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The inverse problem by the Weyl matrix is studied for the matrix Sturm-Liouville equation on a finite interval with a Bessel-
type singularity in the end of the interval. We construct special fundamental systems of solutions for this equation and prove the
uniqueness theorem of the inverse problem.

1. Introduction

Inverse problems of the spectral analysis for systems of
differential equations with Bessel-type singularities arise in
quantum mechanics (e.g., in the theory of the deuteron
[1]). Although inverse problems for scalar operators with
singularities have been studied for a long time [2–4], there
are no general results for matrix operators. In the mono-
graph [1], the inverse scattering problem is studied for some
particular cases of matrix Sturm-Liouville equations with
singularities. In this paper, we start a research on inverse
spectral problems for systems with Bessel-type singularities.
We suggest an approach, based on the method of spectral
mappings [5]. One of the main ingredients of our method
is special fundamental systems of solutions (FSS): Bessel-
type solutions with the prescribed asymptotic behavior at the
singular point and Birkhoff-type solutions with the known
asymptotic representations, as the spectral parameter tends
to infinity. The connection between these two FSS plays the
most important role in the investigation. In this paper, we
formulate an inverse problem by the Weyl matrix for the
matrix Sturm-Liouville operator with a singularity and prove
the uniqueness theorem.

Consider the matrix Sturm-Liouville equation on a finite
interval with a Bessel-type singularity in the end of the
interval

ℓ (𝑌) := −𝑌
󸀠󸀠
+(

𝜔

𝑥2 +𝑄 (𝑥))𝑌 = 𝜆𝑌, 𝑥 ∈ (0, 𝑇) . (1)

Here 𝑌 = [𝑦
𝑘
(𝑥)]
𝑚

𝑘=1 is a vector function, 𝜆 is the spectral
parameter, and 𝑄(𝑥) and 𝜔 are𝑚 × 𝑚matrices.

We assume that the matrix 𝜔 is diagonal; that is, 𝜔 =

diag{𝜔1, 𝜔2, . . . , 𝜔𝑚}, 𝜔𝑞 ∈ R, 𝑞 = 1, 𝑚. If 𝜔 is an arbitrary
Hermitian matrix, one can apply the standard unitary trans-
form, in order to fulfill this condition. For definiteness, let
𝜔
𝑞
= ]2
𝑞
− 1/4, ]1 ≥ ]2 ≥ ⋅ ⋅ ⋅ ≥ ]

𝑚
> 0, ]

𝑞
∉ N, 𝑞 = 1, 𝑚.

Let the matrix function 𝑥
1−2]1𝑄(𝑥) be integrable on (0, 𝑇).

2. Bessel-Type Solutions

Let 𝜌 = √𝜆, arg𝜌 ∈ [0, 𝜋). If we put 𝑄(𝑥) ≡ 0, (1) splits into
𝑚 scalar equations, which have Bessel solutions [6]:

𝑐
𝑗𝑞
(𝑥, 𝜆) = 𝑥

𝜇𝑗𝑞

∞

∑

𝑘=0
𝑐
𝑗𝑘𝑞

(𝜌𝑥)
2𝑘

, 𝑗 = 1, 2, 𝑞 = 1, 𝑚, (2)

where

𝜇1𝑞 =
1
2
− ]
𝑞
,

𝜇2𝑞 =
1
2
+ ]
𝑞
,

𝑐10𝑞𝑐20𝑞 =
1
2]
𝑞

,

Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2015, Article ID 647396, 4 pages
http://dx.doi.org/10.1155/2015/647396

http://dx.doi.org/10.1155/2015/647396


2 International Journal of Differential Equations

𝑐
𝑗𝑘𝑞

= (−1)𝑘

⋅ 𝑐
𝑗0𝑞(

𝑘

∏

𝑠=1
((2𝑠 + 𝜇

𝑗𝑞
) (2𝑠 + 𝜇

𝑗𝑞
− 1) −𝜔

𝑞
))

−1

.

