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We consider the time-fractional derivative in the Caputo sense of order & € (0, 1). Taking into account the asymptotic behavior
and the existence of bounds for the Mainardi and the Wright function in R", two different initial-boundary-value problems for
the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when & ~ 1 of the respective
solutions is analyzed, recovering the solutions of the classical boundary-value problems when & = 1, and the fractional diffusion

equation becomes the heat equation.

1. Introduction

The one-dimensional heat equation has become the paradigm
for the all-embracing study of parabolic partial differential
equations, linear and nonlinear. A methodical development
of a variety of aspects of this paradigm can be seen in [1-3].

This paper deals with two problems associated with
the time-fractional diffusion equation, obtained from the
standard heat equation by replacing the first-order time-
derivative by a fractional derivative of order « > 0 in the
Caputo sense:

Diu(x,t) = NVuy, (x,1),
@

0<x<00, 0<t<T, 0<a<l,

where the fractional derivative in the Caputo sense of arbi-
trary order o > 0 is given by

LDUf (1)

L jt t-7"" f)ydr, n-1<a<n (2
=4T'(n-a) ), ’

f(") @), a=n,

where n € N and I' is the Gamma function defined by I'(x) =
_[(;)O w e Vdw.

The interest on (1) has been in constant increase during
the last 30 years. So many authors have studied it [4-10]
and, among the several applications that have been studied,
Mainardi [11] focused on the application to the theory of
linear viscoelasticity.

A comprehensive analysis of the Cauchy problem associ-
ated with this equation can be found in [12] and a physical
meaning is discussed in [13].

The two initial-boundary-value problems considered are

0x?

0<x<oo, 0<t<T, 0<aa<1, (3)

oDic(xt) =2 (x,1)

c(x,0)=f(x) 0<x<o0,
c(0,t)=g(t) 0<t<T,
« o’
WDfe (8) = 22 (x,1)

0<x<o00, 0<t<T, 0<a<l,
(4)

0< x < o0,

c(x,0) = f(x)

g—;(o,t):g(t) 0<t<T,
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associated with the Dirichlet and Newmann boundary con-
ditions, respectively.

Some variants of problem (3) have already been solved. In
[10], using the Mellin transform,

_ _ 1
T(x) =7 1/2h<—>,
( ) 2at™*2x

(L,1);5(1,A/2) )
(1/2,1/2)5(1,1/2)5(0,1)

(5)
where h(z) = (Z

is the Fox function of the given parameters, is obtained as a
solution to the particular problem

2

D T (x, t)—agT(x,t)

0<x<00,a>0,0<t<T, 0<ac<?2, (6)

T(x,0)=1, 0<x< 00,

T(0,t)=0, 0<t<T.

In [14] the two problems for the time-fractional diffusion
equation are considered in two disjoint intervals for the
spatial variable which cover the set 0 < x < co. Here the
following conditions are imposed:

2

L)

oDiTy (x,1) = a—5 52

0<x<L, 0<t<T,0<aqa, 0<a<2

T, (x,0)=T,, 0<x<L, 0<a<2

oT,

—(xO)— , 0<x<L,1<ac<2,

7)

2

DﬁT (x,1) —azaaT (x,t)

L<x<o00, 0<t<T, 0<a,, 0<fB<2

T,(x,00=0, L<x<o00, 0<f3<2

oT.
a—tz(x,O)=0, L<x<oo, 1<fB<2,

and for the particular case « = f, which is the case of our
interest, the solutions

- T 7/<_
1+y

T
T, (x,t) = T—2 W(—
1+y

T, (x,t) =T,

L-x '—“'1
\/a_l-[“/z’ 2) >
(8)

X L. (x.l
aT 2

are presented, where y is a particular constant of the problem
and 7 is the Wright function, which will be defined in the
next section.

In both cases no complete mathematical proof that the
obtained functions actually are solutions of the fractional-
diffusion equation is presented. We propose here a different
approach involving convolutions that allows us to achieve
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more general solutions to problem (3) and we also solve prob-
lem (4) for the Neumann boundary condition. Moreover,
we provide in each case a rigorous proof that the proposed
function is a solution of the considered problem. Finally we
show how from given solutions to the fractional diffusion
equation one can construct new ones that verify different
boundary conditions.

The paper is presented as follows. Some useful properties
about the behavior of Wright functions are given in Section 2.
In Sections 3, 4, and 5 the two problems enunciated previously
will be solved. At the end of Sections 3 and 5 the limit when
a /1 of the respective solutions will be done, recovering the
respective solutions of the classical boundary-value problems
when « = 1 and (1) becomes the heat equation.

