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We propose a three-dimensional autonomous nonlinear system, called the general 𝑇 system, which has potential applications in
secure communications and the electronic circuit. For the general𝑇 systemwith delayed feedback, regarding the delay as bifurcation
parameter, we investigate the effect of the time delay on its dynamics. We determine conditions for the existence of the Hopf
bifurcations and analyze their direction and stability. Also, the fractional order general 𝑇-system is proposed and analyzed. We
provide some numerical simulations, where the chaos attractor and the dynamics of the Lyapunov coefficients are taken into
consideration.The effectiveness of the chaotic control and synchronization on schemes for the new fractional order chaotic system
are verified by numerical simulations.

1. Introduction

Lorenz found the first canonical chaotic attractor [1]. During
the time, it has been proved that chaos can occur in simple
three-dimensional autonomous systems with one, two, and
three nonlinearities. Tigan and Opris [2] proposed and
analyzed a new chaotic three-dimensional nonlinear system,
called 𝑇 system, which is similar to the Lorenz system.
Because 𝑇 system allows a larger possibility in choosing
the parameters of the system, it can display more complex
dynamics [3–10].

Recently, based on the study of integer order chaos, the
fractional order Lorenz system [11] and the fractional order
Liu system [12] were introduced. The system with fractional
order still shows the chaotic behavior [13, 14].

The 𝑇 system is described by [2]

𝑥̇ (𝑡) = 𝑎 (𝑦 (𝑡) − 𝑥 (𝑡)) ,

̇𝑦 (𝑡) = (𝑏 − 𝑎) 𝑥 (𝑡) − 𝑎𝑥 (𝑡) 𝑧 (𝑡) ,

𝑧̇ (𝑡) = − 𝑐𝑧 (𝑡) + 𝑥 (𝑡) 𝑦 (𝑡) ,

(1)

which is chaotic when 𝑎 = 2.1, 𝑏 = 30, and 𝑐 = 0.6 [2].

Li et al. [15] have proposed a new Lorenz-like chaotic sys-
tem derived from (1).The nonlinear differential three-dimen-
sional system is given by

𝑥̇ (𝑡) = 𝑎 (𝑦 (𝑡) − 𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 𝑎𝑏𝑥 (𝑡) − 𝑎𝑥 (𝑡) 𝑧 (𝑡) ,

𝑧̇ (𝑡) = − 𝑐𝑧 (𝑡) + 𝑥 (𝑡) 𝑦 (𝑡) ,

(2)

which is chaotic when 𝑎 = 5, 𝑏 = 4, and 𝑐 = 2 [15].
Chaotic phenomena in electric circuits have been studied

with great interest. The electronic circuit for (2) is designed
and a chaotic attractor is implemented and verified [15].

Yang [16] proposed another new Lorenz-like system. The
nonlinear differential three-dimensional system is

𝑥̇ (𝑡) = 𝑎 (𝑦 (𝑡) − 𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 𝑏1𝑥 (𝑡) − 𝑏2𝑥 (𝑡) 𝑧 (𝑡) ,

𝑧̇ (𝑡) = − 𝑐𝑧 (𝑡) + 𝑙𝑥 (𝑡)
2
+ 𝑘𝑦 (𝑡)

2
,

(3)

which is chaotic when 𝑎 = 10, 𝑏1 = 40, 𝑏2 = 1, 𝑐 = 2.5, 𝑙 = 2,
and 𝑘 = 2 [16].
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Figure 1: Phase portrait of the chaotic attractor for the general 𝑇
system (4) with 𝑎 = 10, 𝑏1 = 40, 𝑏2 = 1, 𝑐 = 2.5, 𝑑 = 3, 𝑙 = 0.9, and
𝑘 = 2.
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Figure 2: Dynamics of Lyapunov exponents of (4) with 𝑎 = 10, 𝑏1 =
40, 𝑏2 = 1, 𝑐 = 2.5, 𝑑 = 3, 𝑙 = 0.9, and 𝑘 = 2.

Based on (1), (2), and (3), we propose a general 𝑇 system
described by the following differential equations:

𝑥̇ (𝑡) = 𝑎 (𝑦 (𝑡) − 𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 𝑏1𝑥 (𝑡) − 𝑏2𝑥 (𝑡) 𝑧 (𝑡) ,

𝑧̇ (𝑡) = − 𝑐𝑧 (𝑡) + 𝑑𝑥 (𝑡) 𝑦 (𝑡) + 𝑙𝑥 (𝑡)
2
+ 𝑘𝑦 (𝑡)

2
,

(4)

where 𝑎, 𝑏2, 𝑐, 𝑑, ℎ, 𝑘 are positive real parameters, 𝑏1 is a real
parameter, and 𝑎 ̸= 0.

An experimental electronic circuit for (4) can be descri-
bed and implemented in a similar way as in [15, 17].

System (4) is chaotic when 𝑎 = 10, 𝑏1 = 40, 𝑏2 = 1, 𝑐 = 2.5,
𝑑 = 3, 𝑙 = 0.9, and 𝑘 = 2 (see Figure 1).

The dynamics of Lyapunov exponents of system (4) is
displayed in Figure 2.

For 𝑏1 = 𝑏 − 𝑎, 𝑏2 = 𝑎, 𝑑 = 1, 𝑙 = 0, and 𝑘 = 0, system (4)
is given by (1). For 𝑏1 = 𝑎𝑏, 𝑏2 = 𝑎, 𝑑 = 1, 𝑙 = 0, and 𝑘 = 0,
system (4) becomes (2). For 𝑑 = 0, system (4) is (3).

Systems (1), (2), (3), and (4) are chaotic and using the
method from [15] we can verify that they are not equivalent
to the Lorenz, Chen, and Lü systems.

Time-delayed feedback is a powerful tool to control
unstable periodic orbits or control unstable steady states [18].
Following the idea of Pyragas [19], as in [9, 18], we add a
delayed force 𝑘1(𝑦(𝑡) − 𝑦(𝑡 − 𝜏)) to the second equation of
(4) and we obtain the delayed feedback control system:

𝑥̇ (𝑡) = 𝑎 (𝑦 (𝑡) − 𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 𝑏1𝑥 (𝑡) − 𝑏2𝑥 (𝑡) 𝑧 (𝑡) + 𝑘1 (𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏)) ,

𝑧̇ (𝑡) = − 𝑐𝑧 (𝑡) + 𝑑𝑥 (𝑡) 𝑦 (𝑡) + 𝑙𝑥 (𝑡)
2
+ 𝑘𝑦 (𝑡)

2
,

(5)

where 𝜏 is the time delay.
We assume that 𝜏 > 0 and 𝑘1 ∈ R, which indicates the

strength of the feedback [10].
The fractional-order general 𝑇 system can be described

by

𝐷
𝑞1𝑥 (𝑡) = 𝑎 (𝑦 (𝑡) − 𝑥 (𝑡)) ,

𝐷
𝑞2𝑦 (𝑡) = 𝑏1𝑥 (𝑡) − 𝑏2𝑥 (𝑡) 𝑧 (𝑡) ,

𝐷
𝑞3𝑧 (𝑡) = − 𝑐𝑧 (𝑡) + 𝑑𝑥 (𝑡) 𝑦 (𝑡) + 𝑙𝑥 (𝑡)

2
+ 𝑘𝑦 (𝑡)

2
,

(6)

where
𝑎
𝐷
𝑞

𝑡
is defined by [13]

𝑎
𝐷
𝑞

𝑡
=

{{{{{{

{{{{{{

{

𝑑
𝑞

𝑑𝑡𝑞
, Re (𝑞) > 0

1 Re (𝑞) = 0

∫

𝑡

𝑎

(𝑑𝑠)
−𝑞 Re (𝑞) < 0

(7)

and 𝑞 is the derivative order that can be a complex number
with Re(𝑞) the real part of 𝑞. The numbers 𝑎 and 𝑡 are the
limits of the operator. There are many definitions for general
fractional derivative. The most frequently used ones are the
Grunwald-Letnikov definition, the Riemann-Liouville, and
the Caputo definitions.

As in [13], in this paper we use the Caputo definition for
the fractional derivative.

In the present paper, we focus on (5) and (6).The aim is to
provide a new investigation of theHopf bifurcation and chaos
control on the general 𝑇 system given by (5) and an analysis
of the fractional general 𝑇-system as well.

