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We study a question on stability and instability of basis property of system of eigenfunctions and associated functions of the double
differentiation operator with an integral perturbation of Samarskii-Ionkin type boundary conditions.

1. Introduction

In space 𝐿
2
(0, 1)we consider an operator 𝐿

0
, generated by the

following ordinary differential expression:

𝐿
0

(𝑢) ≡ −𝑢


(𝑥) + 𝑞 (𝑥) 𝑢 (𝑥) ,

𝑞 (𝑥) ∈ 𝐶 [0, 1] , 0 < 𝑥 < 1

(1)

and the boundary value conditions of the general form:

𝑈
𝑗
(𝑢) = 𝑎

𝑗1
𝑢

(0) + 𝑎

𝑗2
𝑢

(1) + 𝑎

𝑗3
𝑢 (0) + 𝑎

𝑗4
𝑢 (1) = 0,

𝑗 = 1, 2.

(2)

In the case when the boundary conditions (2) are strongly
regular, the results ofMikhailov [1] andKesellman [2] provide
the Riesz basis property in 𝐿

2
(0, 1) of the eigenfunction

and associated functions (E&AF) system of the problem. In
the case when the boundary conditions are regular but not
strongly regular, the question on basis property of E&AF
system is not yet completely resolved.

We introduce the matrix of coefficients of the boundary
conditions (2):

𝐴 = (

𝑎
11

𝑎
12

𝑎
13

𝑎
14

𝑎
21

𝑎
22

𝑎
23

𝑎
24

) . (3)

By 𝐴(𝑖𝑗) we denote the matrix composed of the 𝑖th and
𝑗th columns of matrix 𝐴, 𝐴

𝑖𝑗
= det𝐴(𝑖𝑗). Let the boundary

conditions (2) be regular but not strongly regular. According
to [3, page 73], if the following conditions hold:

𝐴
12

= 0,

𝐴
14

+ 𝐴
23

̸= 0,

𝐴
14

+ 𝐴
23

= ∓ (𝐴
13

+ 𝐴
24

) ,

(4)

then the boundary conditions (2) are equivalent regular, but
not strongly boundary, conditions.

In [4] Makin suggested dividing all regular, but not
strongly regular, boundary conditions into four types:

(I) 𝐴
14

= 𝐴
23
, 𝐴
34

= 0;
(II) 𝐴

14
= 𝐴
23
, 𝐴
34

̸= 0;
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(III) 𝐴
14

̸= 𝐴
23
, 𝐴
34

= 0;
(IV) 𝐴

14
̸= 𝐴
23
, 𝐴
34

̸= 0.

For example, boundary conditions with periodical or
antiperiodical conditions form the (I)-type and can be deter-
mined in the following form:

𝐴
14

= 𝐴
23

,

𝐴
34

= 0.

(5)

That is, 𝑎
11

= −𝑎
12
, 𝑎
13

= 𝑎
14

= 𝑎
21

= 𝑎
22

= 0, and 𝑎
23

=

−𝑎
24
. These conditions will be equivalent to boundary value

conditions, given by matrix 𝐴, where the following options
are possible:

𝐴 = (

1 −1 0 0

0 0 1 −1
) are periodical or

𝐴 = (

1 1 0 0

0 0 1 1
) are anti-periodical,

(6)

and the boundary conditions with “the lowest coefficients”
form the (II)-type.The boundary value conditions defined as
𝐴
14

̸= 𝐴
23
, 𝐴
34

= 0 form the (III)-type. These conditions are
always equivalent to boundary conditions, given bymatrix𝐴:

𝐴 = (

1 −1 0 0

0 0 1 0
) . (7)

This case will be the aim of our research in this paper.
Moreover, Makin [4] allocated the one type of non-

strongly regular boundary value conditions, when E&AF
system of the spectral problem

𝐿
0

(𝑢) ≡ −𝑢


(𝑥) + 𝑞 (𝑥) 𝑢 (𝑥) = 𝜆𝑢 (𝑥) ,

𝑞 (𝑥) ∈ 𝐶 [0, 1] , 0 < 𝑥 < 1,

(8)

with boundary conditions of the general form (2) forms Riesz
basis at any potentials 𝑞(𝑥).