2. Preliminaries: Some Results about the
Special Functions Involved

Definition 1. For every z € C, « > —1, and 3 € R the Wright
function is defined by

W (205 ) = Z 9)

< Kk!IT (ock +B)
Definition 2. For every z € C,0 < v < 1 the Mainardi
function is defined by

k
=W (-z;—-v;1-v) = ZL (10)

A, (2) Tl (—vk + 1 — )

Note 1. This series are absolutely convergent over compact

sets and so its derivatives are easy to calculate:

d 2d (2"
—W (2o, B) £ dz il (an + B)

dz

B (o] (Z)n 1
_n;(n— DT (an + B)

RS (2)" (11)
a ,;)nll"(oc(n+ 1)+ B)

RS (2)"
- Z nT (an + (a + B))

n=0
=Y (z,a,a+ ).
For the special case of the Mainardi function, we have

d

Eﬂv (Z) =

W (-z;—v;1 = 2v). (12)

2.1. Asymptotic Behavior. The following asymptotic behavior
for the Mainardi function was proved in [15]:

M, <f> ~a (v) x"TPO exp [—b ») xl/(l_v)] ,  (13)
Y

wherea(v) = 1/+/27(1 —=v) > 0, b(v) = (1 —»)/».
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Theorem 3. If -1 < p < 0, y = -z, and |argy| <
min{(3/2)n(1 + p), 7} — €, € > 0, then
W (z,p,)=1(Y), Y — oo, (14)

where

M-1
1Y) =YY PcY { YAY"+O (YM)} ,
(15)

Y=0+p)(() )"

The coefficients A,,, m =0,1,...
expansion

are defined by the asymptotic
r(1-B-pt)
2 (—p) ™ (1+p) Tt + 1)

_M—l (—l)mAm
_n;()l"((l+p)t+ﬁ+l/2+m) s)

1
O(F((1+p)t+ﬁ+1/2+M))’

valid for argt, arg(—pt), and arg(1 — 3 — pt) all lying between
-1 and 7w and t tending to infinity.

This theorem was proved in [16]. The next results follow.

Corollary 4. The following limits hold

lemmW<—x —%, 1> =0,
17)
lim ‘W(—x,—g, 1+ E) =0.
X — 00 2 2
Corollary 5. The next limit holds
lemm‘/%“/Z (x)=0. (18)

<‘%/( x,—af2,1 - a) [ (bx""" “/2))a 2 exp {—bx”“‘"‘”’}) - A,

Corollary 6. If0 < a < 1 and x € R", there exists R > 0 such
that

(s3]

< P(bxl/(l_“/z)) exp {—bxl/(l_“/z)} Vx > R,

(19)

where P(x) is a polynomial function of degree less than or equal
tolandb = (1 - a/2)(a/2)?* 9 > 0.

Proof. Let us consider the function #'(-x,-«/2,1 — «). One
has

z=-x=y=x, argy=0. (20)

Taking

1/(1-e/2)
() e
a/(2-a)
b-(1-3)(3) o

Theorem 3 gives the equation

W (-0 1 ) = (pt0)

M-
1/ 1- zx/2) 1/ 1-a/2)\ ™
exp )
{HZ (22)

‘0 ((bxl/(l‘“/z))M)} |

Or equivalently,

(1)

W (—x,—a/2,1 — x)
(bxl/(l—oc/Z))“’l/z exp {~bx!/(1-a/2)}

_ 1/(1-/2) (23)
ZA (B/07e2) ™

_ o (0™,

Taking M = 1, there exists R > 0 such that

<C ifx>R (24)

(bx!/(-ar) ™!

Then
7 (x5 1-a)| < (ox/e)
2

) (c (bxl/(l_“/2>)_1 4 AOl) exp {_bxl/u—a/z)} , (25)

if x > R.

If0 < a < 1/2, (bx"T/2)* 12 o jpRMY oDyl 1f
o =1/2, (bx 12 12 <a< 1, taking R large
enough so that bx'/"~? > 1if x > R, it follows that

(bxl/(l—a/Z))“_l/z < (bxl/(lfa/z)) . (26)



Hence there exists two constants B, and B, depending on «
such that

(bxl/(l_a/z))a_l/z < B() + Bl (bxl/(l_“/z)) . (27)

Finally,

(bxl/(l—a/Z))"‘*l/2 (C (bxl/(l_‘)‘m)i1 + |Ao|)

< (B + By (x712)) (0 (650) " 4|
(28)
= (e ) ) 4y (b0

<C+ P, (bxl/(l—a/Z)) _ P(bxl/(l—a/z))’

where P is a polynomial function of degree less than or equal
to 1.
Therefore

r(egree)
2

<P (bxl/(l_“/z)) exp {—bxl/(l_“/z)} ,

(29)
if x > R.

O

Corollary 7. If0 < a < 1 and x € R", there exists R > 0 such
that

() e

a/(2—a)
Vx>Rwhereb:<l—g>(g> .
2 2

2.2. Some Bounds and Convergence. The assertions in this
subsection were proved in [17].

Lemma 8. If 0 < « < 1, M,,(x) is a strictly decreasing
positive function in R*.

Corollary 9. Ifx > 0, M ,5(x) < 1/T(1 - a/2).

Corollary 10. If0 < « < 1, #'(—x,-«/2, 1) is a positive and
decreasing function in R" such that

0<w(-x%-%1)<1, VxeR'. 31)
2 0

Note 2. Note that

- [Tr(a-2g) (32)
= J-:O iﬂ({E IaE
= iﬂ J:Z Lﬂe gzdf = erfc (—)
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Hence
1
1—7/<—x,——,1):erf<§>. (33)
2 2
Lemmall. Ifx € R and a € (0, 1),

(V) iy g () = M5 (x) = €14/,
(2) limy » [1 = #'(—x,-a/2,1)] = (1/+/7) erf(x/2).

