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We apply the averaging theory of first and second order to a class of generalized Kukles polynomial differential systems to study
the maximum number of limit cycles of these systems.

1. Introduction

One of the main topics in the theory of ordinary differential
equations is the study of limit cycles: their existence, their
number, and their stability. A limit cycle of a differential
equation is an isolated periodic orbit in the set of all periodic
orbits of the differential equation.The second part of the 16th
Hilbert’s problem [1] is related to the least upper bound on
the number of limit cycles of polynomial vector fields having
a fixed degree. This problem and the Riemann conjecture are
the only two problems on the list of Hilbert which have not
been solved. Here we consider a very particular case of the
sixteenth Hilbert problem. We study the upper bound of the
generalized Kukles polynomial system

𝑥̇ = −𝑦, ̇𝑦 = 𝑄 (𝑥, 𝑦) , (1)

where𝑄(𝑥, 𝑦) is a polynomial with real coefficients of degree
𝑛.

Kukles [2], in 1944, introduced the differential system
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(2)

and he gives the necessary and sufficient conditions in order
that this system has a center at the origin. This cubic system

without the term 𝑦

3 was also studied in [3] and the authors
called it reduced. In [4] a description of the bifurcation of
its critical period appears, and [5] presents the existence of
reduced Kukles systems with five limit cycles. In the paper
[6], the author studied the class of reduced Kukles systems
under the cubic perturbation
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where 𝜀 > 0 is small and 𝑎 > 2 is a constant.
In [7] the author proves that some cubic systems of form

(1) can have seven limit cycles. In [8], Chavarriga et al. studied
the maximum number of small amplitude limit cycles for
Kukles systems which can coexist with some invariant alge-
braic curves. Also they give a family of cubic Kukles systems

𝑥̇ = −𝑦,

̇𝑦 = 𝑥 + 𝜆𝑦 + 𝑎𝑏𝑥
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with an invariant hyperbola ℎ(𝑥, 𝑦) = 1+𝑎𝑏𝑥−𝑏2𝑐𝑥2−𝑏3𝑥𝑦 =
0 with 𝑏 ̸= 0, which coexist with one or two small amplitude
limit cycles. In [9] the author studied the maximum number
of limit cycles of the generalized polynomial Liénard differen-
tial equations by using the first and second averagingmethod.
In [10], Llibre and Mereu studied the maximum number of
limit cycles of the Kukles polynomial differential systems

𝑥̇ = 𝑦,
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where for every 𝑘 the polynomials 𝑓𝑘
𝑛
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𝑚
(𝑥), and ℎ𝑘

𝑙
(𝑥)

have degrees 𝑛, 𝑚, and 𝑙, respectively, 𝑑𝑘
0
̸= 0 is a real number,

and 𝜀 is a small parameter.
In this work we study the maximum number of limit

cycles given by averaging theory of first and second order,
which can bifurcate from the periodic orbits of the linear
center 𝑥̇ = 𝑦, ̇𝑦 = −𝑥 perturbed inside the following class of
generalized Kukles polynomial differential systems:

𝑥̇ = 𝑦,
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where for every 𝑘 the polynomials 𝑓𝑘
𝑛
(𝑥), 𝑔𝑘

𝑚
(𝑥), and ℎ𝑘

𝑙
(𝑥)

have degrees 𝑛, 𝑚, and 𝑙, respectively, and 𝜀 is a small
parameter.Wehave considered the samepolynomial𝑔𝑘

𝑚
(𝑥) as

the coefficient of 𝑦 and 𝑦3. With this choice, we can apply the
first and second order of the averagingmethod. If we consider
the coefficients of 𝑦𝑖 for 𝑖 = 0, 1, 2, 3 as arbitrary polynomials,
it is difficult to apply the second order averaging method,
because to pass from the first order to the second order
averaging method, we must put the averaged function of the
first order 𝐹

10
(𝑟) (see (8)) identically null. In this case the

calculations of the averaged function of the second order
𝐹

20
(𝑟) (see (9)) become difficult. If we replace 𝑑𝑘

0
by ℎ𝑘
𝑙
(𝑥)

in the coefficient of 𝑦3 of the differential systems (5), we can
apply the first order averaging method but it is not easy to
apply the second averagingmethod. To apply the second aver-
aging method, we must put 𝐹

10
(𝑟) = 0 which is equivalent to

cancel all coefficients of the polynomial𝐹
10
(𝑟).The conditions

on the coefficient of 𝐹
10
(𝑟) make the calculations of 𝐹

20
(𝑟)

difficult. We have used the averaging method for looking for
the limit cycles of many classes of Liénard systems. Here we
do the same for Kukles differential systems. Comparatively,
with the results of the paper [10], we obtained more limit
cycles than the results of this paper. More precisely our main
result is the following.