For system (5), we consider 𝜏 as the bifurcation param-
eter. When it passes through some certain critical values,
the equilibrium will lose its stability and Hopf bifurcation
will occur. We study the direction of the Hopf bifurcation,
as well as the stability and period of the bifurcating periodic
solutions. Moreover, with different values for 𝑘1 and 𝜏, we
realize the chaos control.

The chaotic dynamics in the general 𝑇-system with frac-
tional derivative is taken into account. Some properties are
given. Then, synchronization problem of (6) is provided.
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The paper is structured as follows. Section 2 provides the
stability of the steady states when there is no time delay. For
system (5), Section 3 analyzes the local stability, the existence
of the Hopf bifurcation, and the direction and the stability of
the Hopf bifurcation. The analysis of system (6) is presented
in Section 4. The chaos control of (6) is given in Section 5
and the synchronization in Section 6. Finally, conclusions are
drawn in Section 7.

2. Existence of Steady States: Stability
Analysis for System (4)

The equilibrium of system (4) can be obtained by solving the
following algebraic system:

𝑎 (𝑦 − 𝑥) = 0,

𝑏1𝑥− 𝑏2𝑥𝑧 = 0,

− 𝑐𝑧 + 𝑑𝑥𝑦+ 𝑙𝑥
2
+ 𝑘𝑦

2
= 0.

(8)

Then, we have the following.

Proposition 1. Consider the following:

(i) If 𝑏1 < 0, then system (4) has only one real steady state
𝑆0(0, 0, 0).

(ii) If 𝑏1 > 0, then system (4) has three real steady states:
𝑆0(0, 0, 0), 𝑆−(−𝑥0, −𝑦0, 𝑧0), 𝑆+(𝑥0, 𝑦0, 𝑧0), where

𝑥0 = 𝑦0 = √
𝑏1𝑐

𝑏2 (𝑑 + 𝑙 + 𝑘)
,

𝑧0 =
𝑏1
𝑏2
.

(9)

In order to analyze the local stability of the above steady
states, the Jacobian matrix of (4) is given by

𝐽 (𝑥, 𝑦, 𝑧) = (

−𝑎 𝑎 0
𝑏1 − 𝑏2𝑧 0 −𝑏2𝑧

𝑑𝑦 + 2𝑙𝑥 𝑑𝑥 + 2𝑘𝑦 −𝑐

) . (10)

If 𝑏1 < 0, the characteristic equation of 𝐽(𝑆0) is given by

(𝜆 + 𝑐) (𝜆
2
+ 𝑎𝜆− 𝑎𝑏1) = 0. (11)

The eigenvalues of (11) are 𝜆1 = −𝑐, and 𝜆2,3 = (1/2)(−𝑎 ±
√𝑎2 + 4𝑎𝑏1).

For 𝑏1 > 0, both 𝑆− and 𝑆+ have the same characteristic
equation; that is

𝜆
3
+ (𝑎 + 𝑐) 𝜆

2
+(𝑎𝑐 +

𝑏1𝑐 (𝑑 + 2𝑘)
𝑑 + 𝑙 + 𝑘

) 𝜆+ 2𝑎𝑏1𝑐 = 0. (12)

The eigenvalues of (12), which are dependent on parameters
𝑎, 𝑏1, 𝑐, 𝑑, 𝑙, 𝑘, can be obtained by the Cardano formula. Since
𝑎, 𝑐, 𝑑, 𝑙, 𝑘 are all positive real parameters, one can ensure that
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Figure 3: The steady state 𝑆
−
of system (4) is locally asymptotically

stable when 𝑏
1
< 𝑏
𝑐
.

(12) has at least one eigenvalue with negative real part as 𝑏1 >
0. The other two eigenvalues could be

(a) two negative real roots;

(b) two positive real roots;

(c) two complex-conjugate roots with negative real part;

(d) two complex-conjugate roots with positive real part.

Therefore, analyzing the characteristic equation of (4) and
using the Routh-Hurwitz theorem, we obtain the following
propositions.

Proposition 2. Consider the following:

(i) If 𝑏1 < 0, then the steady state 𝑆0(0, 0, 0) of system (4)
is locally asymptotically stable.

(ii) If 𝑏1 > 0, then the steady state 𝑆0(0, 0, 0) of system (4)
is unstable.

(iii) If 0 < 𝑏1 < 𝑏𝑐 and 𝑎(𝑑 + 2𝑙) − 𝑐(𝑑 + 2𝑘) > 0, where

𝑏𝑐 =
𝑎 (𝑎 + 𝑐) (𝑑 + 𝑙 + 𝑘)

𝑎 (𝑑 + 2𝑙) − 𝑐 (𝑑 + 2𝑘)
, (13)

then the steady states 𝑆− and 𝑆+ of system (4) are locally
asymptotically stable (see Figures 3 and 4).

(iv) If 𝑏1 > 𝑏𝑐 and 𝑎(𝑑 + 2𝑙) − 𝑐(𝑑 + 2𝑘) > 0, then the steady
states 𝑆− and 𝑆+ of system (4) are unstable (see Figures
5 and 6).

Using the Hopf bifurcation theorem [9, 16], we have the
following.

Proposition 3. If 𝑏1 > 0 and 𝑏1 = 𝑏𝑐, then for the steady state
𝑆+ (𝑜𝑟 𝑆−) of system (4), the corresponding characteristic equa-
tion has three eigenvalues: one negative and one pair of purely
imaginary conjugate roots, satisfying Re(𝑑𝜆/𝑑𝑏1)|𝑏1=𝑏𝑐 ̸= 0;
that is, system (4) undergoes a Hopf bifurcation at the steady
state 𝑆+ (𝑜𝑟 𝑆−) (see Figures 7 and 8).
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3. Local Stability and Hopf
Bifurcation for System (5)

3.1. Local Stability and the Existence of Hopf Bifurcation for
System (5). Consider system (5).When 𝜏 = 0, it becomes (4).
Since the time delay does not change, the delayed feedback
system (5) has the same equilibria as system (4).

From Proposition 1, under the assumption 𝑏1 > 0, sys-
tem (5) also has three real steady states: 𝑆0(0, 0, 0), 𝑆−(−𝑥0, −
𝑦0, 𝑧0), and 𝑆+(𝑥0, 𝑦0, 𝑧0).

Now, we analyze the effect of the time delay on the stabil-
ity of these steady states.

The linearization of system (5) at 𝑆0 is

𝑢̇1 (𝑡) = 𝑎 (𝑢2 (𝑡) − 𝑢1 (𝑡)) ,

𝑢̇2 (𝑡) = 𝑏1𝑢1 (𝑡) + 𝑘1 (𝑢2 (𝑡) − 𝑢2 (𝑡 − 𝜏)) ,

𝑢̇3 (𝑡) = − 𝑐𝑢3 (𝑡) .

(14)

The characteristic equation of (14) is

(𝜆 + 𝑐) (𝜆
2
+ (𝑎 − 𝑘1) 𝜆 − 𝑎𝑘1 − 𝑎𝑏1 + (𝜆 + 𝑎) 𝑘1𝑒

−𝜆𝜏
)

= 0.
(15)
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Equation (15) has a negative root𝜆 = −𝑐 for all 𝜏 > 0; thus,
we need to analyse the following equation:

𝜆
2
+ (𝑎 − 𝑘1) 𝜆 − 𝑎𝑘1 − 𝑎𝑏1 + (𝜆 + 𝑎) 𝑘1𝑒

−𝜆𝜏
= 0. (16)

If there is no delay, (16) becomes

𝜆
2
+ 𝑎𝜆− 𝑎𝑏1 = 0. (17)
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Let 𝑖𝜔 (𝜔 > 0) be a root of (16). It follows that

𝜔
2
+ 𝑎𝑘1 + 𝑎𝑏1 = 𝑎𝑘1 cos (𝜔𝜏) +𝜔𝑘1 sin (𝜔𝜏) ,

(𝑎 − 𝑘1) 𝜔 = 𝑎𝑘1 sin (𝜔𝜏) −𝜔𝑘1 cos (𝜔𝜏) ,
(18)

which can be written as

𝜔
4
+𝐴𝜔

2
+𝐵 = 0, (19)

where

𝐴 = 2𝑎𝑏1 + 𝑎
2
,

𝐵 = 2𝑎2𝑏1 (2𝑘1 + 𝑏1) .
(20)

As in [9], we consider the following analysis:

(1) If the conditions

(𝐻1) 𝐴 > 0, 𝐵 > 0 (21)

hold, then (19) has no positive roots.
(2) If the condition

(𝐻2) 𝐵 < 0 (22)

holds, then (19) has a unique positive root 𝜔2
+
. Using

(19), we have

𝜔+ = (
−𝐴 + √𝐴2 − 4𝐵

2
)

1/2

. (23)

(3) If the conditions

(𝐻3) 𝐴 < 0, 𝐵 > 0, 𝐴
2
− 4𝐵 > 0 (24)

hold, then (19) has two positive roots 𝜔2
±
. Thus, we

have

𝜔± = (
−𝐴 + √𝐴2 − 4𝐵

2
)

1/2

. (25)

A stability switch may occur, through the roots ±𝜔±𝑖,
where 𝜔± are given by (25). Therefore, from (18), we have

𝜏
±

𝑛
=

1
𝜔±

arccos(
𝑘1𝜔

2
±
+ 𝑎 (𝑎𝑘1 + 𝑎𝑏1)

𝑘1 (𝑎
2 + 𝜔2
±
)

)+
2𝑛𝜋
𝜔±

, (26)

where 𝑛 = 1, 2, . . . at which (16) has a pair of purely imaginary
roots ±𝜔±𝑖.