3. Solving the Initial-Boundary-Value
Problem for the Time-Fractional Diffusion
Equation on the Real Positive Semiaxis with
Temperature-Boundary Condition

Let us consider problem (3). The principle of superposition
is valid due to the linearity of the Caputo derivative. Then,
solving problem (3) is equivalent to solving the two auxiliary
problems:

o%c
2
gzl (x,1)

0D;"c1 (x,t) = A
0<x<00, 0<t<T, 0<a<l, (34)
¢ (x,0) = f(x)

¢ (0,)=0 0<t<T,

0 < x < 00,

d*c,
« 2
ODt C2 (X, t) =A W X, t)

0<x<o00, 0<t<T, 0<a<l, (35)
6 (x,00=0 0<x<o00,
6 (0,£) = g(t)

Problem (34) was solved in [18] and its solution is given by

© 1 [x ¢
a (x,t):L 201002 [ﬂ“/2< /2 )

aa(2)] 0t

where the function .#,,(-) is the Mainardi function defined
in (10) and f is a continuous bounded function in R, (which
guarantees that ¢; is a solution; see the Cauchy problem in

[19]).
In [17] it was proved that

0<t<T.

(36)

—X 2
W)_E)1>a (37)

where 7'(-,—a/2,1) is the Wright function of parameters
—a/2 and 1 defined in (9), is a solution to the problem

« o’z
WDiz(x,t) = AZ@ (x,t)

z(x,t):A+(B—A)‘7/<

0<x<00, 0<t<T, 0<aa<l,
X o0 04 (38)

z(x,00)=A 0<x<o00,

z(0,t)=B 0<t<T.
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Then, we can assure that

-X o«
v(x,t) :W<W’_E’l> (39)
is a solution to problem
« o*v
WDV (x,1) = )@@ (x,1)

0<x<00, 0<t<T, 0<a<l, (40)
v(x,0)=0 0<x<o00,
v(0,t) =1 0<t<T.

Taking into account Note 1 and Corollary 5, function v can be
expressed as

o -x  «
) = —W(—,——,l)d
viet) Jo or A2’ 2 '

. (41)
X oax
- Jo M </\T"‘/2 ) 2A7/2+1 dr.
Let
X oax
K(x,t) = My, (—Mx 7 ) PSR
(42)

1 if0<t<t,
1o, (8) =
[0to] 0 else.

Then function v can be written as a convolution in the t-
variable:

v(x,t) = K(x,t) * 1o . (43)

This new way of expressing v leads us to propose the following
function:

& (x,1) = K (x,1) * g () Lo

t x ax
=| A T)dt
L o2 (A(t-f)“/z) 21 (t—T)"‘/2+1g( )

as a solution to problem (35).
In order to prove this assertion, let us enunciate the
following lemma.

(44)

Lemma 12. Let #(t — 1) f(1) be a function that verifies the
following conditions:

F (t—1) f (1) is a t-integrable function in [0,t], (45)

l%%(t—r)f(r) <j(r)eL'[o,t], (46)
0 f () 1

—FH(n-7 =l € L (),

lan (=) (t-n) (47)

whereQ:{(q,T) eR*: 5 e (0,1), OSTSV]}

lim (- ) f (1) = h(n) € L' (0,1). (48)
™

Then

oDy (J:%(t -7) f (1) dT>

, (49)
0

_ J (DK (t—1) f (D) dr+ I (h (1)),

where ,I'"* is the fractional integral of Riemann-Liouville of

order 1 — « defined by

J TR () Lt t -0V h()dr.  (50)

TI(1-a)
Proof. Due to (46) and (48)

d t
EJ@ F(t-7)f(r)dr
(51)

ty )
- L S (=) f (@) dr+ I (6= 7) f (1),
Now
on<

J @ [} # (-1 f@dr 1
0 (t-n)" 11_1"(1—04)

f%u—><)d)— !
. T) f (7 T_F(l—oc)

(52)

+ lim 7 n-1)f (‘r)] dn.
T/
Since (47) holds, (52) is equal to

r f@ Jf(a/an)K(W—T)
o Fl-a) ) (t-n)"

L1 Jf lim,,, % (- 1) f (1)
ra-aw Jo (t—rl)‘x

dndr
(53)

Substituting s = 5 -,

1 t(0/on) F (n—1)
ru—mL (D

1 JH (0/0s) H (s)
TT(-a) o (t-1-9)"

(54)
ds= D{K(t-1).

On the other hand,

1 jt lim_,, % (n-1) f (‘r)d
F(1-a) Jo (t-n)"

1 mem
FA-a) o (t-#)"

(55)

dn= ().



Hence

oDy (Lt F({t-1)f (1) d‘r> 6

_ J (DT (t =) f (D) dr+ I (h(2).