(3)

Clearly, the matrix functions 𝐶
𝑗
(𝑥, 𝜆) = diag{𝑐

𝑗𝑞
(𝑥, 𝜆)}

𝑚

𝑞=1
satisfy (1).

Let 𝑆
𝑗
(𝑥, 𝜆) and 𝑆

∗

𝑗
(𝑥, 𝜆), 𝑗 = 1, 2, be the matrix solutions

of the following integral equations:

𝑆
𝑗
(𝑥, 𝜆) = 𝐶

𝑗
(𝑥, 𝜆) −∫

𝑥

0

𝐺 (𝑥, 𝑡, 𝜆) 𝑄 (𝑡) 𝑆
𝑗
(𝑡, 𝜆) 𝑑𝑡,

𝑆
∗

𝑗
(𝑥, 𝜆) = 𝐶

𝑗
(𝑥, 𝜆) −∫

𝑥

0

𝑆
∗

𝑗
(𝑡, 𝜆) 𝑄 (𝑡) 𝐺 (𝑥, 𝑡, 𝜆) 𝑑𝑡,

(4)

where 𝐺(𝑥, 𝑡, 𝜆) = 𝐶2(𝑥, 𝜆)𝐶1(𝑡, 𝜆) − 𝐶1(𝑥, 𝜆)𝐶2(𝑡, 𝜆).
Along with (1), consider the following equation:

−𝑍
󸀠󸀠
+𝑍(

𝜔

𝑥2 +𝑄 (𝑥)) = 𝜆𝑍, 𝑥 ∈ (0, 𝑇) , (5)

where 𝑍 = 𝑍(𝑥) is a row vector.
Denote the unit𝑚 × 𝑚matrix by 𝐼, its 𝑞th column by 𝑒

𝑞
,

and its 𝑞th row by 𝑒∗
𝑞
. The column vectors 𝑆

𝑗
(𝑥, 𝜆)𝑒

𝑞
, 𝑗 = 1, 2,

𝑞 = 1, 𝑚, form a fundamental system of solutions (FSS)
of (1). Similarly the row vectors 𝑒

∗

𝑞
𝑆
∗

𝑗
(𝑥, 𝜆) form an FSS of

(5). Clearly, for each fixed 𝑥 ∈ (0, 𝑇), the matrix functions
𝑆
(])
𝑗
(𝑥, 𝜆), 𝑆∗(])

𝑗
(𝑥, 𝜆) are entire in the 𝜆-plane. Using integral

equations (4) and the integrability of the matrix function
𝑥
1−2]1𝑄(𝑥), one obtains the following asymptotic formulas as

𝑥 → 0, 𝑗 = 1, 2, and 𝑞 = 1, 𝑚:

𝑆
𝑗
(𝑥, 𝜆) 𝑒

𝑞
= 𝑂 (𝑥

𝜇𝑗𝑞) ,

𝑒
∗

𝑞
𝑆
∗

𝑗
(𝑥, 𝜆) = 𝑂 (𝑥

𝜇𝑗𝑞) ,

𝑥
−𝜇𝑗𝑞 (𝑆

𝑗
(𝑥, 𝜆) −𝐶

𝑗
(𝑥, 𝜆)) 𝑒

𝑞
= 𝑜 (𝑥

2]1) ,

𝑥
−𝜇𝑗𝑞𝑒
∗

𝑞
(𝑆
∗

𝑗
(𝑥, 𝜆) −𝐶

𝑗
(𝑥, 𝜆)) = 𝑜 (𝑥

2]1) .