Consider

𝜆 (𝜏) = 𝜇 (𝜏) + 𝑖𝜔 (𝜏) (27)

the root of (16) so that 𝜇(𝜏±
𝑛
) = 0. Using (16) and considering

𝜆 = 𝜆(𝜏), (𝑑𝜆(𝜏)/𝑑𝜏)−1 is given by

(
𝑑𝜆 (𝜏)

𝑑𝜏
)

−1
=
(2𝜆 + 𝑎 − 𝑘1) 𝑒

𝜆𝜏

𝜆 (𝑘1𝜆 + 𝑎𝑘1)
+

𝑘1
𝜆 (𝑘1𝜆 + 𝑎𝑘1)

−
𝜏

𝜆
.

(28)
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Figure 9: A Hopf bifurcation occurs at the steady state 𝑆0 of system
(5), when 𝑘1 = −20.3, 𝜏1 = 0.415.

From (18) and (25), we obtain

Re(𝑑𝜆 (𝜏)
𝑑𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏±
𝑛

=
1

𝑘
2
1 (𝜔

2
±
+ 𝑎2)

⋅ (±√𝐴2 − 4𝐵) . (29)

Thus, if 𝐴2
− 4𝐵 > 0, we have

Re(𝑑𝜆 (𝜏)
𝑑𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏+
𝑛

=
1

𝑘
2
1 (𝜔

2
+
+ 𝑎2)

√𝐴2 − 4𝐵 > 0,

Re(𝑑𝜆 (𝜏)
𝑑𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏−
𝑛

= −
1

𝑘
2
1 (𝜔

2
−
+ 𝑎2)

√𝐴2 − 4𝐵 < 0.

(30)

From the above findings we have the following.

Theorem 4. Let 𝜏±
𝑛
(𝑛 = 0, 1, 2, . . .) be defined by (26) and

𝜏0 = min{𝜏+0 , 𝜏
−

0 }.
(i) If (𝐻1) holds, (16) and (17) have the same number of

roots with positive real part for all 𝜏 > 0.
(ii) If either (𝐻2) or (𝐻3) holds, when 𝜏 ∈ [0, 𝜏0), (16) and

(17) have the same number of roots with positive real
part. Moreover, if the transversality conditions (30)
hold, then a Hopf bifurcation occurs at the steady state
𝑆0 in 𝜏 = 𝜏±𝑛 (see Figure 9).

From the symmetry of 𝑆+ and 𝑆−, it is sufficient to analyze
the stability of 𝑆+. By the linear transformation

𝑥1 (𝑡) = 𝑥 (𝑡) − 𝑥0,

𝑦1 (𝑡) = 𝑦 (𝑡) − 𝑦0,

𝑧1 (𝑡) = 𝑧 (𝑡) − 𝑧0,

(31)

system (5) becomes

𝑥̇1 (𝑡) = 𝑎 (𝑦1 (𝑡) − 𝑥1 (𝑡)) ,

̇𝑦1 (𝑡) = − 𝑏2𝑥0𝑧1 (𝑡) − 𝑏2𝑥1 (𝑡) 𝑧1 (𝑡)

+ 𝑘1 (𝑦1 (𝑡) − 𝑦1 (𝑡 − 𝜏)) ,

𝑧̇1 (𝑡) = (𝑑 + 2𝑙) 𝑥0𝑥1 (𝑡) + (𝑑 + 2𝑘) 𝑦0𝑦1 (𝑡) − 𝑐𝑧1 (𝑡)

+ 𝑑𝑥1 (𝑡) 𝑦1 (𝑡) + 𝑙𝑥1 (𝑡)
2
+ 𝑘𝑦1 (𝑡)

2
.

(32)
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The characteristic equation of system (32) in (0, 0, 0) is

𝜆
3
+ 𝑎2𝜆

2
+ 𝑎1𝜆+ 𝑎0 + (𝑐2𝜆

2
+ 𝑐1𝜆+ 𝑐0) 𝑒

−𝜆𝜏
= 0, (33)

where

𝑎2 = 𝑎+ 𝑐 − 𝑘1,

𝑎1 = 𝑎𝑐 − (𝑎 + 𝑐) 𝑘1 +
𝑏1𝑐 (𝑑 + 2𝑘)
𝑑 + 𝑙 + 𝑘

,

𝑎0 = − 𝑎𝑐𝑘1 + 2𝑎𝑏1𝑐,

𝑐2 = 𝑘1,

𝑐1 = 𝑘1 (𝑎 + 𝑐) ,

𝑐0 = 𝑘1𝑎𝑐.

(34)

If there is no delay, (33) becomes

𝜆
3
+ (𝑎2 + 𝑐2) 𝜆

2
+ (𝑎1 + 𝑐1) 𝜆 + 𝑎0 + 𝑐0 = 0. (35)

Let 𝑖𝜔 (𝜔 > 0) be a root of (33).Then,𝜔 satisfies the equa-
tion

𝜔
6
+ (𝑎

2
2 − 𝑐

2
2 − 2𝑎1) 𝜔

4

+ (𝑎
2
1 − 2𝑎0𝑎2 − 𝑐

2
1 + 2𝑐0𝑐2) 𝜔

2
+ 𝑎

2
0 − 𝑐

2
0 = 0.

(36)

If 𝑧 = 𝜔2, then (36) becomes

ℎ (𝑧) := 𝑧
3
+𝑝𝑧

2
+ 𝑞𝑧 + 𝑟 = 0, (37)

where

𝑝 = 𝑎
2
2 − 𝑐

2
2 − 2𝑎1,

𝑞 = 𝑎
2
1 − 2𝑎0𝑎2 − 𝑐

2
1 + 2𝑐0𝑐2,

𝑟 = 𝑎
2
0 − 𝑐

2
0 .

(38)

Therefore, applying the findings from [20] we obtain the
following.

Proposition 5. For the polynomial equation (37), we have the
following:

(i) If 𝑟 < 0, then (37) has at least one positive root.

(ii) If 𝑟 ≥ 0 and Δ = 𝑝2 − 3𝑞 ≤ 0, then (37) has no positive
roots.

(iii) If 𝑟 ≥ 0 and Δ > 0, then (37) has positive roots if and
only if 𝑧∗1 = (1/2)(−𝑝 + √Δ) > 0 and ℎ(𝑧

∗

1 ) ≤ 0.

Suppose that (37) has positive roots. Without loss of
generality, we assume that it has three positive roots, defined
by 𝑧1, 𝑧2, and 𝑧3.Then, (36) has three positive roots𝜔ℎ = √𝑧ℎ,
ℎ = 1, 2, 3.

By direct computation, we have the following.

Theorem6. For the simple pairs of conjugate purely imaginary
roots of (36), ±𝑖𝜔ℎ, ℎ = 1, 2, 3, we have

𝜏
(𝑗)

ℎ

=
1
𝜔ℎ

[arccos
𝑐1𝜔

2
ℎ
(𝜔

2
ℎ
− 𝑎1) − (𝑎2𝜔

2
ℎ
− 𝑎0) (𝑐2𝜔

2
ℎ
− 𝑐0)

(𝑐2𝜔
2
ℎ
− 𝑐0)

2
+ 𝑐

2
1𝜔

2
ℎ

+ 2𝑗𝜋] .
(39)

We have ℎ = 1, 2, 3, 𝑗 = 0, 1, 2, . . ., with

𝜏0 := 𝜏
(0)
ℎ0
= min {𝜏(0)1 , 𝜏

(0)
2 , 𝜏
(0)
3 } ,

𝜔0 = 𝜔ℎ0 .
(40)

For (33), using Proposition 5 and [21] to (33), we have the
following.

