑀(𝜉) defined as

𝑀(𝜉) := 𝑦̃
𝜁
(𝜉, 0)

= 1 +
𝜋

4√𝛽
∫
∞

−∞

𝑛 (𝑥 (𝜉
0
, −√𝛽) /𝛾)

cosh2 (𝜋/2√𝛽) (𝜉
0
− 𝜉)
𝑑𝜉
0
,

(25)

the potential theory equations can be approximated to order
𝑂(𝛼, 𝛽) in the orthogonal curvilinear coordinates (𝜉, 𝜁) with
𝜁 = 𝜁/√𝛽 + 1 by the equation

𝛽𝜙
𝜉𝜉
+ 𝜙

𝜁𝜁
= 0, at 0 < 𝜁 < 1 + 𝛼𝑁 (𝜉, 𝑡) , (26)

with conditions at the free surface 𝜁 = 1 + 𝛼𝑁(𝜉, 𝑡),

|𝐽|𝑁
𝑡
+ 𝛼𝜙

𝜉
𝑁
𝜉
−
1

𝛽
𝜙
𝜁
= 0,

𝜂 + 𝜙
𝑡
+
𝛼

2 |𝐽|
(𝜙2
𝜉
+
1

𝛽
𝜙2
𝜁
) − 𝛽𝜎

1

|𝐽|
𝑀𝜕

𝜉
(
1

𝑀
𝜂
𝜉
)

= 𝑂 (𝛼2, 𝛼𝛽, 𝛽2)

(27)

and condition at the channel’s bottom

𝜙
𝜁
= 0, at 𝜁 = 0. (28)

Observe that the change of variables 𝜁 → 𝜁 lets the origin
of the curvilinear coordinate system at the bottom. The
Jacobian for the (𝜉, 𝜁) → (𝑥, 𝑦) coordinate transformation
is represented by |𝐽|, and 𝜁 = 1 + 𝛼𝑁(𝜉, 𝑡) corresponds to
the position of the free surface in the curvilinear coordinate
system. By performing an asymptotic simplification as in [1]
(page 464) through a power series expansion in terms of
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the dispersion parameter 𝛽 near the bottom of the channel
in the form

𝜙 (𝜉, 𝜁, 𝑡) =
𝑘

∑
𝑗=0

(−1)𝑗 𝛽𝑗𝜁2𝑗

(2𝑗)!
𝜕
2𝑗

𝜉
Φ (𝜉, 𝑡) + 𝑂 (𝛽

𝑘+1) , (29)

into (26)–(28) for 𝛼, 𝛽 being small, we find that free surface
conditions (27) can be approximated to order 𝑂(𝛼), 𝑂(𝛽) by
the equations

𝑀(𝜉) 𝜂
𝑡
+ [(1 +

𝛼

𝑀(𝜉)
𝜂)Φ

𝜉
]
𝜉

−
𝛽

6
Φ
𝜉𝜉𝜉𝜉

= 𝑂 (𝛼2, 𝛼𝛽, 𝛽2) ,

(30)

𝜂 + Φ
𝑡
−
𝛽

2
Φ
𝜉𝜉𝑡
+

𝛼

2𝑀2 (𝜉)
Φ2
𝜉
− 𝛽𝜎

1

𝑀
𝜕
𝜉
(
1

𝑀
𝜂
𝜉
)

= 𝑂 (𝛼𝛽, 𝛽2) .

(31)

Here Φ(𝜉, 𝑡) = 𝜙(𝜉, 0, 𝑡) denotes the potential fluid velocity
at the channel’s bottom 𝜁 = 0. We point out that (30) and
(31) with 𝜎 = 0 (no surface tension) correspond to those
derived in [3] (bottom of page 915 and top of page 916). In
the derivation of (30)-(31), we used the relationship

|𝐽| (𝜉, 𝑡) = 𝑀 (𝜉)
2

+ 𝑂 (𝛼2) , (32)

which means that, at leading order, the Jacobian of the
conformal coordinate transformation is time independent.

Let us introduce the new variable V(𝜉, 𝑡) := 𝑀(𝜉)𝜂(𝜉, 𝑡).
Thus observe that from (30)

V
𝑡
= 𝑀𝜂

𝑡
= −𝜕2

𝜉
Φ + 𝑂 (𝛼, 𝛽) . (33)

This relationship allows us to change the form of dispersive
terms in the equations above. In particular, by using the
decomposition

−
𝛽

6
𝜕4
𝜉
Φ =

𝛽

2
𝜕4
𝜉
Φ −
2𝛽

3
𝜕4
𝜉
Φ

= −
𝛽

2
𝜕2
𝜉
V
𝑡
−
2𝛽

3
𝜕4
𝜉
Φ + 𝑂(𝛼𝛽, 𝛽2) ,

(34)

in (30), we obtain that system (30)-(31) can be approximated
to order 𝑂(𝛼, 𝛽) by the following equations:

(𝐼 −
𝛽

2
𝜕2
𝜉
) V
𝑡
=
2𝛽

3
𝜕4
𝜉
Φ − 𝜕

𝜉
((1 +

𝛼V
𝑀2
)Φ

𝜉
) ,

(𝐼 −
𝛽

2
𝜕2
𝜉
)Φ

𝑡

= 𝛽𝜎(
1

𝑀3
V
𝜉𝜉
− 3
𝑀

𝑀4
V
𝜉
+ 3
(𝑀)

2

𝑀5
V −
𝑀

𝑀4
V)

−
1

𝑀
V −

𝛼

2𝑀2
Φ2
𝜉
.

(35)

We point out that the system above is applicable to modelling
of propagation of water waves over an arbitrary rapidly vary-
ing depth. In case of a slowly varying channel’s topography
and 𝑛(𝑥) = √𝛽𝑛

0
(𝑥) with 𝑛

0
being a stationary random

process with standard deviation and correlation length of
order one, the metric coefficient 𝑀(𝜉) can be expanded as
(see [9])

𝑀(𝜉) = 1 + √𝛽𝑛
0
(𝜉) + 𝑂 (𝛽) . (36)

Thus

𝛽𝜎
1

𝑀3
V
𝜉𝜉
= 𝛽𝜎(1 − 3√𝛽𝑛

0
(𝜉) + 𝑂 (𝛽)) V

𝜉𝜉
, (37)

and system (35) can be approximated to order 𝑂(𝛼, 𝛽) by

(𝐼 −
𝛽

2
𝜕2
𝜉
) V
𝑡
=
2𝛽

3
𝜕4
𝜉
Φ − 𝜕

𝜉
((1 +

𝛼V
𝑀2
)Φ

𝜉
) , (38)

(𝐼 −
𝛽

2
𝜕2
𝜉
)Φ

𝑡

= 𝛽𝜎(V
𝜉𝜉
− 3
𝑀

𝑀4
V
𝜉
+ 3
(𝑀)

2

𝑀5
V −
𝑀

𝑀4
V) −

1

𝑀
V

−
𝛼

2𝑀2
Φ2
𝜉
.

(39)

Note that the coefficient𝑀(𝜉) is smooth even when the func-
tion describing the bottom 𝑦 = −𝐻(𝑥/𝛾) is discontinuous
or nondifferentiable. The function𝑀(𝜉) is time independent
and becomes identically one for a channel with constant
depth. In this case, system (38)-(39) reduces to that studied
in [4]. Moreover, in applications, this coefficient is bounded
and infR𝑀(𝜉) > 0. These properties will be important to
obtain existence and uniqueness results for system (38)-(39).
We also point out that the function𝑀(𝜉) actually depends on
the dispersion parameter 𝛽. For this reason, it will be denoted
by𝑀(𝜉, 𝛽) whenever we need to emphasize this dependence.