0

Now the purpose is to prove that the kernel

x ax
M
ol (A (t — ‘[)(x/z ) 2 (t _ T)oc/2+1 g (T) (57)

verifies the hypothesis of Lemma 12.
(i) Hypothesis (45). Consider the integral

t
|
0

dr

( X ) ax g (‘[‘)
/2 a2 _\a/2+1
Alt—-1) 2A(t— 1) (58)

(e x 2/a
- L//\t"‘“ Me2 (¥)|9 (t - (@) ) -
We know that
® _ I'(n+1)
JO V'l oy (y)dy = T@neD o€ 0,2) (59

(see [20]).

The Mainardi function is a positive and decreasing func-
tion in R™. (see [17]).

g is a bounded function in [0, t]; that is,

lg(@)| <M Vrelot]. (60)
Then (58) is convergent and (57) is T-integrable in [0, f].

(ii) Hypothesis (46). Consider the kernel

0 X ax
5[ﬂ“/2<A(t—r>“/2>zA(t—n“/z“]g ©
X 04
=|-———-——,1-
(A(t—r)"‘/z 2 “)

2
ax X
. - _ﬂ -
(n (t—r)“”“) 90 “/Z(A(t—r)“’z)

(/2 +1)ax

'WQ(T%

(61)

Applying Corollary 6, there exists & > 0 such that, for all T €
(t-9,1),

2
X [0 axx
V|-——r - || ——————
‘ ( -0 2 )(u(t—r)“”“)

X
g(T) S<C+dm)
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2/(2-a)
-exp 1-b ( S — )
{ At —1)?

2
ax
(W) 9@,

b >0, ¢,d constants.
(62)

And this is an integrable function; in fact, making the
substitution

X

T &

and considering the inequality
n!
exp {—x} < —, Vne N, Vx > 0, (64)
X

it yields that

¢ x
La (C ST )
x 2/2-«
. bl —=
eXP{ (A(t—r)"‘”) }

2 (o)
xx
‘ (W) g ()] dr = L/Wu (c+dr)

2A(t-T1
o(-(3)")

2/e (65)
- exp {—brz/z_“} % (ﬂ>
(c +dr)rit¥e

dr

2 X

[o0]

<CiraM
x/A8%/2

- exp {—brz/z_“} dr

© (c+dr) it
bann/Z—(x

< CipaM J n!dr.

x/A8%/?

It it easy to see that for any « € (0, 1), there exists #n € N such
that (65) is convergent. For example, if « = 1/4 we can take
n = 10.

Then, the first term of the sum (61) is bounded by an
integrable function.

Let us consider the second term of sum (61). Making the
substitution (63) and taking into account that the Mainardi
function is a positive function, we have

t X (/2 + 1) ax
M
Jo o2 (A (t — 7)*/? ) 2A(t - ‘r)“/2+2g @)

e o A\
SMJ (—+1)/%“,2(r)<—) dr  (66)
x/Ae2 \ 2 X

(oe]
<MC, ), L M o5 (1) l%dr.

dr
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Now, for any « € (0, 1), there exists k € N such that 1/k <
a/2 < 1. Then, using (59), it yields

(o]
MC, ), J M oy (r) 7% dr
0 N k
SMC, ) Jo My (r)rdr (67)

I'k+1)

= MCyap (/) k+ 1)

(iii) Hypothesis (47). We have to prove that

e e
on «/2 1 (’1 _ T)oc/2 2 (17 _ T)ot/2+1 (t _ rl)“ (68)

el'(Q),
where Q = {(,7) € R? : ne (0,t),0 <7< yhOr
equivalently,
0 X ax
= |,
877 |: /2(/\(’7__[)04/2>:|(2/\(’1_1_)«/%1)
g (1) ( x ) (/2 + 1) ax
I, (69)
(t-n) “\1 (n-1)") 22 (n-1)**"
IO el .
(t-n)

Applying a similar reasoning like in the previous item,
using Corollary 6, inequality (64), Corollary 9, and Tonellis
theorem (see [21], page 55), the following assertions are true:

n
j I+1Ildr <oco Ve (0,1). (70)
0

Taking & small according to Corollary 6,

t y t ry-6
j J- |I+II|deq=J J |I +1I\drdny
0 Jo 0 Jo

(71)

t oy
+j J |I + II|dzdn.
0 Jn-6

Now, note that

0 X
an [%""2 (A(n—r)“” )]
0 X
o V(—A m-T)w)]

0 X
-— M, — 7 >0 (73)
or /2<A(71—T) /2>

(it is a consequence of Lemma 4.2 from [17]).

(72)

and that

Let M be defined in (60) and let C be any constant
depending on 8, a, x, or n. Then

t n-6 t
JJ IIIdeWSJ *CH
0 Jo o (t—n)" 8%/
=6 3
1%

X
M, | —2 N dray
/2</\(}']—T)a/2>

- Jt M—C (74)
0 (t _ ,1)0‘ Sa/2+1

X X
’ [ﬂa/z (/\’,I(x/Z ) - ‘%0‘/2 (Aaoc/l >] d?]

- 2MC Jf 1
T -af2)8% by (t-#)"

dn < oo
due to Lemma 4.2 [17] and that « € (0, 1). Then,

t (n-6
J J |I|dzdn < oo. (75)
0 Jo

My (/\ (- T)“/z )

drdn

On the other hand,

t rn-6 t rn-0
J- I |H|d1’d11:J' J
0 Jo 0Jo

'(oc/2+l)ocx g ()
2A(t = )M (t —n)”

) J ﬁ J Hern (/\ (1 . )" )

(/2 +1)ax
. —2A = T)"‘/2+2 dr dn.