Theorem 1. Assume that for 𝑘 = 1, 2 the polynomials 𝑓𝑘
𝑛
(𝑥),

𝑔

𝑘

𝑚
(𝑥), and ℎ𝑘

𝑙
(𝑥) have degrees 𝑛, 𝑚, and 𝑙, respectively, with

𝑛,𝑚, 𝑙 ≥ 1.Then for |𝜀| sufficiently small themaximumnumber
of limit cycles of the Kukles polynomial differential systems (6)

bifurcating from the periodic orbits of the linear centre 𝑥̇ =

𝑦, ̇𝑦 = −𝑥, using averaging theory

(a) of first order is

(i) no limit cycle for𝑚 = 1,
(ii) [(𝑚 + 2)/2] limit cycles for𝑚 ≥ 2,

(b) of second order ismax{[𝑛/2]+[(𝑚+1)/2], [𝑙/2]+[(𝑚+
3)/2], [(𝑚 + 2)/2]},

where [⋅] denotes the integer part function.

2. First and Second Order Averaging Method

In proof of our main result we use the averaging theory as it
is presented in [11]. Consider the differential system

𝑥̇ (𝑡) = 𝜀𝐹
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continuous functions, 𝑇-periodic in the first variable, and 𝐷
is an open subset ofR𝑛. Assume that the following hypotheses
(i) and (ii) hold.
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Then, for |𝜀| > 0 sufficiently small there exists 𝑎 𝑇-
periodic solution 𝜑(⋅, 𝜀) of system (7) such that 𝜑(0, 𝜀) = 𝑎
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10
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case the previous result provides the averaging theory of first
order.

If 𝐹
10

is identically zero and 𝐹
20

is not identically zero,
then the zeros of 𝐹
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are mainly the zeros of 𝐹
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𝜀 sufficiently small. In this case the previous result provides
the averaging theory of second order. For more information
about the averaging theory see [12, 13].

3. Proof of Theorem 1

3.1. Proof of Statement (a) of Theorem 1. In order to apply the
first order averaging method we write system (6) with 𝑘 =
1, in polar coordinates (𝑟, 𝜃) where 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃,
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𝑟 > 0. If we take 𝑓1
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If we take 𝜃 as a new independent variable, system (10)
becomes
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By using the notation introduced in Section 2 we have that
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𝐼
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Let 𝑘 be a positive integer. We define ev(𝑘) as the largest
even integer less than or equal to 𝑘, and od(𝑘) as the largest
odd integer less than or equal to 𝑘.

Hence
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For the case𝑚 = 1, we obtain that

𝐹

10
(𝑟) =

𝑏

0
𝑟

2𝜋

(𝐼

0,2
+ 𝐼

0,4
𝑟

2
)

=

𝑏

0
𝑟

2

(1 +

3

4

𝑟

2
) .

(17)

There is no positive root for 𝐹
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(𝑟).

For𝑚 ≥ 2, the polynomial 𝐹
10
(𝑟) has at most [(𝑚 + 2)/2]

positive roots. Hence (a) of Theorem 1 is proved.

3.2. Proof of Statement (b) of Theorem 1. For proving state-
ment (b) ofTheorem 1wewill use the second-order averaging
theory. If we write
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then system (6) with 𝑘 = 2 in polar coordinates (𝑟, 𝜃), 𝑟 > 0,
becomes

̇𝑟 = −𝜀 sin 𝜃𝑃 (𝑟, 𝜃) − 𝜀2 sin 𝜃𝐾 (𝑟, 𝜃) ,

̇

𝜃 = −1 −

𝜀

𝑟

cos 𝜃𝑃 (𝑟, 𝜃) − 𝜀
2
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Taking 𝜃 as the new independent variable system, (19) can
be written as

𝑑𝑟
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(𝑟, 𝜃) + 𝜀

2
𝐹

2
(𝑟, 𝜃) + 𝑜 (𝜀

3
) ,

(21)

where 𝐹
1
(𝑟, 𝜃) = sin 𝜃𝑃(𝑟, 𝜃) and 𝐹

2
(𝑟, 𝜃) = sin 𝜃𝐾(𝑟, 𝜃) −

(cos 𝜃 sin 𝜃/𝑟)𝑃2(𝑟, 𝜃).
In order to apply the averaging theory of second order,𝐹
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must be identically zero.Therefore from (16),𝐹
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zero if and only if 𝑏
𝑖
= 0 for 𝑖 even.