Proposition 7 (see [10]). For (33) we have the following:

(i) If 𝑟 ≥ 0 and Δ = 𝑝2 − 3𝑞 ≤ 0, then all roots with posi-
tive real part of (33) have the same sum to those of the
polynomial equation (35) for all 𝜏 ≥ 0.

(ii) If either 𝑟 < 0 or 𝑟 ≥ 0, Δ = 𝑝2 − 3𝑞 > 0, 𝑧∗1 =
(1/3)(−𝑝+√Δ) > 0, and ℎ(𝑧∗1 ) ≤ 0, then all roots with
positive real parts of (33) have the same sum to those of
the polynomial equation (35) for 𝜏 ∈ [0, 𝜏0).

Let us denote the root of (33) by 𝜆(𝜏) = 𝜇(𝜏) + 𝑖𝜔(𝜏) with
𝜇(𝜏
(𝑗)

ℎ
) = 0, 𝜔(𝜏(𝑗)

ℎ
) = 𝜔ℎ.

Proposition 8. If 𝑧ℎ = 𝜔2ℎ and ℎ
󸀠
(𝑧ℎ) ̸= 0, then the transver-

sality condition

Re(𝑑𝜆 (𝜏)
𝑑𝜏
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏
(𝑗)

ℎ

̸= 0 (41)

is satisfied and Re(𝑑𝜆(𝜏)/𝑑𝜏)|
𝜏=𝜏
(𝑗)

ℎ

and ℎ󸀠(𝑧ℎ) have the same
signs.

Applying Propositions 7 and 8 to (33), we have the follow-
ing theorems.

Theorem 9. Let 𝜏(𝑗)
ℎ

and 𝜏0 be defined by (39) and (40). Sup-
pose that condition

𝑎 (𝑑 + 2𝑙) − 𝑐 (𝑑 + 2𝑘) > 0 (42)

holds.

(1) If 0 < 𝑏1 < 𝑏𝑐, then we have the following:

(i) If 𝑘1 ≤ 𝑏1 and Δ ≤ 0, then (33) has all the roots
with negative real part for all 𝜏 ≥ 0 and the steady
state 𝑆+ (𝑜𝑟 𝑆−) of system (5) is locally asymp-
totically stable.

(ii) If 𝑘1 > 𝑏1 or 𝑘1 ≤ 𝑏1 and Δ > 0, 𝑧∗1 > 0 and
ℎ(𝑧
∗

1 ) ≤ 0, then (33) has all the roots with nega-
tive real part for all 𝜏 ∈ [0, 𝜏0) and the steady state
𝑆+ (𝑜𝑟 𝑆−) of system (5) is locally asymptotically
stable.
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(iii) If the conditions of (ii) hold and ℎ󸀠(𝑧ℎ) ̸= 0,
then a Hopf bifurcation occurs at the steady state
𝑆+ (𝑜𝑟 𝑆−) for 𝜏 = 𝜏

(𝑗)

ℎ
.

(2) If 𝑏1 > 𝑏𝑐, then we have the following:

(i) If 𝑘1 ≤ 𝑏1 and Δ ≤ 0, then (33) has two roots with
positive real part for all 𝜏 ≥ 0 and steady state
𝑆+ (𝑜𝑟 𝑆−) of system (5) is unstable.

(ii) If 𝑘1 > 𝑏1 or 𝑘1 ≤ 𝑏1 and Δ > 0, 𝑧∗1 > 0 and
ℎ(𝑧
∗

1 ) ≤ 0, then (33) has two roots with positive
real part for all 𝜏 ∈ [0, 𝜏0) and the steady state
𝑆+ (𝑜𝑟 𝑆−) of system (5) is unstable.

(iii) If the conditions of (ii) hold and ℎ󸀠(𝑧∗
ℎ
) ̸= 0, then

a Hopf bifurcation occurs at the steady state
𝑆+ (𝑜𝑟 𝑆−) for 𝜏 = 𝜏

(𝑗)

ℎ
.

3.2. Direction and Stability of the Hopf Bifurcation. In the
previous section, for system (5), we have obtained conditions
for the Hopf bifurcations to occur for a sequence of values
of 𝜏. Using the techniques from normal form theory and
center manifold theory introduced by [22], we determine the
direction, the stability, and the periodicity of the bifurcating
solutions. Let (𝑥∗, 𝑦∗, 𝑧∗) be the steady state of (5), where
system (5) undergoesHopf bifurcations at 𝜏 = 𝜏ℎ and±𝑖𝜔ℎ are
the corresponding pure imaginary roots of the characteristic
equation.

For convenience, let 𝑥1(𝑡) = 𝑥(𝑡) − 𝑥∗, 𝑥2(𝑡) = 𝑦(𝑡) −
𝑦∗, and 𝑥3(𝑡) = 𝑧(𝑡) − 𝑧∗, 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡𝜏), 𝜏 = 𝜏ℎ + 𝜇 and
dropping the bars for simplification of notation, system (5)
can be written as a FDE (functional differential equation) in
𝐶 = 𝐶([−1, 0],R3

) as follows:

𝑢̇ (𝑡) = 𝐿𝜇 (𝑢𝑡) +𝑓 (𝜇, 𝑢𝑡) , (43)

where 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡))
𝑇
∈ R3 and 𝐿𝜇 : 𝐶 → R,

𝑓 : R × 𝐶 → R are given, restrictively, by

𝐿𝜇 (𝜙) = (𝜏ℎ +𝜇)

⋅(

−𝑎 𝑎 0
0 𝑘1 −𝑏2𝑥∗

(𝑑 + 2𝑙) 𝑦∗ (𝑑 + 2𝑘) 𝑥∗ −𝑐

)(

𝜙1 (0)
𝜙2 (0)
𝜙3 (0)

)

+ (𝜏ℎ +𝜇)

⋅(

0 0 0
0 −𝑘1 0
0 0 0

)(

0
−𝑏2𝜙1 (0) 𝜙3 (0)

𝑑𝜙1 (0) 𝜙2 (0) + 𝑙𝜙1 (0)
2
+ 𝑘𝜙2 (0)

2

).

(44)

From the previous section, if 𝜇 = 0, system (5) undergoes
Hopf bifurcations at (𝑥∗, 𝑦∗, 𝑧∗). By Riesz representation
theorem, there exists a function 𝜂(𝜃, 𝜇) of bounded variation
for 𝜃 ∈ [−1, 0] so that

𝐿𝜇 (𝜙) = ∫

0

−1
𝑑𝜂 (𝜃, 0) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 [−1, 0] . (45)

We can choose
𝜂 (𝜃, 𝜇)

= (𝜏ℎ +𝜇)(

−𝑎 𝑎 0
0 𝑘1 −𝑏2𝑥∗

(𝑑 + 2𝑙) 𝑦∗ (𝑑 + 2𝑘) 𝑥∗ −𝑐

)𝛿 (𝜃)

− (𝜏ℎ +𝜇)(

0 0 0
0 −𝑘1 0
0 0 0

)𝛿 (𝜃 + 1) ,

(46)

where 𝛿 is the Dirac delta function.
For 𝜙 ∈ 𝐶([−1, 0], (R3

)
∗

) we define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0)

∫

0

−1
𝑑𝜂 (𝜇, 𝑠) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 =
{

{

{

0, 𝜃 ∈ [−1, 0)

𝑓 (𝜇, 𝜙 (𝜃)) , 𝜃 = 0.