(6)

Denote ⟨𝑍, 𝑌⟩ := 𝑍
󸀠
𝑌 − 𝑌𝑍

󸀠. It is easy to show that
if the vector functions 𝑌(𝑥) and 𝑍(𝑥) satisfy (1) and (5),
respectively, then ⟨𝑍(𝑥), 𝑌(𝑥)⟩ does not depend on 𝑥. Note
that 𝐶

𝑗
(𝑥, 𝜆), 𝑗 = 1, 2, are the matrix solutions of (5) for

𝑄(𝑥) ≡ 0. Moreover, ⟨𝐶
𝑗
(𝑥, 𝜆), 𝐶

𝑘
(𝑥, 𝜆)⟩ = (−1)𝑗𝛿

𝑗𝑘
𝐼, 𝑗, 𝑘 =

1, 2, where 𝛿
𝑗𝑘
is the Kronecker delta. Using this fact together

with asymptotic formulas (6), we obtain the relation

⟨𝑆
∗

𝑗
(𝑥, 𝜆) , 𝑆

𝑘
(𝑥, 𝜆)⟩ = (−1)𝑗 𝛿

𝑗𝑘
𝐼, 𝑗, 𝑘 = 1, 2. (7)

3. Birkhoff-Type Solutions

Following ideas of [3], we construct the solutions 𝑌
𝑘
(𝑥, 𝜌),

𝑘 = 1, 2, whose columns form an FSS of (1) and have the
following properties.

(𝑖1) For each fixed 𝑥 ∈ (0, 𝑇), the matrix functions
𝑌
(])
𝑘

(𝑥, 𝜌), 𝑘 = 1, 2, ] = 0, 1, are analytic in the set Ω := {𝜌 :

Im𝜌 > 0, |𝜌| > 𝜌
∗
} and continuous inΩ.

(𝑖2) For 𝑥 ∈ (0, 𝑇), 𝜌 ∈ Ω, |𝜌𝑥| ≥ 1, and ] = 0, 1, the
following asymptotic formulas are valid:

𝑌
(])
1 (𝑥, 𝜌) = (𝑖𝜌)

] exp (𝑖𝜌𝑥) [𝐼]
𝛽
,

𝑌
(])
2 (𝑥, 𝜌) = (−𝑖𝜌)

] exp (−𝑖𝜌𝑥) [𝐼]
𝛽
,

(8)

where [𝐼]
𝛽
= (𝐼 + 𝑂(𝜌

−𝛽
)), 𝛽 = min{1, 2]1}.

(𝑖3) The solutions 𝑆
𝑗
(𝑥, 𝜆) and 𝑌

𝑘
(𝑥, 𝜆) are connected by

the relations

𝑌
𝑘
(𝑥, 𝜆) =

2

∑

𝑗=1
𝑆
𝑗
(𝑥, 𝜆) 𝐵

𝑘𝑗
(𝜌) , (9)

and the Stokes multipliers 𝐵
𝑘𝑗
(𝜌) have the following asymp-

totic behavior:

𝐵
𝑘𝑗
(𝜌) = diag {𝜌𝜇𝑗𝑞} 𝐵0

𝑘𝑗
[𝐼]
𝛽
, 𝑘, 𝑗 = 1, 2, 𝑞 = 1, 𝑚, (10)

where 𝐵0
𝑘𝑗

= diag{𝛽
𝑘𝑗𝑞

} and 𝛽
𝑘𝑗𝑞

are constant Stokes multipli-
ers for solutions of the scalar equations −𝑦󸀠󸀠 + (𝜔

𝑞
/𝑥

2
)𝑦 = 𝑦

(see [3]).
Expansion (9) and asymptotic formula (10) play a crucial

role in the study of the inverse problem. Using (9) and (10),
we derive asymptotic formulas for 𝑆

𝑗
(𝑥, 𝜆):

𝑆
(])
𝑗

(𝑥, 𝜆)

=
𝑖 (−1)𝑗

2
(−𝑖𝜌)

] exp (−𝑖𝜌𝑥) [𝐼]
𝛽
diag {𝜌−𝜇𝑗𝑞} 𝐵0

1,3−𝑗

(11)

for 𝜌 ∈ Ω
𝛿

:= {𝜌 ∈ Ω : 𝛿 < arg𝜌 < 𝜋 − 𝛿}, 𝛿 > 0,
] = 0, 1, and 𝑥 ∈ (0, 𝑇). Similarly, Birkhoff-type solutions
can be constructed for (5), and the asymptotic formulas for
the solutions 𝑆∗

𝑗
(𝑥, 𝜆) can be obtained.