(76)

g (1)

We proved in the previous item that

\

X (/2 +1)ax
'%“
2 <)t (11 B T)a/z > 2 (11 B T)oz/2+2

< Q.

dr

g (1)

(77)

Recalling that « € (0, 1), it yields that

t rn-6
J J [II|dt dn < oo. (78)

0 Jo
Then
t (n-6
I I T + IT| dt dy < oo. (79)
0 Jo

Proceeding like in item (ii), when checking Hypothesis (46),
it can be proved that

t rn
J J || d diy < co. (80)
n—-0

0



Finally, (79) and (80) yield

toen
J J |I +II|dtdn < co.
0 Jo

From (75) and (81), Tonelli’s theorem holds and

0 X X o
— |, b
671 [ /2<A(TI—T)“/2> A(I”]—T)“/ZH 2:|

g (1)
(t—n)"

el'(Q).

(iv) Hypothesis (48). Let us prove that

/N

An-1)

2M(n-1)

Note that, due to (59) and (60),

X
lim ,
ol < A=)

= lim My (o

s—10 Asa/Z

of2+1
. X o ax 1
= lim /), <—)’ /2> 2 9(71_ ¥

y— 0o

A

=0.

> ax (‘[’)
21 (7’[ _ T)oc/2+l 9

ax
) mg(’?—S)

2\

of/2+1

. X ax
limA,,,, ( “/2> a9 (r) =0.

)

Finally, we can apply Lemma 12 to kernel (44). Then,

t
ODan (x,t) = OD“ <J0 %a/z (A(

X
2A(t — 1)

X

o)

—

-7

ax

t . x )
=| ,p% .,
Jo 0 ( 2 (A(t—'r)“/z 24 (t — 1)/

g (T)) dr+17%(0) = Jt oD* (
0

Lo (o

-g(r)dr.

T
At —1)? 2

9
ot

—X [0
7w oo

)

(81)

(82)

(83)

(84)

(85)
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From Corollary 5, (0/01)% (-x/A0*,-a/2,1) = 0. Then
Caputo derivative commutes (see equation (2.145) of [9]) and

o+1 —X o
o? (_W(A(t—r)“/z’_?l))
_ p (_W(A(t:—xr)“/z_%ID (86)
0 o -Xx o
:_5<"D W(A(t—r)““’_?l))'

Now, recalling that 7" (—x/A(t - T)“/z, —a/2,1) is a solution of
problem (40), it results in the following:

0 -x o
- = D[x —)__’1
at(" W(A(t—r)“’z 2 ))

0o 0 -X «
=___W —)__)1
ot 0x?2 (,\(t_f)a/z 2 )

(87)
0 0 -X «
= __W —)__31
0x? ( ot (,\(t_f)“/Z 2 ))
o} X X o
=—U —.
ax2 al2 (A(t _ T)OL/Z) A(t _ T)oc/2+l 2
Replacing (87) in (85), we have
t 9 x
R P
0 (2( ) Oaxz /2<A(t—‘[‘)“/2)
x o d
e 29 5a
(88)

t X ) X a
- 4, —g(r)dr
L /2 (/\(t _ T)a/z At - T)u/2+1 zg( )

0
= ﬁol (X, t)

Therefore ¢, (x, t) verifies the fractional diffusion equation.

Proposition 13. The following limits hold:

(1) Timyy [ ol gy (/A ~)) (ox /22t~ )2 ) =
1.

(2) limyg [y (/M = 7)) ax/2A(E = )2 )dr =
0.
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Proof. (1) Taking n = 0 in (59), it yields IOOO M o jp(W)du = 1.

Applying Proposition 13 to the second member of the sum,

Making the substitution (63) and applying Corollary 9,

we have

ax

M, dr-1
Jo & ( At 1) ) 24 (¢t - 7)¥*

J o M oy (u) du - L M o> (1) du

X

x/ At/ 1
< M du<s ————_ 590
L w2 (W)U S e e

if x \v O,

(2) It is a consequence of applying substitution (63).

Let us check now the border conditions.
(i) Consider ¢,(x,0) = lim, 4, (x, ).
From Proposition 13 and (60),

¢ x
L M2 (/\ (t - 7)*? )

ax
. —2A = T)oc/2+1 g(r)dr

t x
<l _
< ltlgg Jo My ()L - T)“/Z )
Lo ax &
2M(t -1 2

f x
SlimMJ My, | ————
N0 0 /2 <A(t _ T)oc/Z)

0 < lim
50

lg ()] dr

ax [0

————————d7=0
22 (t _ T)oc/2+1 2
.6 (x,0)=0.
(ii) Consider ¢,(0,t) = lim . oc,(x, t).