Now we determine the corresponding function
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=
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∫
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For this we compute
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+
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∑

𝑗=1

𝑗 odd

𝑏

𝑗
𝑟

𝑗+1
∫

𝜃

0

cos𝑗𝜙 sin2𝜙𝑑𝜙

+

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑏

𝑗
𝑟

𝑗+3
∫

𝜃

0

cos𝑗𝜙 sin4𝜙𝑑𝜙

+

𝑙

∑

𝑗=0

𝑐

𝑗
𝑟

𝑗+2
∫

𝜃

0

cos𝑗𝜙 sin3𝜙𝑑𝜙

=

𝑛

∑

𝑗=0

𝑎

𝑗
𝑟

𝑗 1

𝑗 + 1

(1 − cos𝑗+1𝜃)

+

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑏

𝑗
𝑟

𝑗+1
(

(𝑗+3)/2

∑

𝑘=1

𝛼

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))

+

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑏

𝑗
𝑟

𝑗+3
(

(𝑗+5)/2

∑

𝑘=1

𝛽

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))

+

ev(𝑙)
∑

𝑗=0

𝑗 even

𝑐

𝑗
𝑟

𝑗+2
(𝛾

1,𝑗
+

(𝑗+6)/2

∑

𝑘=2

𝛾

𝑘,𝑗
cos ((2𝑘 − 3) 𝜃))

+

od(𝑙)
∑

𝑗=1

𝑗 odd

𝑐

𝑗
𝑟

𝑗+2
(𝛿

1,𝑗
+

(𝑗+5)/2

∑

𝑘=2

𝛿

𝑘,𝑗
cos ((2𝑘 − 2) 𝜃)) ,

(23)

where 𝛼
𝑘,𝑗
, 𝛽
𝑘,𝑗
, 𝛾
𝑘,𝑗
, and 𝛿

𝑘,𝑗
are constants.

The integral ∫2𝜋
0
(𝑑/𝑑𝑟)𝐹

1
(𝑟, 𝜃)(∫

𝜃

0
𝐹

1
(𝑟, 𝜙)𝑑𝜙)𝑑𝜃 will be

given in several lemmas.

Lemma 2. The integral

∫

2𝜋

0

(

𝑛

∑

𝑖=1

𝑖𝑎

𝑖
𝑟

𝑖−1cos𝑖𝜃 sin 𝜃)(∫
𝜃

0

𝐹

1
(𝑟, 𝜙) 𝑑𝜙)𝑑𝜃 (24)

is, in the variable 𝑟, the polynomial
𝑒𝑣(𝑛)

∑

𝑖=2

𝑖 𝑒V𝑒𝑛

𝑜𝑑(𝑚)

∑

𝑗=1

𝑗 𝑜𝑑𝑑

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗
𝐴

𝑖𝑗
+

𝑒𝑣(𝑛)

∑

𝑖=2

𝑖 𝑒V𝑒𝑛

𝑜𝑑(𝑚)

∑

𝑗=1

𝑗 𝑜𝑑𝑑

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐵

𝑖𝑗
, (25)

where 𝐴
𝑖𝑗
and 𝐵

𝑖𝑗
are real constants.

Proof. We have that

(a
1
)

∫

2𝜋

0

(

𝑛

∑

𝑖=1

𝑖𝑎

𝑖
𝑟

𝑖−1cos𝑖𝜃 sin 𝜃)

⋅ (

𝑛

∑

𝑗=0

𝑎

𝑗
𝑟

𝑗 1

𝑗 + 1

(1 − cos𝑗+1𝜃))𝑑𝜃 = 0,

(26)

(b
1
)

∫

2𝜋

0

(

𝑛

∑

𝑖=1

𝑖𝑎

𝑖
𝑟

𝑖−1cos𝑖𝜃 sin 𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+3)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+1
𝛼

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))𝑑𝜃

=

ev(𝑛)
∑

𝑖=2

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗
𝐴

𝑖𝑗
,

(27)

where 𝐴
𝑖𝑗
= ∫

2𝜋

0
cos𝑖𝜃 sin 𝜃(∑(𝑗+3)/2

𝑘=1
𝛼

𝑘,𝑗
sin((2𝑘 −

1)𝜃))𝑑𝜃 ̸= 0 for 𝑖 ⩾ 2 even and 𝑗 ⩾ 1 odd,
(c
1
)

∫

2𝜋

0

(

𝑛

∑

𝑖=1

𝑖𝑎

𝑖
𝑟

𝑖−1cos𝑖𝜃 sin 𝜃)

⋅(

ev(𝑙)
∑

𝑗=0

𝑗 even

𝑐

𝑗
𝑟

𝑗+2
(𝛾

1,𝑗
+

(𝑗+6)/2

∑

𝑘=2

𝛾

𝑘,𝑗
cos ((2𝑘 − 3) 𝜃)))𝑑𝜃

= 0,

(28)

(d
1
)

∫

2𝜋

0

(

𝑛

∑

𝑖=1

𝑖𝑎

𝑖
𝑟

𝑖−1cos𝑖𝜃 sin 𝜃)