4. Existence and Uniqueness

System (38)-(39) can be written as

(
V

Φ
)
𝑡

= A(
V

Φ
) +G(

V

Φ
) , (40)

where
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A(
V

Φ
) := (

0 (𝐼 −
𝛽

2
𝜕2
𝜉
)
−1

(𝐼 −
2𝛽

3
𝜕2
𝜉
) (−𝜕2

𝜉
)

(𝐼 −
𝛽

2
𝜕2
𝜉
)
−1

𝛽𝜎𝜕2
𝜉

0

)(
V

Φ
) ,

G(
V

Φ
) := (

−(𝐼 −
𝛽

2
𝜕2
𝜉
)
−1

(
𝛼

𝑀2
VΦ
𝜉
)
𝜉

(𝐼 −
𝛽

2
𝜕2
𝜉
)
−1

(−3𝛽𝜎
𝑀

𝑀4
V
𝜉
+ 3𝛽𝜎

(𝑀)
2

𝑀5
V − 𝛽𝜎

𝑀

𝑀4
V −
1

𝑀
V −

𝛼

2𝑀2
Φ2
𝜉
)

).

(41)

System (40) is supplemented with the initial conditions

V (𝜉, 0) = V
0
(𝜉) ,

Φ (𝜉, 0) = Φ
0
(𝜉) .

(42)

Taking Fourier transform in the spatial variable 𝜉 in system
(40), we have

�̂�
𝑡
= 𝐴 (𝑦) �̂� + Ĝ (𝑈),

�̂� (𝑦, 0) = �̂�
0
(𝑦) ,

(43)

where

𝑈 := (
V

Φ
) ,

𝑈
0
= (

V
0

Φ
0

) ,

𝐴 (𝑦) = (
0

𝑦2 (1 + (2𝛽/3) 𝑦2)

1 + (𝛽/2) 𝑦2

−
𝛽𝜎𝑦2

1 + (𝛽/2) 𝑦2
0

) .

(44)

4.1. Analysis of the Linear Semigroup. Consider system (40)
withG ≡ 0,

�̂�
𝑡
= 𝐴 (𝑦) �̂�,

�̂� (𝑦, 0) = �̂�
0
(𝑦) ,

(45)

which has unique solution in the form

�̂� (𝑦, 𝑡) = 𝑒𝐴(𝑦)𝑡�̂�
0
(𝑦) , (46)

where

𝑒𝐴(𝑦)𝑡 = (
𝑎
11
(𝑦, 𝑡) 𝑎

12
(𝑦, 𝑡)

𝑎
21
(𝑦, 𝑡) 𝑎

22
(𝑦, 𝑡)

)

= (
cos (𝜆 (𝑦) 𝑡) Γ (𝑦) sin (𝜆 (𝑦) 𝑡)

Ψ (𝑦) sin (𝜆 (𝑦) 𝑡) cos (𝜆 (𝑦) 𝑡)
) ,

𝜆 (𝑦) =
2𝑦2√𝛽𝜎 (3 + 2𝛽𝑦2)

√3 (2 + 𝛽𝑦2)
,

Γ (𝑦) =
√3 + 2𝛽𝑦2

√3𝛽𝜎
,

Ψ (𝑦) = −
√3𝛽𝜎

√3 + 2𝛽𝑦2
.

(47)

By using the inverse Fourier transform in (46), we have that

𝑈 (𝑥, 𝑡) = 𝑆 (𝑡) 𝑈
0
(𝑥) , (48)

where

𝑆 (𝑡) 𝑓 = F
−1 (𝑒𝐴(⋅)𝑡𝑓 (⋅)) , (49)

with

𝑓 = (
𝑓
1

𝑓
2

) . (50)

Theorem 1. The family of linear operators (𝑆(𝑡))
𝑡≥0

is a 𝐶
0
-

semigroup in 𝐻𝑠−2 × 𝐻𝑠−1. Furthermore A : 𝐻𝑠−1 × 𝐻𝑠 →
𝐻𝑠−2 × 𝐻𝑠−1 is its infinitesimal generator in𝐻𝑠−2 × 𝐻𝑠−1.



International Journal of Differential Equations 7

Proof. Let 𝑓 = (𝑓
1
, 𝑓
2
)𝑇. Then

𝑆 (𝑡) 𝑓

2

𝐻
𝑠−2
×𝐻
𝑠−1

=



(
F−1 (𝑎

11
𝑓
1
+ 𝑎

12
𝑓
2
)

F−1 (𝑎
21
𝑓
1
+ 𝑎

22
𝑓
2
)
)



2

𝐻
𝑠−2
×𝐻
𝑠−1

=
F

−1 (𝑎
11
𝑓
1
) +F−1 (𝑎

12
𝑓
2
)

2

𝐻
𝑠−2

+
F

−1 (𝑎
21
𝑓
1
) +F−1 (𝑎

22
𝑓
2
)

2

𝐻
𝑠−1

≤ 𝐶∫
R

(1 + 𝑦2)
𝑠−2 𝑎11


2 𝑓1

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−2 𝑎12


2 𝑓2

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−1 𝑎21


2 𝑓1

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−1 𝑎22


2 𝑓2

2

𝑑𝑦

≤ 𝐶∫
R

(1 + 𝑦2)
𝑠−2 𝑓1


2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−2

(3 + 2𝛽𝑦2)
𝑓2

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−1 1

3 + 2𝛽𝑦2
𝑓1

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−1 𝑓2


2

𝑑𝑦

≤ 𝐶 (
𝑓1

2

𝐻
𝑠−2 +
𝑓2

2

𝐻
𝑠−1) .

(51)

Hereafter 𝐶 will denote a generic constant and we recall that
0 < 𝛽 < 1. Therefore 𝑆(𝑡), 𝑡 ≥ 0, is a family of continuous
linear operators in𝐻𝑠−2 × 𝐻𝑠−1. On the other hand, it is easy
to see that 𝑆(0) = 𝐼, 𝑆(𝑡 + 𝑠) = 𝑆(𝑡)𝑆(𝑠) = 𝑆(𝑠)𝑆(𝑡), 𝑡, 𝑠 ≥ 0.
Finally

𝑆 (𝑡) 𝑓 − 𝑓

2

𝐻
𝑠−2
×𝐻
𝑠−1

≤



(
F−1 (𝑎

11
𝑓
1
+ 𝑎

12
𝑓
2
− 𝑓

1
)

F−1 (𝑎
21
𝑓
1
+ 𝑎

22
𝑓
2
− 𝑓

2
)
)



2

𝐻
𝑠−2
×𝐻
𝑠−1

≤ 𝐶∫
R

(1 + 𝑦2)
𝑠−2 𝑎11 − 1


2 𝑓1

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−2 𝑎12


2 𝑓2

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−1 𝑎21


2 𝑓1

2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠−1 𝑎22 − 1


2 𝑓2

2

𝑑𝑦.

(52)

Observe that 𝑎
12
(𝑦, 𝑡) → 0, 𝑎

21
(𝑦, 𝑡) → 0 as 𝑡 → 0+ and

𝑎
11
(𝑦, 𝑡) → 1, 𝑎

22
(𝑦, 𝑡) → 1, as 𝑡 → 0+. By using Lebesgue’s

dominated convergence theorem, we can conclude that

𝑆 (𝑡) 𝑓 − 𝑓
𝐻𝑠−2×𝐻𝑠−1 → 0, (53)

as 𝑡 → 0+. We conclude that 𝑆(𝑡), 𝑡 ≥ 0, is a strongly
continuous semigroup in𝐻𝑠−2 × 𝐻𝑠−1.

On the other hand,

A𝑓

2

𝐻
𝑠−2
×𝐻
𝑠−1 ≤ ∫

R

(1 + 𝑦2)
𝑠−2

⋅

F((𝐼 −

𝛽

2
𝜕2
𝜉
)
−1

(𝐼 −
2𝛽

3
𝜕2
𝜉
) 𝜕2
𝜉
𝑓
2
)


2

𝑑𝑦

+ ∫
R

(1 + 𝑦2)
𝑠−1

⋅

F((𝐼 −

𝛽

2
𝜕2
𝜉
)
−1

𝛽𝜎𝜕2
𝜉
𝑓
1
)


2

𝑑𝑦

≤ ∫
R

(1 + 𝑦2)
𝑠−2
(1 + (2𝛽/3) 𝑦2)

2

𝑦4

(1 + (𝛽/2) 𝑦2)
2

𝑓2

2

𝑑𝑦

+ ∫
R

(1 + 𝑦2)
𝑠−1 𝛽2𝜎2𝑦4

(1 + (𝛽/2) 𝑦2)
2

𝑓1

2

𝑑𝑦

≤ 𝐶 (
𝑓1

2

𝑠−1
+
𝑓2

2

𝑠
) = 𝐶

𝑓

2

𝐻
𝑠−1
×𝐻
𝑠 .