Note that

f ax ) X o
M, —g(r)dr
L & (2,1 t -1 ) At -1)**! 29 )

¢ x
N\, —
L o2 <A(t —T)“/Z)

'W%[g(ﬂ—g(tﬂg(ﬂ]ﬁ

¢ x
N\, —
L o2 <A(t —T)“/Z)

ax
22 (t _ T)(X/2+l

¢ x
" L M2 (A(t - ‘r)“/z)

xx
-t B dr

[g(x)-g(t)]dr

(89)

ax

t)dr
R

tim [ X
im| A
X0 Jo o2 <A(t - r)“/2>

=g()

lim [ X
lim | A
N0 L o2 (/\(t— T)“/Z)

=g().

(92)
ax

dr
22 (t _ T)vc/2+1

O Let

X
M _
a2 (/\(t _ T)zx/Z)

!
X (21
T2 9™ -g®ldr

(93)

The next goal is to prove that lim,. ;I = 0.
Let § > 0 be determined. Consider

t-6 X )
e[ (s
0 ’Z(A(t—f)“/z

'W[Q(T)—g(t)]ﬁ

t X
| o, —E—
Ls & (/\(t—f)"‘/2>

ax [0
-2 [9(0)-g®)]dr =1 +1,

(90)

(94)

Applying Corollary 9,

t-08 x
= (57 )

u(:—i)a/m [g(r)-g®)]dr

<r_6 1 ax
“Jo T(-a/2)2A(t-7)

«
a2+l o |g (7)

t—6
(o1) g dr< —t o L 190

[ (1-«a/2)218%/2+1

1 o

g 0|dr < <r (1= a/2) 2A0%/2

t
€
' L lg () - g @) dr) x=CroaX < 5,

if x <

€
2Ct,6 o
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Now, g is continuous in t. Then, for € > 0 given, there exists
0 > 0 such that |g(1) — g(t)| < €/2if |t — 7| < . Using this
fact and making the substitution (63),

e (! X X o
L S—J M, —drt
=3 ) s /2<A(t—r)“/2>/\(t—'r)“/2“2
(96)

- JOO M, (1) du < ¢
= > x/,\5“/2 /2 2

From (95) and (96), it results that |I| < e, for every € > 0.

Then,
t x
limj M _
N0 Jo “/Z(A(t—‘r)“/z)
X o«
A (t _ T)oc/2+1 2
and we can assure that
6 (0,t)=g(t). (98)

Theorem 14. Let f be a continuous bounded function in R
and let g be a continuous function in [0, T). Then

© 1]
c(x,t) = —_
(1) Jo 2002

. [ﬂa/z ( |it;/fl ) =My ( |§t:/§| )] f@®dg (99

! x ) ox
+ | A, T)dt
Jo r? ()L t-1)%? ) 22t — 7)/*! 9!

is a solution to problem

(97)
[9(0)-g®)]dr=0,

2
D% (x,t) = )\2% x,t)

0<x<o00, 0<t<T, 0<a<l, (100)
c(x,0)=f(x) 0<x<o0,
c(0,t) =g (1)
Theorem 15. The limit when o /' 1 of the solution to problem

0<t<T.

aZ
D%, (x,t) = > 22 (x,1)
0x?
0<x<oo, 0<t<T, 0<(X<1, (101)
6 (x,0)=0 0<x<o00,
6 (0,1) = g ()

is the classical solution to the analogous problem when o = 1
and we recover the heat equation

0<t<T,

2
%w(x,t) =A2%(x,t) 0<x<o00, 0<t<T,

w(x,0)=0 0<x<o00,

w(0,1) = g (t)

(102)

0<t<T.
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Proof. Let

x
w(x,l‘)=J0 N A(t—1)3/2g

be the solution of problem (102) (see [1]) and let ¢;’ be the
solgt(iont)of problem (101) given by Theorem 14,
G X

(f x X « (104)
= JO ‘%OL/Z (A (t _ T)“/Z ) A (t _ T)(x/2+1 29 (T) dr.

Applying Lebesgue Convergence Theorem and Lemma 11,

. (24 3 ! —x
lime (x.1) = lim {L Mearn (A(t - T)“/Z)

t e—x2/4A2(t—T)

(1) dt (103)

ax
—— g (7)dt
ZA(t_T)(x/Z-flg( ) }
t X ) ax (105)
= | limA#,
,[0 a1 2 (/\ (f _ T)ot/l 22 (t _ T)OL/2+1
t —x/A(t-T) x
-g(r)dr :J 7)dt
g0 = | e e
=w(x,t).
O

4. Solving the Initial-Boundary-Value Problem
for the Time-Fractional Diffusion Equation
on the Real Positive Semiaxis with Null
Flux-Boundary Condition

In this section, we consider the problem

o d%c
oD (x,t) = Azgj (x,1)

0<x<o00, 0<t<T, 0<a<l,
(106)

%(O,t)=0 0<t<T,
0x
G (x,0) = f(x)
Let us therefore consider the following auxiliary problem:

o o%c
oDz (x,1) = AZ@ (x,1)

0< x < o0.

—00<Xx<00, 0<t<T, 0<aa<1 (107)

z(x,0) = f (x)

where f is an even extension of f.
This problem was solved in [22] and its solution is given
by the following function:

ST
G (%) = Jloo 5 ‘%(x/2< I
1
T 2Ae”

.LOO [ﬂa/z (%g) Moo <|;t%/§|>]

- f(§)dé.