When 𝑞(𝑥) ≡ 0, the problem about basis property of
E&AF system of the problem with general regular boundary
conditions has been completely resolved in [5].

In [6, 7] questions on convergence of eigenfunction
expansion of the Dirac operator in vector-matrix form and
theHill operator, forming Reitz basis in 𝐿

2
(0, 1), with regular,

but not strongly regular, boundary value conditions have
been considered.

Questions on basisness of eigenfunctions of the differen-
tial operators with involution have been studied in [8–10].

2. Statement of the Problem and Main Results

The spectral problem (8)-(2) with boundary conditions of the
(III)-type when 𝑞(𝑥) ≡ 0 is a non-self-adjoint problem in
𝐿
2
(0, 1). For the case of non-self-adjoint initial operator the

question about preservation of the basis properties with some
(weak in a certain sense) perturbation was studied in [11].

Riesz basis property of eigenfunctions and associated func-
tions of periodic and antiperiodic Sturm-Liouville problems
was considered in [12]. We obtain asymptotic formulas for
eigenvalues and eigenfunctions of periodic and antiperiodic
Sturm-Liouville problems with boundary conditions, which
are not strongly regular, when 𝑞(𝑥) is a complex-valued
absolutely continuous function, and 𝑞(0) ̸= 𝑞(1). Moreover,
using these asymptotic formulas, we prove that the root
functions of these operators form a Riesz basis in the space
𝐿
2
(0, 1) [13, 14].
In [15, 16] questions on stability of basis properties of

the periodic problem for (8) were investigated with integral
perturbation of the boundary conditions (2), when 𝑗 = 2, of
the (I)-type, that is, at the conditions 𝐴

14
= 𝐴
23
, 𝐴
34

= 0.
Moreover, in [17], the similar questions have been studied
when 𝑞(𝑥) ≡ 0. In this paper we consider the spectral
problem close to research of [17] when 𝑞(𝑥) ≡ 0, with integral
perturbation of the boundary conditions (2) when 𝑗 = 2,
belonging to the (III)-type:

𝐿
1

(𝑢) ≡ −𝑢


(𝑥) = 𝜆𝑢 (𝑥) , 0 < 𝑥 < 1, (9)

𝑈
1

(𝑢) ≡ 𝑢

(0) − 𝑢


(1) = 0, (10)

𝑈
2

(𝑢) ≡ 𝑢 (0) = ∫

1

0

𝑝 (𝑥)𝑢 (𝑥) 𝑑𝑥, 𝑝 (𝑥) ∈ 𝐿
2

(0, 1) . (11)

If 𝑝(𝑥) ≡ 0, then problem (9)–(11) is called Samarskii-Ionkin
problem [11].

From [18] it follows that the E&AF systemof problem (9)–
(11) is complete andminimal in 𝐿

2
(0, 1). Moreover, the E&AF

system at any𝑝(𝑥) forms Riesz basis with brackets. Our aim is
to show that the basis property in𝐿

2
(0, 1) of the E&AF system

of problem (9)–(11) is not stable at small changes of kernel
𝑝(𝑥) of integral perturbation.

In [19] the construction method of the characteristic
determinant of the spectral problem with integral pertur-
bation of the boundary conditions has been suggested. The
spectral properties of nonlocal problems have been consid-
ered in [20].

The basis properties in 𝐿
𝑝
(−1, 1) of root functions of the

nonlocal problem for the equationswith involution have been
studied in [21]. Instability of basis properties of root functions
of the Schrodinger operatorwith nonlocal perturbation of the
boundary condition has been investigated in [22]. In [23, 24]
they extended some spectral properties of regular Sturm-
Liouville problems to the special type discontinuous bound-
ary value problem, consisting of the Sturm-Liouville equation
together with eigenparameter that depended on boundary
conditions and two supplementary transmission conditions;
we construct the resolvent operator and prove theorems on
expansions in terms of eigenfunctions in modified Hilbert
space 𝐿

2
(𝑎, 𝑏).