4. Inverse Problem

Introduce the linear forms 𝜎1(𝑌) := ⟨𝑆
∗

2 (𝑥, 𝜆), 𝑌⟩, 𝜎2(𝑌) :=

−⟨𝑆
∗

1 (𝑥, 𝜆), 𝑌⟩. In view of (7), we have 𝜎
𝑗
(𝑆
𝑘
) = 𝛿

𝑗𝑘
𝐼. Note

that for the classical matrix Sturm-Liouville equation we have
𝜎1(𝑌) = 𝑌(0), 𝜎2(𝑌) = 𝑌

󸀠
(0).

Consider the boundary value problem 𝐿 = 𝐿(𝑄, ℎ,𝐻) for
(1) with the boundary conditions

𝑈 (𝑌) := 𝜎2 (𝑌) − ℎ𝜎1 (𝑌) = 0, (12)

𝑉 (𝑌) := 𝑌
󸀠

(𝑇) +𝐻𝑌 (𝑇) = 0, (13)

where ℎ and 𝐻 are 𝑚 × 𝑚 matrices. One can also take the
Dirichlet-type boundary condition 𝜎1(𝑌) = 0 at 𝑥 = 0. If
]
𝑚

≥ 1/2, it is equivalent to the standard Dirichlet boundary
condition 𝑌(0) = 0. Similarly, one can investigate the matrix
Sturm-Liouville equation with Bessel-type singularities at
both ends of the interval. Then both boundary conditions
take the form similar to (12).
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Let Φ(𝑥, 𝜆) be the matrix solution of (1), satisfying the
conditions𝑈(Φ) = 𝐼,𝑉(Φ) = 0.Thematrix function𝑀(𝜆) :=

Φ(0, 𝜆) is called theWeyl matrix of the problem 𝐿. The Weyl
matrix generalizes the notion of the Weyl function for the
scalar case𝑚 = 1 (see [5, 7]).

Let 𝜑(𝑥, 𝜆) be the matrix solution of (1) under initial
conditions 𝜎1(𝜑) = 𝐼, 𝜎2(𝜑) = ℎ. Obviously,

𝜑 (𝑥, 𝜆) = 𝑆1 (𝑥, 𝜆) + 𝑆2 (𝑥, 𝜆) ℎ,

Φ (𝑥, 𝜆) = 𝑆2 (𝑥, 𝜆) + 𝜑 (𝑥, 𝜆)𝑀 (𝜆) .

(14)

Introduce the linear forms 𝜎
∗

1 (𝑍) := −⟨𝑍, 𝑆2(𝑥, 𝜆)⟩,
𝜎
∗

2 (𝑍) := ⟨𝑍, 𝑆1(𝑥, 𝜆)⟩ and consider the boundary value
problem 𝐿

∗
= 𝐿
∗
(𝑄, ℎ,𝐻) for (5) with the boundary

conditions

𝑈
∗

(𝑍) := 𝜎
∗

2 (𝑍) − 𝜎
∗

1 (𝑍) ℎ = 0,

𝑉
∗

(𝑍) := 𝑍
󸀠

(𝑇) +𝑍 (𝑇)𝐻 = 0.
(15)

Similarly one can define the problem 𝐿̃
∗

= 𝐿
∗
(𝑄, ℎ̃, 𝐻̃). Let

𝜑
∗
(𝑥, 𝜆) and Φ

∗
(𝑥, 𝜆) be matrix solutions of (5), satisfying

the conditions 𝜑∗(0, 𝜆) = 𝐼, 𝜑∗󸀠(0, 𝜆) = ℎ, 𝑈∗(Φ∗) = 𝐼, and
𝑉
∗
(Φ
∗
) = 0. Put 𝑀∗(𝜆) := Φ

∗
(0, 𝜆). Similarly to (14), one

can easily derive

𝜑
∗

(𝑥, 𝜆) = 𝑆
∗

1 (𝑥, 𝜆) + ℎ𝑆
∗

2 (𝑥, 𝜆) ,

Φ
∗

(𝑥, 𝜆) = 𝑆
∗

2 (𝑥, 𝜆) +𝑀
∗

(𝜆) 𝜑
∗

(𝑥, 𝜆) .