(54)

To see thatA is the infinitesimal generator of the semigroup
𝑆(𝑡), 𝑡 ≥ 0, observe that, for 𝑓 ∈ 𝐻𝑠−1 × 𝐻𝑠,



𝑆 (ℎ) 𝑓 − 𝑓

ℎ
−A𝑓



2

𝐻
𝑠−2
×𝐻
𝑠−1

=

F
−1 (
𝑒𝐴ℎ − 𝐼

ℎ
𝑓

− 𝐴𝑓)


2

𝐻
𝑠−2
×𝐻
𝑠−1

=



F−1 (𝑎
11
(⋅, ℎ) 𝑓

1
+ 𝑎

12
(⋅, ℎ) 𝑓

2
− 𝑓

1
)

ℎ
− (𝐼

−
𝛽

2
𝜕2
𝜉
)
−1

(𝐼 −
2𝛽

3
𝜕2
𝜉
) (−𝜕2

𝜉
𝑓
2
)



2

𝐻
𝑠−2

+



F−1 (𝑎
21
(⋅, ℎ) 𝑓

1
+ 𝑎

22
(⋅, ℎ) 𝑓

2
− 𝑓

2
)

ℎ
− (𝐼

−
𝛽

2
𝜕2
𝜉
)
−1

𝛽𝜎𝜕2
𝜉
𝑓
1



2

𝐻
𝑠−1

= ∫
R

(1 + 𝑦2)
𝑠−2
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⋅



(cos (𝜆ℎ) − 1) 𝑓
1
+ Γ sin (𝜆ℎ) 𝑓

2

ℎ

−
𝑦2 (1 + (2𝛽/3) 𝑦2) 𝑓

2

1 + (𝛽/2) 𝑦2



2

𝑑𝑦 + ∫
R

(1 + 𝑦2)
𝑠−1

⋅



Ψ sin (𝜆ℎ) 𝑓
1
+ (cos (𝜆ℎ) − 1) 𝑓

2

ℎ

−
−𝛽𝜎𝑦2𝑓

1

1 + (𝛽/2) 𝑦2



2

𝑑𝑦.

(55)

But by virtue of

lim
ℎ→0

cos (𝜆ℎ) − 1
ℎ

= 0,

lim
ℎ→0

Γsin (𝜆ℎ)
ℎ

= Γ𝜆 =
𝑦2 (1 + (2𝛽/3) 𝑦2)

1 + (𝛽/2) 𝑦2
,

lim
ℎ→0

Ψsin (𝜆ℎ)
ℎ

= Ψ𝜆 = −
𝛽𝜎𝑦2

1 + (𝛽/2) 𝑦2

(56)

and using again Lebesgue’s dominated convergence theorem,
we get that

lim
ℎ→0



𝑆 (ℎ) 𝑓 − 𝑓

ℎ
−A𝑓



2

𝐻
𝑠−2
×𝐻
𝑠−1

= 0. (57)

4.2. Analysis of the Nonlinear Term

Theorem 2. Let 𝑠 > 3/2. The application G maps 𝐻𝑠−1 × 𝐻𝑠
on itself and

‖G (𝑈)‖
𝐻
𝑠−1
×𝐻
𝑠 ≤ 𝐶 ‖𝑈‖

𝐻
𝑠−1
×𝐻
𝑠 . (58)

Furthermore,

G (𝑈1) −G (𝑈2)

2

𝐻
𝑠−1
×𝐻
𝑠

≤ 𝐶 [(1 +
Φ1

2

𝐻
𝑠)
V1 − V2


2

𝐻
𝑠−1

+ (
V2

2

𝐻
𝑠−1 +
Φ1 + Φ2


2

𝐻
𝑠)
Φ1 − Φ2


2

𝐻
𝑠] ,

(59)

where 𝐶 > 0 is a constant and 𝑈
𝑖
= (

V𝑖
Φ𝑖
), 𝑖 = 1, 2.

Proof. In the first place, let 𝑈 = (V, Φ)𝑇:

‖G (𝑈)‖
2

𝐻
𝑠−1
×𝐻
𝑠

≤ 𝐶∫
R

(1 + 𝑦2)
𝑠−1



1

1 + (𝛽/2) 𝑦2



2 

̂
(

V
𝑀2
Φ
𝜉
)
𝜉



2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠



1

1 + (𝛽/2) 𝑦2



2


�̂�

𝑀4
V
𝜉



2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠



1

1 + (𝛽/2) 𝑦2



2



̂
(𝑀)

2

𝑀5
V



2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠



1

1 + (𝛽/2) 𝑦2



2


�̂�

𝑀4
V


2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠



1

1 + (𝛽/2) 𝑦2



2 

V̂
𝑀



2

𝑑𝑦

+ 𝐶∫
R

(1 + 𝑦2)
𝑠



1

1 + (𝛽/2) 𝑦2



2


Φ̂2
𝜉

𝑀2



2

𝑑𝑦.

(60)

Taking into account the inequalities



V
𝑀2
Φ
𝜉

𝐻𝑠−2
≤ 𝐶


V
𝑀2

𝐻𝑠−2
Φ𝜉
𝐻𝑠−1

≤ 𝐶


1

𝑀2

𝐻𝑠−1
‖V‖

𝐻
𝑠−1 ‖Φ‖

𝐻
𝑠 ,



𝑀

𝑀4
V
𝜉

𝐻𝑠−2
≤ 𝐶


𝑀

𝑀4

𝐻𝑠−1

V𝜉
𝐻𝑠−2

≤ 𝐶


𝑀

𝑀4

𝐻𝑠−1
‖V‖

𝐻
𝑠−1 ,



(𝑀)
2

𝑀5
V
𝐻𝑠−2

≤ 𝐶



(𝑀)
2

𝑀5

𝐻𝑠−1
‖V‖

𝐻
𝑠−2

≤ 𝐶



(𝑀)
2

𝑀5

𝐻𝑠−1
‖V‖

𝐻
𝑠−1 ,



𝑀

𝑀4
V
𝐻𝑠−2

≤ 𝐶


𝑀

𝑀4

𝐻𝑠−1
‖V‖

𝐻
𝑠−1 ,



V
𝑀

𝐻𝑠−2
≤ 𝐶


1

𝑀

𝐻𝑠−1
‖V‖

𝐻
𝑠−2

≤ 𝐶


1

𝑀

𝐻𝑠−1
‖V‖

𝐻
𝑠−1 ,
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Φ2
𝜉

𝑀2

𝐻𝑠−2
≤ 𝐶


Φ
𝜉

𝑀2
Φ
𝜉

𝐻𝑠−2

≤ 𝐶
Φ𝜉
𝐻𝑠−1



Φ
𝜉

𝑀2

𝐻𝑠−2

≤ 𝐶 ‖Φ‖
𝑠



1

𝑀2

𝐻𝑠−1
Φ𝜉
𝐻𝑠−2

≤ 𝐶 ‖Φ‖
𝑠



1

𝑀2

𝐻𝑠−1
‖Φ‖

𝐻
𝑠 ,

(61)

valid for 𝑠 > 3/2 (applying Corollary 3.16 in [31]), and using
the fact that the function𝑀 is bounded, we get that

‖G (𝑈)‖
2

𝐻
𝑠−1
×𝐻
𝑠 ≤ 𝐶(



V
𝑀2
Φ
𝜉



2

𝐻
𝑠−2

+


𝑀

𝑀4
V
𝜉



2

𝐻
𝑠−2

+



(𝑀)
2

𝑀5
V



2

𝐻
𝑠−2

+


𝑀

𝑀4
V


2

𝐻
𝑠−2

+


V
𝑀



2

𝐻
𝑠−2

+



Φ2
𝜉

𝑀2



2

𝐻
𝑠−2

) ≤ 𝐶(‖V‖2
𝐻
𝑠−1 + ‖Φ‖

2

𝐻
𝑠) .