⋅(

od(𝑙)
∑

𝑗=1

𝑗 odd

𝑐

𝑗
𝑟

𝑗+2
(𝛿

1,𝑗
+

(𝑗+5)/2

∑

𝑘=2

𝛿

𝑘,𝑗
cos ((2𝑘 − 2) 𝜃)))𝑑𝜃

= 0,

(29)
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(e
1
)

∫

2𝜋

0

(

𝑛

∑

𝑖=1

𝑖𝑎

𝑖
𝑟

𝑖−1cos𝑖𝜃 sin 𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+5)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+3

𝑘
𝛽

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))𝑑𝜃

=

ev(𝑛)
∑

𝑖=2

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐵

𝑖𝑗
,

(30)

where 𝐵
𝑖𝑗
= ∫

2𝜋

0
cos𝑖𝜃 sin 𝜃(∑(𝑗+5)/2

𝑘=1
𝛽

𝑘,𝑗
sin((2𝑘 −

1)𝜃)𝑑𝜃) ̸= 0 for 𝑖 ⩾ 2 even and 𝑗 ⩾ 1 odd.

We have that the sum of the integrals (a
1
)–(e
1
) is polyno-

mial (3.6). This ends the proof of the lemma.

Lemma 3. The integral

∫

2𝜋

0

(

𝑚

∑

𝑖=0

(𝑖 + 1) 𝑏

𝑖
𝑟

𝑖cos𝑖𝜃 sin2𝜃)(∫
𝜃

0

𝐹

1
(𝑟, 𝜙) 𝑑𝜙)𝑑𝜃

(31)

is, in the variable 𝑟, the polynomial

− ∑

1≤𝑖≤𝑜𝑑(𝑚)

0≤𝑗≤𝑒𝑣(𝑛)

𝑖 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑗 𝑒V𝑒𝑛

𝑖 + 1

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗
𝐼

𝑖+𝑗+1,2

+

𝑜𝑑(𝑚)

∑

𝑖=1

𝑖 𝑜𝑑𝑑

𝑒𝑣(𝑙)

∑

𝑗=0

𝑗 𝑒V𝑒𝑛

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+2
𝐷

𝑖𝑗
,

(32)

where 𝐼
𝑖+𝑗+1,2

and𝐷
𝑖𝑗
are real constants.

Proof. We have that

(a
2
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 1) 𝑏

𝑖
𝑟

𝑖cos𝑖𝜃 sin2𝜃)

⋅ (

𝑛

∑

𝑗=0

𝑎

𝑗
𝑟

𝑗 1

𝑗 + 1

(1 − cos𝑗+1𝜃))𝑑𝜃

= − ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑛)
𝑖 odd and 𝑗 even

𝑖 + 1

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗
𝐼

𝑖+𝑗+1,2
,

(33)

where 𝐼
𝑖+𝑗+1,2

= ∫

2𝜋

0
(cos𝑖+𝑗+1𝜃 sin2𝜃)𝑑𝜃 ̸= 0 for 𝑖 odd

and 𝑗 even.

(b
2
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 1) 𝑏

𝑖
𝑟

𝑖cos𝑖𝜃 sin2𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+3)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+1
𝛼

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))𝑑𝜃 = 0,

(34)

(c
2
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 1) 𝑏

𝑖
𝑟

𝑖cos𝑖𝜃 sin2𝜃)

⋅(

ev(𝑙)
∑

𝑗=0

𝑗 even

𝑐

𝑗
𝑟

𝑗+2
(𝛾

1,𝑗
+

(𝑗+6)/2

∑

𝑘=2

𝛾

𝑘,𝑗
cos ((2𝑘 − 3) 𝜃)))𝑑𝜃

=

od(𝑚)
∑

𝑖=1

𝑖 odd

ev(𝑙)
∑

𝑗=0

𝑗 even

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+2
𝐷

𝑖𝑗
,

(35)

where 𝐷

𝑖𝑗
= ∫

2𝜋

0
cos𝑖𝜃 sin2𝜃(𝛾

1,𝑗
+

∑

(𝑗+6)/2

𝑘=2
𝛾

𝑘,𝑗
cos((2𝑘 − 3)𝜃))𝑑𝜃 ̸= 0 for 𝑖 ⩾ 1 odd

and 𝑗 ⩾ 0 even,
(d
2
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 1) 𝑏

𝑖
𝑟

𝑖cos𝑖𝜃 sin2𝜃)

⋅(

od(𝑙)
∑

𝑗=1

𝑗 odd

𝑐

𝑗
𝑟

𝑗+2
(𝛿

1,𝑗
+

(𝑗+5)/2

∑

𝑘=2

𝛿

𝑘,𝑗
cos ((2𝑘 − 2) 𝜃)))𝑑𝜃

= 0,

(36)

(e
2
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 1) 𝑏

𝑖
𝑟

𝑖cos𝑖𝜃 sin2𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+5)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+3
𝛽

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))𝑑𝜃 = 0.