(47)

Then, system (43) is equivalent to the abstract differential
equation:

𝑢̇𝑡 = 𝐴 (𝜇) 𝑢𝑡 +𝑅 (𝜇) 𝑢𝑡, (48)

where 𝑢𝑡(𝜃) = 𝑢(𝑡 + 𝜃), for 𝜃 ∈ [−1, 0].
For Ψ ∈ 𝐶1([0, 1],R3

), we define

𝐴
∗
Ψ (𝑠) =

{{{{

{{{{

{

−
𝑑Ψ (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1]

∫

0

−1
𝑑𝜂
𝑇
(𝑡, 𝜃) Ψ (−𝑡) , 𝑠 = 0

(49)

and the bilinear form
⟨Ψ (𝑠) , 𝜙 (𝜃)⟩

= Ψ (0) 𝜙 (0) −∫
0

𝜃=−1
∫

𝜃

𝜀=0
Ψ (𝜀 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜀) 𝑑𝜀,

(50)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Then, 𝐴 = 𝐴(0) and 𝐴∗ = 𝐴∗(0) are adjoining operators.

FromSection 2,±𝜔ℎ𝜏ℎ are eigenvalues of𝐴; thus, they are also
eigenvalues of 𝐴∗.

By direct computation, we obtain that

𝑞 (𝜃) = 𝑞0𝑒
𝑖𝜃𝜔
ℎ
𝜏
ℎ , (51)

with

𝑞0 = (1, 𝛼, 𝛽)
𝑇

= (1,
𝑏2 + 𝑖𝜔ℎ
𝑏2

,
𝑏2 (𝑥∗ + 𝑦∗) + 𝑖𝜔ℎ𝑥∗

𝑏2 (𝑐 + 𝑖𝜔ℎ)
)

(52)

the eigenvector of 𝐴 corresponding to 𝑖𝜔ℎ𝜏ℎ and

𝑞
∗
(𝑠) = 𝐷𝑞

∗

0 𝑒
𝑖𝑠𝜔
ℎ
𝜏
ℎ (53)
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with

𝑞
∗

0 = (1, 𝛼
∗
, 𝛽
∗
)
𝑇

= (1, −
(𝑎 − 𝑖𝜔ℎ) (𝑐 − 𝑖𝜔ℎ)

𝑎 (𝑑 + 2𝑙) (𝑑 + 2𝑘) 𝑥∗𝑦∗
,
𝑎 − 𝑖𝜔ℎ

(𝑑 + 2𝑙) 𝑦∗
)

(54)

the eigenvector of 𝐴∗ corresponding to −𝑖𝜔ℎ𝜏ℎ, where

𝐷 =
1

1 + 𝛼𝛼∗ + 𝛽𝛽∗ − 𝑘1𝜏ℎ𝛼𝛼∗𝑒𝑖𝜔ℎ𝜏ℎ
. (55)

Using the same notations as in [22], we compute the coordi-
nates to describe the center manifold 𝐶0 at 𝜇 = 0.

Let 𝑢𝑡 be the solution of (43) when 𝜇 = 0 and define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢𝑡⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢𝑡 (𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .
(56)

On the center manifold 𝐶0 we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝜃) , 𝜃) , (57)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊20 (𝜃)
𝑧
2

2
+𝑊11 (𝜃) 𝑧𝑧 +𝑊02 (𝜃)

𝑧
2

2

+𝑊30 (𝜃)
𝑧
3

6
+ ⋅ ⋅ ⋅

(58)

and 𝑧 and 𝑧 are local coordinates for center manifold 𝐶0 in
the direction of 𝑞∗ and 𝑞∗. Note that𝑊 is real if 𝑢𝑡 is real. We
consider only real solutions. For the solution 𝑢𝑡 ∈ 𝐶0 of (43),
since 𝜇 = 0, we have

𝑧̇ (𝑡) = ⟨𝑞
∗
, 𝑢̇𝑡⟩ = ⟨𝑞

∗
, 𝐴 (𝜇) 𝑢𝑡 +𝑅 (𝜇) 𝑢𝑡⟩

= 𝑖𝜏ℎ𝜔ℎ𝑧

+ 𝑞
∗
(0) 𝑓 (0,𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧𝑞 (0)})

= 𝑖𝜏ℎ𝜔ℎ𝑧 + 𝑞
∗
(0) 𝑓0 (𝑧, 𝑧) .

(59)

We rewrite this equation as

𝑧̇ (𝑡) = 𝑖𝜏ℎ𝜔ℎ𝑧 (𝑡) + 𝑔 (𝑧 (𝑡) , 𝑧 (𝑡)) , (60)

where

𝑔 (𝑧, 𝑧) = 𝑔20
𝑧
2

2
+𝑔11𝑧𝑧 + 𝑔01

𝑧
2

2
+𝑔21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ . (61)

Note that

𝑢𝑡 (𝜃) = (𝑢1𝑡 (𝜃) , 𝑢2𝑡 (𝜃) , 𝑢3𝑡 (𝜃))

= 𝑊 (𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃)

(62)

and 𝑞(𝜃) = (1 − 𝛼, 𝛽)𝑇𝑒𝑖𝜃𝜔ℎ𝜏ℎ .

We have

𝑢1𝑡 (0) = 𝑧 + 𝑧 +𝑊
(1)
20 (0)

𝑧
2

2
+𝑊
(1)
11 (0) 𝑧𝑧

+𝑊
(1)
02 (0)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝑢2𝑡 (0) = 𝛼𝑧 + 𝛼 𝑧+𝑊
(2)
20 (0)

𝑧
2

2
+𝑊
(2)
11 (0) 𝑧𝑧

+𝑊
(2)
02 (0)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝑢3𝑡 (0) = 𝛽𝑧 +𝛽𝑧+𝑊
(3)
20 (0)

𝑧
2

2
+𝑊
(3)
11 (0) 𝑧𝑧

+𝑊
(3)
02 (0)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(63)

Using (61), we obtain

𝑔20 = 2𝐷𝜏ℎ (𝑑𝛽
∗

𝛼− 𝑏2𝛼
∗
𝛽+𝛽
∗

𝑙 + 𝛽
∗

𝑘𝛼
2
) ,

𝑔11 = 𝐷𝜏ℎ (−𝑏2𝛼
∗
(𝛽 +𝛽)

+𝛽
∗
(𝑑 (𝛼 + 𝛼) + 2𝑙 + 2𝑘𝛼𝛼)) ,

𝑔02 = 𝐷𝜏ℎ (𝑑𝛽
∗

𝛼− 𝑏2𝛼
∗
𝛽+𝛽
∗

𝑙 + 𝛽
∗
𝑘𝛼

2
) ,

𝑔21 = − 𝑏2𝐷𝜏ℎ𝛼
∗
(2𝑊(3)20 (0) +𝑊

(3)
20 (0) + 2𝛽𝑊

(1)
11 (0)

+ 𝛽𝑊
(1)
20 (0)) +𝐷𝜏ℎ𝛽

∗

[𝑑𝛼𝑊
(2)
11 (0) + 𝑑𝑊

(2)
20 (0)

+ 2𝛼𝑑𝑊(1)11 (0) + 𝑑𝛼𝑊
(2)
20 (0)

+ 𝑙 (2𝑊(1)11 (0) +𝑊
(1)
20 (0))

+ 𝑘 (2𝛼𝑊(2)11 (0) + 𝛼𝑊
(2)
02 (0))] .

(64)

Since there are𝑊20(0) and𝑊11(0) in 𝑔21, we need to com-
pute them.

From (43) and (56), we have

𝑊̇ = 𝑥̇𝑡 − 𝑧̇𝑞 − 𝑧̇ 𝑞

=
{

{

{

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓0𝑞 (𝜃)} , 𝜃 ∈ [−1, 0)

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓0𝑞 (0)} + 𝑓0, 𝜃 = 0

= 𝐴𝑊+𝐻(𝑧, 𝑧, 𝜃) ,

(65)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃)
𝑧
2

2
+𝐻11 (𝜃) 𝑧𝑧 +𝐻02 (𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(66)

Expending the above series and comparing the corre-
sponding coefficients, we obtain

(𝐴− 2𝑖𝜏ℎ𝜔ℎ)𝑊20 (𝜃) = −𝐻20 (𝜃) ,

𝐴𝑊11 (𝜃) = −𝐻11 (𝜃) .
(67)
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From (65), we know that, for 𝜃 ∈ [−1, 0),

𝐻(𝑧, 𝑧, 𝜃) = − 𝑞
∗
(0) 𝑓0𝑞 (𝜃) − 𝑞

∗
(0) 𝑓0𝑞 (0)

= − 𝑔𝑞 (𝜃) + 𝑞𝑞 (𝜃) .