(62)

On the other hand, for 𝑈
𝑖
= (V

𝑖
, Φ
𝑖
)𝑇 ∈ 𝐻𝑠−1 × 𝐻𝑠, we have

that


G(

V
1

Φ
1

) −G(
V
2

Φ
2

)



2

𝐻
𝑠−1
×𝐻
𝑠

≤ 𝐶(


V
1

𝑀2
Φ
1𝜉

−
V
2

𝑀2
Φ
2𝜉



2

𝐻
𝑠−2

+


𝑀

𝑀4
(V
1
− V

2
)
𝜉



2

𝐻
𝑠−2

+



(𝑀)
2

𝑀5
(V
1
− V

2
)



2

𝐻
𝑠−2

+


𝑀

𝑀4
(V
1
− V

2
)


2

𝐻
𝑠−2

+


1

𝑀
(V
1
− V

2
)


2

𝐻
𝑠−2

+


1

𝑀2
(Φ2
1𝜉
− Φ2

2𝜉
)


2

𝐻
𝑠−2

)

≤ 𝐶(
V1Φ1𝜉 − V2Φ2𝜉


2

𝐻
𝑠−2
+
V1 − V2


2

𝐻
𝑠−1 +
Φ
2

1𝜉

− Φ2
2𝜉


2

𝐻
𝑠−2
) ≤ 𝐶 [(

(V1 − V2)Φ1𝜉
𝐻𝑠−2

+
V2 (Φ1𝜉 − Φ2𝜉)

𝐻𝑠−2)
2

+
V1 − V2


2

𝐻
𝑠−1 +
Φ1𝜉

+ Φ
2𝜉


2

𝐻
𝑠−1

Φ1𝜉 − Φ2𝜉

2

𝐻
𝑠−1
] ≤ 𝐶 [

V1 − V2

2

𝐻
𝑠−1

⋅
Φ1𝜉

2

𝐻
𝑠−2
+
V2

2

𝐻
𝑠−1

Φ1𝜉 − Φ2𝜉

2

𝑠−2

+
V1

− V
2


2

𝐻
𝑠−1 +
Φ1 + Φ2


2

𝐻
𝑠

Φ1 − Φ2

2

𝐻
𝑠] ≤ 𝐶 [(1

+
Φ1

2

𝐻
𝑠)
V1 − V2


2

𝐻
𝑠−1 + (

V2

2

𝐻
𝑠−1

+
Φ1 + Φ2


2

𝐻
𝑠)
Φ1 − Φ2


2

𝐻
𝑠] .

(63)

4.3. Local Existence and Uniqueness

Theorem 3. Let 𝑠 > 3/2 and 𝜙 = (V
0
, Φ
0
)𝑇 ∈ 𝐻𝑠−1 × 𝐻𝑠.

Then there exists 𝑇(𝑠, 𝜙) > 0 and unique 𝑈 = (V, Φ)𝑇 ∈
𝐶([0, 𝑇];𝐻𝑠−1 × 𝐻𝑠), which satisfies the integral equation

𝑈 (𝑡) = 𝑆 (𝑡) 𝜙 + ∫
𝑡

0

𝑆 (𝑡 − 𝑡)G (𝑈) (𝑡
) 𝑑𝑡. (64)

Proof. Let 𝑀,𝑇 > 0 be fixed constants and consider the
nonlinear operator

(Ψ𝑈) (𝑡) = 𝑆 (𝑡) 𝜙 + ∫
𝑡

0

𝑆 (𝑡 − 𝑡)G (𝑈) (𝑡
) 𝑑𝑡, (65)

defined in the complete metric space

X
𝑀
(𝑇) = {𝑈 ∈ 𝐶 ([0, 𝑇] ;𝐻

𝑠−1 × 𝐻𝑠) :

sup
𝑡∈[0,𝑇]

𝑈 (𝑡) − 𝑆 (𝑡) 𝜙
𝐻𝑠−1×𝐻𝑠 ≤𝑀} .

(66)

Let us prove that if 𝑈 ∈ X
𝑀
(𝑇), then Ψ𝑈 ∈ 𝐶([0, 𝑇];𝐻𝑠−1 ×

𝐻𝑠). Indeed if 𝑈 ∈ X
𝑀
(𝑇), then

‖(Ψ𝑈) (𝑡) − (Ψ𝑈) (𝜏)‖
𝐻
𝑠−1
×𝐻
𝑠

≤
(𝑆 (𝑡) − 𝑆 (𝜏)) 𝜙

𝐻𝑠−1×𝐻𝑠

+

∫
𝑡

0

𝑆 (𝑡 − 𝑡)G (𝑈) (𝑡
) 𝑑𝑡

− 𝑆 (𝜏 − 𝑡)G (𝑈) (𝑡
) 𝑑𝑡

𝐻𝑠−1×𝐻𝑠
.

(67)

We remark that if 𝑈 = (V, Φ)𝑇 ∈ X
𝑀
(𝑇), then

‖𝑈 (𝑡)‖
𝐻
𝑠−1
×𝐻
𝑠 ≤
𝑈 (𝑡) − 𝑆 (𝑡) 𝜙

𝐻𝑠−1×𝐻𝑠

+
𝑆 (𝑡) 𝜙

𝐻𝑠−1×𝐻𝑠

≤ 𝑀 +
𝜙
𝐻𝑠−1×𝐻𝑠 .

(68)
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Given that (𝑆(𝑡))
𝑡≥0

is a 𝐶
0
-semigroup, then ‖(𝑆(𝑡) −

𝑆(𝜏))𝜙‖
𝐻
𝑠−1
×𝐻
𝑠 → 0 as 𝜏 → 𝑡. To analyze the second

expression, let us suppose that 𝜏 > 𝑡 > 0. We obtain that


∫
𝑡

0

𝑆 (𝑡 − 𝑡)G (𝑈) (𝑡
) 𝑑𝑡 − ∫

𝜏

0

𝑆 (𝜏 − 𝑡)G (𝑈)

⋅ (𝑡) 𝑑𝑡
𝐻𝑠−1×𝐻𝑠

≤ ∫
𝑡

0

(𝑆 (𝑡 − 𝑡
) − 𝑆 (𝜏 − 𝑡))

⋅G (𝑈) (𝑡
)
𝐻𝑠−1×𝐻𝑠 𝑑𝑡

 + ∫
𝜏

𝑡

𝑆 (𝜏 − 𝑡
)G (𝑈)

⋅ (𝑡)
𝐻𝑠−1×𝐻𝑠 𝑑𝑡

 := 𝐼
1
+ 𝐼
2
.

(69)

Observe that since 𝑎
𝑖𝑗
(𝑦, 𝜏−𝑡) → 𝑎

𝑖𝑗
(𝑦, 𝑡−𝑡) as 𝜏 → 𝑡, 𝑖, 𝑗 =

1, 2, and using Lebesgue’s dominated convergence theorem,
we get that 𝐼

1
→ 0 as 𝜏 → 𝑡.

On the other hand, due toTheorems 1 and 2, we arrive at

𝐼
2
= ∫

𝜏

𝑡

𝑆 (𝜏 − 𝑡
)G (𝑈) (𝑡

)
𝐻𝑠−1×𝐻𝑠 𝑑𝑡



≤ 𝐶∫
𝜏

𝑡

G (𝑈) (𝑡
)
𝐻𝑠−1×𝐻𝑠 𝑑𝑡



≤ 𝐶∫
𝜏

𝑡

‖𝑈‖
𝐻
𝑠−1
×𝐻
𝑠 𝑑𝑡

≤ 𝐶 (𝜏 − 𝑡) (𝑀 +
𝜙
𝐻𝑠−1×𝐻𝑠) .