(37)
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We have that the sum of the integrals (a
2
)–(e
2
) is polyno-

mial (32). This ends the proof of the lemma.

Lemma 4. The integral

∫

2𝜋

0

(

𝑙

∑

𝑖=0

(𝑖 + 2) 𝑐

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin3𝜃)(∫
𝜃

0

𝐹

1
(𝑟, 𝜙) 𝑑𝜙)𝑑𝜃

(38)

is, in the variable 𝑟, the polynomial
𝑒𝑣(𝑙)

∑

𝑖=0

𝑖 𝑒V𝑒𝑛

𝑜𝑑(𝑚)

∑

𝑗=1

𝑗 𝑜𝑑𝑑

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐸

𝑖𝑗

+

𝑒𝑣(𝑙)

∑

𝑖=0

𝑖 𝑒V𝑒𝑛

𝑜𝑑(𝑚)

∑

𝑗=1

𝑗 𝑜𝑑𝑑

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+4
𝐹

𝑖𝑗
,

(39)

where 𝐸
𝑖𝑗
and 𝐹

𝑖𝑗
are real constants.

Proof. We have that
(a
3
)

∫

2𝜋

0

(

𝑙

∑

𝑖=0

(𝑖 + 2) 𝑐

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin3𝜃)

⋅ (

𝑛

∑

𝑗=0

𝑎

𝑗
𝑟

𝑗 1

𝐽 + 1

(1 − cos𝑗+1𝜃))𝑑𝜃 = 0,

(40)

(b
3
)

∫

2𝜋

0

(

𝑙

∑

𝑖=0

(𝑖 + 2) 𝑐

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin3𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+3)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+1
𝛼

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))𝑑𝜃

=

ev(𝑙)
∑

𝑖=0

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐸

𝑖𝑗
,

(41)

where 𝐸
𝑖𝑗
= ∫

2𝜋

0
cos𝑖𝜃 sin3𝜃(∑(𝑗+3)/2

𝑘=1
𝛼

𝑘,𝑗
sin((2𝑘 −

1)𝜃)) ̸= 0 for 𝑖 ⩾ 0 even and 𝑗 ⩾ 1 odd,
(c
3
)

∫

2𝜋

0

(

𝑙

∑

𝑖=0

(𝑖 + 2) 𝑐

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin3𝜃)

⋅(

ev(𝑙)
∑

𝑗=0

𝑗 even

𝑐

𝑗
𝑟

𝑗+2
(𝛾

1,𝑗
+

(𝑗+6)/2

∑

𝑘=2

𝛾

𝑘,𝑗
cos ((2𝑘 − 3) 𝜃)))𝑑𝜃

= 0,

(42)

(d
3
)

∫

2𝜋

0

(

𝑙

∑

𝑖=0

(𝑖 + 2) 𝑐

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin3𝜃)

⋅(

od(𝑙)
∑

𝑗=1

𝑗 odd

𝑐

𝑗
𝑟

𝑗+2
(𝛿

1,𝑗
+

(𝑗+5)/2

∑

𝑘=2

𝛿

𝑘,𝑗
cos ((2𝑘 − 2) 𝜃)))𝑑𝜃

= 0,

(43)

(e
3
)

∫

2𝜋

0

(

𝑙

∑

𝑖=0

(𝑖 + 2) 𝑐

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin3𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+5)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+3
𝛽

𝑗

𝑘
sin ((2𝑘 − 1) 𝜃))𝑑𝜃

=

ev(𝑙)
∑

𝑖=0

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+4
𝐹

𝑖𝑗
,

(44)

where 𝐹
𝑖𝑗
= ∫

2𝜋

0
cos𝑖𝜃 sin3𝜃(∑(𝑗+5)/2

𝑘=1
𝛽

𝑘,𝑗
sin((2𝑘 −

1)𝜃)) ̸= 0 for 𝑖 ⩾ 0 even and 𝑗 ⩾ 1 odd.

We have that the sum of the integrals (a
3
)–(e
3
) is polyno-

mial (39). This completes the proof of the lemma.