- 00 < X < 00,

)f (&) dé

(108)
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The next goal is to prove that =l _X+0 _a l—a |+ _x-0
5 - Atel2> 2’ Ael2?
lim—c¢; (x,t) = 0. o
N0 0x _5,1_a>]f(9)x 0 € [0,x].
ac3 1 o0 (% x+¢&
= (0 t) x\O 2/\1‘“/2 ax J- |:-%Lx/2 <At“/2> (112)
| f| 5 Then,
x —
M =1lim x -
+ a/Z( At“/z )]f(f) E 02At“/2 ax lim i Y x_+£ +% x_{
N0 Jo 0x a/2 Aro/2 a/2 Aro/2 (113)
x x+¢& x-¢& (109)
: L M o p SYR) + M oy W -f(@dg=o.
F () dE On the other side,
® 9 x+E> <E x>]
0 - — | —2 |+ d
[ [ (228 e (2] [72 [t (8) (2] r 01
" P (s
f (E)d&}. e e Ael2” 2
Due to the continuity of the Mainardi function, Corollary 6, -w _E—X’_ﬁ,l —a| f(E)dE
i Y A2 2
and f € B(R") N L°(R"), the next equalities are true:
9 [ x+8 =ro— ! [W(—“f,—g,l— > 114
&L [M"‘”(er/z)”%“’ ( t“/2>]f @) o At a2 )
* 9 x+E x-k 7/< &= x,_ﬁ,1_(x)] d
= JO a [ﬂ“ﬂ(_At‘X/Z)+‘%‘x/2<_At0¢/2>] Attx/Z 2 f(E) £
. d x+§ %y
f@©de | - [ (2R S a
x+&
+lim[.%/2< ) < )]f(E) f-x a
« of oc/2 af _w
fimn e 2T . 7/< S| @
% J [ﬂa 12 (;;/i) + My </\t"‘/2 )] (&) d& Ap;flying Lebesgue Convergence Theorem to the first inte-
X gral,
e e (3 ) - (53 ’
=—| —|,, + M ) 1 x+& «
Lo ox [T\ w2 2\ agel2 E}E(}L T [W<‘W"5>1‘“>
- f (&) dg E-x «
o+ £-x _W<_Ata/2’_5’l_“>]f“)d5
tim [, (252 ) e (325 )] 00 .
=J- lim - [‘W(—XJrg,—g,l—oc)
Note that 0 X0 A2 Ate2” 2 ws)
* 0 x+& x—-& E-x «
[ 2ty (553 )+t (323 )| £ @18 (e o
1 (" x+¢& « ] & Io
= | |7 (-222,-21- 1 -| - S N
Ate2 L[ ( Arel27 2 a) ) L Ate/2 [W< e ! “>
x-& «
e (5| r@as -7 (- -Sa-a)| r@d-o
Applying Mean Value Theorem, it yields that For the second integral we apply Mean Value Theorem as
J-x [W( x+& a . > before. Then,
-——, =, 1l-«
0 2’ ) J“X’i x+¢& E—x
W), o e\ e )+ e (116)

(-2 -a)] s o d F@®dE=0.
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From (113) and (116),

og,

o (0,t) = 0. (117)

Theorem 16. Let f be a continuous bounded function in R;
then

C(x,t) = W

oo x+¢& |x = €| (118)
[ [l oo (5:0)
- f &) dg

is a solution to problem

2
D% (x,t) = AZ% (x,1),

0<x<00, 0<t<T, 0<aa<l,
(119)

%(O,t)=o, 0<t<T,
ox
C(X,O) Zf(X),

0< x < o0.

5. The Initial-Boundary-Value Problem for
the Time-Fractional Diffusion Equation on
the Real Positive Semiaxis with
Flux-Boundary Condition

As in the previous sections two auxiliary problems are
considered:

%
o 2
oDics(x,t) =2 gzl (x,1)

0<x<00, 0<t<T, 0<a<l

(120)
¢ (%,0)=f(x) 0<x<o0
ic(Ot)—O 0<t<T
ox 10T ’
o o
oDy s (x,1) = Aza_xozz (x, 1)
0<x<00, 0<t<T, 0<aa<1
(121)
G(x,0)=0 0<x<o00
ic(Ot)— (t) 0<t<T
x5 =Y '
From Theorem 16,
1
C4(X,t):m
e x+§& |x - ¢ (122)
' L [M“/Z (Wz ) + Maa ( Ael? )]
-f(&)dé

is a solution to (120).
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In view of the results obtained in Section 3,

oo t x
& (1) = _L .[o M2 (A(t—r)“/z)

X @
A, (t _ T)(x/2+1 2

(123)
g (1) drdE
is proposed as a solution to problem (121).

Lemma 17. Let c(x,t) be a solution of the time-fractional
diffusion equation 0D‘;‘c(x, t) = A2(0%¢c/0x?)(x, t) such that

(i) For every (x,t), the function F (x,t)

oo (124)
= J c (& t)dE is well defined,
. .. OC
(i) lim — (x,t) =0, (125)
X —000x
(iii) ‘%c({-, )| < k(&) e L' (x,00), (126)
(iv) ©/or)c &) € L' ((x,00) x (0,1)). (127)

(t-7)"

Then J‘;O c(&,t)dé is a solution to the time fractional diffusion
equation.