(68)

Comparing the coefficients with (66), we obtain

𝐻20 (𝜃) = − 𝑔20𝑞 (𝜃) − 𝑔02𝑞 (𝜃) ,

𝐻11 (𝜃) = − 𝑔11𝑞 (𝜃) − 𝑔11𝑞 (𝜃) .
(69)

From (67) and (68) and the definition of𝐴, it follows that

𝑊̇20 (𝜃) = 2𝑖𝜏ℎ𝜔ℎ𝑊20 (𝜃) + 𝑔20𝑞 (𝜃) + 𝑔02𝑞 (𝜃) . (70)

Notice that 𝑞(𝜃) = (1, 𝛼, 𝛽)𝑇𝑒𝑖𝜃𝜔ℎ𝜏ℎ and

𝑊20 (𝜃) =
𝑖𝑔20
𝜔ℎ𝜏ℎ

𝑞 (0) 𝑒𝑖𝜃𝜔ℎ𝜏ℎ +
𝑖𝑔02
3𝜔ℎ𝜏ℎ

𝑞 (0) 𝑒𝑖𝜃𝜔ℎ𝜏ℎ

+𝐸1𝑒
2𝑖𝜃𝜔
ℎ
𝜏
ℎ ,

(71)

where 𝐸1 = (𝐸
(1)
1 , 𝐸
(2)
1 , 𝐸
(3)
1 )
𝑇
∈ R3 is a constant vector.

In a similar way, we can obtain

𝑊11 (𝜃) = −
𝑖𝑔11
𝜔ℎ𝜏ℎ

𝑞 (0) 𝑒𝑖𝜃𝜔ℎ𝜏ℎ +
𝑖𝑔11
𝜔ℎ𝜏ℎ

𝑞 (0) 𝑒𝑖𝜃𝜔ℎ𝜏ℎ +𝐸2, (72)

where 𝐸2 = (𝐸
(1)
2 , 𝐸
(2)
2 , 𝐸
(3)
2 )
𝑇
∈ R3 is a constant vector.

From the definition of 𝐴 and (67), we obtain

∫

0

−1
𝑑𝜂 (𝜃)𝑊20 (𝜃) = 2𝑖𝜔ℎ𝜏ℎ𝑊20 (0) −𝐻20 (0) , (73)

∫

0

−1
𝑑𝜂 (𝜃)𝑊11 (𝜃) = −𝐻11 (0) , (74)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
By (65), we have

𝐻20 (0) = − 𝑔20𝑞 (0) − 𝑔02𝑞 (0) + 2𝜏ℎ(
0
−𝛽

𝛼

) , (75)

𝐻11 (0) = − 𝑔11𝑞 (0) − 𝑔11𝑞 (0) + 2𝜏ℎ(
0

−Re (𝛽)
Re (𝛼)

) . (76)

Substituting (71) and (75) into (73), we obtain

(2𝑖𝜔ℎ𝜏ℎ𝐼 −∫
0

−1
𝑒
2𝑖𝜃𝜔
ℎ
𝜏
ℎ𝑑𝜂 (𝜃))𝐸1 = 2𝜏ℎ(

0
−𝛽

𝛼

) (77)

which leads to

(

2𝑖𝜔ℎ + 𝑎 −𝑎 0

0 2𝑖𝜔ℎ − 𝑘1 + 𝑘1𝑒
−2𝜔
ℎ
𝜏
ℎ 𝑏2𝑥∗

− (𝑑 + 2𝑙) 𝑦∗ − (𝑑 + 2𝑘) 𝑥∗ 2𝑖𝜔ℎ + 𝑐
)𝐸1

= 2(
0
−𝛽

𝛼

) ,

𝐸
(1)
1 =

−2𝑎 (𝑐𝛽 + 2𝑖𝜔ℎ𝛽 + 𝑏2𝛼𝑥∗)
Δ 1

,

𝐸
(2)
1 = −

𝛽 (2𝑖𝜔ℎ + 𝑐) + 𝛼𝑏2𝑥∗
Δ 1

,

𝐸
(3)
1

=

𝛼 (2𝑖𝜔ℎ + 𝑎) (2𝑖𝜔ℎ − 𝑘1 + 𝑘1𝑒
−2𝜔
ℎ
𝜏
ℎ)

Δ 1

−
𝛽𝑎 (𝑑 + 2𝑙) 𝑦∗ − 𝛽 (𝑑 + 2𝑘) 𝑥∗ (2𝑖𝜔ℎ + 𝑎)

Δ 1
,

Δ 1

= det(

2𝑖𝜔ℎ + 𝑎 −𝑎 0

0 2𝑖𝜔ℎ − 𝑘1 + 𝑘1𝑒
−2𝜔
ℎ
𝜏
ℎ 𝑏2𝑥∗

− (𝑑 + 2𝑙) 𝑦∗ − (𝑑 + 2𝑘) 𝑥∗ 2𝑖𝜔ℎ + 𝑐
) .

(78)

In a similar way, substituting (72) and (76) into (74), we
obtain

(

𝑎 −𝑎 0
0 0 𝑏2𝑥∗

− (𝑑 + 2𝑙) 𝑦∗ − (𝑑 + 2𝑘) 𝑥∗ 𝑐

)𝐸2

= 2(
0

−Re (𝛽)
Re (𝛼)

) ,

𝐸
(1)
2 = 𝐸

(2)
1 =

−2𝑎𝑏2𝑥∗Re (𝛼) − 2𝑎𝑐Re (𝛽)
Δ 2

,

𝐸
(3)
2 =

−2𝑎Re (𝛽) ((𝑑 + 2𝑘) 𝑥∗ + (𝑑 + 2𝑙) 𝑦∗)
Δ 2

,

Δ 2 = 𝑎𝑏2𝑥∗ ((𝑑 + 2𝑘) 𝑥∗ + (𝑑 + 2𝑙) 𝑦∗) .

(79)

Thus, we can determine𝑊20(0) and𝑊11(0) from (71) and
(72). Furthermore, we can determine 𝑔21. Therefore, each 𝑔𝑖𝑗
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in (64) is determined by the parameters and delay in (43).
Thus, we can compute the following values:

𝐶1 (0) =
𝑖

2𝜏ℎ𝜔ℎ
(𝑔11𝑔20 − 2

󵄨󵄨󵄨󵄨𝑔11
󵄨󵄨󵄨󵄨

2
−

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨

2

3
)+
𝑔21
2
,

𝜇2 = −
Re (𝐶1 (0))
Re (𝜆󸀠 (𝜏ℎ))

,

𝛽2 = 2Re (𝐶1 (0)) ,

𝑇2 = −
Im (𝐶1 (0)) + 𝜇2Im (𝜆

󸀠
(𝜏ℎ))

𝜏ℎ𝜔ℎ

.

(80)

The above quantities characterize the bifurcating periodic
solutions in the center manifold at the critical value 𝜏ℎ [22,
23]:

(i) 𝜇 = 0 is the Hopf bifurcation of system (43).
(ii) 𝜇2 determines the direction of the Hopf bifurcation:

if 𝜇2 > 0 (𝜇2 < 0), then the Hopf bifurcation is
supercritical (subcritical) and the bifurcating periodic
solution exists for 𝜏 > 𝜏ℎ (𝜏 < 𝜏ℎ).

(iii) 𝛽2 determines the stability of the bifurcating periodic
solutions: the bifurcating periodic solutions are stable
(unstable) if 𝛽2 < 0 (𝛽2 > 0).

(iv) 𝑇2 determines the period of the bifurcating periodic
solutions: the period increases (decreases) if 𝑇2 >
0 (𝑇2 < 0).

4. Analysis of System (6)

Let 𝑞1 = 𝑞2 = 𝑞3 = 𝑞 ∈ (0, 1). In this case, the fractional order
system is commesurate-order [24].

Proposition 10. The initial value problem of the commensu-
rate order system (6) can be rewritten as follows:

𝐷
𝑞
𝑋 (𝑡) = 𝐴𝑋 (𝑡) + 𝑥 (𝑡) 𝐵𝑋 (𝑡) + 𝑦 (𝑡) 𝐶𝑋 (𝑡) ,

𝑋 (0) = (𝑥0, 𝑦0, 𝑧0)
𝑇
,

(81)

where 0 < 𝑡 ≤ 𝑇,𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) ∈ R3,

𝐴 = (

−𝑎 𝑎 0
𝑏1 0 0
0 0 −𝑐

) ,

𝐵 = (

0 0 0
0 0 −𝑏2
𝑙 𝑑 0

),

𝐶 = (

0 0 0
0 0 0
0 𝑘 0

).