3. Characteristic Determinant of the Problem

In this section we use the method of our paper [19] to
construct the characteristic determinant of the problem with
integral perturbation of the boundary condition.
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One aspect of this problem is the fact that an adjoint
problem to (9)–(11) is the spectral problem for the loaded
differential equation [16]:

𝐿
∗

1
(V) = −V (𝑥) + 𝑝 (𝑥) V (0) = 𝜆V (𝑥) ,

𝑉
1

(V) ≡ V (1) = 0,

𝑉
2

(V) ≡ V (0) − V (1) = 0.

(12)

Firstly, we construct the characteristic determinant of the
spectral problem. Representing the general solution of (9) by
the following formula when 𝜆 ̸= 0,

𝑢 (𝑥, 𝜆) = 𝐶
1
cos√𝜆𝑥 + 𝐶

2
sin√𝜆𝑥, (13)

and satisfying it by the boundary conditions (10) and (11), we
obtain the linear system concerning the coefficients 𝐶

𝑘
:

√𝜆𝐶
1
sin√𝜆 + √𝜆𝐶

2
(1 − cos√𝜆) = 0,

𝐶
1

[1 − ∫

1

0

𝑝 (𝑥) cos√𝜆𝑥 𝑑𝑥]

− 𝐶
2

∫

1

0

𝑝 (𝑥) sin√𝜆𝑥 𝑑𝑥 = 0.

(14)

Its determinant is a characteristic determinant of problem
(9)–(11):

Δ
1

(𝜆)

=



√𝜆 sin√𝜆 √𝜆 (1 − cos√𝜆)

1 − ∫

1

0

𝑝 (𝑥) cos√𝜆𝑥 𝑑𝑥 − ∫

1

0

𝑝 (𝑥) sin√𝜆𝑥 𝑑𝑥



.

(15)

When 𝑝(𝑥) = 0, we get the characteristic determinant of
the unperturbed Samarskii-Ionkin problem. Denote it by
Δ
0
(𝜆) = 1 − cos√𝜆. The number 𝜆

0

0
= 0 is simple eigenvalue

of the unperturbed Samarskii-Ionkin problem, and 𝑢
0
(𝑥) =

+√3𝑥 is the corresponding eigenfunction. Other eigenvalues
of the unperturbed problem (9)–(11) are double: 𝜆

0

𝑘
=

(2𝑘𝜋)
2
, 𝑘 = 1, 2, 3, . . ., and 𝑢

0

𝑘0
= √2 sin 2𝑘𝜋𝑥 is the eigen-

function corresponding to them; 𝑢
0

𝑘1
= (√2/2)𝑥 cos 2𝑘𝜋𝑥

is the associated function. Due to the biorthogonal property
(𝑢
0

𝑘1
, V0
𝑘1

) = 1, we have the eigenfunction V0
𝑘1

= 4√2 cos 2𝑘𝜋𝑥

and the associated function V0
𝑘0

= 2√2(1 − 𝑥) sin 2𝑘𝜋𝑥 of the
problem adjoint to the Samarskii-Ionkin problem.

We represent function 𝑝(𝑥) as the biorthogonal expan-
sion to the Fourier series by system {V0

𝑘0
, V0
𝑘1

}:

𝑝 (𝑥) =

∞

∑

𝑘=1

𝑎
𝑘0
V0
𝑘0

+

∞

∑

𝑘=0

𝑎
𝑘1
V0
𝑘1

=

∞

∑

𝑘=1

𝑎
𝑘0

2√2 (1 − 𝑥) sin 2𝑘𝜋𝑥

+

∞

∑

𝑘=0

𝑎
𝑘1

4√2 cos 2𝑘𝜋𝑥.

(16)

Using (16), we find more convenient representation of deter-
minant Δ

1
(𝜆). To do it, first, we evaluate integrals in (15).