(70)

Therefore we get that 𝐼
2
→ 0 as 𝜏 → 𝑡. This means that

Ψ𝑈 ∈ 𝐶([0, 𝑇];𝐻𝑠−1 × 𝐻𝑠).
Let us prove existence of small time 𝑇 > 0 such that

Ψ(X
𝑀
(𝑇)) ⊂ X

𝑀
(𝑇). Let 𝑈 = (V, Φ)𝑇 ∈ X

𝑀
(𝑇). For any

𝑡 ∈ [0, 𝑇],

(Ψ𝑈) (𝑡) − 𝑆 (𝑡) 𝜙
𝐻𝑠−1×𝐻𝑠

≤ ∫
𝑡

0

𝑆 (𝑡 − 𝑡
)G (𝑈) (𝑡

)
𝐻𝑠−1×𝐻𝑠

≤ 𝐶∫
𝑡

0

G (𝑈) (𝑡
)
𝐻𝑠−1×𝐻𝑠

≤ 𝐶𝑇 sup
𝑡∈[0,𝑇]

‖𝑈 (𝑡)‖
𝐻
𝑠−1
×𝐻
𝑠 ≤ 𝐶𝑇 (𝑀 +

𝜙
𝐻𝑠−1×𝐻𝑠)

≤ 𝑀,

(71)

for 𝑇 being small enough. Therefore Ψ(𝑈) ∈ X
𝑀
(𝑇).

Finally, let us show that time �̂� ∈ (0, 𝑇] exists so that the
operator Ψ is a contraction on X

𝑀
(�̂�). Let 𝑈

1
= (V

1
, Φ
1
)𝑇,

𝑈
2
= (V

2
, Φ
2
)𝑇 ∈ X

𝑀
(𝑇). Then usingTheorem 2, we arrive at

(Ψ𝑈1) (𝑡) − (Ψ𝑈2) (𝑡)
𝐻𝑠−1×𝐻𝑠 ≤ ∫

𝑡

0

𝑆 (𝑡 − 𝑡
)

⋅ (G (𝑈
1
) (𝑡) −G (𝑈

2
) (𝑡))

𝐻𝑠−1×𝐻𝑠 𝑑𝑡


≤ 𝐶∫
𝑡

0

G (𝑈1) −G (𝑈2)
𝐻𝑠−1×𝐻𝑠 𝑑𝑡

 ≤ ∫
𝑡

0

(1

+
Φ1
𝐻𝑠)
V1 − V2

𝐻𝑠−1 + (
V2
𝐻𝑠−1

+
Φ1 + Φ2

𝐻𝑠)
Φ1 − Φ2

𝐻𝑠 𝑑𝑡
 ≤ 𝐶𝑇 [(1 +𝑀

+
𝜙
𝐻𝑠−1×𝐻𝑠)

V1 − V2
𝐻𝑠−1 + (3𝑀 + 3

𝜙
𝐻𝑠−1×𝐻𝑠)

⋅
Φ1 − Φ2

𝐻𝑠] ≤ 𝐶𝑇 [3𝑀 + 3
𝜙
𝐻𝑠−1×𝐻𝑠]

⋅ sup
𝑡∈[0,𝑇]

𝑈1 − 𝑈2
𝐻𝑠−1×𝐻𝑠 .

(72)

We see that it is possible to select time �̂� ∈ (0, 𝑇] such that

𝐶�̂� [3𝑀 + 3
𝜙
𝐻𝑠−1×𝐻𝑠] < 𝑀, (73)

so that the operator Ψ is a contraction on the closed ball
X
𝑀
(�̂�) ⊂ 𝐶([0, �̂�];𝐻𝑠−1 × 𝐻𝑠). The fixed point principle

guarantees the existence of unique solution

𝑈 ∈ 𝐶 ([0, �̂�] ;𝐻𝑠−1 × 𝐻𝑠) (74)

of integral equation (64). Finally, uniqueness of this solution
in themetric space𝐶([0, �̂�];𝐻𝑠−1×𝐻𝑠) can be established via
Gronwall’s lemma.

5. Numerical Schemes

In this section we describe the numerical scheme we propose
to approximate solutions of system (38)-(39). In the first
place, it is convenient to rewrite it as

(𝐼 −
𝛽

2
𝜕2
𝜉
) V
𝑡
=
2𝛽

3
𝜕3
𝜉
𝑢 − 𝜕

𝜉
((1 +

𝛼V
𝑀2
) 𝑢) ,

(𝐼 −
𝛽

2
𝜕2
𝜉
)𝑢

𝑡

= 𝛽𝜎𝜕3
𝜉
V + 𝛽𝜎(−

3𝑀

𝑀4
V
𝜉
+ 3
(𝑀)

2

𝑀5
V −
𝑀

𝑀4
V)

− 𝜕
𝜉
(
1

𝑀
V) −

𝛼

2
𝜕
𝜉
(
1

𝑀2
𝑢2) ,

(75)

subject to the initial conditions V(𝜉, 0) = V
0
(𝜉), 𝑢(𝜉, 0) =

𝑢
0
(𝜉), where we introduced the new variable 𝑢 := Φ

𝜉
. In

the numerical solver to be introduced, the computational
domain [0, 𝐿] is discretized by 𝑁 equidistant points, with
spacing Δ𝜉 = 𝐿/𝑁, and the unknowns V and 𝑢 are expanded



International Journal of Differential Equations 11

as truncated Fourier series in space with time-dependent
coefficients:

V (𝜉, 𝑡) = ∑
𝑗

V̂
𝑗
(𝑡) 𝑒

𝑖𝑤𝑗𝜉

𝑢 (𝜉, 𝑡) = ∑
𝑗

�̂�
𝑗
(𝑡) 𝑒

𝑖𝑤𝑗𝜉,
(76)

with

𝑤
𝑗
=
2𝜋𝑗

𝐿
, 𝑗 = −

𝑁

2
+ 1, . . . , 0, . . . ,

𝑁

2
. (77)

The time-dependent coefficients V̂
𝑗
(𝑡), 𝑗 = −𝑁/2 +

1, . . . , 0, . . . , 𝑁/2, are calculated by means of the equation

V̂
𝑗
(𝑡) =

1

𝐿
∫
𝐿

0

V (𝜉, 𝑡) 𝑒−𝑖𝑤𝑗𝜉𝑑𝜉 (78)

and analogously for �̂�
𝑗
(𝑡). Substituting these expressions into

(75) and projecting the resulting equations with respect to the
𝐿2-orthonormal basis 𝜙

𝑗
= 𝐿−1/2𝑒𝑖𝑤𝑗𝜉 and the inner product

⟨𝑓, 𝑔⟩ = ∫
𝐿

0

𝑓 (𝜉) 𝑔 (𝜉) 𝑑𝜉, (79)

it follows that

V̂
𝑗
(𝑡) = 𝛾

1
�̂�
𝑗
+ 𝑁

1
,

�̂�
𝑗
(𝑡) = 𝛾

2
V̂
𝑗
+ 𝑁

2
,

(80)

where

𝛾
1
=
− (2𝛽/3) 𝑖𝑤3

𝑗

1 + (𝛽/2)𝑤2
𝑗

,

𝛾
2
=
−𝛽𝜎𝑖𝑤3

𝑗

1 + (𝛽/2)𝑤2
𝑗

,

𝑁
1
= −
𝑖𝑤
𝑗
𝑃
𝑗
[(1 + 𝛼V/𝑀2) 𝑢]
1 + (𝛽/2)𝑤2

𝑗

,

𝑁
2
=
𝑖𝑤
𝑗
𝑃
𝑗
[𝛽𝜎 (− (3𝑀/𝑀4) V

𝜉
+ (3 (𝑀)

2

/𝑀5) V − (𝑀/𝑀4) V) − (1/𝑀) V − (𝛼/2𝑀2) 𝑢2]

1 + (𝛽/2)𝑤2
𝑗

,

(81)

and 𝑃
𝑗
[⋅] denotes the operator

𝑃
𝑗
[𝑔] =

1

𝐿
∫
𝐿

0

𝑔 (𝜉) 𝑒
−𝑖𝑤𝑗𝜉𝑑𝜉. (82)

When the period 𝐿 is taken large enough, this numerical
scheme can be applied to approximate the rapidly decaying
solutions of system (75) on the entire real line R. This
technique was used successfully in [9].