(82)

Then, for constant 𝑇 = min{𝑇∗, (𝜖Γ(𝑞 + 1)/‖𝑓‖∞)
1/𝑞
}, 𝑇∗ > 0,

fractional order system (6) has a unique solution, where Γ(⋅) is
the Gamma function.

Proof. Consider the function 𝑓(𝑋(𝑡)) = 𝐴𝑋(𝑡) +𝑥(𝑡)𝐵𝑋(𝑡) +
𝑦(𝑡)𝐶𝑋(𝑡), which is continuous and bounded on the interval
𝑋 ∈ [0, 𝑇∗] × [𝑋0 − 𝜖,𝑋0 + 𝜖], for any 𝑇∗, 𝜖 > 0. For
𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))

𝑇 and 𝑌(𝑡) = (𝑥1(𝑡), 𝑦1(𝑡), 𝑧1(𝑡))
𝑇,

where 𝑌(𝑡) ∈ [0, 𝑇∗] × [𝑋0 − 𝜖,𝑋0 + 𝜖], we can obtain

󵄨󵄨󵄨󵄨𝑓 (𝑋 (𝑡)) −𝑓 (𝑌 (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝐿 (|𝑋 (𝑡) −𝑌 (𝑡)|) , (83)

where 𝐿 = ‖𝐴‖ + (‖𝐵‖ + ‖𝐶‖)(2|𝑋0| + 2𝜖) > 0.
Therefore, the fractional-order general 𝑇 system meets

the Lipschitz condition.Then, according to the existence and
uniqueness theorem of the fractional-order system [25], the
initial value problem of the commensurate order system (81)
has a unique solution in the interval 𝑇 = min{𝑇∗, (𝜖Γ(𝑞 +
1)/‖𝑓‖∞)

1/𝑞
}.

System (6) is dissipative for 𝑎 + 𝑐 > 0, because

∇𝑉 (𝑥, 𝑦, 𝑧) = − 𝑎 − 𝑐, (84)

where𝑉(𝑥, 𝑦, 𝑧) = (1/2)(𝑥2+𝑦2+𝑧2).Meanwhile, it is conver-
gent in an exponential rate

𝑑𝑉 (𝑋 (𝑡))

𝑑𝑡
= 𝑒
−(𝑎+𝑐)

. (85)

That is to say, an initial volume𝑉0 is the volume element at
time 𝑡 contraction of volume element 𝑉0𝑒

−(𝑎+𝑐)𝑡. When 𝑡 →
∞ all the trajectory of systems will eventually be restricted
in a volume element for zero point sets, and incremental
dynamic behavior of it will be fixed in an attractor.

In order to determine the stability conditions for the
steady states 𝑆− and 𝑆+, we first consider the integer-order
case. Based on Proposition 2, 𝑆− and 𝑆+ are locally asymp-
totically stable if and only if 0 < 𝑏1 < 𝑏𝑐, where

𝑏𝑐 =
𝑎 (𝑎 + 𝑐) (𝑑 + 𝑙 + 𝑘)

𝑎 (𝑑 + 2𝑙) − 𝑐 (𝑑 + 2𝑘)
(86)

and 𝑎(𝑑 + 2𝑙) − 𝑐(𝑑 + 2𝑘) > 0. It is known that the frac-
tional-order system is at least as stable as their integer-order
counterpart, so we have the following conclusion.

Proposition 11. The steady states 𝑆− and 𝑆+ are stable with 𝑞 ∈
(0, 1) for 𝑏1 < 𝑏𝑐.

When 𝑏1 > 𝑏𝑐, the steady states 𝑆− and 𝑆+ become unstable
in an integer-order system butmay be stable in the fractional-
order case.

5. Chaos Control of System (6)

In this section, wewant to control the chaos for the fractional-
order general𝑇 system (6) to the steady state denoted by 𝑆 via
feedback control.
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An 𝑛-dimensional fractional-order system can be des-
cribed as [13]

𝐷
𝑞
𝑋(𝑡) = 𝑓 (𝑋 (𝑡)) , (87)

where𝑋(𝑡) ∈ R𝑛, 𝑞 ∈ (0, 1).
The system with controller is given by [13]

𝐷
𝑞
𝑋 (𝑡) = 𝑓 (𝑋 (𝑡)) −𝐾 (𝑋 (𝑡) − 𝑆) , (88)

where 𝐾 = diag(𝑘1, 𝑘2, . . . , 𝑘𝑛) is the matrix of positive feed-
back gains and 𝑆 is the steady state of system (87).

The controlled fractional-order general 𝑇 system (6) is

𝐷
𝑞1𝑥 (𝑡) = 𝑎 (𝑦 (𝑡) − 𝑥 (𝑡)) − 𝑢1 (𝑡) ,

𝐷
𝑞2𝑦 (𝑡) = 𝑏1𝑥 (𝑡) − 𝑏2𝑥 (𝑡) 𝑧 (𝑡) − 𝑢2 (𝑡) ,

𝐷
𝑞3𝑧 (𝑡) = − 𝑐𝑧 (𝑡) + 𝑑𝑥 (𝑡) 𝑦 (𝑡) + 𝑙𝑥 (𝑡)

2
+ 𝑘𝑦 (𝑡)

2

−𝑢3 (𝑡) ,

(89)

where 𝑢𝑖(𝑡), 𝑖 = 1, 2, 3, are the external control inputs. The
control law of single state variables feedback has the following
form [13]:

𝑢1 (𝑡) = 𝑘1 (𝑥 (𝑡) − 𝑥01) ,

𝑢2 (𝑡) = 𝑘2 (𝑦 (𝑡) − 𝑦02) ,

𝑢3 (𝑡) = 𝑘3 (𝑧 (𝑡) − 𝑧03) ,

(90)

where 𝐾 = diag(𝑘1, 𝑘2, 𝑘3) is the matrix of positive feedback
gains and 𝑆 = (𝑥01, 𝑦02, 𝑧03)

𝑇 is the steady state of system (6).
The characteristic equation of the controlled system (89)

evaluated at the steady state 𝑆 is

(𝜆 + 𝑎 + 𝑘1) (𝜆 + 𝑘2) (𝜆 + 𝑐 + 𝑘3) = 0. (91)

The fractional-order Routh-Hurwitz conditions lead to

𝑎 + 𝑘1 > 0,

𝑘2 > 0,

𝑐 + 𝑘3 > 0.

(92)

6. Synchronization of System (6)

The nonlinear control method is used to design control in
order to make the drive system (6) and response system state
synchronization [14]. Two identical systems are introduced,
one is the drive system and the other system added a
nonlinear control to be the response system. Corresponding
to (6), the drive system is

𝐷
𝑞1𝑥1 (𝑡) = 𝑎 (𝑦1 (𝑡) − 𝑥1 (𝑡)) ,

𝐷
𝑞2𝑦1 (𝑡) = 𝑏1𝑥1 (𝑡) − 𝑏2𝑥1 (𝑡) 𝑧1 (𝑡) ,

𝐷
𝑞3𝑧1 (𝑡) = − 𝑐𝑧1 (𝑡) + 𝑑𝑥1 (𝑡) 𝑦1 (𝑡) + 𝑙𝑥1 (𝑡)

2

+ 𝑘𝑦1 (𝑡)
2
,

(93)

and the response system is

𝐷
𝑞1𝑥2 (𝑡) = 𝑎 (𝑦2 (𝑡) − 𝑥2 (𝑡)) + V1 (𝑡) ,

𝐷
𝑞2𝑦2 (𝑡) = 𝑏1𝑥2 (𝑡) − 𝑏2𝑥2 (𝑡) 𝑧2 (𝑡) + V2 (𝑡) ,

𝐷
𝑞3𝑧2 (𝑡) = − 𝑐𝑧2 (𝑡) + 𝑑𝑥2 (𝑡) 𝑦2 (𝑡) + 𝑙𝑥2 (𝑡)

2

+ 𝑘𝑦2 (𝑡)
2
+ V3 (𝑡) ,

(94)

where 𝑉(𝑡) = (V1(𝑡), V2(𝑡), V3(𝑡))
𝑇 is the nonlinear synchro-

nization controller.The drive system and the response system
achieve synchronization under the driver of 𝑉(𝑡). From (93)
and (94), the error system is obtained:

𝐷
𝑞1𝑒1 (𝑡) = 𝑎 (𝑒2 (𝑡) − 𝑒1 (𝑡)) + V1 (𝑡) ,

𝐷
𝑞2𝑒2 (𝑡) = 𝑏1𝑒1 (𝑡) − 𝑏2𝑥2 (𝑡) 𝑒3 − 𝑏2𝑥1 (𝑡) 𝑒1 + V2 (𝑡) ,

𝐷
𝑞3𝑒3 (𝑡) = − 𝑐𝑒3 (𝑡) + 𝑑𝑥2 (𝑡) 𝑒2 (𝑡) + 𝑑𝑦1 (𝑡) 𝑒1 (𝑡)

+ 𝑙 (𝑥1 (𝑡) + 𝑥2 (𝑡)) 𝑒1 (𝑡)

+ 𝑘 (𝑦1 (𝑡) + 𝑦2 (𝑡)) 𝑒2 (𝑡) + V3 (𝑡) ,

(95)

where 𝑒1(𝑡) = 𝑥2(𝑡) − 𝑥1(𝑡), 𝑒2(𝑡) = 𝑦2(𝑡) − 𝑦1(𝑡), 𝑒3 = 𝑧2(𝑡)−
𝑧1(𝑡). We have to find the proper control function V𝑖(𝑡), 𝑖 =
1, 2, 3, so that the response system (94) globally synchronizes
with drive system (93); that is, lim𝑡→+∞‖𝑒(𝑡)‖ = 0, where
𝑒(𝑡) = (𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡))

𝑇. According to [14], we propose the
following control law for system (94):

V1 (𝑡) = 𝑎𝑒1 (𝑡) − 𝑘1𝑒1 (𝑡) ,

V2 (𝑡) = − 𝑏1𝑒1 (𝑡) − 𝑎𝑒1 (𝑡) + 𝑏2𝑧1 (𝑡) 𝑒1 (𝑡)

+ 𝑏2𝑥2 (𝑡) 𝑒3 (𝑡) − 𝑘2𝑒2 (𝑡) ,

V3 (𝑡) = 𝑐𝑒3 (𝑡) − 𝑑𝑦1 (𝑡) 𝑒1 (𝑡)

− 𝑙𝑒1 (𝑡) (𝑥1 (𝑡) + 𝑥2 (𝑡)) − 𝑑𝑥2 (𝑡) 𝑒2 (𝑡)

− 𝑘 (𝑦2 (𝑡) + 𝑦1 (𝑡)) 𝑒2 (𝑡) ,

(96)

where 𝑘1, 𝑘2, and 𝑘3 are the control parameters.

Proposition 12 (see [14]). For any initial conditions, if 𝑘𝑖 >
0, 𝑖 = 1, 2, 3 then the drive system and response system will
synchronize.

7. Numerical Simulations

Now, we illustrate the findings from the previous sections.
We have proved that at some critical values of the delay, a
family of periodic solutions bifurcate from the steady states
of system (5) and the stability of the steady states may be
changed.

The numerical simulations indicate that when the delay
passes through certain critical values, chaotic oscillation is
converted into a stable steady state or a periodic orbit.
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Figure 10: For system (97), there is chaos when 𝑘
1
= −3, 𝜏 = 0.01.

We consider the delayed feedback control system (5) in
the following particular form:

𝑥̇ (𝑡) = 10 (𝑦 (𝑡) − 𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 40𝑥 (𝑡) − 𝑥 (𝑡) 𝑧 (𝑡) + 𝑘1 (𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏)) ,

𝑧̇ (𝑡) = − 2.5𝑧 (𝑡) + 3𝑥 (𝑡) 𝑦 (𝑡) + 0.9𝑥 (𝑡)2 + 2𝑦 (𝑡)2 ,

(97)

which has three steady states 𝑆0= (0, 0, 0), 𝑆− = (−4.11, −4.11,
40), and 𝑆+ = (4.11, 4.11, 40). When 𝜏 = 0 and 𝑘1 = 0, system
(97) is chaotic.

The characteristic equation of system (97) is given by

𝜆
3
+ (12.5− 𝑘1) 𝜆

2
+ (143.644− 12.5𝑘1) 𝜆 + 2000

− 10𝑘1 + 𝑘1 (𝜆
2
+ 12.5𝜆+ 25) 𝑒−𝜆𝜏 = 0.

(98)

If there is no delay, (98) has a negative root and a pair of
complex roots with positive real part.

UsingTheorem 9, we have the following:

(i) For 5.0413 < 𝑘1 < 28.403, 𝑟 = 105(40 − 𝑘1) > 0, Δ =
1.052 ⋅ 105 − 3101.694𝑘1 < 0, (98) has two roots with
positive real part for all 𝜏 ≥ 0, and the steady state 𝑆+
(or 𝑆−) of system (97) is unstable.

(ii) For 𝑘1 < 5.0413 chaos can occur.

In what follows, we consider 𝑘1 = −3. In this case: 𝜔1 =
11.58361053, 𝜔2 = 13.32108470,

𝜏
𝑗

1 = 0.473158+
2𝑗
𝜔1
,

𝜏
𝑗

2 = 0.51716+
2𝑗
𝜔2
,

𝑗 = 0, 1, 2, . . . .

(99)

Then, 𝜏01 < 𝜏
0
2 < 𝜏

1
2 < 𝜏

1
1 .

(i) For 𝜏 ∈ [0, 𝜏02 ) ∪ (𝜏
1
2 ,∞), the steady states 𝑆+ and 𝑆−

of system (97) are unstable.
(ii) For 𝜏 ∈ [𝜏02 , 𝜏

1
2 ), the steady states 𝑆+ and 𝑆− of system

(97) are locally asymptotically stable.
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Figure 11: For system (97), there is chaos when 𝑘
1
= −3, 𝜏 = 0.051.
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Figure 12: For system (97), an unstable periodic solution bifurcates
from the steady state 𝑆

+
when 𝑘

1
= −3, 𝜏 = 1.5.
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Figure 13: For system (97), an unstable periodic solution bifurcates
from the steady state 𝑆

−
when 𝑘

1
= −3, 𝜏 = 1.5.

(iii) For 𝜏 = 𝜏𝑗
ℎ
, for ℎ = 1, 2, 𝑗 = 0, 1, 2, . . ., system (97)

undergos a Hopf bifurcation at the steady states 𝑆+
and 𝑆−.

For values of 𝜏, which satisfy the above conditions, we
obtain the dynamical behaviors in Figures 10, 11, 12, and 13.

For the numerical simulation of the fractional differential
equations (FDE) (6), with 𝑎 = 10, 𝑏2 = 1, 𝑐 = 2.5, 𝑑 = 1, 𝑙 = 2,
𝑘 = 2, and 𝑞1 = 𝑞2 = 𝑞3 = 0.99, we use the method from
[26, 27]. We obtain Figures 14, 15, and 16.



Abstract and Applied Analysis 13

0 1 2 3 4 5

0
2

4
6
0

5

10

15

20

x(t)

z
(t
)

y(t)

Figure 14: Asymptotic stable solution for the fractional general 𝑇
system (6) when 𝑏1 = 10.
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Figure 15: Periodic solution for the fractional general 𝑇 system (6)
when 𝑏1 = 16.6.

For the controlled fractional order general𝑇-system (89),
using 𝐾 = diag(5, 5, 1) the matrix of positive feedback gains,
we obtain Figure 17.

8. Conclusion

In the present paper we introduce a generalized 𝑇-system
where the time delay is present.The linear stability is analyzed
by using the Routh Hurwitz criterion. The existence of the
Hopf bifurcation is studied. Then, the direction and the
stability of the bifurcating periodic solutions are determined
by using the normal form theory and the center manifold
theorem. Chaotic behavior is also taken into account. The
numerical simulations show that when the delay passes
through certain critical values, chaotic oscillation is con-
verted into a stable steady state or a periodic orbit.

Furthermore, the fractional-order general 𝑇 system has
been proposed. The dynamics, chaos control as well as
synchronization have been investigated.

The present study will be continued for the system which
describes the financial risk [28]. Also, as in [29], the frac-
tional-order chaotic complex system will be taken into con-
sideration.
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Figure 16: Chaos occurs for the fractional general 𝑇 system (6)
when 𝑏1 = 40.
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Figure 17: Asymptotic stable solution for the controlled fractional
general 𝑇 system (89), when 𝑏1 = 10.
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