(16)

Note that the expressions ⟨𝜑∗(𝑥, 𝜆), 𝜑(𝑥, 𝜆)⟩, ⟨Φ∗(𝑥, 𝜆), Φ(𝑥,
𝜆)⟩ do not depend on 𝑥. Using relations (14), (16), and (7), we
obtain

⟨𝜑
∗

(𝑥, 𝜆) , 𝜑 (𝑥, 𝜆)⟩ = 0,

⟨Φ
∗

(𝑥, 𝜆) , Φ (𝑥, 𝜆)⟩ = 𝑀 (𝜆) −𝑀
∗

(𝜆) .

(17)

In addition,

⟨Φ
∗

(𝑥, 𝜆) , Φ (𝑥, 𝜆)⟩ = ⟨Φ
∗

(𝑥, 𝜆) , Φ (𝑥, 𝜆)⟩
𝑥=𝑇

= 𝑉
∗
(Φ
∗
)Φ (𝑇, 𝜆)

−Φ
∗

(𝑇, 𝜆) 𝑉 (Φ) = 0.

(18)

Hence𝑀(𝜆) ≡ 𝑀
∗
(𝜆).

We study the following inverse problem: given the Weyl
matrix𝑀(𝜆), find 𝑄(𝑥), ℎ, and𝐻.

Consider the boundary value problem 𝐿̃ = 𝐿(𝑄, ℎ̃, 𝐻̃)

in the same form as 𝐿, but with other coefficients. We agree
that if a certain symbol 𝛾 denotes an object related to 𝐿, then
the corresponding symbol 𝛾with tilde denotes the analogous
object related to 𝐿̃.

Theorem 1. If𝑀(𝜆) = 𝑀̃(𝜆), then𝑄(𝑥) = 𝑄(𝑥) a.e. on (0, 𝑇),
ℎ = ℎ̃, and 𝐻 = 𝐻̃. Thus, the boundary value problem 𝐿 can
be determined by its Weyl matrix uniquely.

Proof. Define the block matrix 𝑃(𝑥, 𝜆) = [𝑃
𝑗𝑘
(𝑥, 𝜆)]

𝑗,𝑘=1,2 by
the formula

𝑃 (𝑥, 𝜆) [

𝜑 (𝑥, 𝜆) Φ̃ (𝑥, 𝜆)

𝜑
󸀠
(𝑥, 𝜆) Φ̃

󸀠
(𝑥, 𝜆)

]

= [

𝜑 (𝑥, 𝜆) Φ (𝑥, 𝜆)

𝜑
󸀠
(𝑥, 𝜆) Φ

󸀠
(𝑥, 𝜆)

] .

(19)

It follows from (14), (16), and (7) that

[

[

Φ̃∗
󸀠

(𝑥, 𝜆) −Φ̃
∗
(𝑥, 𝜆)

−𝜑∗
󸀠

(𝑥, 𝜆) 𝜑
∗
(𝑥, 𝜆)

]

]

⋅ [

𝜑 (𝑥, 𝜆) Φ̃ (𝑥, 𝜆)

𝜑
󸀠
(𝑥, 𝜆) Φ̃

󸀠
(𝑥, 𝜆)

]

= [

𝐼 0
0 𝐼

] .