5.1. Temporal Discretization. Note that (80) can be seen
as a system of ordinary differential equations where the
unknowns are the time-dependent Fourier coefficients of
the solutions. To solve it, we use an implicit-explicit scheme
(IMEX) in the form

V̂𝑛+1
𝑗
− V̂𝑛

𝑗

Δ𝑡
=
𝛾
1
(�̂�𝑛+1
𝑗
+ �̂�𝑛

𝑗
)

2
+
3

2
𝑁𝑛
1
−
1

2
𝑁𝑛−1
1
,

�̂�𝑛+1
𝑗
− �̂�𝑛

𝑗

Δ𝑡
=
𝛾
2
(V̂𝑛+1
𝑗
+ V̂𝑛

𝑗
)

2
+
3

2
𝑁𝑛
2
−
1

2
𝑁𝑛−1
2
.

(83)

Here V𝑛, 𝑢𝑛 denote the approximations of the unknowns
V(𝜉, 𝑡), 𝑢(𝜉, 𝑡), respectively, at time 𝑡 = 𝑛Δ𝑡, where Δ𝑡 is the
time step of the method, and𝑁𝑛

1
, 𝑁𝑛
2
denote the approxima-

tions of the functions𝑁
1
, 𝑁
2
evaluated at time 𝑛Δ𝑡. Similarly,

V̂𝑛
𝑗
, �̂�𝑛
𝑗
denote the approximations to the Fourier transforms of

the functions V and 𝑢, respectively, with respect to the variable
𝜉, evaluated at time 𝑛Δ𝑡.The numerical approach adopted for
solving system (75) ensures the scheme results to be linearly
unconditionally stable which can be easily verified. Further,
observe that the linear dispersive terms are approximated by
using an implicit strategy, in contrast to the nonlinear terms
and terms where the variable coefficient𝑀 is present which
are treated in explicit form. Implicit-explicit schemes (IMEX)
were already applied in [25] for scalar dispersive evolution
equations. The main advantage of the numerical scheme
described here is that at each time step we can solve explicitly
the approximations V̂𝑛+1

𝑗
, �̂�𝑛+1
𝑗

, 𝑗 = −𝑁/2 + 1, . . . , 𝑁/2, of
the Fourier coefficients of the unknowns V(𝜉, 𝑡) and 𝑢(𝜉, 𝑡)
from (83), without using implicit Newton-type iterations.
Thus, the scheme results in being cheap and its computer
implementation is easier.
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In the scheme, the spatial derivatives 𝑢
𝜉
and V

𝜉
are

computed by exact differentiation of the truncated Fourier
series. For instance,

V
𝜉
(𝜉, 𝑡) = ∑

𝑗

𝑖𝑤
𝑗
𝑃
𝑗
[V (⋅, 𝑡)] 𝑒𝑖𝑤𝑗𝜉. (84)

The numerical calculations presented in this paper were
carried out in double precision by usingMATLAB R2012b on
a Mac platform. The Fourier-type integral appearing in the
operator 𝑃

𝑗
[⋅] (see (82)) is approximated through the well-

known Fast Fourier Transform (FFT) routine.

5.2. Approximating Travelling Wave Solutions. In this section
we are interested in computing solutions of system (75) over
a channel with flat bottom (i.e., when the metric coefficient
𝑀 is equivalent to 1) of the form

V (𝜉, 𝑡) = Ṽ (𝜉 − 𝑐𝑡) ,

𝑢 (𝜉, 𝑡) = �̃� (𝜉 − 𝑐𝑡) ,
(85)

which are named as travelling wave solutions. The parameter
𝑐 is called the wave velocity.

After dropping the tildes, travelling wave solution (V, 𝑢)
with speed 𝑐 of system (75) must satisfy the following
equations:

(
V

𝑢
)

=
1

(𝛽/4) 𝑐2 − 2𝛽𝜎/3
(

𝑐

2

2

3

𝜎
𝑐

2

)(
𝑐V − ((1 + 𝛼V) 𝑢)

𝑐𝑢 − V −
𝛼

2
𝑢2
) .

(86)

In first place, we are interested in finding approximations to
even periodic travelling wave solutions (V, 𝑢) with period 2𝑙,
𝑙 > 0 of system (75). Thus let us introduce truncated cosine
expansions for V and 𝑢,

V (𝑥) ≈ V
0
+
𝑁/2

∑
𝑛=1

V
𝑛
cos(𝑛𝜋

𝑙
𝑥) ,

𝑢 (𝑥) ≈ 𝑢
0
+
𝑁/2

∑
𝑛=1

𝑢
𝑛
cos(𝑛𝜋

𝑙
𝑥) ,

(87)

where

V
0
=
1

𝑙
∫
𝑙

0

V (𝑥) 𝑑𝑥 =
1

2𝑙
∫
2𝑙

0

V (𝑥) 𝑑𝑥,

V
𝑛
=
2

𝑙
∫
𝑙

0

V (𝑥) cos(𝑛𝜋𝑥
𝑙
) 𝑑𝑥

=
2

2𝑙
∫
2𝑙

0

V (𝑥) cos(𝑛𝜋𝑥
𝑙
) 𝑑𝑥,

(88)

and analogous expressions for 𝑢. By substituting expressions
(87) into (86), evaluating them at the 𝑁/2 + 1 collocation
points

𝑥
𝑗
=
2𝑙 (𝑗 − 1)

𝑁
, 𝑗 = 1, . . . ,

𝑁

2
+ 1, (89)

we obtain a system of𝑁 + 2 nonlinear equations in the form

𝐹 (V
0
, V
1
, . . . , V

𝑁/2
, 𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑁/2
) = 0, (90)

where the 𝑁 + 2 coefficients V
𝑛
, 𝑢
𝑛
are the unknowns.

Nonlinear system (90) can be solved by Newton’s iteration.
Computation of the cosine series in (87) and the integrals
in (88) is performed using the FFT (Fast Fourier Transform)
algorithm.The Jacobian of the vector field𝐹 : R𝑁+2 → R𝑁+2

is approximated by the second-order accurate formula

𝐽
𝑖,𝑗
𝐹 (𝑥) ≈

𝐹
𝑖
(𝑥 + ℎ𝑒

𝑗
) − 𝐹

𝑖
(𝑥 − ℎ𝑒

𝑗
)

2ℎ
,

𝑗 = 1, . . . , 𝑁 + 2,

(91)

where 𝑒
𝑗
= (0, . . . , 1, . . . , 0) and ℎ = 0.01. We stop Newton’s

iteration when the relative error between two successive
approximations and the value of the vector field 𝐹 are smaller
than 10−12.

The starting point for Newton’s procedure in the periodic
frame is taken as

𝑢
0
(𝑥) = cos(𝜋𝑥

𝑙
) ,

V
0
(𝑥) = cos(𝜋𝑥

𝑙
) .

(92)

In second place, we are also interested in approximating
solitary wave solutions of system (75), that is, when the
functions V, 𝑢 and their derivatives decay to zero at ±∞. In
this case, we can also approximate V, 𝑢 by a truncated Fourier
series as in (87) using a large enough length 𝐿. To derive an
appropriate initial point for Newton’s iteration, we compute
an approximate solitary wave solution of system (75) with
𝑀 ≡ 1 and 𝛼, 𝛽, 𝜎 being small. To accomplish this, we will
use original system (38)-(39) in the variables (V, Φ). Let us
observe that from (39)

V = −(𝐼 −
𝛽

2
𝜕2
𝜉
)Φ

𝑡
+ 𝛽𝜎V

𝜉𝜉
−
𝛼

2
Φ2
𝜉

= −Φ
𝑡
+ 𝑂 (𝛼, 𝛽, 𝜎) .

(93)

Substituting this into (38) and neglecting second-order terms
in 𝛼, 𝛽, 𝜎, we derive the Benney-Luke type equation for the
potentialΦ:

− Φ
𝑡𝑡
+ Φ

𝜉𝜉
+ 𝛽 (1 − 𝜎)Φ

𝜉𝜉𝑡𝑡
−
2𝛽

3
Φ
𝜉𝜉𝜉𝜉
− 2𝛼Φ

𝜉
Φ
𝜉𝑡

− 𝛼Φ
𝑡
Φ
𝜉𝜉
= 0.