Lemma 5. The integral

∫

2𝜋

0

(

𝑜𝑑(𝑚)

∑

𝑖=1

𝑖 𝑜𝑑𝑑

(𝑖 + 3) 𝑏

𝑖
𝑟

𝑖+2cos𝑖𝜃 sin4𝜃)(∫
𝜃

0

𝐹

1
(𝑟, 𝜙) 𝑑𝜙)𝑑𝜃

(45)

is, in the variable 𝑟, the polynomial

− ∑

1≤𝑖≤𝑜𝑑(𝑚)

0≤𝑗≤𝑒𝑣(𝑛)

𝑖 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑗 𝑒V𝑒𝑛

𝑖 + 3

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

+

𝑜𝑑(𝑚)

∑

𝑖=1

𝑖 𝑜𝑑𝑑

𝑒𝑣(𝑙)

∑

𝑗=0

𝑗 𝑒V𝑒𝑛

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+4
𝐻

𝑖𝑗
,

(46)

where 𝐼
𝑖+𝑗+1,4

and𝐻
𝑖𝑗
are real constants.
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Proof. We have that

(a
4
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 3) 𝑏

𝑖
𝑟

𝑖+2cos𝑖𝜃 sin4𝜃)

⋅ (

𝑛

∑

𝑗=0

𝑎

𝑗
𝑟

𝑗 1

𝐽 + 1

(1 − cos𝑗+1𝜃))𝑑𝜃

= − ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑛)
𝑖 odd and 𝑗 even

𝑖 + 3

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4
,

(47)

where 𝐼
𝑖+𝑗+1,4

= ∫

2𝜋

0
(cos𝑖+𝑗+1𝜃 sin4𝜃)𝑑𝜃 ̸= 0 for 𝑖 odd

and 𝑗 even,

(b
4
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 3) 𝑏

𝑖
𝑟

𝑖+2cos𝑖𝜃 sin4𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+3)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+1
𝛼

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))𝑑𝜃 = 0,

(48)

(c
4
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 3) 𝑏

𝑖
𝑟

𝑖+2cos𝑖𝜃 sin4𝜃)

⋅(

ev(𝑙)
∑

𝑗=0

𝑗 even

𝑐

𝑗
𝑟

𝑗+2
(𝛾

1,𝑗
+

(𝑗+6)/2

∑

𝑘=2

𝛾

𝑘,𝑗
cos ((2𝑘 − 3) 𝜃)))𝑑𝜃

=

od(𝑚)
∑

𝑖=1

𝑖 odd

ev(𝑙)
∑

𝑗=0

𝑗 even

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+4
𝐻

𝑖𝑗
,

(49)

where 𝐻

𝑖𝑗
= ∫

2𝜋

0
cos𝑖𝜃 sin4𝜃(𝛾

1,𝑗
+

∑

(𝑗+6)/2

𝑘=2
𝛾

𝑘,𝑗
cos((2𝑘 − 3)𝜃))𝑑𝜃 ̸= 0 for 𝑖 ⩾ 1 odd

and 𝑗 ⩾ 0 even,

(d
4
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 3) 𝑏

𝑖
𝑟

𝑖+2cos𝑖𝜃 sin4𝜃)

⋅(

od(𝑙)
∑

𝑗=1

𝑗 odd

𝑐

𝑗
𝑟

𝑗+2
(𝛿

1,𝑗
+

(𝑗+5)/2

∑

𝑘=2

𝛿

𝑘,𝑗
cos ((2𝑘 − 2) 𝜃)))𝑑𝜃

= 0,

(50)

(e
4
)

∫

2𝜋

0

(

od(𝑚)
∑

𝑖=1

𝑖 odd

(𝑖 + 3) 𝑏

𝑖
𝑟

𝑖+2cos𝑖𝜃 sin4𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑗+3)/2

∑

𝑘=1

𝑏

𝑗
𝑟

𝑗+3
𝛽

𝑘,𝑗
sin ((2𝑘 − 1) 𝜃))𝑑𝜃 = 0.

(51)

We have that the sum of the integrals (a
4
)–(e
4
) is polyno-

mial (46). This ends the proof of the lemma.

From Lemmas 2–5 we have that

∫

2𝜋

0

𝑑

𝑑𝑟

𝐹

1
(𝑟, 𝜃) (∫

𝜃

0

𝐹

1
(𝑟, 𝜙) 𝑑𝜙)𝑑𝜃

=

ev(𝑛)
∑

𝑖=2

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗
𝐴

𝑖𝑗
+

ev(𝑛)
∑

𝑖=2

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐵

𝑖𝑗

− ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑛)
𝑖 odd and 𝑗 even

𝑖 + 1

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗
𝐼

𝑖+𝑗+1,2

+

od(𝑚)
∑

𝑖=1

𝑖 odd

ev(𝑙)
∑

𝑗=0

𝑗 even

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+2
𝐷

𝑖𝑗

+

ev(𝑙)
∑

𝑖=0

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐸

𝑖𝑗

+

ev(𝑙)
∑

𝑖=0

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+4
𝐹

𝑖𝑗
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− ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑛)
𝑖 odd and 𝑗 even

𝑖 + 3

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

+

od(𝑚)
∑

𝑖=1

𝑖 odd

ev(𝑙)
∑

𝑗=0

𝑗 even

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+4
𝐻

𝑖𝑗
.