Proof. From (124), F(x,t) = I:O c(&,t)dé is well defined. The
next equalities are valid due to (125), (126), and (127):

1 Jt (0/01) F (x,71)
Frl-w Jo @t-1)°

1 L | 0 (®
:F(l—oc) Jo (t-1)* <$J’x C(E’T)d€>dr

1 | © 9
“Ta-w L - oF J 3¢ & dbdr

(1 L (a/or)c (&)
‘L r(l—“)Jo T

0Df‘F (x,t) = dr

, (128)
- [ oprenag - | Azg(s,nds

X

_ 42 0c
=-1 ax(f’t)

g—; (x.1) + Alemeg—; (x,1)

aZ
e

It can be proved that (123) is under the hypothesis of
Lemma17.
Regarding the border conditions:

= )2

2

Jooc(f,t) df) = %F (x,t).

X

O
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(i) Observing that

tﬂ 5
Jo “’2<A(t-r)“/2) At -

§ o,
Ata/za_i) >

Lebesgue Convergence Theorem can be applied and

§

)tx/2+1 2

g (r)dr
(129)

< ww (-

¢ (x,0)

d £
a/2 (A(t_.r)oc/2> At — o) 2g(r)drd£

o rt
[ ]
x 0

3 3 o
(A (t— T)a/z > 1 (t— T)‘x/2+l Eg () dr d£| (130)

o t
. ¢ g
= jx ltliIol L -ﬂa/z <A t - T)“/Z > At )a/2+1 Zg(T) defl
0 £ o -
< JX ltI{{)IMW <—W,—E, 1>[d§ =0.

(ii) From (98),

a a [ ras
2x (" t)‘Eina_<_Jx J, 4

§

’ A(t )oc/2+1 2

t x
=limJ M, S EE——
N0 Jo /2<A(t—r)o‘/2)

X [0

'mag(f)(ﬁ:g(f)-

()
At 1)

g(m)dr dE)
(131)

Theorem 18. Let f be a continuous bounded function in R
and let g be a continuous function in [0, T). Then

1 e x+¢&
coh) = an J [ﬂ“” ()»t“”)

(28 0

At(x/l

h LOO Eﬂaﬁ()t(t —xr)“/z)

.Wzg(r)d‘rdf

13
is a solution to problem
82
D% (x,t) = ﬁ(x 0,
0<x<00, 0<t<T, 0<aa<l,
(133)
c(x,0)=f(x), 0<x<oo0,
ic(Ot)— t), 0<t<T
ox A ’

Theorem 19. The limit when o« /1 of the solution to problem

D%; (x,1) = AZ—( 1),
0<x<00, 0<t<T, 0<aa<l,
(134)
G (x,0)=0, 0<x<o00,
ac(Ot)— (t), 0<t<T
ox =g

is the classical solution to the analogous problem when o = 1
and we recover the heat equation

%w(x,t) 22,2; (x,t), 0<x<o00, 0<t<T,
w(x,0)=0, 0<x<o00, (135)
0
a—xw(O,t) =g, 0<t<T.
Proof. It can be seen in [1] that
t % [4t-T)
w(x,t) = — L \/ﬁg () dr (136)

is a solution to problem (135).
Let ¢S’ be a solution to problem (134) given by Theorem 18,

o= [ [, (—F—
s (x,t) = L L /%“/2<A(t—r)“/2)

.Wzg(‘[)d‘l’df

(137)

Applying Lebesgue Convergence Theorem, Lemma 11, and
Fubini’s Theorem,

o o rt
i 0=l [ [

(7o)
A (t _ T)a/z A (t )OL/2+1 2

00 t
=— J J lim.Z
x 0 a1l

)i
a2 A(t_r)zx/z At — )a/2+12

t oo ,—x"/A(t-T) x t
= — d = —
L L 2T A (- T)a/zg(T) T L

Zg(m)drdg }
00 rt ,mx'/4(t-1) x
29 @ drdt =~ J Jo 2w oot 0 9
—x?[4(t-T)
\/ﬁg(‘r)d‘r = w(x,t).
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6. Conclusions

On the basis of the asymptotic behavior of some Wright func-
tions and the existence of bounds for the Mainardi and the
Wright function W(-x,«/2,1) in R*, two different initial-
boundary-value problems (with Dirichlet and Neumann
boundary conditions, resp.) for the time-fractional diffusion
equation on the real positive semiaxis plane were solved. In
each case, certain conditions must be verified for the data
to obtain the solution and the convergence of this solution
when « ~ 1 was analyzed, recovering the classical solutions
of the respective boundary-value problems corresponding to
the heat equation on the real positive semiaxis.

It would be interesting to combine these obtained results
for the two initial-boundary-value problems with numerical
methods that approximate their solutions. Different authors
have focused their work on fractional numerical methods,
for example, [23], considering explicitly the time-fractional
diffusion equation or also [24, 25] providing different
approaches to these kind of problems. Taking into account
that the explicit expressions of the solutions provided in this
work are manageable and of low complexity, they might help
to check if new numerical algorithms actually converge to the
desired solution of the problem and at which rate.
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