Simple calculations show that

∫

1

0

𝑝 (𝑥) cos√𝜆𝑥 𝑑𝑥

= 4√2𝜆 sin√𝜆

∞

∑

𝑘=0

𝑎
𝑘1

𝜆 − (2𝑘𝜋)
2

+ 2√2

∞

∑

𝑘=1

(
2𝑘𝜋𝑎
𝑘0

𝜆 − (2𝑘𝜋)
2

[1 −
2√𝜆 sin√𝜆

𝜆 − (2𝑘𝜋)
2

]) ,

∫

1

0

𝑝 (𝑥) sin√𝜆𝑥 𝑑𝑥

= −2√2𝜆 sin√𝜆

∞

∑

𝑘=0

𝑎
𝑘0

𝜆 − (2𝑘𝜋)
2

− 2√2 sin√𝜆

∞

∑

𝑘=1

2𝑘𝜋𝑎
𝑘0

𝜆 − (2𝑘𝜋)
2

+ 4√2𝜆 (1 − cos√𝜆)

∞

∑

𝑘=0

𝑎
𝑘1

𝜆 − (2𝜋𝑘)
2
.

(17)

Using the obtained results, determinant (15) is reduced to
the following form by the standard conversions:

Δ
1

(𝜆) = Δ
0

(𝜆) ⋅ 𝐴 (𝜆) ,

𝐴 (𝜆) = [1 + 4√2𝜋

∞

∑

𝑘=1

𝑎
𝑘0

𝑘

𝜆 − (2𝑘𝜋)
2
] .

(18)

Δ
0
(𝜆) = 0 implies that 𝜆

(1)

𝑘
= 𝜆
0

𝑘
= (2𝑘𝜋)

2. Quantities 𝜆
(2)

𝑘
=

[2𝑘𝜋 + 𝑎
𝑘0

(√2 + 𝑂(1/√𝑘))]
2 are roots of equation 𝐴(𝜆) = 0.

These roots are eigenvalues of the perturbed spectral
problems (9)–(11).

Therefore, we prove the following.

Theorem1. Characteristic determinant of the spectral problem
with perturbed boundary value conditions (9)–(11) can be rep-
resented as (18), where Δ

0
(𝜆) is the characteristic determinant

of the unperturbed Samarskii-Ionkin spectral problem, 𝑎
𝑘0
are

Fourier coefficients of the biorthogonal expansion (16) of the
function 𝑝(𝑥) by the E&AF system of adjoint unperturbed
Samarskii-Ionkin spectral problem.

Function 𝐴(𝜆) from (18) has a pole of the first order at
points 𝜆 = 𝜆

0

𝑘
, and function Δ

0
(𝜆) has zeroes of the second

order at these points. Hence, function Δ
1
(𝜆) represented by

formula (18) is an entire analytical function of variable 𝜆.
The characteristic determinant, which is an entire analyt-

ical function, related to the problem on eigenvalues of dif-
ferential operator of the third order with nonlocal boundary
conditions has been studied in [25].
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4. Partial Cases of
the Characteristic Determinant

If coefficients 𝑎
𝑗0

= 0 of (16) for all indexes 𝑗, then 𝜆
1

𝑗
= 𝜆
0

𝑗
is

a double eigenvalue of the perturbed problem (9)–(11).
More simple characteristic determinant (18) is in the case

when 𝑝(𝑥) is represented as (16) with the finite first sum.That
is, when there exists a number 𝑁 such that 𝑎

𝑘0
= 0 for all

𝑘 > 𝑁. In this case formula (18) takes the following form:

Δ
1

(𝜆) = Δ
0

(𝜆) [1 + 4√2𝜋

𝑁

∑

𝑘=1

𝑎
𝑘0

𝑘

𝜆 − (2𝑘𝜋)
2
] . (19)

From this partial case (18) it is easy to establish the following.

Corollary 2. For any numbers given in advance, that is,
complex �̂� and positive integer �̂�, there always exists function
𝑝(𝑥) such that �̂� will be eigenvalue of problem (9)–(11) of �̂�

multiplicity.