(52)

Now we calculate the integral ∫2𝜋
0
𝐹

2
(𝑟, 𝜃)𝑑𝜃.

∫

2𝜋

0

𝐹

2
(𝑟, 𝜃) 𝑑𝜃 = ∫

2𝜋

0

sin 𝜃𝐾 (𝑟, 𝜃) 𝑑𝜃

− ∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

𝑃

2
(𝑟, 𝜃) 𝑑𝜃.

(53)

First we calculate ∫2𝜋
0

sin 𝜃𝐾(𝑟, 𝜃)𝑑𝜃. Noting that 𝐾(𝑟, 𝜃)
is given by (20), we have

∫

2𝜋

0

sin 𝜃𝐾 (𝑟, 𝜃) 𝑑𝜃 =
𝑛

∑

𝑖=0

𝑎

𝑖
𝑟

𝑖
∫

2𝜋

0

cos𝑖𝜃 sin 𝜃 𝑑𝜃

+

𝑚

∑

𝑖=0

̃

𝑏

𝑖
𝑟

𝑖+1
∫

2𝜋

0

cos𝑖𝜃 sin2𝜃 𝑑𝜃

+

𝑚

∑

𝑖=0

̃

𝑏

𝑖
𝑟

𝑖+3
∫

2𝜋

0

cos𝑖𝜃 sin4𝜃 𝑑𝜃

+

𝑙

∑

𝑖=0

𝑐

𝑖
𝑟

𝑖+2
∫

2𝜋

0

cos𝑖𝜃 sin3𝜃 𝑑𝜃.

(54)

Hence

∫

2𝜋

0

sin 𝜃𝐾 (𝑟, 𝜃) 𝑑𝜃 =
ev(𝑚)
∑

𝑖=0

𝑖 even

̃

𝑏

𝑖
𝑟

𝑖+1
𝐼

𝑖,2
+

ev(𝑚)
∑

𝑖=0

𝑖 even

̃

𝑏

𝑖
𝑟

𝑖+3
𝐼

𝑖,4
. (55)

Now noting that 𝑃(𝑟, 𝜃) is given by (11), we compute

∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

𝑃

2
(𝑟, 𝜃) 𝑑𝜃

= ∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

𝑛

∑

𝑖=0

𝑎

𝑖
𝑟

𝑖cos𝑖𝜃)
2

𝑑𝜃

+ ∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

od(𝑚)
∑

𝑖=1

𝑖 odd

𝑏

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin 𝜃)

2

𝑑𝜃

+ ∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

𝑙

∑

𝑖=0

𝑐

𝑖
𝑟

𝑖+2cos𝑖𝜃 sin2𝜃)
2

𝑑𝜃

+ ∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

od(𝑚)
∑

𝑖=1

𝑖 odd

𝑏

𝑖
𝑟

𝑖+3cos𝑖𝜃 sin3𝜃)

2

𝑑𝜃

+ 2∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

𝑛

∑

𝑖=0

𝑎

𝑖
𝑟

𝑖cos𝑖𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑏

𝑗
𝑟

𝑗+1cos𝑗𝜃 sin 𝜃)𝑑𝜃

+ 2∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

𝑛

∑

𝑖=0

𝑎

𝑖
𝑟

𝑖cos𝑖𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑏

𝑗
𝑟

𝑗+3cos𝑗𝜃 sin3𝜃)𝑑𝜃

+ 2∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

𝑛

∑

𝑖=0

𝑎

𝑖
𝑟

𝑖cos𝑖𝜃)

⋅ (

𝑙

∑

𝑗=0

𝑐

𝑗
𝑟

𝑗+2cos𝑗𝜃 sin2𝜃)𝑑𝜃

+ 2∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

od(𝑚)
∑

𝑖=1

𝑖 odd

𝑏

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin 𝜃)

⋅(

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑏

𝑗
𝑟

𝑗+3cos𝑗𝜃 sin3𝜃)𝑑𝜃

+ 2∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

od(𝑚)
∑

𝑖=1

𝑖 odd

𝑏

𝑖
𝑟

𝑖+1cos𝑖𝜃 sin 𝜃)

⋅ (

𝑙

∑

𝑗=0

𝑐

𝑗
𝑟

𝑗+2cos𝑗𝜃 sin2𝜃)𝑑𝜃

+ 2∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

(

od(𝑚)
∑

𝑖=1

𝑖 odd

𝑏

𝑖
𝑟

𝑖+3cos𝑖𝜃 sin3𝜃)

⋅ (

𝑙

∑

𝑗=0

𝑐

𝑗
𝑟

𝑗+2cos𝑗𝜃 sin2𝜃)𝑑𝜃.