(94)
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We look for a solitary wave solution of (94) in the form
Φ (𝜉, 𝑡) = Φ̃ (𝜉 − 𝑐𝑡) . (95)

Therefore, abandoning the tildes, the functionΦmust satisfy
the following equation:

(1 − 𝑐2)Φ + (𝛽 (1 − 𝜎) 𝑐
2 −
2𝛽

3
)Φ

+
3𝛼𝑐

2
(Φ2)



= 0.

(96)

Integrating the equation above and using the fact that Φ and
their derivatives decay to zero at ±∞, we arrive at

(1 − 𝑐2)Φ + 𝛽((1 − 𝜎) 𝑐
2 −
2

3
)Φ +

3𝛼𝑐

2
(Φ)

2

= 0.

(97)

Multiplying the previous equation by 2Φ and integrating
again, we obtain that

(1 − 𝑐2) (Φ)
2

+ 𝛽((1 − 𝜎) 𝑐
2 −
2

3
) (Φ)

2

+ 𝛼𝑐 (Φ)
3

= 0.

(98)

Furthermore, letting 𝑢 = Φ, we find from (93)

V = 𝑐𝑢 −
𝛽𝑐

2
𝑢 + 𝛽𝜎𝑐𝑢 −

𝛼

2
𝑢2. (99)

Assume the solution form ofΦ to be
𝑢 = Φ (𝑥) = 𝐴 sech2 (𝐵𝑥) , (100)

where𝐴, 𝐵 are constants.Then, by replacing this into (98), we
get that the constants 𝐴, 𝐵 are given by

𝐴 =
𝑐2 − 1

𝛼𝑐
,

𝐵 = √
𝑐2 − 1

4𝛽 ((1 − 𝜎) 𝑐2 − 2/3)
.

(101)

Now substituting into (99), we arrive at the following approx-
imation of the wave elevation:

V = 𝑐𝐴 sech2 (𝐵𝑥) − 𝛼
2
𝐴2sech4 (𝐵𝑥) + 𝛽𝑐 (𝜎 − 1

2
)

⋅ [4𝐴𝐵2sech2 (𝐵𝑥) tanh2 (𝐵𝑥)

− 2𝐴𝐵2sech4 (𝐵𝑥)] .

(102)

6. Description of the Numerical Experiments

In this section we compute some approximations to solutions
of system (75) using the numerical schemes described in the
previous section. In first place, some travelling wave solutions
are approximated by using the numerical scheme discussed
in Section 5.2 and then these solutions are checked through
computer simulations conducted with numerical solver (83).
Finally, we apply it to compute the evolution of a gaussian
pulse over a channel with variable depth taking into account
the surface tension effect.

6.1. Periodic TravellingWave Solutions. Using Newton’s itera-
tion as explained in Section 5.2, we develop some numerical
simulations to compute periodic travelling wave solutions of
system (75).The results are shown in Figures 2, 3, 4, and 5 for
different values of the modelling parameters 𝛼, 𝛽, 𝜎 and wave
speed 𝑐. The initial step for Newton’s scheme is taken as in
(92). The number of FFT point is 27 and we recall that here
the channel has constant depth; that is,𝑀 ≡ 1. In Figure 6 we
check the accuracy of the periodic travelling wave solutions
computed by comparing the prediction of numerical scheme
(83) at time 𝑡 = 10 (using 𝑁 = 210 and Δ𝑡 = 0.01), with the
profile in Figure 2 shifted at a distance of 𝑐𝑡 = 10 × 1.2 = 12
to the right. Observe that the profiles coincide with good
accuracy and they propagate with the expected wave velocity.
The difference between the two profiles is of order 10−3.
Similar results were obtained for the other periodic travelling
wave solutions shown in Figures 3, 4, and 5.

6.2. Solitary Wave Solutions. Numerical experiments in the
case of solitary wave solutions are shown in Figures 7, 8,
and 9 for different values of the modelling parameters 𝛼, 𝛽, 𝜎
and wave speed 𝑐. The initial step for Newton’s scheme is
taken as in (100)-(102) centered at the position 𝜉 = 50.
The number of FFT point is 210 and we recall that here
the channel has constant depth; that is, 𝑀 ≡ 1. In this
nonperiodic scenario, the spatial computational domain is
the interval [0, 100] which is large enough so that the pulses
do not reach the computational boundaries within the time
interval modeled. In Figure 10 we check the accuracy of the
periodic travelling wave solutions computed by comparing
the prediction of the numerical scheme (83) at time 𝑡 = 10
(using 𝑁 = 210 and Δ𝑡 = 0.01), with the profile in Figure 2
shifted at a distance of 𝑐𝑡 = 10 × 1.1 = 11 to the right. As
in the experiments in the previous section, we see that the
profiles coincide with good accuracy and they propagate with
the expected wave velocity. The difference between the two
profiles is of order 10−3. Similar results were obtained for the
other periodic travelling wave solutions shown in Figures 8
and 9.

6.3. Variable Depth. Finally in this section we include some
numerical simulations to illustrate the dynamics of incoming
Gaussian pulses in the form

𝑢 (𝜉, 0) = V (𝜉, 0) = 𝑒−20(𝑥−28)
2

, (103)

governed by (75), under the simultaneous effects of surface
tension (𝜎), dispersion (𝛽), and channel’s topography (coef-
ficient 𝑀(𝜉)). We further remark that the incoming pulses
are located at two units to the left of the irregular part of the
channel which covers the interval [30, 40]. In order to focus
on these three phenomena, we only consider the linear case;
that is, 𝛼 = 0.

In Figure 11 is displayed the output of numerical scheme
(83) for the value of the dispersion parameter 𝛽 = 0.01 and
without surface tension effect, that is, 𝜎 = 0, for a constant
depth channel. The numerical parameters are 𝑁 = 211 and
Δ𝑡 = 0.01 and the computational domain is the interval
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Figure 2: Periodic travelling wave solution of system (75) for 𝛼 = 𝛽 = 0.3, 𝜎 = 0, wave speed 𝑐 = 1.2, and period 𝐿 = 10, obtained after 7
Newton’s iterations.
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Figure 3: Periodic travelling wave solution of system (75) for 𝛼 = 𝛽 = 1, 𝜎 = 0.01, wave speed 𝑐 = 0.5, and period 𝐿 = 10, obtained after 21
Newton’s iterations.

[0, 60] which again is large enough so that the pulses do not
reach the computational boundaries. We point out that, as
a consequence of dispersion (which produces a difference
between the phase velocity of the Fourier modes contained
in the pulse), the incident pulses progressively develop an
oscillatory tail that propagates to the left, while the leading
wave propagates to the right. We contrast this experiment
to the dynamics of a pulse under the influence of surface
tensionwhich is presented in Figure 12. Note that, in this case,
both the oscillatory tail and the wave front propagate to the
right side of the computational domain.We conclude that the
surface tension effect alters the dispersive characteristics of
model (75).

We can anticipate the influence of the additional third-
order term 𝛽𝜎𝜕2

𝜉
V (due to the surface tension effects) on the

solutions of system (75) (with 𝛼 = 0 and flat channel𝑀 ≡ 1)
by analyzing its linear dispersion relation given by

𝐶2
𝜎
=
𝑤2

𝑘2

=
1 + (2𝛽/3) 𝑘2

(1 + (𝛽/2) 𝑘2)
2
+
𝛽𝜎𝑘2 (1 + (2𝛽/3) 𝑘2)

(1 + (𝛽/2) 𝑘2)
2

> 𝐶2
0
.

(104)

We recall that this expression arises by studying the propaga-
tion of solutions of system (75) in the form 𝑢 = 𝑢

0
𝑒𝑖(𝑘𝜉−𝑤𝑡),

V = V
0
𝑒𝑖(𝑘𝜉−𝑤𝑡), where 𝑢

0
, V
0
are constants.
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Figure 4: Periodic travelling wave solution of system (75) for 𝛼 = 𝛽 = 0.3, 𝜎 = 0.3, wave speed 𝑐 = 1.2, and period 𝐿 = 10, obtained after 7
Newton’s iterations.
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Figure 5: Periodic travelling wave solution of system (75) for 𝛼 = 𝛽 = 0.5, 𝜎 = 0.5, wave speed 𝑐 = 0.5, and period 𝐿 = 10, obtained after 12
Newton’s iterations.