From analysis of (19) it is also easy to see that Δ
1
(𝜆
0

𝑘
) =

0 for all 𝑘 > 𝑁. That is, all eigenvalues 𝜆
0

𝑘
, 𝑘 > 𝑁, of the

Samarskii-Ionkin problem are eigenvalues of the perturbed
spectral problem (9)–(11). Moreover, it is not hard to see that
multiplicity of the eigenvalues 𝜆

0

𝑘
, 𝑘 > 𝑁, is also preserved.

Furthermore, from the orthogonal condition 𝑝(𝑥) ⊥ 𝑢
0

𝑗0
,

𝑝(𝑥) ⊥ 𝑢
0

𝑗1
at all 𝑗 > 𝑁, it follows that, in this case,

∫

1

0

𝑝 (𝑥)𝑢
0

𝑗0
(𝑥) 𝑑𝑥 = ∫

1

0

𝑝 (𝑥)𝑢
0

𝑗1
(𝑥) 𝑑𝑥 = 0. (20)

Therefore, eigenfunctions 𝑢
0

𝑗0
(𝑥) and associated functions

𝑢
0

𝑗1
(𝑥) of the unperturbed Samarskii-Ionkin problem for

all 𝑗 > 𝑁 satisfy the boundary conditions (10), (11), and
perturbed Samarskii-Ionkin spectral problem consequently.
Hence, the functions are eigenfunctions and associated func-
tions of the perturbed problem (9)–(11). Accordingly, in this
case, E&AF system of the perturbed problem (9)–(11) and the
E&AF system of the unperturbed Samarskii-Ionkin problem
(forming Riesz basis) differ from each other only in a finite
number of the first members. Hence, the E&AF system of the
perturbed system (9)–(11) also forms Riesz basis in 𝐿

2
(0, 1).

A set of the functions 𝑝(𝑥), represented as the finite series
(16), is dense in 𝐿

2
(0, 1). Therefore, we prove the following.

Theorem 3. Let 𝐴
14

̸= 𝐴
23
, 𝐴
34

= 0; that is, the boundary
conditions (10), (11) are equivalent to the type-(III) with the
integral perturbation. Then the set of the functions 𝑝(𝑥) ∈

𝐿
2
(0, 1) such that the E&AF system of the perturbed Samarskii-

Ionkin problem (9)–(11) forms Riesz basis in 𝐿
2
(0, 1) is dense in

𝐿
2
(0, 1).

5. Instability of Basis Property

Now we prove that the basis property of E&AF system of
the perturbed Samarskii-Ionkin problem (9)–(11) is instable
at arbitrarily small integral perturbation of the boundary
condition (11).

Theorem 4. If 𝐴
14

̸= 𝐴
23
, 𝐴
34

= 0, that is, the boundary
conditions (10), (11) belong to the type-(III), then the set of
the functions 𝑝(𝑥) ∈ 𝐿

2
(0, 1) such that E&AF system of the

perturbed Samarskii-Ionkin problem (9)–(11) does not form
even a simple basis in 𝐿

2
(0, 1) is also dense in 𝐿

2
(0, 1).

Proof. It is obvious that the set of the functions 𝑝(𝑥) ∈

𝐿
2
(0, 1) represented as (16), coefficients of which asymptot-

ically (i.e., beginning with some number) have the property
𝑎
𝑘0

̸= 0, 𝑎
𝑘1

= 0, is dense in 𝐿
2
(0, 1). Therefore, to prove the

theorem, it is enough to show that for these functions𝑝(𝑥) the
E&AF system of the problem does not form a simple basis.

Let 𝑗 be a large enough number such that 𝑎
𝑗0

̸= 0, 𝑎
𝑗1

= 0.
Then from (18) it is not hard to see that 𝜆

0

𝑗
= (2𝑗𝜋)

2 is a simple
eigenvalue of problem (9)–(11). By the direct calculation it
is easy to get that the corresponding eigenfunction to this
value of the adjoint problem (12) is V1

𝑗
(𝑥) = √2 cos(2𝑗𝜋𝑥) and

‖V1
𝑗
(𝑥)‖
2

= 1.
We find an eigenfunction of problem (9)–(11). For large

enough 𝜆 = 𝜆
0

𝑗
= (2𝑗𝜋)

2 the first equation of the system
from Section 3 becomes an identity, and the second equation
is transformed into the following form:

𝐶
1

[

[

1 −
√2

4𝜋

𝑎
𝑗0

𝑗
+

√2

𝜋

∞

∑

𝑘=1,𝑘 ̸=𝑗

𝑎
𝑘0

𝑘

𝑗2 − 𝑘2
]

]

− 𝐶
2

𝑎
𝑗0

√2

= 0.