(20)

Consequently,

𝑃11 (𝑥, 𝜆) = 𝜑 (𝑥, 𝜆) Φ̃∗
󸀠

(𝑥, 𝜆) −Φ (𝑥, 𝜆) 𝜑∗
󸀠

(𝑥, 𝜆) ,

𝑃12 (𝑥, 𝜆) = Φ (𝑥, 𝜆) 𝜑
∗

(𝑥, 𝜆) − 𝜑 (𝑥, 𝜆) Φ̃
∗

(𝑥, 𝜆) .

(21)

Using (14) and (11) we obtain

𝜑
(])

(𝑥, 𝜆)

= −
𝑖

2
(−𝑖𝜌)

] exp (−𝑖𝜌𝑥) [𝐼]
𝛽
𝐵
0
12 diag {𝜌

−𝜇1𝑞} ,

𝜌 ∈ Ω
𝛿
, ] = 0, 1, 𝑥 ∈ (0, 𝑇) .

(22)

In order to study the asymptotic behavior of Φ(𝑥, 𝜆), intro-
duce the matrix solution 𝜓(𝑥, 𝜆) of (1) under the initial
conditions at the regular end: 𝜓(𝑇, 𝜆) = −𝐼, 𝜓󸀠(𝑇) = 𝐻. Then
Φ(𝑥, 𝜆) = 𝜓(𝑥, 𝜆)(𝑈(𝜓))

−1. Using the standard asymptotic
representation for 𝜓(𝑥, 𝜆), one can expand this solution by
the system 𝑌

𝑘
(𝑥, 𝜆), 𝑘 = 1, 2, and then calculate asymptotic

for𝑈(𝜓), applying (9) and (10). Finally, one gets the following
result:

Φ
(])

(𝑥, 𝜆) = exp (𝑖𝜌𝑥) [𝐼]
𝛽
(𝐵

0
12)
−1
diag {𝜌−𝜇2𝑞} ,

𝜌 ∈ Ω
𝛿
, ] = 0, 1, 𝑥 ∈ (0, 𝑇) .

(23)

Similarly one can obtain the asymptotic formulas for 𝜑∗(𝑥, 𝜆)
and Φ̃

∗
(𝑥, 𝜆). Substituting all these asymptotic relations into

(21), we get

𝑃11 (𝑥, 𝜆) = [𝐼]
𝛽
,

𝑃12 (𝑥, 𝜆) = 𝑂 (𝜌
−𝛽

) ,

𝑥 ∈ (0, 𝑇) , 𝜌 ∈ Ω
𝛿
.

(24)

It follows from (21), (14), and (16) that

𝑃11 (𝑥, 𝜆) = 𝜑 (𝑥, 𝜆) 𝑆
∗

2

󸀠

− 𝑆2 (𝑥, 𝜆) 𝜑
∗
󸀠

(𝑥, 𝜆)

+ 𝜑 (𝑥, 𝜆) (𝑀̃
∗

(𝜆) −𝑀 (𝜆)) 𝜑∗
󸀠

(𝑥, 𝜆) ,

𝑃12 (𝑥, 𝜆) = 𝑆2 (𝑥, 𝜆) 𝜑
∗

(𝑥, 𝜆) − 𝜑 (𝑥, 𝜆) 𝑆
∗

2

+𝜑 (𝑥, 𝜆) (𝑀 (𝜆) − 𝑀̃
∗

(𝜆)) 𝜑
∗

(𝑥, 𝜆) .

(25)
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Since𝑀(𝜆) = 𝑀̃(𝜆) = 𝑀̃
∗
(𝜆), the matrix functions 𝑃11(𝑥, 𝜆)

and 𝑃12(𝑥, 𝜆) are entire with respect to 𝜆. Taking asymptotic
formulas (24) into account, we conclude that 𝑃11(𝑥, 𝜆) ≡ 𝐼,
𝑃12(𝑥, 𝜆) ≡ 0. By virtue of (19), 𝜑(𝑥, 𝜆) ≡ 𝜑(𝑥, 𝜆), Φ(𝑥, 𝜆) =

Φ̃(𝑥, 𝜆), and therefore 𝐿 = 𝐿̃.
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