In Figure 13, the phase velocities 𝐶
𝜎
(with 𝜎 = 0.6)

and 𝐶
0
(no surface tension) are compared as functions of

√𝛽𝑘 (𝑘 is called the wavenumber). Observe that, in the
presence of surface tension, the phase speed 𝐶

𝜎
is larger

than 1, and it approximates to the value 8𝜎/3 as √𝛽𝑘 tends
to infinity. In contrast, without surface tension effects, the
phase speed 𝐶

0
is lower than 1 and Fourier components

with high wavenumber travel more slowly than the Fourier
modes with small wavenumber. These observations are in
accordance with the results presented in Figures 11 and 12.

We further point out that the fact that the phase velocity in
system (75) is bounded by 8𝜎/3 for all√𝛽𝑘 has an advantage
in improving the stability of numerical solvers formulated
to approximate solutions of this system. In particular, the
properties of numerical solver (83) employed in the present
paper, such as the convergence, stability, and error estimates,
will be studied in a future research.

After analyzing the flat bottom case, we consider a numer-
ical simulation in Figure 15 where the channel’s topography
is variable. The topography considered is shown in Figure 14
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Figure 6: Evolution of a periodic travelling wave solution of system (75) for 𝛼 = 𝛽 = 0.3, 𝜎 = 0, wave speed 𝑐 = 1.2, and period 𝐿 = 10, using
the numerical scheme (83).
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Figure 7: Solitary wave solution of system (75) for 𝛼 = 𝛽 = 0.3, 𝜎 = 0.3, and wave speed 𝑐 = 1.1, obtained after 5 Newton’s iterations.

together with the metric coefficient𝑀(𝜉, 𝛽) computed using
the Schwarz-Christoffel Toolbox designed for MATLAB by
Driscoll [30]. Note that the irregular part covers the interval
[30, 40] (10 units long). A nonnegligible value of surface
tension 𝜎 = 0.6 is incorporated into model equations
(75). Again the level of dispersion is taken as 𝛽 = 0.01.
The numerical parameters are the same as in the previous
computer simulation. In addition to the effect of the surface
tension on the direction of propagation of the oscillatory
tail, we now observe irregular fluctuations (coda) developing
behind the wave front and propagating to the left end of
the computational domain. This tail signal is due to the
multiple reflections of the incoming pulses produced by every

variation of the channel’s depth.These phenomena have been
studied in previous works using other water wave models
that neglect the surface tension effect [9–11]. In the present
paper, our purpose was to initiate the study of these wave
phenomena and numerical scheme (83) and system (75) have
proved to be valuable tools in developing this research in a
future work.

To see in more detail the effect of surface tension on
the wave-topography interaction, in Figure 16, we show the
evolution of the Gaussian pulse

𝑢 (𝜉, 0) = V (𝜉, 0) = 𝑒−20(𝑥−198)
2 (105)
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Figure 8: Solitary wave solution of system (75) for 𝛼 = 𝛽 = 0.5, 𝜎 = 0, and wave speed 𝑐 = 1.1, obtained after 5 Newton’s iterations.
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Figure 9: Solitary wave solution of system (75) for 𝛼 = 𝛽 = 0.5, 𝜎 = 0.5, and wave speed 𝑐 = 1.5, obtained after 5 Newton’s iterations.

on the surface of a channel with a large irregular bottom
covering the interval [200, 300] (10 times larger than in the
previous numerical simulation) in the case of 𝜎 = 0 (no
surface tension) and 𝜎 = 0.6. As in the previous experiments,
the physical depth is described by a linear piecewise function
and the coefficient𝑀(𝜉, 𝛽) is computed again using Driscoll’s
package for MATLAB. The numerical parameters for this
computer simulation are 𝑁 = 214, Δ𝑡 = 0.0025, 𝛼 =
0, 𝛽 = 0.01, and the computational domain is the interval
[0, 400]. Observe that the pulse without the presence of
surface tension appears to be delayedwith respect to the pulse
propagating under the influence of a nonnegligible value of
surface tension 𝜎 = 0.6 and the long channel’s topography
introduced.These phenomena and further research using full

model equations (35) for the case of a rapidly varying bottom
(i.e., 𝛾 ≪ 1) will be studied in detail in a future work. We
remark that numerical scheme (83) could be adapted to solve
full system (35).

7. Conclusions

In this paper we introduced a new model for describing
the propagation of a small amplitude water wave over the
surface of a shallow channel with a possibly varying depth.
It was derived formally as an asymptotical approximation of
the full potential theory equations in the weakly-nonlinear,
weakly-dispersive regime. Existence and uniqueness of a
solution to the initial value problem associated with (5) were
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Figure 10: Evolution of a solitary wave solution of system (75) for 𝛼 = 𝛽 = 0.3, 𝜎 = 0.3, and wave speed 𝑐 = 1.1, using numerical scheme
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Figure 11: Evolution of a Gaussian pulse over a flat channel without surface tension effect. Parameters: 𝛼 = 0, 𝛽 = 0.01, and 𝜎 = 0.

also studied using Banach’s fixed point argument and the
classical semigroup theory in appropriate Sobolev spaces.The
main features of model (5) considered in this work are the
following:

(i) It can be applied to study wave propagation over a
shallow channel with a discontinuous or nondifferen-
tiable bottom provided that the bottom’s fluctuations
satisfy |𝑛| < 1. Observe that in the derivation of
system (5) the function 𝑛was not assumed to be small

nor continuous since the conformal mapping has a
smoothing effect on the topography. Note that the
effective variable coefficient𝑀(𝜉) that appears in final
system (5) is defined as a convolution between the
function describing the bottom’s fluctuations 𝑛 and
the sech2 function (see (25)). This fact implies that
𝑀(𝜉) and all variable coefficients in system (5) are
infinitely differentiable, even when the function 𝑛 is
discontinuous or nondifferentiable. In Figure 14, the
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Figure 13: The phase velocity for system (75).

coefficient𝑀(𝜉) is displayed for a (nondifferentiable)
piecewise linear topography. We see that the coeffi-
cient 𝑀(𝜉) is a regularized version of the physical
topography.

(ii) One-dimensional system (5) models bidirectional
waves and it incorporates the simultaneous effects of
surface tension and variable depth upon the shape
of a water wave that propagates on the surface of an
irregular shallow channel.

(iii) Furthermore, in the derivation of system (5), we
do not eliminate the wave elevation 𝜂 (which pre-
vents us from neglecting additional terms of order

0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5

30 32 34 36 38 40 4228

x

Figure 14: The metric coefficient 𝑀(𝜉, 𝛽 = 0.01) (in solid line)
comparedwith a (nondifferentiable) piecewise linear topography (in
dashed line). Observe that the coefficient𝑀 is smooth even though
the physical topography is not differentiable. The irregular part of
the bottom is located over the interval [30, 40] and the channel’s
bottom is flat outside this interval.

𝑂(𝛼2, 𝛽2)), as done, for example, in themodel derived
by Milewski [23]. This means that we did not reduce
(30)-(31) to only one equation for the potential
velocity Φ where 𝜂 does not appear. Therefore, new
formulation (5) is expected to be a more accurate
approximation of the original potential theory equa-
tions.

In second place, we introduced a numerical Galerkin-
spectral discretization of second order in time and spectral
accuracy in space to approximate solutions of system (5) and
a Fourier-collocation strategy combined with a Newton-type
iterative procedure to compute its travelling wave solutions.
In all computer simulations, these solutions were observed
to propagate approximately without changing their shape
within a large time interval.
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Figure 15: Evolution of a Gaussian pulse over a channel with the variable depth shown in Figure 14 and taking into account surface tension
effect. Parameters: 𝛼 = 0, 𝛽 = 0.01, and 𝜎 = 0.6.
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Figure 16: Propagation of a Gaussian pulse over a channel with variable depth. Observe the effect of surface tension on the dynamics of the
pulse. Parameters: 𝛼 = 0, 𝛽 = 0.01. Solid line: 𝜎 = 0.6. Dashed line: 𝜎 = 0.
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