(21)

Since 𝑎
𝑗0

̸= 0, then we write 𝐶
2
by 𝐶
1
. Therefore, eigenfunc-

tion of problem (9)–(11) has the following form:

𝑢
1

𝑗
(𝑥) = 𝐶

1

{

{

{

cos (2𝑗𝜋𝑥)

+
√2

𝑎
𝑗0

[

[

1 −
√2

4𝜋

𝑎
𝑗0

𝑗
+

√2

𝜋

∞

∑

𝑘=1,𝑘 ̸=𝑗

𝑎
𝑘0

𝑘

𝑗2 − 𝑘2
]

]

⋅ sin (2𝑗𝜋𝑥)

}

}

}

.

(22)

Choose constant 𝐶
1

from the biorthogonal condition
(𝑢
1

𝑗
(𝑥), V1
𝑗
(𝑥)) = 1. It is easy to see that 𝐶

1
= √2. Finally, we

find the eigenfunction of problem (9)–(11):

𝑢
1

𝑗
(𝑥) = √2 cos (2𝑗𝜋𝑥)

− [

[

1

√2𝑗𝜋

−
2

𝑎
𝑗0

(1 −
√2

𝜋

∞

∑

𝑘=1,𝑘 ̸=𝑗

𝑎
𝑘0

𝑘

𝑗2 − 𝑘2
)]

]

⋅ sin (2𝑗𝜋𝑥) .

(23)
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By the direct calculation we find its norm in 𝐿
2
(0, 1):


𝑢
1

𝑗
(𝑥)



2

= 1

+
1

2



1

√2𝑗𝜋

−
2

𝑎
𝑗0

(1 −
√2

𝜋

∞

∑

𝑘=1,𝑘 ̸=𝑗

𝑎
𝑘0

𝑘

𝑗2 − 𝑘2
)



2

.

(24)

From the Young theorem [26, Theorem 276, page 240] it
follows that

lim
𝑗→+∞

∞

∑

𝑘=1,𝑘 ̸=𝑗

𝑎
𝑘0

𝑘

𝑗2 − 𝑘2
= 0. (25)

Therefore,

lim
𝑗→+∞


𝑢
1

𝑗
(𝑥)



2

= 1 + 2 lim
𝑗→+∞



1

𝑎
𝑗0



2

= +∞. (26)

Consequently, lim
𝑗→∞

‖𝑢
1

𝑗
‖ ⋅ ‖𝜗
1

𝑗
‖ = ∞. Thus, necessary

condition of basis property does not hold (see [11] and
references in it) and, therefore, it does not form even a simple
basis in 𝐿

2
(0, 1).

Theorem 4 is proved.

Since adjoint operators at the same time have the Riesz
basis property of root functions, therefore, we obtain the
following.

Corollary 5. Let 𝐴
14

̸= 𝐴
23

, 𝐴
34

= 0; that is, the boundary
conditions (10), (11) belong to the type-(III). Then the set P
of the functions 𝑝(𝑥) ∈ 𝐿

2
(0, 1) such that the system of

eigenfunctions of the problem (12) for the loaded differential
equation forms Riesz basis in 𝐿

2
(0, 1) is everywhere dense in

𝐿
2
(0, 1).The set𝐿

2
(0, 1)\P is also everywhere dense in𝐿

2
(0, 1).

The results of the paper, in contrast to [18], show insta-
bility of basis property of root functions of the problem with
an integral perturbation of boundary conditions of the type-
(III), which are regular, but not strongly regular.
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