(56)

Hence

∫

2𝜋

0

sin 𝜃 cos 𝜃
𝑟

𝑃

2
(𝑟, 𝜃) 𝑑𝜃

= 2 ∑

0≤𝑖≤ev(𝑛)
1≤𝑗≤od(𝑚)
𝑖 even and 𝑗 odd

𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗
𝐼

𝑖+𝑗+1,2
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+ 2 ∑

0≤𝑖≤ev(𝑛)
1≤𝑗≤od(𝑚)
𝑖 even and 𝑗 odd

𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

+ 2 ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑙)
𝑖 odd and 𝑗 even

𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

+ 2 ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑙)
𝑖 odd and 𝑗 even

𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+4
𝐼

𝑖+𝑗+1,6
.

(57)

From (55) and (57) we obtain

∫

2𝜋

0

𝐹

2
(𝑟, 𝜃) 𝑑𝜃 =

ev(𝑚)
∑

𝑖=0

𝑖 even

̃

𝑏

𝑖
𝑟

𝑖+1
𝐼

𝑖,2
+

ev(𝑚)
∑

𝑖=0

𝑖 even

̃

𝑏

𝑖
𝑟

𝑖+3
𝐼

𝑖,4

− 2 ∑

0≤𝑖≤ev(𝑛)
1≤𝑗≤od(𝑚)
𝑖 even and 𝑗 odd

𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗
𝐼

𝑖+𝑗+1,2

− 2 ∑

0≤𝑖≤ev(𝑛)
1≤𝑗≤od(𝑚)
𝑖 even and 𝑗 odd

𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

− 2 ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑙)
𝑖 odd and 𝑗 even

𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

− 2 ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑙)
𝑖 odd and 𝑗 even

𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+4
𝐼

𝑖+𝑗+1,6
.

(58)

Then 𝐹
20
is the polynomial

𝐹

20
(𝑟) =

1

2𝜋

(

ev(𝑛)
∑

𝑖=2

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗
𝐴

𝑖𝑗

+

ev(𝑛)
∑

𝑖=2

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

𝑖𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐵

𝑖𝑗

− ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑛)
𝑖 odd and 𝑗 even

𝑖 + 1

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗
𝐼

𝑖+𝑗+1,2

+

od(𝑚)
∑

𝑖=1

𝑖 odd

ev(𝑙)
∑

𝑗=0

𝑗 even

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+2
𝐷

𝑖𝑗

+

ev(𝑙)
∑

𝑖=0

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐸

𝑖𝑗

+

ev(𝑙)
∑

𝑖=0

𝑖 even

od(𝑚)
∑

𝑗=1

𝑗 odd

(𝑖 + 2) 𝑐

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+4
𝐹

𝑖𝑗

− ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑛)
𝑖 odd and 𝑗 even

𝑖 + 3

𝑗 + 1

𝑎

𝑗
𝑏

𝑖
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

+

od(𝑚)
∑

𝑖=1

𝑖 odd

ev(𝑙)
∑

𝑗=0

𝑗 even

(𝑖 + 1) 𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+4
𝐻

𝑖𝑗

+

ev(𝑚)
∑

𝑖=0

𝑖 even

̃

𝑏

𝑖
𝑟

𝑖+1
𝐼

𝑖,2
+

ev(𝑚)
∑

𝑖=0

𝑖 even

̃

𝑏

𝑖
𝑟

𝑖+3
𝐼

𝑖,4

− 2 ∑

0≤𝑖≤ev(𝑛)
1≤𝑗≤od(𝑚)
𝑖 even and 𝑗 odd

𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗
𝐼

𝑖+𝑗+1,2

− 2 ∑

0≤𝑖≤ev(𝑛)
1≤𝑗≤od(𝑚)
𝑖 even and 𝑗 odd

𝑎

𝑖
𝑏

𝑗
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

− 2 ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑙)
𝑖 odd and 𝑗 even

𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+2
𝐼

𝑖+𝑗+1,4

− 2 ∑

1≤𝑖≤od(𝑚)
0≤𝑗≤ev(𝑙)
𝑖 odd and 𝑗 even

𝑏

𝑖
𝑐

𝑗
𝑟

𝑖+𝑗+4
𝐼

𝑖+𝑗+1,6
).

(59)

Note that in order to find the positive roots of 𝐹
20

after
dividing by 𝑟, we must find the zeros of a polynomial in the
variable 𝑟2 of degree equal to the max{((ev(𝑛) + od(𝑚) + 2) −
1)/2, ((ev(𝑙) + od(𝑚) + 4) − 1)/2, ((ev(𝑚) + 3) − 1)/2}, we
conclude that 𝐹

20
has at most max{[𝑛/2]+ [(𝑚+1)/2], [𝑙/2]+

[(𝑚+3)/2], [(𝑚+2)/2]}positive roots.Hence (b) ofTheorem 1
is proved.
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